Science.gov

Sample records for air ion spectrometers

  1. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  2. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  3. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  4. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  5. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  6. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  7. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  8. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  9. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  10. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  11. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-01

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  12. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  13. The Pickup Ion Composition Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  14. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  15. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  16. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  17. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  18. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  19. Ion mobility spectrometer with virtual aperture grid

    DOEpatents

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  20. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  1. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  2. Halo ion trap mass spectrometer.

    PubMed

    Austin, Daniel E; Wang, Miao; Tolley, Samuel E; Maas, Jeffrey D; Hawkins, Aaron R; Rockwood, Alan L; Tolley, H Dennis; Lee, Edgar D; Lee, Milton L

    2007-04-01

    We describe a novel radio frequency ion trap mass analyzer based on toroidal trapping geometry and microfabrication technology. The device, called the halo ion trap, consists of two parallel ceramic plates, the facing surfaces of which are imprinted with sets of concentric ring electrodes. Radii of the imprinted rings range from 5 to 12 mm, and the spacing between the plates is 4 mm. Unlike conventional ion traps, in which hyperbolic metal electrodes establish equipotential boundary conditions, electric fields in the halo ion trap are established by applying different radio frequency potentials to each ring. The potential on each ring can be independently optimized to provide the best trapping field. The halo ion trap features an open structure, allowing easy access for in situ ionization. The toroidal geometry provides a large trapping and analyzing volume, increasing the number of ions that can be stored and reducing the effects of space-charge on mass analysis. Preliminary mass spectra show resolution (m/Deltam) of 60-75 when the trap is operated at 1.9 MHz and 500 Vp-p. PMID:17335180

  3. Microscale ion trap mass spectrometer

    DOEpatents

    Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  4. Electron-ion-x-ray spectrometer system

    SciTech Connect

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.; LeBrun, T.

    1993-10-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays.

  5. The ion mobility spectrometer for high explosive vapor detection

    SciTech Connect

    Cohen, M.J.; Stimac, R.M.; Wernlund, R.F.

    1984-07-01

    The Phemto-Chem /SUP R/ Model 100 Ion Mobility Spectrometer (IMS) operates in air and measures a number of explosive vapors at levels as low as partsper-trillion in seconds. The theory and operation of this instrument is discussed. The IMS inhales the vapor sample in a current of air and generates characteristic ions which are separated by time-of -ion drift in the atmospheric pressure gas. Quantitative results, using a dilution tunnel and standard signal generator with TNT, nitroglycerine, ethylene glycol dinitrate, cyclohexanone, methylamine, octafluoronaphthalene and hexafluorobenzene, are given. Rapid sample treatment with sample concentrations, microprocessor signal readout and chemical identification, offer a realistic opportunity of rapid explosive vapor detection at levels down to 10/sup -14/ parts by volume in air.

  6. Ion mobility spectrometers and methods for ion mobility spectrometry

    SciTech Connect

    Dahl, David A; Scott, Jill R; Appelhans, Anthony D; McJunkin, Timothy R; Olson, John E

    2009-04-14

    An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

  7. AFE ion mass spectrometer design study

    NASA Technical Reports Server (NTRS)

    Wright, Willie

    1989-01-01

    This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.

  8. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    PubMed

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  9. Ion mobility spectrometer, spectrometer analyte detection and identification verification system, and method

    DOEpatents

    Atkinson, David A.

    2002-01-01

    Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.

  10. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  11. Method of multiplexed analysis using ion mobility spectrometer

    DOEpatents

    Belov, Mikhail E.; Smith, Richard D.

    2009-06-02

    A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

  12. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  13. The Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Geiss, J.; Balsiger, H.; Bedini, P.; Cain, J. C.; Fisher, J.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.

    1992-01-01

    The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.

  14. THOR Ion Mass Spectrometer instrument - IMS

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  15. Non-destructive ion trap mass spectrometer and method

    DOEpatents

    Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.

    1997-01-01

    The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.

  16. Radiation Design of Ion Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Ed; Cooper, John; Christian, Eric; Moore, Tom; Sturner, Steve; Paschalidis, Nick

    2011-01-01

    In the harsh radiation environment of Jupiter and with the JUpiter ICy moon Explorer (JUICE) mission including two Europa flybys where local intensities are approx. 150 krad/month behind 100 mils of Al shielding, so background from penetrating radiation can be a serious issue for detectors inside an Ion Mass Spectrometer (IMS). This can especially be important for minor ion detection designs. Detectors of choice for time-of-flight (TOF) designs are microchannel plates (MCP) and some designs may include solid state detectors (SSD). The standard approach is to use shielding designs so background event rates are low enough that the detector max rates and lifetimes are first not exceeded and then the more stringent requirement that the desired measurement can successfully be made (i.e., desired signal is sufficiently greater than background noise after background subtraction is made). GEANT codes are typically used along with various electronic techniques, but such designs need to know how the detectors will respond to the simulated primary and secondary radiations produced within the instrument. We will be presenting some preliminary measurements made on the response of MCPs to energetic electrons (20 ke V to 1400 ke V) using a Miniature TOF (MTOF) device and the High Energy Facility at Goddard Space Flight Center which has a Van de Graaff accelerator.

  17. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    SciTech Connect

    Timothy R. McJunkin; Jill R. Scott; Carla J. Miller

    2003-07-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  18. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  19. Ion Neutral Mass Spectrometer Measurements from Titan

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Niemann, H.; Yelle, R. V.; Kasprzak, W.; Cravens, T.; Luhmann, J.; McNutt, R.; Ip, W.-H.; Gell, D.; Muller-Wordag, I. C. F.

    2005-01-01

    Introduction: The Ion Neutral Mass Spectrometer (INMS) aboard the Cassini orbiter has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, argon, and a host of stable carbon-nitrile compounds in its first flyby of Titan. The bulk composition and thermal structure of the moon s upper atmosphere do not appear to be changed since the Voyager flyby in 1979. However, the more sensitive techniques provided by modern in-situ mass spectrometry also give evidence for large-spatial-scale large-amplitude atmospheric waves in the upper atmosphere and for a plethora of stable carbon-nitrile compounds above 1174 km. Furthermore, they allow the first direct measurements of isotopes of nitrogen, carbon, and argon, which provide interesting clues about the evolution of the atmosphere. The atmosphere was first accreted as ammonia and ammonia ices from the Saturn sub-nebula. Subsequent photochemistry likely converted the atmosphere into molecular nitrogen. The early atmosphere was 1.5 to 5 times more substantial and was lost via escape over the intervening 4.5 billion years due to the reduced gravity associated with the relatively small mass of Titan. Carbon in the form of methane has continued to outgas over time from the interior with much of it being deposited in the form of complex hydrocarbons on the surface and some of it also being lost to space.

  20. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  1. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  2. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  3. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  4. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  5. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  6. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  7. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  8. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Positive metallic ions have been measured in the earth's atmosphere between 85 and 120 km, during the period of the beta Taurids meteor shower, which is associated with Comet Encke. The ions originate during and following ablation of extraterrestrial debris by the earth's atmosphere. The enhancement of metal ion density during meteor showers is primary evidence for their extraterrestrial origin. The present results were obtained from a rocket-borne ion mass spectrometer.

  9. Ion mobility spectrometer for online monitoring of trace compounds1

    NASA Astrophysics Data System (ADS)

    Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J. I.

    2002-10-01

    The principle, character and developments of the instrumentation of ion mobility spectrometry are reviewed. The application of ion mobility spectrometers in monitoring chemical warfare agents, explosives, drugs, environmental hazardous compounds and industrial process control are discussed. Process applications with respect to miniaturization of the instrument are presented.

  10. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  11. A retarding ion mass spectrometer for the Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Wright, W.

    1985-01-01

    The Retarding Ion Mass Spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  12. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  13. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  14. Ion mobility spectrometer using frequency-domain separation

    DOEpatents

    Martin, Stephen J.; Butler, Michael A.; Frye, Gregory C.; Schubert, W. Kent

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  15. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.

    PubMed

    Heptner, Andre; Reinecke, Tobias; Langejuergen, Jens; Zimmermann, Stefan

    2014-08-22

    Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker micrOTOF II. Therefore, the detector plate of the IMS is pierced and a transfer capillary is inserted. The ions are transferred via gas flow and electric fields into the MS. The transmission of the ions through the transfer capillary can be shuttered very precisely by increasing the electric potential of the detector generating a repulsive electric field. Thus, it is possible to transfer single ion clouds of generated IMS spectra into the mass spectrometer where a corresponding mass spectrum is generated. In this work we analyze the positive and negative IMS spectra of single analytes as well as gas mixtures and characterize the occurring ion species. PMID:25015244

  16. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.

    PubMed

    Heptner, Andre; Reinecke, Tobias; Langejuergen, Jens; Zimmermann, Stefan

    2014-08-22

    Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker micrOTOF II. Therefore, the detector plate of the IMS is pierced and a transfer capillary is inserted. The ions are transferred via gas flow and electric fields into the MS. The transmission of the ions through the transfer capillary can be shuttered very precisely by increasing the electric potential of the detector generating a repulsive electric field. Thus, it is possible to transfer single ion clouds of generated IMS spectra into the mass spectrometer where a corresponding mass spectrum is generated. In this work we analyze the positive and negative IMS spectra of single analytes as well as gas mixtures and characterize the occurring ion species.

  17. Design and development of a fast ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1983-01-01

    Two Fast Ion Mass Spectrometers (FIMS A and FIMS B) were developed. The design, development, construction, calibration, integration, and flight of these instruments, along with early results from the data analysis efforts are summarized. A medium energy ion mass spectrometer that covers mass velocity space with significantly higher time resolution, improved mass resolution, (particularly for heavier ions), and wider energy range than existing instruments had achieved was completed. The initial design consisted of a dual channel cylindrical electrostatic analyzer followed by a dual channel cylindrical velocity filter. The gain versus count rate characteristics of the high current channel electron multipliers (CEM's), which were chosen for ion detection, revealed a systematic behavior that can be used as a criterion for selection of CEM's for long counting lifetimes.

  18. Ion Composition in Titan's Exosphere from the Cassini Plasma Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodson, A.; Smith, H. T.; Johnson, R. E.

    2013-12-01

    A primary goal of the Cassini mission has been to characterize the complex interaction between Saturn's magnetosphere and Titan's ionosphere. To this end, the Cassini spacecraft carries two instruments-the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS)-capable of energy- and mass-analysis. The Ion Mass Spectrometer (IMS), one of three instruments composing CAPS, is designed to characterize diffuse plasmas throughout the magnetosphere while the INMS is optimized for measurements within Titan's upper atmosphere. As such, mass-resolved ion compositions confirming a variety of hydrocarbons and nitriles have been extracted from INMS data for numerous Titan encounters. Similar analysis of IMS data, however, has largely been resolution-limited to the identification of 'light' and 'heavy' ion groups in the wake. Herein we present a technique for extracting Dalton-resolved ion compositions from IMS spectra acquired below ~5 Titan radii. The method is then applied to data from the T40 encounter and the resulting relative abundances compared with those derived from the INMS data for the same encounter.

  19. Signal processing for ION mobility spectrometers

    NASA Technical Reports Server (NTRS)

    Taylor, S.; Hinton, M.; Turner, R.

    1995-01-01

    Signal processing techniques for systems based upon Ion Mobility Spectrometry will be discussed in the light of 10 years of experience in the design of real-time IMS. Among the topics to be covered are compensation techniques for variations in the number density of the gas - the use of an internal standard (a reference peak) or pressure and temperature sensors. Sources of noise and methods for noise reduction will be discussed together with resolution limitations and the ability of deconvolution techniques to improve resolving power. The use of neural networks (either by themselves or as a component part of a processing system) will be reviewed.

  20. A simple photoionization scheme for characterizing electron and ion spectrometers

    NASA Astrophysics Data System (ADS)

    Wituschek, A.; von Vangerow, J.; Grzesiak, J.; Stienkemeier, F.; Mudrich, M.

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ˜1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  1. Ion mass spectrometer experiment for ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, John H.

    1987-01-01

    The International Satellite for Ionospheric Studies (ISIS) program of NASA was the longest duration program in NASA history. A number of satellites were flown under this program, the last being called ISIS-2, which was launched on April 1, 1971 and operated successfully for over 13 years. An experiment called the Ion Mass Spectrometer (IMS) was flown on the ISIS-2 spacecraft. It operated for 10 years providing a large data base of positive ion composition and ion flow velocities along the orbit of the satellite, the latter being circular at 1400 km with a 90 degree inclination. The data were processed and reside in the National Space Sciences Data Center.

  2. A simple photoionization scheme for characterizing electron and ion spectrometers.

    PubMed

    Wituschek, A; von Vangerow, J; Grzesiak, J; Stienkemeier, F; Mudrich, M

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education. PMID:27587098

  3. A novel Laser Ion Mobility Spectrometer

    NASA Astrophysics Data System (ADS)

    Göbel, J.; Kessler, M.; Langmeier, A.

    2009-05-01

    IMS is a well know technology within the range of security based applications. Its main advantages lie in the simplicity of measurement, along with a fast and sensitive detection method. Contemporary technology often fails due to interference substances, in conjunction with saturation effects and a low dynamic detection range. High throughput facilities, such as airports, require the analysis of many samples at low detection limits within a very short timeframe. High detection reliability is a requirement for safe and secure operation. In our present work we developed a laser based ion-mobility-sensor which shows several advantages over known IMS sensor technology. The goal of our research was to increase the sensitivity compared to the range of 63Ni based instruments. This was achieved with an optimised geometric drift tube design and a pulsed UV laser system at an efficient intensity. In this intensity range multi-photon ionisation is possible, which leads to higher selectivity in the ion-formation process itself. After high speed capturing of detection samples, a custom designed pattern recognition software toolbox provides reliable auto-detection capability with a learning algorithm and a graphical user interface.

  4. Product ion scanning using a Q-q-Q linear ion trap (Q TRAP) mass spectrometer.

    PubMed

    Hager, James W; Yves Le Blanc, J C

    2003-01-01

    The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.

  5. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  6. An ion mobility mass spectrometer for investigating photoisomerization and photodissociation of molecular ions

    SciTech Connect

    Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.; Bieske, E. J.; Continetti, R. E.

    2014-12-15

    An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the device is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.

  7. PIPE: A versatile photon-ion spectrometer at PETRAIII

    NASA Astrophysics Data System (ADS)

    Ricsóka, T.; Ricz, S.; Schippers, S.; Müller, A.; Klumpp, S.; Martins, M.; Flesch, R.; Mondes, V.; Rühl, E.; Schmidt, L.; Dörner, R.; Ullrich, J.; Wolf, A.

    2009-11-01

    A German research collaboration is currently setting up a versatile photon-ion spectrometer at PE-TRA III (PIPE) the new synchrotron radiation source at the DESY site in Hamburg, Germany. PIPE will be operated as a user facility at the Variable Polarization XUV beamline which will deliver some 1012 photons per second per 0.01% bandwidth in the photon energy range 250-3000 eV. The PIPE setup will allow users to study photon interactions with ionized matter in the gas phase, such as multiply charged atomic ions, small and large (bio-)molecular ions, solvate ions, and cluster ions with mass/charge ratios of up to 30 000.

  8. Laser desorption in an ion trap mass spectrometer

    SciTech Connect

    Eiden, G.C.; Cisper, M.E.; Alexander, M.L.; Hemberger, P.H.; Nogar, N.S.

    1993-02-01

    Laser desorption in a ion-trap mass spectrometer shows significant promise for both qualitative and trace analysis. Several aspects of this methodology are discussed in this work. We previously demonstrated the generation of both negative and positive ions by laser desorption directly within a quadrupole ion trap. In the present work, we explore various combinations of d.c., r.f., and time-varying fields in order to optimize laser generated signals. In addition, we report on the application of this method to analyze samples containing compounds such as amines, metal complexes, carbon clusters, and polynuclear aromatic hydrocarbons. In some cases the ability to rapidly switch between positive and negative ion modes provides sufficient specificity to distinguish different compounds of a mixture with a single stage of mass spectrometry. In other experiments, we combined intensity variation studies with tandem mass spectrometry experiments and positive and negative ion detection to further enhance specificity.

  9. The Retarding Ion Mass Spectrometer on Dynamics Explorer-A

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.; Fields, S. A.; Baugher, C. R.; Hoffman, J. H.; Hanson, W. B.; Wright, W. W.; Hammack, H. D.; Carignan, G. R.; Nagy, A. F.

    1981-01-01

    The thermal component of the magnetospheric plasma plays a key role in magnetosphere-ionosphere coupling processes, acting as a strong influence on ionospheric structure at low altitudes and as a source and modifier of the hotter plasma population at high altitudes. The Retarding Ion Mass Spectrometer (RIMS) instrument on Dynamics Explorer-A is designed to measure this important thermal plasma component. Using a combination of retarding potential analysis and magnetic ion mass spectrometer techniques, the RIMS instrument will measure the bulk plasma parameters of ion density (0.1 to 1,000,000 ions/cu cm), temperature (0-45 eV), and bulk flow (greater than 0.5 km/sec) in the inner plasmasphere and ionosphere, and the specific ion pitch angle and energy spectral characteristics in the outer plasmasphere and plasma trough for a mass range of 1-32 amu. The energy and mass spectral step sequences, as well as the multiplexing of the resultant data, can be tailored to accomplish a variety of thermal ion measurements throughout the inner magnetosphere.

  10. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  11. "Fast excitation" CID in a quadrupole ion trap mass spectrometer.

    PubMed

    Murrell, J; Despeyroux, D; Lammert, S A; Stephenson, J L; Goeringer, D E

    2003-07-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. "Fast excitation" CID deposits (as determined by the intensity ratio of the a(4)/b(4) ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with "fast excitation" CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for "fast excitation" CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H)(17+) of horse heart myoglobin is also shown to illustrate the application of "fast excitation" CID to proteins.

  12. "Fast Excitation" CID in Quadrupole Ion Trap Mass Spectrometer

    SciTech Connect

    Murrell, J.; Despeyroux, D.; Lammert, Stephen {Steve} A; Stephenson Jr, James {Jim} L; Goeringer, Doug

    2003-01-01

    Collision-induced dissociation (CID) in a quadrupole ion trap mass spectrometer is usually performed by applying a small amplitude excitation voltage at the same secular frequency as the ion of interest. Here we disclose studies examining the use of large amplitude voltage excitations (applied for short periods of time) to cause fragmentation of the ions of interest. This process has been examined using leucine enkephalin as the model compound and the motion of the ions within the ion trap simulated using ITSIM. The resulting fragmentation information obtained is identical with that observed by conventional resonance excitation CID. ''Fast excitation'' CID deposits (as determined by the intensity ratio of the a{sub 4}/b{sub 4} ion of leucine enkephalin) approximately the same amount of internal energy into an ion as conventional resonance excitation CID where the excitation signal is applied for much longer periods of time. The major difference between the two excitation techniques is the higher rate of excitation (gain in kinetic energy) between successive collisions with helium atoms with ''fast excitation'' CID as opposed to the conventional resonance excitation CID. With conventional resonance excitation CID ions fragment while the excitation voltage is still being applied whereas for ''fast excitation'' CID a higher proportion of the ions fragment in the ion cooling time following the excitation pulse. The fragmentation of the (M + 17H){sup 17+} of horse heart myoglobin is also shown to illustrate the application of ''fast excitation'' CID to proteins.

  13. Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Peterson, W. K.; Collin, H. L.

    1994-01-01

    The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.

  14. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  15. Cassini Orbiter Ion and Neutral Gas Mass Spectrometer (INMS) Results

    NASA Astrophysics Data System (ADS)

    Kasprzak, W. T.; Waite, J. H.; Yelle, R.; Cravens, T. E.; Luhmann, J.; McNutt, R.; Ip, W.; Robertson, I. P.; Ledvina, S.; Niemann, H. B.; Fletcher, G.; Thorpe, R.; Gell, D.; Magee, B.

    The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.The Cassini Orbiter Ion and Neutral Gas Mass Spectrometer was built by NASA Goddard Space Flight Center. After the spacecraft's launch, data analysis and operations are being conducted by a facility science team. The instrument measures in-situ neutral gas and positive thermal energy ions in the upper atmosphere of Titan, in the vicinity of the icy satellites and rings, and in the magnetosphere of Saturn, wherever the signal is above the detection threshold. The instrument was opened to the environment of Saturn immediately after the completion of the Saturn orbit capture burn.

  16. Modeling Transport of Secondary Ion Fragments into a Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Warmenhoven, J.; Demarche, J.; Palitsin, V.; Kirkby, K. J.; Webb, R. P.

    The Surrey Ion Beam Centre was awarded the Engineering and Physical Sciences Research Council (EPSRC) grant for "Promoting Cross Disciplinary Research: Engineering and Physical Sciences and Social Sciences" allowing continued research into the characteristics of desorption of secondary ions by the impact of fast primary ions in the ambient pressure at the sub-micron scale. To carry out this research a new beamline has been constructed consisting of a time-of-flight secondary ion mass spectrometer combined with the current 2MV Tandem accelerator. This research has already returned many significant results such as the first simultaneous SIMS, PIXE and RBS measurement preformed on an organic sample in vacuum. However, further optimization and validation of the new beamline is still being worked on. This work focuses on the optimization of the end station geometry to allow for high sensitivity ambient pressure measurements. It is concluded that a common geometry can be adopted for a wide variety of smooth samples to ensure optimum sensitivity provided a hard edge of the sample can be found to place the mass spectrometer capillary near.

  17. Dynamic multiplexed analysis method using ion mobility spectrometer

    SciTech Connect

    Belov, Mikhail E

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  18. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    NASA Technical Reports Server (NTRS)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  19. Calibrating the DARHT Electron Spectrometer with Negative Ions

    SciTech Connect

    R. Trainham , A. P. Tipton , and R. R. Bartech

    2005-11-01

    Negative ions of hydrogen and oxygen have been used to calibrate the DARHT electron spectrometer over the momentum range of 2 to 20 MeV/c. The calibration was performed on September 1, 3, and 8, 2004, and it is good to 0.5% absolute, provided that instrument alignment is carefully controlled. The momentum in MeV/c as a function of magnetic field (B in Gauss) and position in the detector plane (X in mm) is: P = (B-6.28)/(108.404-0.1935*X)

  20. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  1. High-resolution mass spectrometer for liquid metal ion sources

    SciTech Connect

    Wortmann, Martin; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Meijer, Jan

    2013-09-15

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E×B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10{sup 6}–10{sup 7} clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  2. High-resolution mass spectrometer for liquid metal ion sources.

    PubMed

    Wortmann, Martin; Ludwig, Arne; Meijer, Jan; Reuter, Dirk; Wieck, Andreas D

    2013-09-01

    Recently, a mass spectrometer for liquid metal ion sources (LMIS) has been built and set into operation. This device uses an E × B-filter as mass dispersive element and provides sufficient resolution to analyse the emission of clusters from LMIS to much higher mass ranges (>2000 amu) than commercially available mass filters for focused ion beam systems. It has also been shown that for small masses the composition of clusters from different isotopes can be resolved. Furthermore, a rather high fluence of monodisperse clusters in the range of 10(6)-10(7) clusters/s can be achieved with this setup. This makes it a promising tool for the preparation of mass selected clusters. In this contribution, theoretical considerations as well as technical details and the results of first measurements are presented.

  3. Cassini Ion Neutral Mass Spectrometer (INMS) Results from Titan

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Waite, J. H.; Niemann, H.; Yelle, R. V.; Kasprzak, W. T.; Luhmann, J. G.; McNutt, R. L.; Ip, W.; Gell, D.; de La Haye, V.; Müller-Wordag, I.; Ledvina, S. L.; Robertson, I. P.; Borggren, N.

    2005-05-01

    The Cassini Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini Orbiter measured the neutral composition and structure of the upper atmosphere of Titan during the first flyby (Ta) of this satellite. The INMS detected N2, CH4, and H2, the noble gas argon, and a host of more complex hydrocarbon and nitrile species. INMS also made neutral measurements during the Tb flyby. During the T5 Titan flyby, which took place in April 2005, the INMS measured both the neutral and the ion composition of the upper atmosphere and ionosphere. These measurements will be summarized in this talk. The implications of these measurements for our current understanding of the photochemistry, dynamics, and energetics of Titan's upper atmosphere and ionosphere will also be discussed.

  4. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  5. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGES

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  6. Relativistic heavy ion fragmentation at HISS (Heavy Ion Spectrometer System)

    SciTech Connect

    Tull, C.E.

    1990-10-01

    An experiment was conducted at the Lawrence Berkeley Laboratory to measure projectile fragmentation of relativistic heavy ions. Charge identification was obtained by the use of a Cerenkov Hodoscope operating above the threshold for total internal reflection, while velocity measurement was performed by use of a second set of Cerenkov radiators operating at the threshold for total internal reflection. Charge and mass resolution for the system was {sigma}{sub Z} = 0.2 e and {sigma}{sub A} = 0.2 u. Measurements of the elemental and isotopic production cross sections for the fragmentation of {sup 40}Ar at 1.65{center dot}A GeV have been compared with an Abrasion-Ablation Model based on the evaporation computer code GEMINI. The model proves to be an accurate predictor of the cross sections for fragments between Chlorine and Boron. The measured cross section were reproduced using simple geometry with charge dispersions induced by zero-point vibrations of the giant dipole resonance for the prompt abrasion stage, and injecting an excitation energy spectrum based on a final state interaction with scaling factor E{sub fsi} = 38.8 MeV/c. Measurement of the longitudinal momentum distribution widths for projectile fragments are consistent with previous experiment and can be interpreted as reflecting the Fermi momentum distribution in the initial projectile nucleus. Measurement of the transverse momentum indicate an additional, unexplained dependence of the reduced momentum widths on fragment mass. This dependence has the same sign and similar slope to previously measured fragments of {sup 139}La, and to predictions based on phase-space constraints on the final state of the system.

  7. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  8. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    SciTech Connect

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C.

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  9. SCAPS, a two-dimensional ion detector for mass spectrometer

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi

    2014-05-01

    Faraday Cup (FC) and electron multiplier (EM) are of the most popular ion detector for mass spectrometer. FC is used for high-count-rate ion measurements and EM can detect from single ion. However, FC is difficult to detect lower intensities less than kilo-cps, and EM loses ion counts higher than Mega-cps. Thus, FC and EM are used complementary each other, but they both belong to zero-dimensional detector. On the other hand, micro channel plate (MCP) is a popular ion signal amplifier with two-dimensional capability, but additional detection system must be attached to detect the amplified signals. Two-dimensional readout for the MCP signals, however, have not achieve the level of FC and EM systems. A stacked CMOS active pixel sensor (SCAPS) has been developed to detect two-dimensional ion variations for a spatial area using semiconductor technology [1-8]. The SCAPS is an integrated type multi-detector, which is different from EM and FC, and is composed of more than 500×500 pixels (micro-detectors) for imaging of cm-area with a pixel of less than 20 µm in square. The SCAPS can be detected from single ion to 100 kilo-count ions per one pixel. Thus, SCAPS can be accumulated up to several giga-count ions for total pixels, i.e. for total imaging area. The SCAPS has been applied to stigmatic ion optics of secondary ion mass spectrometer, as a detector of isotope microscope [9]. The isotope microscope has capabilities of quantitative isotope images of hundred-micrometer area on a sample with sub-micrometer resolution and permil precision, and of two-dimensional mass spectrum on cm-scale of mass dispersion plane of a sector magnet with ten-micrometer resolution. The performance has been applied to two-dimensional isotope spatial distribution for mainly hydrogen, carbon, nitrogen and oxygen of natural (extra-terrestrial and terrestrial) samples and samples simulated natural processes [e.g. 10-17]. References: [1] Matsumoto, K., et al. (1993) IEEE Trans. Electron Dev. 40

  10. Pickup ions at Dione and Enceladus: Cassini Plasma Spectrometer simulations

    NASA Astrophysics Data System (ADS)

    Sittler, Ed C.; Johnson, R. E.; Jurac, S.; Richardson, J. D.; McGrath, M.; Crary, F.; Young, D. T.; Nordholt, J. E.

    2004-01-01

    Voyager images of the icy satellites of Saturn, Dione and Enceladus, suggest that they may have been geologically active and are not only composed of ice. Recent observations by the Hubble Space Telescope have shown the presence of ozone at both Dione and Rhea, which also implies the presence of molecular oxygen at these bodies. Observations of Ariel, Europa, Ganymede, and Callisto indicate the presence of CO2, so its presence on the Saturnian satellites is also expected. The Cassini Plasma Spectrometer (CAPS) will provide the capability to determine the global composition of these bodies by measuring the pickup ions produced by the ionization of their sputter-produced atmospheres. We will present a model of these atmospheres and associated pickup ions and demonstrate CAPS ability to distinguish the freshly produced picked up ions from the ambient plasma. Such ions are expected to form a ring distribution that will have a uniquely different energy-angle dependence than the ambient plasma ions. In the case of Dione we expect the potential for a moderate strength interaction for which both Voyager 1 and Pioneer 11 spacecraft measured ion cyclotron waves centered on the Dione L shell and near the equatorial plane. SKR radio emissions also displayed emissions occurring at the orbital period of Dione which could indicate some intrinsic activity due to Dione. So again, something interesting may be going on at Dione. Since Enceladus, or material in orbit near Enceladus, may be the source of the E-ring, some surprises may be encountered during its close encounter with the Cassini spacecraft. In the case of Dione we will show that a wake pass at 500 km altitude is more than an order of magnitude better than an upstream pass at 500 km altitude. Pickup ion detection for minor ion species such as NH3+ is possible for 500 km altitude wake pass but not for ≈500 km altitude upstream pass at closest approach. For navigation reasons a 100 km pass is not allowed. Therefore it is

  11. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    PubMed

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  12. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    SciTech Connect

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  13. A compact high resolution electrospray ionization ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented.

  14. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  15. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  16. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  17. Ion Mass Spectrometer for Sporadic-E Rocket Experiments

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Earle, G. D.; Pfaff, Robert

    2000-01-01

    NASA grant NAG5-5086 provided funding for the William B. Hanson Center for Space Sciences at the University of Texas at Dallas (UTD) to design, fabricate, calibrate, and ultimately fly two ion mass spectrometer instruments on a pair of sounding rocket payloads. Drs. R.A. Heelis and G.D. Earle from UTD were co-investigators on the project. The principal investigator for both rocket experiments was Dr. Robert Pfaff of the Goddard Space Flight Center. The overall project title was "Rocket/Radar Investigation of Lower Ionospheric Electrodynamics Associated with Intense Mid-Latitude Sporadic-E Layers". This report describes the overall objectives of the project, summarizes the instrument design and flight experiment details, and presents representative data obtained during the flights.

  18. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  19. Differential Mobility Spectrometer with Spatial Ion Detector and Methods Related Thereto

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Kanik, Isik (Inventor); Duong, Vu A. (Inventor)

    2013-01-01

    Differential mobility spectrometer with spatial ion detector and methods related thereto are disclosed. The use of one or more spatial detector within differential mobility spectrometry can provide for the identification and separation of ions with similar mobility and mass.

  20. Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same

    NASA Technical Reports Server (NTRS)

    Kanik, Isik (Inventor); Beegle, Luther W. (Inventor)

    2004-01-01

    A high-pressure hollow cathode ionizer is combined with an ion-mobility-spectrometer (IMS) for the detection of trace amounts of organic compounds in gas. The ionizer uses H.sub.3 0.sup.+, ions which do not react with air to ionize the organic compounds and the organic compounds are soft ionized. The ionized organic compounds are detected in the IMS at levels of parts per billion and identified using calibrated reference tables. Applications include but are not limited to the fields of: (1) medicine as a breath analyzer for detection of lung cancer, diabetes, liver cirrhosis, (2) law enforcement in drug interdiction and explosives detection, (3) food monitoring and control, (4) environmental monitoring and (5) space applications.

  1. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  2. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  3. UV photodissociation of trapped ions following ion mobility separation in a Q-ToF mass spectrometer.

    PubMed

    Bellina, Bruno; Brown, Jeffery M; Ujma, Jakub; Murray, Paul; Giles, Kevin; Morris, Michael; Compagnon, Isabelle; Barran, Perdita E

    2014-12-21

    An ion mobility mass spectrometer has been modified to allow optical interrogation of ions with different mass-to-charge (m/z) ratios and/or mobilities (K). An ion gating and trapping procedure has been developed which allows us to store ions for several seconds enabling UV photodissociation (UVPD).

  4. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  5. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  6. Reactant ion chemistry for detection of TNT, RDX, and PETN using an ion mobility spectrometer

    SciTech Connect

    Klassen, S.E.; Rodacy, P.; Silva, R.

    1997-09-01

    This report describes the responses of three energetic materials (TNT, RDX, and PETN) to varying reactant ion chemistries and IMS cell temperatures. The following reactant ion chemistries were evaluated; air-dry; air-wet; methylene chloride-dry; methylene chloride-wet; methylene bromide-dry; nitrogen dioxide-wet; sulfur dioxide-wet. The temperature was varied between 160 - 220{degrees}C.

  7. A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation

    SciTech Connect

    Advanced Light Source; Kilcoyne, Arthur L; Rolles, D.; Pesic, Z.D.; Perri, M.; Bilodeau, R.C.; Ackerman, G.D.; Rude, B.S.; Kilcoyne, A.L.D.; Bozek, J.D.; Berrah, N.

    2007-04-27

    We have built a velocity imaging (VMI) spectrometer optimized for angle-resolved photoionization experiments with synchrotron radiation (SR) in the VUV and soft X-tay range. The spectrometer is equiped with four electrostatic lenses that focus the charged photoionization products onto a position-sensitive multi-hit delay-line anode. The use of two additional electrostatic lens elements as compared to the standard design of Eppink and Parker [T.J.B. Eppink and D.H. Parker, Rev. Sci. Instrum. 68 (1997) 3477]provides better focusing of an extended interaction region, which is crucial for most SR applications. Furthermore, the apparatus is equipped with a second micro-channel plate detector opposite to the VMI spectrometer, enabling electron-ion coincidence experiments and thereby mass-resolved ion spectroscopy independent of the time structure of the synchrotron radiation. First results for the photofragmentation of CO2 molecules are presented.

  8. An ion Doppler spectrometer instrument for ion temperature and flow measurements on SSPXa)

    NASA Astrophysics Data System (ADS)

    King, J. D.; McLean, H. S.; Wood, R. D.; Romero-Talamás, C. A.; Moller, J. M.; Morse, E. C.

    2008-10-01

    A high-resolution ion Doppler spectrometer (IDS) has been installed on the sustained spheromak plasma experiment to measure ion temperatures and plasma flow. The system is composed of a 1m focal length Czerny-Turner spectrometer with a diffraction grating line density of 2400lines/mm, which allows for first order spectra between 300 and 600nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126nm/channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining the wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber-optic survey spectrometer sensitive to a wavelength range 200-1100nm and having a resolution of 0.2nm is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of CIII 464.72nm line in the plasma shows time-resolved ion temperatures up to 250eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvénic plasma flow ranging from 5to45km /s for helium discharges.

  9. Biological impact of small air ions.

    PubMed

    Krueger, A P; Reed, E J

    1976-09-24

    The thrust of the experimental data presented here is that small air ions are biologically active. There is convincing evidence that both negative and positive ions (i) inhibit growth of bacteria and fungi on solid media; (ii) exert a lethal effect on vegetative forms of bacteria suspended in water when opportunity is provided for contact of cells and ions; and (iii) reduce the viable count of bacterial aerosols. Through physical action, ions of either charge upset the stability of aerolosized bacterial suspensions and, in addition, have a direct lethal effect which is more prominent with negative ions than with positive ions. With regard to the serotonin hypothesis of air ions action, the situation is more complex. The essential fact is that mice and rats display a charge-related metabolic response to air ions and this phenomenon also occurs in humans. Because serotonin is such a potent hormone, the ultimate functional changes incident to air ion action are impressive and account for the signs of symptoms of the sharav syndrome. Alterations in the cumulative mortality rate with three experimental respiratory disease in the mouse also are charge-dependent, positive ions routinely exercising a detrimental effect. Further, in the case of mice infected with influenza virus, ion-deprivation increases the cumulative mortality rate. Since ion depletion is a constant concomitant of modern urban life, one reasonably may speculate about comparable inimical effects on humans.

  10. Compact Ion and Neutral Mass Spectrometer with Ion Drifts, Temperatures and Neutral Winds

    NASA Astrophysics Data System (ADS)

    Paschalidis, Nikolaos

    2016-07-01

    In situ measurements of atmospheric neutral and ion composition and density, temperatures, ion drifts and neutral winds, are in high demand to study the dynamics of the ionosphere-theremosphere-mesosphere system. This paper presents a compact Ion and Neutral Mass Spectrometer (INMS) with impended ion drifts and temperature, and neutral winds capability for in situ measurements of ions and neutrals H, He, N, O, N2, O2. The mass resolution M/dM is approximately 10 at an incoming energy range of 0-20eV. The goal is to resolve ion drifts in the range 0 to 3000m/sec with a resolution better than 50m/sec, and neutral winds in the range of 0 to 1000m/sec with similar resolution. For temperatures the goal is to cover a dynamic range of 0 to 5000K. The INMS is based on front end optics for ions and neutrals, pre acceleration, gated time of flight, top hat ESA, MCP detectors and compact electronics. The instrument is redundant for ions and neutrals with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The ion front end includes RPA for temperature scanning and neutral front end includes angular modulation and thermionic ionization and ion blocking grids. The electronics include fast electric gating, TOF electronics, TOF binning and C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded from 0.1 to 10 sec with 1sec nominal setting. The instrument has significant onboard storage capability and a data compression scheme. The mass spectrometer version of the instrument has been flown on the Exocube mission. The instrument occupied 1.5U volume, weighed only 560 g and required nominal power of 1.6W The ExoCube mission was designed to acquire global knowledge of in-situ densities of [H], [He], [O] and H+, He+, O+ in the upper ionosphere and lower exosphere in combination with incoherent scatter radar and

  11. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples. PMID:27396834

  12. A hand-portable digital linear ion trap mass spectrometer.

    PubMed

    Xue, Bing; Sun, Lulu; Huang, Zhengxu; Gao, Wei; Fan, Rongrong; Cheng, Ping; Ding, Li; Ma, Li; Zhou, Zhen

    2016-10-01

    A hand-portable digital linear ion trap mass spectrometer (DLIT-MS) has been developed for VOC analysis. It has a weight of 18 kg with dimensions of 49 cm × 39 cm × 16 cm, and consumes an average power of ca. 60 W. As a result of the introduction of a digital waveform, the DLIT-MS can be driven at a lower voltage (±100 V) to cover a mass range of 30-300 Th with a unit resolution. Compact electronics has been designed to control the DLIT-MS and record mass spectra. The mass drift was reduced after the improvement in electronics to stabilize the digital waveform voltage during the mass scan. Tandem mass spectrometry (MS) has been achieved by using digital asymmetric waveform isolation (DAWI), forward and reverse scan, and collision induced dissociation (CID). The isolation and CID efficiency for methyl salicylate were 83.9% and 81.3%, respectively. A novel buffer gas inlet system was designed to enhance the sensitivity and allow easy and safe use of the instrument. Limits of detection below 1 ppbv were obtained for several mixed gaseous samples.

  13. Development of an atmospheric pressure ion mobility spectrometer-mass spectrometer with an orthogonal acceleration electrostatic sector TOF mass analyzer.

    PubMed

    Sysoev, Alexey A; Chernyshev, Denis M; Poteshin, Sergey S; Karpov, Alexander V; Fomin, Oleg I; Sysoev, Alexander A

    2013-10-01

    Recently developed ion mobility mass spectrometer is described. The instrument is based on a drift tube ion mobility spectrometer and an orthogonal acceleration electrostatic sector time-of-flight mass analyzer. Data collection is performed using a specially developed fast ADC-based recorder that allows real-time data integration in an interval between 3 and 100 s. Primary tests were done with positive ion electrospray. The tests have shown obtaining 100 ion mobility resolving power and 2000 mass resolving power. Obtained for 2,6-di-tert-butylpyridine in electrosprayed liquid samples during 100 s analysis and full IMS/MS data collection mode were 4 nM relative limits of detection and a 1 pg absolute limit of detection (S/N=3). Characteristic ion mobility/mass distributions were recorded for selected antibiotics, including amoxicillin, ampicillin, lomefloxacin, and ofloxacin. At studied conditions, lomefloxacin forms only a protonated molecule-producing reduced ion mobility peak at 1.082 cm(2)/(V s). Both amoxicillin and ampicillin produce [M + H](+), [M + CH3OH + H](+), and [M + CH3CN + H](+). Amoxicillin shows two peaks at 0.909 cm(2)/(V s) and 0.905 cm(2)/(V s). Ampicillin shows one peak at 0.945 cm(2)/(V s). Intensity of protonated methanol containing cluster for both ampicillin and amoxicillin has a clear tendency to rise with sample keeping time. Ofloxacin produces two peaks in the ion mobility distribution. A lower ion mobility peak at 1.051 cm(2)/(V s) is shown to be formed by [M + H](+) ions. A higher ion mobility peak appearing for samples kept more than 48 h is shown to be formed by both [M + H](+) ion and a component identified as the [M + 2H + M](+2) cluster. The cluster probably partly dissociates in the interface producing the [M + H](+) ion.

  14. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams.

    PubMed

    Alejo, A; Kar, S; Tebartz, A; Ahmed, H; Astbury, S; Carroll, D C; Ding, J; Doria, D; Higginson, A; McKenna, P; Neumann, N; Scott, G G; Wagner, F; Roth, M; Borghesi, M

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer. PMID:27587110

  15. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  16. High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams.

    PubMed

    Alejo, A; Kar, S; Tebartz, A; Ahmed, H; Astbury, S; Carroll, D C; Ding, J; Doria, D; Higginson, A; McKenna, P; Neumann, N; Scott, G G; Wagner, F; Roth, M; Borghesi, M

    2016-08-01

    We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

  17. Mass- and energy-analyses of ions from plasma by means of a miniature Thomson spectrometer

    SciTech Connect

    Sadowski, M. J.; Czaus, K.; Malinowski, K.; Skladnik-Sadowska, E.; Zebrowski, J.

    2009-05-15

    The paper presents an improved version of a miniature mass-spectrometer of the Thomson-type, which has been adopted for ion analysis near the dense plasma region inside a vacuum chamber. Problems connected with the separation of ions from plasma streams are considered. Input diaphragms and pumping systems, needed to ensure good vacuum inside the analyzing region, are described. The application of the miniature Thomson-type analyzer is illustrated by ion parabolas recorded in plasma-focus facility and rod plasma injector experiment. A quantitative analysis of the recorded ion parabolas is presented. Factors influencing accuracy of the ion analysis are discussed and methods of the spectrometer calibration are described.

  18. Double focusing ion mass spectrometer of cylindrical symmetry

    NASA Technical Reports Server (NTRS)

    Coplan, M. A.; Moore, J. H.; Hoffman, R. A.

    1984-01-01

    A mass spectrometer consisting of an electric sector followed by a magnetic sector is described. The geometry is a cylindrically symmetric generalization of the Mattauch-Herzog spectrometer (1934). With its large annular entrance aperture and a position-sensitive detector, the instrument provides a large geometric factor and 100-percent duty factor, making it appropriate for spacecraft experiments.

  19. 10 K Ring Electrode Trap - Tandem Mass Spectrometer for Infrared Spectroscopy of Mass Selected Ions

    SciTech Connect

    Goebbert, Daniel J.; Meijer, Gerard; Asmis, Knut R.

    2009-03-17

    A novel instrumental setup for measuring infrared photodissociation spectra of buffer gas cooled, mass-selected ions is described and tested. It combines a cryogenically cooled, linear radio frequency ion trap with a tandem mass spectrometer, optimally coupling continuous ion sources to pulsed laser experiments. The use of six independently adjustable DC potentials superimposed over the trapping radio frequency field provides control over the ion distribution within, as well as the kinetic energy distribution of the ions extracted from the ion trap. The scheme allows focusing the ions in space and time, such that they can be optimally irradiated by a pulsed, widely tunable infrared photodissociation laser. Ion intensities are monitored with a time-of-flight mass spectrometer mounted orthogonally to the ion trap axis.

  20. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  1. A cheap and compact mass spectrometer for radioactive ions based on a Wien filter

    NASA Astrophysics Data System (ADS)

    Pierret, C.; Maunoury, L.; Pacquet, J. Y.; Saint-Laurent, M.-G.; Tuske, O.

    2008-10-01

    This paper presents simulations of a mass spectrometer composed of one or two Wien filters. The ion source used is MONO1000 ECRIS. This ion source can produce singly charged ions with high efficiency, especially for gaseous materials. After extraction, the ions are mass selected and can be injected either into a beam line towards an experiment area or in an N+ charge booster. Due to its compactness and simplicity the proposed spectrometer is well adapted for preparing and analyzing radioactive beams. The simulations are based on the SIMION 3D [www.simion.com/] software.

  2. Operation of an E parallel B end-loss ion spectrometer on the Tara tandem mirror

    SciTech Connect

    Casey, J.A.; Horne, S.F.; Irby, J.H.; Post, R.S.; Sevillano, E.; Foote, J.H.

    1988-08-01

    An E parallel B end-loss ion spectrometer from the Livermore TMX-U tandem mirror experiment was installed on Tara for high-resolution ion spectroscopy. This diagnostic contains parallel electric and magnetic fields, separating the masses and energies of the ions over 128 collector plates. The ion energy distribution nominally yields confining potentials and parallel ion temperatures. Additional experiments have diagnosed the resonance position of the central cell ion cyclotron heating, rf enhanced losses of high-energy sloshing ions in the axicell (''plug''), and observation of MHD instabilities at higher time resolution (20 kHz).

  3. Data for Users of Handheld Ion Mobility Spectrometers

    SciTech Connect

    Keith A. Daum; Sandra L. Fox

    2008-05-01

    Chemical detection technology end-user surveys conducted by Idaho National Laboratory (INL) in 2005 and 2007 indicated that first responders believed manufacturers’ claims for instruments sometimes were not supported in field applications, and instruments sometimes did not meet their actual needs. Based on these findings, the Department of Homeland Security (DHS) asked INL to conduct a similar survey for handheld ion mobility spectrometers (IMS), which are used by a broad community of first responders as well as for other applications. To better access this broad community, the INL used the Center for Technology Commercialization, Inc. (CTC), Public Safety Technology Center (PSTC) to set up an online framework to gather information from users of handheld IMS units. This framework (Survey Monkey) was then used to perform an online Internet survey, augmented by e-mail prompts, to get information from first responders and personnel from various agencies about their direct experience with handheld IMS units. Overall, 478 individuals responded to the survey. Of these, 174 respondents actually owned a handheld IMS. Performance and satisfaction data from these 174 respondents are captured in this report. The survey identified the following observations: • The most common IMS unit used by respondents was the Advanced Portable Detector (APD 2000), followed by ChemRae, Sabre 4000, Sabre 2000, Draeger Multi IMS, Chemical Agent Monitor-2, Chemical Agent Monitor, Vapor Tracer, and Vapor Tracer 2. • The primary owners were HazMat teams (20%), fire services (14%), local police (12%), and sheriffs’ departments (9%). • IMS units are seldom used as part of an integrated system for detecting and identifying chemicals but instead are used independently. • Respondents are generally confused about the capabilities of their IMS unit. This is probably a result of lack of training. • Respondents who had no training or fewer than 8 hours were not satisfied with the overall

  4. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  5. High latitude minor ion enhancements: A clue for studies of magnetosphere-atmosphere coupling. [using OGO 6 ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1973-01-01

    Unexpectedly abrupt and pronounced distributions of the thermal molecular ions NO(+), O2(+) and N2(+) were observed at mid and high latitudes by the OGO-6 ion mass spectrometer. These minor ions may reach concentration levels exceeding 1000 ions/cu cm at altitudes as great as 1000 km, suggestive of scale heights well in excess of those inferred from low and mid-latitude measurements, under relatively undisturbed conditions. The high latitude ion enhancements were observed to be narrowly defined in time and space, with molecular ion concentrations changing by as much as an order of magnitude between successive orbits.

  6. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  7. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  8. Continuation of data analysis from the ion mass spectrometer on the ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1981-01-01

    The spectrometer measures the composition and number density of the positive ion species in the ionosphere as well as the ion flux normal to the spacecraft trajectory. The measurement of high latitude ionospheric dynamics is reported. Plans for an empirical composition model of the polar ionosphere at 1400 km altitude consisting of maps of the major constituent are also reported.

  9. High resolution extreme ultraviolet spectrometer for an electron beam ion trap

    SciTech Connect

    Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki; Sakaue, Hiroyuki A.

    2011-08-15

    An extreme ultraviolet spectrometer has been developed for spectroscopic studies of highly charged ions with an electron beam ion trap. It has a slit-less configuration with a spherical varied-line-spacing grating that provides a flat focal plane for grazing incidence light. Alternative use of two different gratings enables us to cover the wavelength range 1-25 nm. Test observations with the Tokyo electron beam ion trap demonstrate the high performance of the present spectrometer such as a resolving power of above 1000.

  10. A compact time-of-flight mass spectrometer for ion source characterization

    SciTech Connect

    Chen, L. Wan, X.; Jin, D. Z.; Tan, X. H.; Huang, Z. X.; Tan, G. B.

    2015-03-15

    A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study the mass to charge composition of plasma with wide range of parameters.

  11. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  12. Composition measurements of the topside ionosphere using a magnetic mass spectrometer, ion mass spectrometer on ISIS-2 spacecraft

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    The ion mass spectrometer (IMS) on the ISIS-II satellite is described; it measures the composition and distribution of positive ions in the earth's ionosphere in the mass range of 1 to 64 atomic mass units. Significant data were received which show a wide variation in ion composition at night near the equator and in the daytime poleward of the plasmapause. It was found that these data enable further study of the polar wind and that the experiment produced timely data during the August, 1972 magnetic storm to show the development of a unique ionosphere above the plasmapause during the period of the storm. The scientific objectives and results of the experiment, the technical description of the instrument, a bibliography with sample papers attached, and a summary of recommendations for further study are presented.

  13. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Derkits, David; Wiseman, Alex; Snead, Russell F; Dows, Martina; Harge, Jasmine; Lamp, Jared A; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments. PMID:26483183

  14. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOEpatents

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  15. Development and Deployment of Retrofit PolarisQ Ion Trap Mass Spectrometer for Isotope Ratio Measurements

    SciTech Connect

    Thompson, Cyril V.; Whitten, William B.

    2015-11-01

    This report describes Oak Ridge National Laboratory’s (ORNL) FY15 progress in support of National Nuclear Security Administration’s (NNSA) Portable Mass Spectrometer project. A retrofit PolarisQ ion trap mass spectrometer (RPMS) has been assembled from components of two PolarisQ ion trap mass spectrometers used in previous isotope ratio programs. The retrofit mass spectrometer includes a custom Hastelloy vacuum chamber which is about ¼ the size of the standard aluminum vacuum chamber and reduces the instrument weight from the original by nine pounds. In addition, the new vacuum chamber can be independently heated to reduce impurities such as water, which reacts with UF6 to produce HF in the vacuum chamber. The analyzer and all components requiring service are mounted on the chamber lid, facilitating quick and easy replacement of consumable components such as the filament and electron multiplier.

  16. A high-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap.

    SciTech Connect

    Robbins, D L; Chen, H; Beiersdorfer, P; Faenov, A Y; Pikuz, T A; May, M J; Dunn, J; Smith, A J

    2004-04-14

    A compact high-resolution ({lambda}/{Delta}{lambda} {approx} 10000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

  17. Comparison of functional group selective ion-molecule reactions of trimethyl borate in different ion trap mass spectrometers

    SciTech Connect

    Habicht, S C; Vinueza, Nelson R; Amundson, Lucas M; Kenttämaa, Hilkka I

    2011-02-01

    We report here a comparison of the use of diagnostic ion–molecule reactions for the identification of oxygen-containing functional groups in Fourier-transform ion cyclotron resonance (FTICR) and linear quadrupole ion trap (LQIT) mass spectrometers. The ultimate goal of this research is to be able to identify functionalities in previously unknown analytes by using many different types of mass spectrometers. Previous work has focused on the reactions of various boron reagents with protonated oxygen-containing analytes in FTICR mass spectrometers. By using a LQIT modified to allow the introduction of neutral reagents into the helium buffer gas, this methodology has been successfully implemented to this type of an ion trap instrument. The products obtained from the reactions of trimethyl borate (TMB) with various protonated analytes are compared for the two instruments. Finally, the ability to integrate these reactions into LC-MS experiments on the LQIT is demonstrated.

  18. Investigation of hydrogen and helium pumping by sputter ion pumps for Jupiter and outer planets mass spectrometer

    NASA Technical Reports Server (NTRS)

    Scott, B. W.

    1977-01-01

    The phenomena of ion pumping is reviewed with emphasis on the pumping mechanism for hydrogen and helium. The experimental tests measure the performance of a small, flight proven ion pump which has a nominal four liter/second pumping speed for air. The speed of this pump for hydrogen and helium, and for hydrogen/helium mixes, is presented with particular detail regarding the time dependence. Pump test results are related to anticipated performance of the mass spectrometer by the pumping speeds for the gases to the partial pressure in the ion source. From this analysis, the pump specifications are quantified in terms of mission goals and in terms of observed pumping speeds for the various gases, load levels, and time periods.

  19. Interfacing an ion mobility spectrometry based explosive trace detector to a triple quadrupole mass spectrometer.

    PubMed

    Kozole, Joseph; Stairs, Jason R; Cho, Inho; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; DeBono, Reno; Kuja, Frank

    2011-11-15

    Hardware from a commercial-off-the-shelf (COTS) ion mobility spectrometry (IMS) based explosive trace detector (ETD) has been interfaced to an AB/SCIEX API 2000 triple quadrupole mass spectrometer. To interface the COTS IMS based ETD to the API 2000, the faraday plate of the IMS instrument and the curtain plate of the mass spectrometer were removed from their respective systems and replaced by a custom faraday plate, which was fabricated with a hole for passing the ion beam to the mass spectrometer, and a custom interface flange, which was designed to attach the IMS instrument onto the mass spectrometer. Additionally, the mass spectrometer was modified to increase the electric field strength and decrease the pressure in the differentially pumped interface, causing a decrease in the effect of collisional focusing and permitting a mobility spectrum to be measured using the mass spectrometer. The utility of the COTS-ETD/API 2000 configuration for the characterization of the gas phase ion chemistry of COTS-ETD equipment was established by obtaining mass and tandem mass spectra in the continuous ion flow and selected mobility monitoring operating modes and by obtaining mass-selected ion mobility spectra for the explosive standard 2,4,6 trinitrotoluene (TNT). This analysis confirmed that the product ion for TNT is [TNT - H](-), the predominant collision-induced dissociation pathway for [TNT- H](-) is the loss of NO and NO(2), and the reduced mobility value for [TNT - H](-) is 1.54 cm(2)V(-1) s(-1). Moreover, this analysis was attained for sample amounts of 1 ng and with a resolving power of 37. The objective of the research is to advance the operational effectiveness of COTS IMS based ETD equipment by developing a platform that can facilitate the understanding of the ion chemistry intrinsic to the equipment.

  20. Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory

    NASA Astrophysics Data System (ADS)

    Martens, Jonathan; Berden, Giel; Gebhardt, Christoph R.; Oomens, Jos

    2016-10-01

    We report on modifications made to a Paul-type quadrupole ion trap mass spectrometer and discuss its application in infrared ion spectroscopy experiments. Main modifications involve optical access to the trapped ions and hardware and software coupling to a variety of infrared laser sources at the FELIX infrared free electron laser laboratory. In comparison to previously described infrared ion spectroscopy experiments at the FELIX laboratory, we find significant improvements in efficiency and sensitivity. Effects of the trapping conditions of the ions on the IR multiple photon dissociation spectra are explored. Enhanced photo-dissociation is found at lower pressures in the ion trap. Spectra obtained under reduced pressure conditions are found to more closely mimic those obtained in the high-vacuum conditions of an Fourier transform ion cyclotron resonance mass spectrometer. A gas-mixing system is described enabling the controlled addition of a secondary gas into helium buffer gas flowing into the trap and allows for ion/molecule reactions in the trap. The electron transfer dissociation (ETD) option of the mass spectrometer allows for IR structure characterization of ETD-generated peptide dissociation products.

  1. Electrospray Ionization/Ion Mobility Spectrometer/Cylindrical Ion Trap Mass Spectrometer System for In-Situ Detection of Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Johnson, P. V.; Beegle, L. W.; Cooks, R. G.; Laughlin, B. C.; Hill, H. H.

    2003-01-01

    The potential of an Electrospray Ionization/Ion Mobility Spectrometer/Cylindrical Ion Trap Mass Spectrometer (ESI/IMS/CIT-MS) as an analytical instrument for analyzing material extracted from rock and soil samples as part of a suite of instruments on the proposed 2009 Mars Science Lander (MSL) will be demonstrated. This instrument will be able to identify volatile compounds as well as resident organic molecules on the parts-per-billion (ppb) level. Also, it will be able to obtain an inventory of chemical species on the surface of Mars which will result in a better understanding of ongoing surface chemistry. Finally, questions relevant to biological processes will be answered with the complete inventory of surface and near surface organic molecules that the ESI/IMS/CIT is capable of performing.

  2. High precision electric gate for time-of-flight ion mass spectrometers

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  3. Instrument manual for the retarding ion mass spectrometer on Dynamics Explorer-1

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Baugher, C. R.; Chappell, C. R.; Reasoner, D. L.; Hammack, H. D.; Wright, W. W.; Hoffman, J. H.

    1982-01-01

    The retarding ion mass spectrometer (RIMS) for Dynamics Explorer-1 is an instrument designed to measure the details of the thermal plasma distribution. It combines the ion temperature determining capability of the retarding potential analyzer with the compositional capabilities of the mass spectrometer and adds multiple sensor heads to sample all directions relative to the spacecraft ram direction. This manual provides a functional description of the RIMS, the instrument calibration, and a description of the commands which can be stored in the instrument logic to control its operation.

  4. Ion-induced x-ray studies with a high luminosity von Hamos crystal spectrometer

    SciTech Connect

    Vane, C.R.; Smith, M.; Raman, S.; Heard, J.; Walkiewicz, T.

    1986-01-01

    A high-resolution, high-efficiency, von Hamos geometry, Bragg crystal x-ray spectrometer has been developed and mounted on a beamline at the Holifield Heavy Ion Research Facility at the Oak Ridge National Laboratory. Measurements have been made of K and L x-rays emitted from a variety of targets and projectiles. Instrument performance characteristics are reported here along with spectra from fast projectile ions and very low intensity target emission - areas of measurement for which this spectrometer is especially suitable.

  5. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented on a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection (accumulation) times to fill the ion trap at a given automatic gain control (AGC) target value were reduced by ~90% which resulted in an ~10-fold increase in peak intensities. In liquid chromatography tandem MS (LC-MS/MS) experiments performed using a global protein digest sample from the bacterium, Shewanella oneidensis, more peptides and proteins were identified when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface on a LTQ Fourier transform (FT) mass spectrometer showed a ~25-50% reduction in spectrum acquisition time. The duty cycle improvement in this case was due to the ion accumulation event contributing a larger portion to the total spectrum acquisition time.

  6. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  7. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites. PMID:17816288

  8. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  9. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1998-07-21

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high (n,f) reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  10. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  11. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  12. System for studying a sample of material using a heavy ion induced mass spectrometer source

    DOEpatents

    Fries, David P.; Browning, James F.

    1998-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  13. On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration

    SciTech Connect

    Jung, D.; Senje, L.; McCormack, O.; Dromey, B.; Zepf, M.; Yin, L.; Albright, B. J.; Letzring, S.; Gautier, D. C.; Fernandez, J. C.; Toncian, T.; Hegelich, B. M.

    2015-03-15

    We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

  14. Plasma composition in Jupiter's magnetosphere - Initial results from the Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Gloeckler, G.; Balsiger, H.; Fisk, L. A.; Galvin, A. B.; Gliem, F.; Hamilton, D. C.; Ipavich, F. M.; Livi, S.; Mall, U.

    1992-01-01

    The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite Io, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the high-latitude region on the dusk side, which was traversed for the first time.

  15. Plasma Composition in Jupiter's Magnetosphere: Initial Results from the Solar Wind Ion Composition Spectrometer.

    PubMed

    Geiss, J; Gloeckler, G; Balsiger, H; Fisk, L A; Galvin, A B; Gliem, F; Hamilton, D C; Ipavich, F M; Livi, S; Mall, U; Ogilvie, K W; von Steiger, R; Wilken, B

    1992-09-11

    The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite lo, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the highlatitude region on the dusk side, which was traversed for the first time.

  16. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  17. EPA method 8270 (semivolatiles) using a GC/ion trap spectrometer

    SciTech Connect

    Barshick, S.A.; Worthy, S.; Griest, W.H.

    1995-12-31

    EPA method 8270 describes the analysis of over 70 semivolatile organic compounds (SVOCs) in groundwater, soils, and solid and mixed wastes. Estimated quantitation limits for this method using a quadrupole mass spectrometer are in the pg/L or pg/kg range. To achieve these concentrations levels, liter volumes of water or tens of grams of solid waste must be extracted and concentrated to 1-2 mL prior to GC/MS analysis. The inherent sensitivity of the ion trap mass spectrometer (ITS) and its compatibility with GC introduction makes GC/ITS ideal for use in EPA methods, The goal of this work was to demonstrate the improvements possible in EPA protocols using an ion trap mass spectrometer. Method 8270 was chosen for this evaluation.

  18. Development and characterization of a multiple-coincidence ion-momentum imaging spectrometer

    SciTech Connect

    Laksman, J.; Céolin, D.; Månsson, E. P.; Sorensen, S. L.; Gisselbrecht, M.

    2013-12-15

    The design and performance of a high-resolution momentum-imaging spectrometer for ions which is optimized for experiments using synchrotron radiation is presented. High collection efficiency is achieved by a focusing electrostatic lens; a long drift tube improves mass resolution and a position-sensitive detector enables measurement of the transverse momentum of ions. The optimisation of the lens for particle momentum measurement at the highest resolution is described. We discuss the overall performance of the spectrometer and present examples demonstrating the momentum resolution for both kinetics and for angular measurements in molecular fragmentation for carbon monoxide and fullerenes. Examples are presented that confirm that complete space-time focussing is possible for a two-field three-dimensional imaging spectrometer.

  19. Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.

    1980-01-01

    Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.

  20. Optical Alignment and Diffraction Analysis for AIRES: An Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The optical design is presented for a long-slit grating spectrometer known as AIRES (Airborne InfraRed Echelle Spectrometer). The instrument employs two gratings in series: a small order sorter and a large steeply blazed echelle. The optical path includes four pupil and four field stops, including two narrow slits. A detailed diffraction analysis is performed using GLAD by Applied Optics Research to evaluate critical trade-offs between optical throughput, spectral resolution, and system weight and volume. The effects of slit width, slit length, oversizing the second slit relative to the first, on- vs off-axis throughput, and clipping at the pupil stops and other optical elements are discussed.

  1. An electrodynamic ion funnel interface for greater sensitivity and higher throughput with linear ion trap mass spectrometers

    SciTech Connect

    Page, Jason S.; Tang, Keqi; Smith, Richard D.

    2007-09-01

    An electrospray ionization interface incorporating an electrodynamic ion funnel has been designed and implemented in conjunction with a linear ion trap mass spectrometer (Thermo Electron, LTQ). We found ion transmission to be greatly improved by replacing the standard capillary-skimmer interface with the capillary-ion funnel interface. An infusion study using a serial dilution of a reserpine solution showed that ion injection times to fill the ion trap were reduced by ~90% which resulted in an ~10-fold increase in reported peak intensities. In liquid chromatography (LC)-MS and LC tandem MS (MS/MS) experiments performed using a proteomic sample from the bacterium, Shewanella oneidensis, the ion funnel interface provided an ~7-fold reduction in ion injection (accumulation) times. In a series of LC-MS/MS experiments we found that more dilute S. oneidensis samples provided more peptide and protein identifications when the ion funnel interface was used in place of the standard interface. This improvement was most pronounced at lower sample concentrations, where extended ion accumulation times are required, resulting in an ~2-fold increase in the number of protein identifications. Implementation of the ion funnel interface with a LTQ Fourier transform (FT) MS requiring much greater ion populations resulted in spectrum acquisition times reduced by ~25 to 50%.

  2. Advanced Remote-Sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred

    2006-01-01

    The Advanced Remote-sensing Imaging Emission Spectrometer (ARIES) will measure a wide range of earth quantities fundamental to the study of global climate change. It will build upon the success of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) instruments currently flying on the EOS Aqua Spacecraft. Both instruments are facility instruments for NASA providing data to thousands of scientists investigating land, ocean and atmospheric Earth System processes. ARIES will meet all the requirements of AIRS and MODIS in a single compact instrument, while providing the next-generation capability of improved spatial resolution for AIRS and improved spectral resolution for MODIS.

  3. Development of an ion time-of-flight spectrometer for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Cetiner, Mustafa Sacit

    signal. Without loss of generality, the secondary signal is obtained by the passage of the ion through a thin carbon foil, which produces ion-induced secondary electron emission (IISEE). The time-of-flight spectrometer physically acts as an ion/electron separator. The electrons that enter the active volume of the spectrometer are transported onto the microchannel plate detector to generate the secondary signal. The electron optics can be designed in variety of ways depending on the nature of the measurement and physical requirements. Two ion time-of-flight spectrometer designs are introduced: the parallel electric and magnetic (PEM) field spectrometer and the cross electric and magnetic (CEM) field spectrometer. The CEM field spectrometers have been extensively used in a wide range of applications where precise mass differentiation is required. The PEM field spectrometers have lately found interest in mass spectroscopy applications. The application of the PEM field spectrometer for energy measurements is a novel approach. The PEM field spectrometer used in the measurements employs axial electric and magnetic fields along the nominal direction of the incident ion. The secondary electrons are created by a thin carbon foil on the entrance disk and transported on the microchannel plate that faces the carbon foil. The initial angular distribution of the secondary electrons has virtually no effect on the transport time of the secondary electrons from the surface of the carbon foil to the electron microchannel plate detector. Therefore, the PEM field spectrometer can offer high-resolution energy measurement for relatively lower electric fields. The measurements with the PEM field spectrometer were made with the Tandem linear particle accelerator at the IBM T. J. Watson Research Center at Yorktown Heights, NY. The CEM field spectrometer developed for the thesis employs axial electric field along the nominal direction of the ion, and has perpendicular magnetic field. As the

  4. Ion Composition in Titan’s Exosphere from the Cassini Plasma Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodson, Adam K.; Johnson, R. E.

    2013-10-01

    A primary goal of the Cassini mission has been to characterize the complex interaction between Saturn’s magnetosphere and Titan’s ionosphere. To this end, the Cassini spacecraft carries two instruments-the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS)-capable of energy- and mass-analysis. The Ion Mass Spectrometer (IMS), one of three instruments composing CAPS, is designed to characterize diffuse plasmas throughout the magnetosphere while the INMS is optimized for measurements within Titan’s upper atmosphere. As such, mass-resolved ion compositions confirming a variety of hydrocarbons and nitriles have been extracted from INMS data for numerous Titan encounters. Similar analysis of IMS data, however, has been resolution-limited to the identification of “light” and “heavy” ion groups in the wake. Herein we present a technique for extracting Dalton-resolved ion compositions from IMS spectra acquired at altitudes below 5 Titan radii. The method is then applied to data from the T40 encounter and the resulting composition and fluxes compared with those derived from the INMS data for the same encounter.

  5. Flowing gas in mass spectrometer: method for characterization and impact on ion processing.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-10-21

    Mass spectrometers are complex instrumentation systems where ions are transferred though different pressure regions and mass-analyzed under high vacuum. In this work, we have investigated the impact of the gas flows that exit almost universally in all pressure regions. We developed a method that incorporates the dynamic gas field with the electric field in the simulation of ion trajectories. The scope of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems at atmospheric pressure interfaces. With experimental validation, the trapping of the externally injected ions in a linear ion trap at low pressure was also studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and the study of ion energetics. PMID:25121805

  6. Flowing Gas in Mass Spectrometer: Method for Characterization and Impact on Ion Processing

    PubMed Central

    Zhou, Xiaoyu; Ouyang, Zheng

    2014-01-01

    Mass spectrometers are complex instrumentation systems with ions transferred though different pressure regions and mass analyzed at high vacuum. In this work, we have investigated the impacts of the gas flows that exit almost universally in all pressure regions and developed a method incorporating the dynamic gas field with the electric (E) field in the simulation of ion trajectories. The capability of the electro-hydrodynamic simulation (EHS) method was demonstrated for characterizing the ion optical systems in atmospheric pressure interfaces. With experimental validation, the trapping of the externally-injected ions in a linear ion trap at low pressure has also been studied. Further development of the EHS method and the knowledge acquired in this research are expected to be useful in the design of hybrid instruments and study of ion energetics. PMID:25121805

  7. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  8. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer

    PubMed Central

    Gardner, Myles W.; Smith, Suncerae I.; Ledvina, Aaron R.; Madsen, James A.; Coon, Joshua J.; Schwartz, Jae C.; Stafford, George C.; Brodbelt, Jennifer S.

    2009-01-01

    A dual pressure linear ion trap mass spectrometer was modified to permit infrared multiphoton dissociation (IRMPD) in each of the two cells - the first a high pressure cell operated at nominally 5 × 10-3 Torr and the second a low pressure cell operated at nominally 3 × 10-4 Torr. When IRMPD was performed in the high pressure cell, most peptide ions did not undergo significant photodissociation; however, in the low pressure cell peptide cations were efficiently dissociated with less than 25 ms of IR irradiation regardless of charge state. IRMPD of peptide cations allowed the detection of low m/z product ions including the y1 fragments and immonium ions which are not typically observed by ion trap collision induced dissociation (CID). Photodissociation efficiencies of ~100% and MS/MS (tandem mass spectrometry) efficiencies of greater than 60% were observed for both multiply and singly protonated peptides. In general, higher sequence coverage of peptides was obtained using IRMPD over CID. Further, greater than 90% of the product ion current in the IRMPD mass spectra of doubly charged peptide ions was composed of singly charged product ions compared to the CID mass spectra in which the abundances of the multiply and singly charged product ions were equally divided. Highly charged primary product ions also underwent efficient photodissociation to yield singly charged secondary product ions, thus simplifying the IRMPD product ion mass spectra. PMID:19739654

  9. Variation and balance of positive air ion concentrations in a boreal forest

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2008-02-01

    into particles in the process of ion-induced nucleation was not proved. The estimated average ionization rate of the air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 6 ion pairs cm-3 s-1. The study of the charging state of nanometer aerosol particles (diameter 2.5-8 nm) in the atmosphere revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles neutralized in the aerosol spectrometer and naturally positively charged particles (air ions) during nucleation bursts. The charged fraction of particles varied from 3% to 6% in accordance with the hypothesis that the particles are quasi-steady state charged.

  10. Analysis of ion dynamics and peak shapes for delayed extraction time-of-flight mass spectrometers

    NASA Astrophysics Data System (ADS)

    Collado, V. M.; Ponciano, C. R.; Fernandez-Lima, F. A.; da Silveira, E. F.

    2004-06-01

    The dependence of time-of-flight (TOF) peak shapes on time-dependent extraction electric fields is studied theoretically. Conditions for time focusing are analyzed both analytically and numerically for double-acceleration-region TOF spectrometers. Expressions for the spectrometer mass resolution and for the critical delay time are deduced. Effects due to a leakage field in the first acceleration region are shown to be relevant under certain conditions. TOF peak shape simulations for the delayed extraction method are performed for emitted ions presenting a Maxwellian initial energy distribution. Calculations are compared to experimental results of Cs+ emission due to CsI laser ablation.

  11. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer

    PubMed Central

    Chen, Lee Chuin; Rahman, Md. Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  12. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  13. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  14. Design of An Improved Miniature Ion Neutral Mass Spectrometer for NASA Applications

    NASA Technical Reports Server (NTRS)

    Swaminathan, Viji K.; Alig, Roger C.

    1997-01-01

    The ion optics of NASA's Ion Neutral Mass Spectrometer (INMS) sensor was simulated with three dimensional models of the open source, the quadrupole deflector, the exit lens system and the quadrupole mass analyzer to design more compact models with lower weight. Comparison of calculated transmission with experimental results shows good agreement. Transmission analyses with varying geometrical parameters and voltages throw light on possible ways of reducing the size of the sensor. Trajectories of ions of mass 1-99 amu were simulated to analyze and optimize transmission. Analysis of open source transmission with varying angle of attack shows that the angular acceptance can be considerably increased by programming the voltages on the ion trap/ collimator. Analysis of transmission sensitivity to voltages and misalignments of the quadrupole deflector rods indicate that increased transmission is possible with a geometrically asymmetrical deflector and a deflector can be designed with much lower sensitivities of transmission. Bringing the disks closer together can decrease the size of the quadrupole deflector and also increase transmission. The exit lens system can be redesigned to be smaller by eliminating at least one electrode entirely without loss of transmission. Ceramic materials were investigated to find suitable candidates for use in the construction of lighter weight mass spectrometer. A high-sensitivity, high-resolution portable gas chromatograph mass spectrometer with a mass range of 2-700 amu has been built and will be commercialized in Phase 3.

  15. Ion mobility spectrometry of hydrazine, monomethylhydrazine, and ammonia in air with 5-nonanone reagent gas

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Salazar, M. R.; Rodriguez, M. R.; Limero, T. F.; Beck, S. W.; Cross, J. H.; Young, R.; James, J. T.

    1993-01-01

    Hydrazine (HZ) and monomethylhydrazine (MMH) in air were monitored continuously using a hand-held ion mobility spectrometer equipped with membrane inlet, 63Ni ion source, acetone reagent gas, and ambient temperature drift tube. Response characteristics included detection limit, 6 ppb; linear range, 10-600 ppb; saturated response, >2 ppm; and stable response after 15-30 min. Ammonia interfered in hydrazines detection through a product ion with the same drift time as that for MMH and HZ. Acetone reagent gas was replaced with 5-nonanone to alter drift times of product ions and separate ammonia from MMH and HZ. Patterns in mobility spectra, ion identifications from mass spectra, and fragmentation cross-sections from collisional-induced dissociations suggest that drift times are governed by ion-cluster equilibria in the drift region of the mobility spectrometer. Practical aspects including calibration, stability, and reproducibility are reported from the use of a hand-held mobility spectrometer on the space shuttle Atlantis during mission STS-37.

  16. On the transmission function of an ion-energy and mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hamers, E. A. G.; van Sark, W. G. J. H. M.; Bezemer, J.; Goedheer, W. J.; van der Weg, W. F.

    1998-01-01

    The operation of a mass spectrometer system with an electrostatic energy analyser, designed for measurements of mass-resolved ion-energy distributions, is discussed. We show how the electric fields in the different electrostatic lenses present in the system can be optimized. These lenses direct the ions entering the system into the energy filter and the quadrupole mass filter. These lenses can exhibit chromatic aberration. The conditions without chromatic aberration have been found by simulating the ion trajectories in the part of the system up to the energy filter. Also, an experimental method is presented to find these settings. We show that the energy-dependent transmission of ions through the system is mainly determined by its acceptance angle. Ionenergy spectra from an argon plasma have been measured and corrected for the transmission of the ions through the system. Published by Elsevier Science B.V.

  17. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    2000-04-01

    A database of 8615 hourly averaged air ion mobility spectra in the range of 0.00041-3.2 cm2 V-1 s-1 was measured at Tahkuse Observatory, Estonia, during 14 months in 1993-1994. The average mobility spectrum over the whole period shows distinct peaks of small and large ions. Intermediate ions with mobilities of 0.034-0.5 cm2 V-1 s-1 are of low concentration of about 50 cm-3 in the average spectrum. They experience occasional bursts of up to about 900 cm-3 during 6-10 hours at daytime. The number of burst events recorded during 14 months was 101, with maximum frequency in spring and minimum frequency in winter. Physically, large and intermediate ions can be called aerosol ions, and small ions can be called cluster ions. The principal component analysis was applied to detect the structure of an air ion mobility spectrum. As a result, the mobility spectrum in the range of 0.00041-3.2 cm2 V-1 s-1 (diameters of 0.36-79 nm) was divided into five classes: small cluster, big cluster, intermediate, light large, and heavy large ions. The boundaries between the classes are 1.3 cm2 V-1 s-1 (diameter of 0.85 nm), 0.5 cm2 V-1 s-1 (1.6 nm), 0.034 cm2 V-1 s-1 (7.4 nm), and 0.0042 cm2 V-1 s-1 (22 nm). The five principal components that are closely correlated with the respective ion classes explain 92% of total variance. The classification of aerosol ions is in accord with the three-modal structure of the size spectrum of submicron aerosol particles.

  18. MEMS Fabrication of Micro Cylindrical Ion Trap Mass Spectrometer for CubeSats Application

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-10-01

    Microelectromechanical Systems (MEMS) technology is used to fabricate arrays of micro Cylindrical Ion Traps (μCIT) which are integrated into a miniaturized mass spectrometer (MS). The micro μCITs are built from silicon wafers and requires high machining precision, smooth surface, and high dimensional uniformity across the array for optimum mass spectrometer performance. In order to build these 3D miniature structures several MEMS processing techniques were explored and a process was developed and tested. By using the developed MEMS process, the required μCIT 4 x 4 arrays were fabricated. This included a chip design variation in which mechanical locking pits and posts were machined in the Ring Electrode (RE) chip and End Plate (EP) chips respectively, for self-assembly. The size of the assembled μCIT is only 12 mm x 12 mm x 1.5 mm. It is a key component for the miniature mass spectrometer. The micro cylindrical ion trap mass spectrometer has the advantages of low-power operation, simpler electronics and less-stringent vacuum system requirements. The MEMS batch production capabilities will also greatly lower the cost. It is a promising candidate for CubeSat and nanoSats applications for exploration of chemical distributions in space.

  19. Evaluation of open-path FTIR spectrometers for monitoring multiple chemicals in air.

    PubMed

    Farhat, S K; Todd, L A

    2000-12-01

    There has been mounting interest in the use of open-path Fourier transform infrared (OP-FTIR) spectrometers for occupational and environmental air monitoring. Although this technology is gaining acceptance in the environmental field, there has not yet been a comprehensive assessment of instrument performance and the analytical limitations of this method have not been thoroughly delineated. Unlike extractive FTIR spectrometers, calibration of OP-FTIR spectrometer systems presents unique problems because the optical beam is exposed to the atmosphere. Therefore, it is difficult to get an adequate clean background and perform evaluation tests used by extractive instruments. One solution to the problem of evaluating an open-path system is to place a sample cell directly in the path of the infrared beam. The purpose of this study was to investigate the use of a specially designed external calibration cell as a tool for laboratory and field evaluation of the accuracy of OP-FTIR spectrometers and to investigate various commonly used instrument performance parameters such as root mean square (RMS) noise, return intensity, instrument precision, and detector saturation. These performance parameters were measured to see if they could be used to predict whether an instrument is operating correctly. Six instruments from the same manufacturer were evaluated with a prototype calibration cell using NIST traceable sulfur hexafluoride, n-hexane, and cyclohexane. Reference concentrations generated in the calibration cell were compared with OP-FTIR spectrometer measured concentrations measured through the cell. Excellent correlation and slopes were obtained for all three chemicals. The instrument performance measures could not be used to predict accuracy. The external calibration cell shows promise as a method of validating the operation of an OP-FTIR spectrometer for quality assurance and for quality control. PMID:11141603

  20. Ion densities and composition of Titan's upper atmosphere derived from the Cassini Ion Neutral Mass Spectrometer: Analysis methods and comparison of measured ion densities to photochemical model simulations

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.; Gell, David A.; Perry, Mark; Hunter Waite, J., Jr.; Crary, Frank A.; Young, David; Magee, Brian A.; Westlake, Joseph H.; Cravens, Thomas; Kasprzak, Wayne; Miller, Greg; Wahlund, Jan-Erik; Ågren, Karin; Edberg, Niklas J. T.; Heays, Alan N.; Lewis, Brenton R.; Gibson, Stephen T.; de la Haye, V.; Liang, Mao-Chang

    2012-10-01

    The Cassini Ion Neutral Mass Spectrometer (INMS) has measured both neutral and ion species in Titan's upper atmosphere and ionosphere and the Enceladus plumes. Ion densities derived from INMS measurements are essential data for constraining photochemical models of Titan's ionosphere. The objective of this paper is to present an optimized method for converting raw data measured by INMS to ion densities. To do this, we conduct a detailed analysis of ground and in-flight calibration to constrain the instrument response to ion energy, the critical parameter on which the calibration is based. Data taken by the Cassini Radio Plasma Wave Science Langmuir Probe and the Cassini Plasma Spectrometer Ion Beam Spectrometer are used as independent measurement constraints in this analysis. Total ion densities derived with this method show good agreement with these data sets in the altitude region (˜1100-1400 km) where ion drift velocities are low and the mass of the ions is within the measurement range of the INMS (1-99 Daltons). Although ion densities calculated by the method presented here differ slightly from those presented in previous INMS publications, we find that the implications for the science presented in previous publications is mostly negligible. We demonstrate the role of the INMS ion densities in constraining photochemical models and find that (1) cross sections having high resolution as a function of wavelength are necessary for calculating the initial photoionization products and (2) there are disagreements between the measured ion densities representative of the initial steps in Titan photochemistry that require further investigation.

  1. A compact high-resolution X-ray ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Heptner, A; Niebuhr, D; Böttger, S; Zimmermann, S

    2016-05-01

    For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing (63)Ni or (3)H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the (3)H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a (3)H source. The main advantage of an X-ray source is that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.

  2. A composition analyzer for microparticles using a spark ion source. [using time of flight spectrometers

    NASA Technical Reports Server (NTRS)

    Auer, S. O.; Berg, O. E.

    1975-01-01

    Iron microparticles were fired onto a capacitor-type microparticle detector which responded to an impact with a spark discharge. Ion currents were extracted from the spark and analyzed in a time-of-flight mass spectrometer. The mass spectra showed the element of both detector and particle materials. The total extracted ion currents was typically 10A within a period of 100ns, indicating very efficient vaporization of the particle and ionization of the vapor. Potential applications include research on cosmic dust, atmospheric aerosols and cloud droplets, particles ejected by rocket or jet engines, by machining processes, or by nuclear bomb explosions.

  3. Micro-machined planar field asymmetric ion mobility spectrometer as a gas chromatographic detector

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Nazarov, E. G.; Miller, R. A.; Krylov, E. V.; Zapata, A. M.

    2002-01-01

    A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the detector and mobility scans could be obtained throughout the chromatographic analysis providing chemical inforrmation in mobility scans orthogonal to retention time. Limits of detection were approximately I ng for measurement of positive ions and were comparable or slightly better than those for the FID. Direct comparison of calibration curves for the FAIMS and the FID was possible over four orders of magnitude with a semi-log plot. The concentration dependence of the PFAIMS mobility scans showed the dependence between ion intensity and ion clustering, evident in other mobility spectrometers and atmospheric pressure ionization technologies. Ions were identified using mass spectrometry as the protonated monomer and the proton bound dimer of the ketones. Residence time for column effluent in the PFAIMS was calculated as approximately 1 ms and a 36% increase in extra-column broadening versus the FID occurred with the PFAIMS.

  4. Plasticizer contamination from vacuum system O-rings in a quadrupole ion trap mass spectrometer.

    PubMed

    Verge, Kent M; Agnes, George R

    2002-08-01

    The outgassing of plasticizers from Buna-N and Viton o-rings under vacuum lead to undesired ion-molecule chemistry in an Electrospray Quadrupole Ion Trap Mass Spectrometer. In experiments with the helium bath gas pressure >1.2 mTorr, or whenever analyte ions were stored for >100 ms, extensive loss of analyte ions by proton transfer or adduction with o-ring plasticizers bis(2-ethylhexyl) phthalate and bis(2-ethylhexyl) adipate occurred. A temporary solution to this contamination problem was found to be overnight refluxing in hexane of all the o-rings in the vacuum system. This procedure alleviated this plasticizer contamination for approximately 100 hours of operation. These results, and those that lead to identification of the contamination as plasticizers outgassing from o-rings are described. PMID:12216729

  5. Modified Thomson spectrometer design for high energy, multi-species ion sources.

    PubMed

    Gwynne, D; Kar, S; Doria, D; Ahmed, H; Cerchez, M; Fernandez, J; Gray, R J; Green, J S; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Ruiz, J A; Schiavi, A; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2014-03-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

  6. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  7. Developments of multiplexed and miniature two-dimensional quadrupole ion trap mass spectrometers

    NASA Astrophysics Data System (ADS)

    Smith, Scott A.

    Quadrupole ion trap mass spectrometry (QIT MS) is a powerful and commonly-employed method for the specific analysis of mass, composition, and structure of gas-phase ionic chemical species. Useful for a wide variety of tasks, applications of ion traps include environmental monitoring, surface analysis (including depth profiling and imaging), ion thermochemical property elucidation, protein and DNA sequencing, and high-resolution chemical separations (through ion soft-landing). Though the principles of QIT MS have been known for over half a century, innovations in instrumentation and applications continue. As new needs for specific and sensitive chemical analysis arise, so also do new and more efficient analytical devices and methods of analysis. Such a trend is exemplified through the construction of a dual-source QIT mass spectrometer (described herein) capable of multi-source chemical analyses for the purposes of enhanced proteomic sequence coverage and for the strictly-controlled comparison of the structural differences in ion populations generated by different ionization techniques. Furthermore, as mass spectrometry becomes increasingly commonplace outside the bounds of the analytical laboratory, demand for capable researcher equipment is also increasing. Advances in instrument performance, such as can be had through enhanced power efficiency and the enabling of chemical analysis of high mass-to-charge ratio (m/z) species (e.g., proteins), will open new doors to in situ chemical analysis hand-portable mass spectrometers. Hence, research into new mass analyzer designs and methods of fabrication using stereolithography apparatus (SLA) for the purpose of creating enhanced-performance mass spectrometers are accordingly described in the text of this dissertation.

  8. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    PubMed

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  9. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents.

    PubMed

    Graichen, Adam M; Vachet, Richard W

    2013-06-01

    The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n](y+) complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n](2+) complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.

  10. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction.

    PubMed

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 micros. Accordingly, the sample is under excitation in 10(-4) part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10(10) V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the

  11. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    SciTech Connect

    Hars, Gyoergy; Dobos, Gabor

    2010-03-15

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 {mu}s. Accordingly, the sample is under excitation in 10{sup -4} part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 10{sup 10} V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of

  12. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    NASA Astrophysics Data System (ADS)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical

  13. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, G. V.; Wilms, J.; Beiersdorfer, P.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2015-08-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11 ≤ Z ≤ 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5eV, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6eV resolution shows that the analysis of spectra taken at ECS resolution allows us to determine the transition energies of the strongest components.Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344 and supported by NASA's APRA program.

  14. Mid-Infrared Nice-Ohms Spectrometer for the Study of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Porambo, Michael; Pearson, Jessica; Talicska, Courtney; McCall, Benjamin J.

    2014-06-01

    Molecular ions are involved in the chemistry of many interesting systems, such as the atmosphere, combustion reactions, and the interstellar medium. Challenging aspects of studying molecular ions spectroscopically include producing ions in enough abundance and, for large or fluxional ions, overcoming the problem of quantum dilution at high vibrational and rotational temperature. Furthermore, highly precise transition frequencies are needed to answer many questions involving molecular ions, such as the presence of specific candidate ions in the interstellar medium. To address these challenges, we have constructed a mid-infrared spectrometer that uses a difference frequency generation (DFG) light source to probe cooled molecular ions produced in a continuous supersonic expansion discharge source. The cooling of the ions achieved through supersonic expansion mitigates the problem of quantum dilution. High sensitivity to detect the 1012 ions per cm3 produced is accomplished through the use of noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) as a detection technique. Finally, an optical frequency comb is used to measure the transition frequencies of molecular ions precisely. This talk will present the current status of the instrument and preliminary studies to optimize and characterize its performance. Initial studies of room temperature methane allowed us to verify the use of NICE-OHMS for inferring rotational temperature of a molecular sample through Boltzmann plot analysis. Spectroscopy of H_3^+ and HN_2^+ extended this temperature verification to molecular ions. Future work on H_2CO^+, with the goal of determining its rovibrational transitions to a precision on the order of 1 MHz to aid in astronomical detection, will also be presented.

  15. Detections of lunar exospheric ions by the LADEE neutral mass spectrometer

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Poppe, A. R.; Delory, G. T.

    2015-07-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS), operating in ion mode, provides sensitive detections of ions from the lunar exosphere. By analyzing ion-mode data from the entire mission, utilizing Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) plasma and magnetic field measurements to organize NMS data and eliminate background sources, we identify highly significant detections of lunar ions at mass per charge of 2, 4, 12, 20, 28, 39, and 40, moderately significant detections at 14 and 23, and weak detections at 24, 25, and 36. Unlike many previous observations of Moon-derived ions, an outward pointing viewing geometry ensures that these ions originate from the exosphere, rather than directly from the surface. For species with known neutral distributions, inferred ion production rates appear consistent with expectations for both magnitude and spatial distribution, assuming photoionization as the predominant source mechanism. Unexpected signals at mass per charge 12 and 28 suggest the presence of a significant exospheric population of carbon-bearing molecules.

  16. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Shenyi; Johnston, Murray V.

    2006-12-01

    A digital ion trap-reflectron time of flight mass spectrometer is described for airborne nanoparticle characterization. Charged particles sampled into this nanoaerosol mass spectrometer (NAMS) are captured in the ion trap and ablated with a high fluence laser pulse to reach the "complete ionization limit". Atomic ions produced from the trapped particle(s) are mass analyzed by time of flight, and the elemental composition is determined from the relative signal intensities in the mass spectrum. The particle size range captured in the ion trap is selected by the frequency applied to the ring electrode. Size selection is based on the mass normalized particle diameter, defined as the diameter of a spherical particle with unit density that has the same mass as the particle being analyzed. For the current instrument configuration, ring electrode frequencies between 5 and 140 kHz allow selective trapping of particles with a mass normalized diameter between 7 and 25 nm with a geometric standard deviation of about 1.1. The particle detection efficiency, defined as the fraction of charged particles entering the mass spectrometer that are subsequently captured and analyzed, is between l x l0-4 and 3 x l0-4 over this size range. The effective particle density can be determined from simultaneous measurement of the mobility and mass normalized diameters. Test nanoparticles composed of sucrose, polyethylene glycol, polypropylene glycol, sodium chloride, ammonium sulfate and copper(II) chloride are investigated. In most cases, the measured elemental compositions match the expected elemental compositions within +/-5% or less and the measured compositions do not change with particle size. The one exception is copper chloride, which does not yield a well-developed plasma when it is irradiated by the laser pulse.

  17. Observations of the Nightside Venus Ionosphere: Final Encounter of the Pioneer Venus Orbiter Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Kramer, L.; Taylor, H. A., Jr.

    1993-01-01

    During the last orbital sequences of the Pioneer Venus spacecraft prior to final encounter and atmospheric entry, data were obtained by the Orbiter Ion Mass Spectrometer (OIMS) at the lowest periapsis altitudes of the mission. These data verified OIMS observations of the nightside ionospheric peak reported-earlier in the mission, and revealed additional details related to composition, energetics and maintenance of the nightside ionosphere. OIMS observations of the ion peak during the final encounter sequence are compared with radio occultation data and OIMS peak observations obtained earlier. OIMS ion density and Orbiter Electron Temperature Probe (OETP) electron density are found to correlate near the peak. Coupling of mass channels 30 and 32 during nightside passes is observed and its interpretation considered. Changes in high altitude composition of the nightside ionosphere, especially the relative changes in O(+) and H(+), are described.

  18. Observations of the nightside Venus ionosphere: Final encounter of the Pioneer Venus Orbiter Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Kramer, L.; Taylor, H. A., Jr.

    1993-01-01

    During the last orbital sequences of the Pioneer-Venus spacecraft prior to final encounter and atmospheric entry, data were obtained by the Orbiter Ion Mass Spectrometer (OIMS) at the lowest periapsis altitudes of the mission. These data verified OIMS observations of the nightside ionospheric peak reported earlier in the mission, and revealed additional details related to composition, energetics and maintenance of the nightside ionosphere. OIMS observations of the ion peak during the final encounter sequence are compared with radio occultation data and OIMS peak observations obtained earlier. OIMS ion density and Orbiter Electron Temperature Probe (OETP) electron density are found to correlate near the peak. Coupling of mass channels 30 and 32 during nightside passes is observed and its interpretation considered. Changes in high altitude composition of the nightside ionosphere, especially the relative changes in O(+) and H(+), are described.

  19. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  20. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ. PMID:27032650

  1. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  2. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.

  3. Physical effects of negative air ions in a wet sauna

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  4. Terahertz Spectroscopy of Molecules, Radicals and Ions Using Evenson-Type Tunable FIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Matsushima, Fusakazu

    2012-06-01

    Frequencies of pure rotational transitions of neutral molecules, free radicals, and ionic molecules in the terahertz region have been measured precisely by using a frequency tunable far-infrared spectrometer in Toyama for more than 2 decades. The spectrometer (sometimes called as TuFIR in short) was developed by K.M. Evenson about 30 years ago. The terahertz light source is generated by synthesizing difference frequency of two mid-infrared CO_2 laser lines using a MIM diode as a photo mixer. A microwave radiation is added so that the tunable sidebands are obtained. The molecules and ions investigated up to now in Toyama are; 1) neutral molecules or radicals ( LiH, KH, 18OH, NH, N18O, NH_3), 2) molecule with internal rotation (CH_3OH including transitions between different torsional states), 3) water molecules (H_2 16O including v_2=1 excited state, H_2 17O, H_2 18O, D_2O), 4) molecular cation ( protonated rare gas atoms such as HeH^+, NeH^+, ArH^+, KrH^+, XeH^+ including their isotopic species, H_2D^+, N_2H^+, H_2F^+), 5) molecular anion (OH^-, OD^-). The following topics are picked up in the talk. 1) principle and properties of TuFIR spectrometer with its history of developments, 2) some efforts to extend the properties of the spectrometer, 3) extended negative glow discharge cell: its property and recent application to investigate molecular ions. K.M. Evenson, D.A. Jennings, and F.R. Peterson, Appl. Phys. Lett. 44, 576 (1984) I.G. Nolt et al., J. Mol. Spectrosc., 125, 274 (1987)

  5. An electrospray ionization-ion mobility spectrometer as detector for high- performance liquid chromatography.

    PubMed

    Zühlke, Martin; Riebe, Daniel; Beitz, Toralf; Löhmannsröben, Hans-Gerd; Zenichowski, Karl; Diener, Marc; Linscheid, Michael W

    2015-01-01

    The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 μL mn(-1) and 1500 μL min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet mode. The novel ESI-IM spectrometer tolerates high water contents (≤90%) and electrolyte concentrations up to 10mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 μM for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic Ims.

  6. Operational Parameters, Considerations, and Design Decisions for Resource-Constrained Ion Trap Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Danell, Ryan M.; VanAmerom, Friso H. W.; Pinnick, Veronica; Cotter, Robert J.; Brickerhoff, William; Mahaffy, Paul

    2011-01-01

    Mass spectrometers are increasingly finding applications in new and unique areas, often in situations where key operational resources (i.e. power, weight and size) are limited. One such example is the Mars Organic Molecule Analyzer (MOMA). This instrument is a joint venture between NASA and the European Space Agency (ESA) to develop an ion trap mass spectrometer for chemical analysis on Mars. The constraints on such an instrument are significant as are the performance requirements. While the ideal operating parameters for an ion trap are generally well characterized, methods to maintain analytical performance with limited power and system weight need to be investigated and tested. Methods Experiments have been performed on two custom ion trap mass spectrometers developed as prototypes for the MOMA instrument. This hardware consists of quadrupole ion trap electrodes that are 70% the size of common commercial instrumentation. The trapping RF voltage is created with a custom tank circuit that can be tuned over a range of RF frequencies and is driven using laboratory supplies and amplifiers. The entire instrument is controlled with custom Lab VIEW software that allows a high degree of flexibility in the definition of the scan function defining the ion trap experiment. Ions are typically generated via an internal electron ionization source, however, a laser desorption source is also in development for analysis of larger intact molecules. Preliminary Data The main goals in this work have been to reduce the power required to generate the radio frequency trapping field used in an ion trap mass spectrometer. Generally minimizing the power will also reduce the volume and mass of the electronics to support the instrument. In order to achieve optimum performance, commercial instruments typically utilize RF frequencies in the 1 MHz range. Without much concern for power usage, they simply generate the voltage required to access the mass range of interest. In order to reduce the

  7. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers.

    PubMed

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L

    2014-07-15

    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  8. Enhanced sensitivity and selectivity in a dual cell ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Griffin, Matthew T.; Fulton, Jack E., Jr.; McAtee, Robert F.; Gao, Rong; Tsoukalas, Lefteri H.

    2003-08-01

    While ion mobility spectrometry (IMS) has been used as a portable trace vapor detector, these handheld systems suffer from poor selectivity. Their low resolution makes confident identification of chemical species difficult. One major application for these IMS systems is in Homeland Defense. IMS systems are fielded for the detection of chemical warfare agents, explosives, narcotics, and other hazardous chemicals. Recently, a novel signal processing methodology using wavelet filtering, statistical evaluators, and genetic algorithms was demonstrated to improve sensitivity and specificity of an ion mobility spectrometer. Previous work involved a single (single polarity) IMS cell. Since both positive and negative ions are created in the same environment and a common sample interface is used for the dual IMS system, there is cross talk between the positive and negative cell. Typically, this cross talk provides little information on the identity of the chemical species present. However, using this new methodology, valuable sample information is obtained. Moreover, ion beam modulation has been incorporated to allow for the ion beam to be broken up into discrete packets. The modulation allows the rejection of common background interferents. This paper will present the process of using cell cross talk, ion beam modulation, and application and extension of the signal processing methodology. The application to field instrumentation will also be discussed.

  9. Advanced Ion Mass Spectrometer for Giant Planet Ionospheres, Magnetospheres and Moons

    NASA Astrophysics Data System (ADS)

    Sittler, EC; Cooper, JF; Paschalidis, N.; Jones, SL; Rodriguez, M.; Ali, A.; Coplan, MA; Chornay, DJ; Sturner; Bateman, FB; Andre, N.; Fedorov, A.; Wurz, P.

    2015-10-01

    The Advanced Ion Composition Spectrometer (AIMS) has been under development from various NASA sources (NASA LWSID, NASA ASTID, NASA Goddard IRADs) to measure elemental, isotopic, and simple molecular composition abundances of 1 eV/e to 25 keV/e hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ΔM ≤ 60 over a wide dynamic range of intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft with wide field-of-view capability in both cases. It will measure the ion velocity distribution functions (IVDF) for the individual ion species; ion velocity moments of the IVDF will give the fluid parameters (density, flow velocity and temperature) of the individual ion species. Outer planet mission applications are Io Observer, Jupiter Europa Orbiter/Europa Clipper, Enceladus Orbiter, and Uranus Orbiter as described in the decadal survey, but would also be valuable for inclusion on other missions to outer planet destinations such as Saturn- Titan and Neptune-Triton and for future missions to terrestrial planets, Venus and Mars, the Moon, asteroids, and comets, and of course for geospace applications to the Earth.

  10. Composition Of The Inner Source Measured With The Solar Wind Ion Composition Spectrometer On Ulysses

    SciTech Connect

    Gloeckler, G.; Fisk, L. A.; Geiss, J.

    2010-03-25

    To explain the unexpected discovery of C{sup +}, the existence of an inner source of pickup ions close to the Sun was proposed. We report on detailed analyses of the composition and the radial and latitudinal variations of inner source pickup ions measured with the Solar Wind Ion Composition Spectrometer on Ulysses from 1991 to 1998, approaching and during solar minimum. We find that the C{sup +} intensity drops off with radial distance R as R{sup -1.53}, peaks at mid latitudes and drops to its lowest value in the ecliptic. In addition to C{sup +}, N{sup +}, O{sup +}, Ne{sup +}, Na{sup +}, Mg{sup +}, Ar{sup +}, S{sup +}, K{sup +}, CH{sup +}, NH{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, MgH{sup +}, HCN{sup +}, C{sub 2}H{sub 4}{sup +}, SO{sup +} and many other heavy ions and molecular ions are observed. Possible causes for the unexpected latitudinal variations and the neutral source(s) producing the inner source pickup ions are discussed.

  11. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    SciTech Connect

    Parmeter, J.E.; Custer, C.A.

    1997-08-01

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on their characteristics IMS signatures.

  12. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  13. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Niemann, Hasso; Yelle, Roger V.; Kasprzak, Wayne T.; Cravens, Thomas E.; Luhmann, Janet G.; McNutt, Ralph L.; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-01

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  14. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  15. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  16. Impurity Flow and Ion Temperature Measurements in CDX-U using a Modulated Optical Solid-State Spectrometer

    NASA Astrophysics Data System (ADS)

    Post-Zwicker, Andrew; Kaita, Robert; Munsat, Tobin; Miller, Timothy

    1999-11-01

    A Modulated Optical Solid-State Spectrometer (MOSS) 1 was recently installed on the Current Drive Experiment - Upgrade (CDX-U) to measure impurity ion temperature and flow. The device is based on a Fourier transform spectrometer and does not use a conventional diffraction grating. Intensity (average signal level), Doppler shift (modulation phase) and width (modulation amplitude) are extracted from the single output to determine the ion temperature and flow velocity. Rotation and ion temperature profiles are used to study transport. Initial results from these experiments are presented. 1J. Howard, Rev. Sci. Instr., 70(1), (1999) 368.

  17. Daily variations of indoor air-ion and radon concentrations.

    PubMed

    Kolarz, P M; Filipović, D M; Marinković, B P

    2009-11-01

    Air-ions and radon are two atmospheric trace constituents which have two opposite effects on human health: the ions are beneficial, and radon gas is potentially lethal as it increases the risk of lung cancer. In the lower troposphere, radon is the most important generator of the air-ions. Ionization by cosmic rays and radioactive minerals is almost constant in daily cycles, and variation of air-ion concentrations is attributed to changes of the radon activity. Air-ion and radon concentrations in outdoor and indoor space and their vertical gradients in residential buildings were measured. Gerdien type air-ion detector "CDI-06" made in our laboratory and radon monitor "RAD7" were utilized for these measurements. Correlation coefficient between positive air-ion and Rn indoor concentrations was approximately 0.7. Outdoor and indoor peak values were simultaneous while vertical gradient of concentrations in indoor measurements was evident. The indoor experiments showed that positive air-ion concentration could be an alternative method of radon activity concentration evaluation. PMID:19700332

  18. The XRS microcalorimeter spectrometer at the Livermore Electron Beam Ion Trap

    SciTech Connect

    Porter, F S; Beiersdorfer, P; Boyce, K; Brown, G V; Chen, H; Gygax, J; Kahn, S M; Kelley, R; Kilbourne, C A; Magee, E; Thorn, D B

    2007-08-22

    NASA's X-ray Spectrometer (XRS) microcalorimeter instrument has been operating at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory since July of 2000. The spectrometer is currently undergoing its third major upgrade to become an easy to use, extremely high performance instrument for a broad range of EBIT experiments. The spectrometer itself is broadband, capable of simultaneously operating from 0.1 to 12 keV and has been operated at up to 100 keV by manipulating its operating conditions. The spectral resolution closely follows the spaceflight version of the XRS, beginning at 10 eV FWHM at 6 keV in 2000, upgraded to 5.5 eV in 2003, and will hopefully be {approx}3.8 eV in the Fall of 2007. Here we review the operating principles of this unique instrument, the extraordinary science that has been performed at EBIT over the last 6 years, and prospects for future upgrades. Specifically we discuss upgrades to cover the high-energy band (to at least 100 keV) with a high quantum efficiency detector, and prospects for using a new superconducting detector to reach 0.8 eV resolution at 1 keV, and 2 eV at 6 keV with high counting rates.

  19. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas.

  20. Following the Ions through a Mass Spectrometer with Atmospheric Pressure Interface: Simulation of Complete Ion Trajectories from Ion Source to Mass Analyzer.

    PubMed

    Zhou, Xiaoyu; Ouyang, Zheng

    2016-07-19

    Ion trajectory simulation is an important and useful tool in instrumentation development for mass spectrometry. Accurate simulation of the ion motion through the mass spectrometer with atmospheric pressure ionization source has been extremely challenging, due to the complexity in gas hydrodynamic flow field across a wide pressure range as well as the computational burden. In this study, we developed a method of generating the gas flow field for an entire mass spectrometer with an atmospheric pressure interface. In combination with the electric force, for the first time simulation of ion trajectories from an atmospheric pressure ion source to a mass analyzer in vacuum has been enabled. A stage-by-stage ion repopulation method has also been implemented for the simulation, which helped to avoid an intolerable computational burden for simulations at high pressure regions while it allowed statistically meaningful results obtained for the mass analyzer. It has been demonstrated to be suitable to identify a joint point for combining the high and low pressure fields solved individually. Experimental characterization has also been done to validate the new method for simulation. Good agreement was obtained between simulated and experimental results for ion transfer though an atmospheric pressure interface with a curtain gas. PMID:27340893

  1. Cassini Plasma Spectrometer Ion Observations Close to Enceladus: E3, E5 and E7

    NASA Astrophysics Data System (ADS)

    Tokar, R. L.; Johnson, R. E.; Thomsen, M. F.; Wilson, R. J.; Crary, F. J.; Young, D. T.; Goldstein, R.; Reisenfeld, D. B.; Sittler, E. C.; Coates, A. J.; Paty, C. S.; Jia, Y.; Omidi, N.; Russell, C.

    2009-12-01

    The Cassini Plasma Spectrometer (CAPS) detected freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier water dimer ions (HxO2)+ very close to Enceladus where the plasma begins to emerge from the south polar plume (1). The data were obtained during two close (52 and 25 km) flybys of Enceladus in 2008 (E3 and E5) and are consistent with measurements from the Cassini Ion Neutral Mass Spectrometer (INMS). The ions are observed in CAPS detectors looking in the Cassini ram direction close to the ram kinetic energy, indicative of a nearly stagnant plasma flow in the plume. North of Enceladus the plasma slowing commences about 4 to 6 Enceladus radii away, while south of Enceladus signatures of the plasma interaction with the plume are detected 22 Enceladus radii away. Here we review and contrast these observations including the E7 flyby (anticipated Nov. 2, 2009). E7 is planned for a closest approach ~103 km south of Enceladus and CAPS should detect ions at rest with respect to Enceladus and over a broad range of gyrophase angles. Plasma fluid parameters both upstream and downstream of these encounters are extracted from the CAPS data. In addition, we compare the CAPS ion measurements with both fluid and 3D hybrid simulations. The MHD simulations (BATSRUS) are tuned to agree with Cassini Magnetometer (MAG) observations during the encounters then compared with CAPS observations. For example, for the E3 encounter the CAPS/BATSRUS comparison is striking, with features reproduced such as: the overall spatial scale of the interaction, the slowing of the ion flow within the dust plume to less than 5 km/s with respect to Enceladus, the temperature, flow and density signature of the geometric wake, and the flow perturbation along the magnetic field due to wake expansion. For E5, BATSRUS tuned against MAG suggests a 15 km/s bulk plasma flow toward Saturn during the encounter. We search for signatures of this flow in the CAPS ion data. 1.) Tokar,R.L. et al. Geophys. Res

  2. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    NASA Astrophysics Data System (ADS)

    Banach, U.; Tiebe, C.; Hübert, Th.

    2009-05-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  3. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    SciTech Connect

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-05-23

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  4. Data Access and Tools for the Magnetospheric Multiscale Energetic Ion Spectrometer (and Others)

    NASA Astrophysics Data System (ADS)

    Brown, L. E.; Cohen, I. J.; Mauk, B.; Vandegriff, J. D.; Westlake, J. H.

    2015-12-01

    The Magnetospheric Multiscale Mission includes one Energetic Ion Spectrometer (EIS) detector on each of the four spacecraft measuring ion energy and composition for protons, Helium and Oxygen in the 10-1000 keV range. While it is not our primary measurement, we also produce electron spectra which can be used to provide context for some of our data modes and to cross calibrate with other instruments. EIS is currently returning exciting results from the magnetopause and the Van Allen belts and intervening regions. We present an overview and explanation of the major public data products available, the tools used by the team for analysing these products and a sample of major EIS science results. We also demonstrate how these same tools can be used with other similar data sets, in particular Juno/JEDI and Van Allen Probes/RBSPICE.

  5. Update on the Ion Neutral Mass Spectrometer measurements during the E21 flyby of Enceladus

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Glein, Christopher

    2016-04-01

    We report the ongoing analysis of the Ion Neutral Mass Spectrometer data from the last low-altitude, in situ flyby of the Enceladus spacecraft by the Cassini spacecraft (E21). During previous Cassini flybys of Enceladus, the Ion and Neutral Mass Spectrometer (INMS) detected counts at mass channel 2 in closed source neutral mode that are attributed to H2. The signal was enhanced at faster flyby velocities as a result of impact-induced chemistry in the antechamber of the instrument, but up to ~15% H2 was still detected consistently during the slowest flybys. At present, it is unclear if this H2 is native to the plume or an artifact of high-speed sampling of the H2O-rich plume. In an attempt to resolve this question, a search for H2 was performed using the open source neutral beam mode of INMS during the E21 flyby, for which the data are being analyzed. We present the status of this analysis. Furthermore,to assist in the interpretation, we have made three theoretical estimates of how much hydrothermal H2 could be present for different geochemical/geophysical scenarios, which will also be presented.

  6. Study and evaluation of impulse mass spectrometers for ion analysis in the D and E regions of the ionosphere

    NASA Technical Reports Server (NTRS)

    Kendall, B. R.

    1979-01-01

    Theoretical and numerical analyses were made of planar, cylindrical and spherical electrode time-of-flight mass spectrometers in order to optimize their operating conditions. A numerical analysis of potential barrier gating in time-of-flight spectrometers was also made. The results were used in the design of several small mass spectrometers. These were constructed and tested in a laboratory space simulator. Detailed experimental studies of a miniature cylindrical electrode time of flight mass spectrometer and of a miniature hemispherical electrode time of flight mass spectrometer were made. The extremely high sensitivity of these instruments and their ability to operate at D region pressures with an open source make them ideal instruments for D region ion composition measurements.

  7. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  8. Mobility spectrum of air ions at Tahkuse Observatory

    NASA Astrophysics Data System (ADS)

    Horrak, U.; Iher, H.; Luts, A.; Salm, J.; Tammet, H.

    1994-05-01

    Mobility spectra of air ions have been measured at a rural site in Estonia during several periods. The annual average mobility spectrum of natural small air ions is presented. The concentrations of two groups of air ions with mobilities 0.32-0.5 sq cm/(V s) and 0.5-2.5 sq cm/(V s) are not correlated; this fact indicates the different nature of the ions of the two groups. The air ions with mobilities 0.5-2.5 sq cm/(V s) are interpreted as cluster ions and the air ions with mobilities 0.32-0.5 sq cm/(V s) as charged aerosol particles that can be created in the process of ion-induced nucleation. A half-year average mobility spectrum of the large ions with mobilities 3.2 x 10(exp -4) - 1.5/(V s) is presented. The spectrum is well interpreted on the basis of the average size distribution of aerosol particles and on the theory of diffusion charging of the particles.

  9. Optimized precursor ion selection for labile ions in a linear ion trap mass spectrometer and its impact on quantification using selected reaction monitoring.

    PubMed

    Lee, Hyun-Seok; Shin, Kyong-Oh; Jo, Sung-Chan; Lee, Yong-Moon; Yim, Yong-Hyeon

    2014-12-01

    The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well-known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in-source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0-, C24:0- and C24:1-ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0-, C24:0- and C24:1-ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum.

  10. A Dual Source Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer of ExoMars 2018

    NASA Technical Reports Server (NTRS)

    Brickerhoff, William B.; vanAmerom, F. H. W.; Danell, R. M.; Arevalo, R.; Atanassova, M.; Hovmand, L.; Mahaffy, P. R.; Cotter, R. J.

    2011-01-01

    We present details on the objectives, requirements, design and operational approach of the core mass spectrometer of the Mars Organic Molecule Analyzer (MOMA) investigation on the 2018 ExoMars mission. The MOMA mass spectrometer enables the investigation to fulfill its objective of analyzing the chemical composition of organic compounds in solid samples obtained from the near surface of Mars. Two methods of ionization are realized, associated with different modes of MOMA operation, in a single compact ion trap mass spectrometer. The stringent mass and power constraints of the mission have led to features such as low voltage and low frequency RF operation [1] and pulse counting detection.

  11. A Proteomics Grade Electron Transfer Dissociation-enabled Hybrid Linear Ion Trap-orbitrap Mass Spectrometer

    PubMed Central

    McAlister, Graeme C.; Berggren, W. Travis; Horning, Stevan; Makarov, Alexander; Phanstiel, Doug; Griep-Raming, Jens; Stafford, George; Swaney, Danielle L.; Syka, John E. P.; Zabrouskov, Vlad

    2008-01-01

    Here we describe the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4 - 8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies. PMID:18613715

  12. The role of ion optics modeling in the design and development of ion mobility spectrometers

    NASA Astrophysics Data System (ADS)

    Griffin, Matthew T.

    2005-05-01

    Detection of trace gases by ion mobility spectroscopy (IMS) has become common in recent years. In fact, IMS devices are the most commonly deployed military devices for the detection of classical chemical warfare agents (CWA). IMS devices are protecting the homeland by aiding first responders in the identification of toxic industrial chemicals (TICs) and providing explosive and narcotic screening systems. Spurred by the asymmetric threat posed by new threat agents and the ever expanding list of toxic chemicals, research in the development, improvement, and optimization of IMS systems has increased. Much of the research is focused on increasing the sensitivity and selectivity of IMS systems. Ion optics is a large area of study in the field of mass spectrometry, but has been mostly overlooked in the design and development of IMS systems. Ion optics provides insight into particle trajectories, duty cycle, and efficiency of these systems. This paper will outline the role that ion optics can have in the development of IMS systems and introduce the trade space for traditional IMS as well as differential mobility spectroscopy.

  13. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  14. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  15. Modification of a tandem mass-spectrometer for infrared multi-photon dissociation (IRMPD) of gas-phase ions

    NASA Astrophysics Data System (ADS)

    Gillis, Julie M.; Osburn, Sandra M.; van Stipdonk, Michael J.; Corcovilos, Theodore A.

    2015-05-01

    Infrared multi-photon dissociation (IRMPD) is a method of fragmenting molecular ions for structural analysis of the parent molecule. The target ions absorb many photons, increasing the vibrational state of the excited bonds until the dissociation occurs. We have modified a commercial linear quadrupole trap tandem mass spectrometer (Thermo-Fisher LTQ) by installing a removable high-vacuum window in the rear accessory plate of the mass spectrometer. The window allows us to inject laser light into the ion trap. The shape of the injected laser beam is optimized to match the volume of the ion cloud within the ion trap, improving IRMPD efficiency. We present preliminary data of the IRMPD of weakly bound uranyl-acetone and uranyl-dimethyl sulfoxide clusters using a 20-W pulsed CO2 laser (wavelength 10 . 6 μm), showing previously undetected fragmentation products.

  16. An interactive, multitask computer system for heavy-ion physics research with the spin spectrometer: (Progress report, 1982)

    SciTech Connect

    Sarantites, D.G.

    1982-01-01

    The scope of this proposal is to assemble an interactive off-line data analysis system based on a DEC VAX 11/780 computer interfaced with an array processor, which is capable of meeting the needs of modern heavy-ion physics experiments involving data of large dimensionality as created in the Spin Spectrometer at the Holifield Heavy-ion Research Facility, to adapt the existing PDP 11 software for the Spin Spectrometer for this computer system in a form completely compatible with other laboratories with VAX 11 computers, and to develop new general and efficient software for automatic but fully interactive data analysis making use of an attach array processor.

  17. Development of an ion attachment mass spectrometer for direct detection of intermediates in combustion flames.

    PubMed

    Torii, Takahiro; Nishimura, Takashi; Nakamura, Megumi; Shiokawa, Yoshiro; Matsumoto, Kozo; Kitagawa, Kuniyuki

    2008-11-01

    A system with Li+ ion attachment (IA) ionization has been developed for the direct detection of intermediates formed in burning flames by mass spectrometry. Dimethyl ether (DME) among alternative fuels was selected as a test substance to examine the capability of the system. As a result, intermediates generated in a premixed DME-air flame were directly detectable as Li+ adduct ions. By moving the burner on an X-Y stage, spatial distribution profiles of different species, including unburned DME and formaldehyde, were obtained for three types of flames: diffusion, partially premixed, and premixed.

  18. Effect of Air Ions on Submicron T1 Bacteriophage Aerosols

    PubMed Central

    Happ, John W.; Harstad, J. Bruce; Buchanan, Lee M.

    1966-01-01

    The effect of a high concentration of ionized air molecules on sampling T1 phage aerosols of submicron particle size was evaluated by comparing the phage recoveries of all-glass impingers (AGI-4) and type 6 filter papers. Sampler recoveries of all ionized aerosols were less than the recoveries of nonionized control aerosols. These reductions in recovery were greater with positive ions than with negative ions or ions of mixed polarity. The AGI-4 allowed considerable slippage, which was not affected by the air ions. Type 6 filter paper recoveries were less than AGI-4 recoveries. The air ions did not appear to affect the aerosol particle size as determined by an electron microscope. Images Fig. 1 Fig. 3 PMID:16349691

  19. Field evaluation of a transportable open-path FTIR spectrometer for real-time air monitoring.

    PubMed

    Ross, Kiley R; Todd, Lori A

    2002-02-01

    To effectively and accurately evaluate human exposures to chemicals, it is important to quantify mixtures of chemicals in air, at low levels, and in real time. The purpose of this study was to evaluate, in the field, a prototype of a new transportable instrument that can fill an important gap in methods available to industrial hygienists. This instrument is a cross between extractive and open-path Fourier Transform Infrared spectrometers and measures chemicals passively and in real time in the vicinity of the breathing zone. The spectrometer has a folded optical path that can be enclosed, similar to an extractive system. The enclosure can be removed, enabling the optical path to be open to the atmosphere; thus, the instrument could be operated as an open-path spectrometer. A field study was conducted in three different occupational settings, including a prosthodontics dental laboratory, a surgery recovery area, and a cytology laboratory. Chemicals that were identified and quantified included methyl methacrylate, nitrous oxide, xylene isomers, toluene, and ethanol. Simultaneous side-by-side sampling was conducted with the prototype instrument and recognized National Institute of Occupational Safety and Health (NIOSH) analytical methods. The distinct infrared "fingerprint" of each chemical made identification and quantification of multiple chemicals possible with the prototype instrument. This attribute allowed the industrial hygienist to quantify short-term exposures and ceiling levels, correlate work practices with concentration levels, evaluate the effectiveness of engineering controls, and identify the presence of unexpected compounds. There was no significant difference between the mean time-weighted averages (TWAs) of the prototype instrument and traditional methods (p > 0.03). Regression analysis found good correlation between the two methods with no significant differences between the slope and unity and between the y-intercept and zero (p > 0.03). The

  20. Detection of Volatile Vapors Emitted from Explosives with a Hand-held Ion Mobility Spectrometer

    SciTech Connect

    Ewing, Robert Gordon; Miller, Carla Jean

    2001-11-01

    Vapor detection of plastic explosives is difficult because of the low vapor pressures of explosive components (i.e. RDX and PETN) present in the complex elastomeric matrix. To facilitate vapor detection of plastic explosives, detection agents (taggants) with higher vapor pressures can be added to bulk explosives during manufacture. This paper investigates the detection of two of these taggants, ethyleneglycol dinitrate (EGDN) and 2,3-dimethyl-2,3-dinitrobutane (DMNB), using a handheld ion mobility spectrometer. These two taggants were detected both from neat vapor sources as well as from bulk explosives (nitroglycerin (NG)-dynamite and C-4 tagged with DMNB). EGDN was detected from NG-dynamite as EGDN·NO3- at a reduced mobility value of 1.45 cm2 V-1 s-1 with detection limits estimated to be about 10 ppbv. DMNB was identified from tagged C-4 as both negative and positive ions with reduced mobility values of 1.33 cm2 V-1 s-1 for DMNB·NO2- and 1.44 cm2 V-1s-1 for DMNB·NH4+. Positive ions for cyclohexanone were also apparent in the spectra from tagged C-4 producing three additional peaks.

  1. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies.

    PubMed

    Khan, Arnab; Tribedi, Lokesh C; Misra, Deepankar

    2015-04-01

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  2. A recoil ion momentum spectrometer for molecular and atomic fragmentation studies

    SciTech Connect

    Khan, Arnab; Tribedi, Lokesh C.; Misra, Deepankar

    2015-04-15

    We report the development and performance studies of a newly built recoil ion momentum spectrometer for the study of atomic and molecular fragmentation dynamics in gas phase upon the impact of charged particles and photons. The present design is a two-stage Wiley-McLaren type spectrometer which satisfies both time and velocity focusing conditions and is capable of measuring singly charged ionic fragments up-to 13 eV in all directions. An electrostatic lens has been introduced in order to achieve velocity imaging. Effects of the lens on time-of-flight as well as on the position have been investigated in detail, both, by simulation and in experiment. We have used 120 keV proton beam on molecular nitrogen gas target. Complete momentum distributions and kinetic energy release distributions have been derived from the measured position and time-of-flight spectra. Along with this, the kinetic energy release spectra of fragmentation of doubly ionized nitrogen molecule upon various projectile impacts are presented.

  3. A Compact Ion and Neutral Mass Spectrometer for the Exocube Mission

    NASA Astrophysics Data System (ADS)

    Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.

    2014-12-01

    Demand is high for in situ measurements of atmospheric neutral and ion composition and density, not only for studies of the dynamic ionosphere-theremosphere-mesosphere system but simply to define the steady state background atmospheric conditions. The ExoCube mission is designed to acquire global knowledge of in-situ densities of [H], [He], [O] and [H+], [He+], [O+] in the upper ionosphere and lower exosphere in combination with incoherent scatter radar ground stations distributed in the north polar region. The Heliophysic Division of GSFC has developed a compact Ion and Neutral Mass Spectrometer (INMS) for in situ measurements of ions and neutrals H, He, N, O, N2, O2 with M/dM of approximately 10 at an incoming energy range of 0-50eV. The INMS is based on front end optics, post acceleration, gated time of flight, ESA and CEM or MCP detectors. The compact sensor has a dual symmetric configuration with the ion and neutral sensor heads on opposite sides and with full electronics in the middle. The neutral front end optics includes thermionic emission ionization and ion blocking grids, and the ion front end optics includes spacecraft potential compensation grids. The electronics include front end, fast gating, HVPS, ionizer, TOF binning and full bi directional C&DH digital electronics. The data package includes 400 mass bins each for ions and neutrals and key housekeeping data for instrument health and calibration. The data sampling can be commanded as fast as 10 msec per frame (corresponding to ~80 m spatial separation) in burst mode, and has significant onboard storage capability and data compression scheme. Experimental data from instrument testing with both ions and neutrals will be presented. The instrument is successfully integrated in the CubeSat and passed vibration, thermal and shock testing. The ExoCube mission is scheduled to fly in Nov 2014 in a 445 x 670 km polar orbit with the INMS aperture oriented in the ram direction. This miniaturized instrument (1

  4. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  5. Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T.

    2004-08-01

    Ion mobility has emerged as an important technique for determining biopolymer conformations in solvent free environments. These experiments have been nearly exclusively performed on home built systems. In this paper we describe modifications to a commercial high performance mass spectrometer, the Waters UK "Ultima" Q-Tof, that allows high sensitivity measurement of peptide and protein cross sections. Arrival time distributions are obtained for a series of peptides (bradykinin, LHRH, substance P, bombesin) and proteins (bovine and equine cytochrome c, myoglobin, [alpha]-lactalbumin) with good agreement found with literature cross sections where available. In complex ATD's, mass spectra can be obtained for each feature confirming assignments. The increased sensitivity of the commercial instrument is retained along with the convenience of the data system, crucial features for analysis of protein misfolding systems.

  6. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    SciTech Connect

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  7. Detection and measurement of delay in the yield of negative ions from the ionization chamber of a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lukin, V. G.; Khvostenko, O. G.; Tuimedov, G. M.

    2016-02-01

    The times of extraction of negative ions from the ionization chamber of a mass spectrometer have been measured. The obtained values amount to several dozen microseconds or above—that is, significantly exceed the time of free ion escape from the chamber. It is established that ions are retained in the ionization chamber because of their adsorption on the inner surface. This leads to distortion of the experimentally measured lifetimes of negative ions that become unstable with respect to autodetachment of the excess electron.

  8. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Jin, W.; Lee, S. G.; Shi, Y. J.; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G.

    2016-11-01

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the Kα spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  9. Air ions and respiratory function outcomes: a comprehensive review

    PubMed Central

    2013-01-01

    Background From a mechanistic or physical perspective there is no basis to suspect that electric charges on clusters of air molecules (air ions) would have beneficial or deleterious effects on respiratory function. Yet, there is a large lay and scientific literature spanning 80 years that asserts exposure to air ions affects the respiratory system and has other biological effects. Aims This review evaluates the scientific evidence in published human experimental studies regarding the effects of exposure to air ions on respiratory performance and symptoms. Methods We identified 23 studies (published 1933–1993) that met our inclusion criteria. Relevant data pertaining to study population characteristics, study design, experimental methods, statistical techniques, and study results were assessed. Where relevant, random effects meta-analysis models were utilized to quantify similar exposure and outcome groupings. Results The included studies examined the therapeutic benefits of exposure to negative air ions on respiratory outcomes, such as ventilatory function and asthmatic symptoms. Study specific sample sizes ranged between 7 and 23, and studies varied considerably by subject characteristics (e.g., infants with asthma, adults with emphysema), experimental method, outcomes measured (e.g., subjective symptoms, sensitivity, clinical pulmonary function), analytical design, and statistical reporting. Conclusions Despite numerous experimental and analytical differences across studies, the literature does not clearly support a beneficial role in exposure to negative air ions and respiratory function or asthmatic symptom alleviation. Further, collectively, the human experimental studies do not indicate a significant detrimental effect of exposure to positive air ions on respiratory measures. Exposure to negative or positive air ions does not appear to play an appreciable role in respiratory function. PMID:24016271

  10. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  11. Investigating ion-surface collisions with a niobium superconducting tunnel junction detector in a time-of-flight mass spectrometer

    SciTech Connect

    Westmacott, G.; Zhong, F.; Frank, M.; Friedrich, S.; Labov, S.; Benner, W.H.

    1999-12-01

    The performance of an energy sensitive, niobium superconducting tunnel junction detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser resorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and the increases with increasing mass of molecular ions above 2000Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.

  12. Investigation of Luna-20 soil samples, using a mass spectrometer with a spark-discharge ion source

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Ramendik, G. I.; Gronskaia, S. I.; Gubina, I. IA.; Gushchin, V. N.

    1979-01-01

    A method of analyzing soil samples with a mass spectrometer employing a spark-discharge ion source is described, and the effectiveness of the method is demonstrated by applying it to the determination of impurities, in amounts of less than 10 mg, in lunar samples. It is shown that four parts of the Luna-20 lunar highland sample differ in their chemical composition.

  13. A digitizer based compact digital spectrometer for ion beam analysis using field programmable gate arrays and various energy algorithms

    SciTech Connect

    Jäger, Markus; Reinert, Tilo

    2013-08-15

    We report on the implementation of a compact multi-detector fully digital spectrometer and data acquisition system at a nuclear microprobe for ion beam analysis and imaging. The spectrometer design allows for system scalability with no restriction on the number of detectors. It consists of four-channel high-speed digitizer modules for detector signal acquisition and one low-speed digital-to-analog converter (DAC) module with two DAC channels and additional general purpose inputs/outputs to control ion beam scanning and data acquisition. Each digitizer module of the spectrometer provides its own Field Programmable Gate Array (FPGA) as digital signal processing unit to analyze detector signals as well as to synchronize the ion beam position in hard real-time. With the customized FPGA designs for all modules, all calculation intensive tasks are executed inside the modules, which reduces significantly the data stream to and CPU load on the control computer. To achieve an optimal energy resolution for all detector/preamplifier pulse shape characteristics, a user-definable infinite impulse response filter with high throughput for energy determination was implemented. The new spectrometer has an online data analysis feature, a compact size, and is able to process any type of detector signals such as particle induced x-ray emission, Rutherford backscattering spectrometry, or scanning transmission ion microscopy.

  14. Collisional and electric-field ionization of laser-prepared Rydberg states in an ion trap mass spectrometer

    SciTech Connect

    Ramsey, J.M.; Whitten, W.B.; Goeringer, D.E.; Buckley, B.T.

    1990-01-01

    Rydberg states of rubidium are selectively generated by one and two photon laser excitation in a quadrupole ion trap mass spectrometer. Collisional and electric-field ionization is investigated in trapping device. CCl{sub 4} is studied as a target for ionization of Rydberg states through electron attachment.

  15. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  16. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    NASA Technical Reports Server (NTRS)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  17. IonCCD detector for miniature sector-field mass spectrometer: investigation of peak shape and detector surface artifacts induced by keV ion detection.

    PubMed

    Hadjar, Omar; Schlathölter, Thomas; Davila, Stephen; Catledge, Shane A; Kuhn, Ken; Kassan, Scott; Kibelka, Gottfried; Cameron, Chad; Verbeck, Guido F

    2011-10-01

    A recently described ion charge coupled device detector IonCCD (Sinha and Wadsworth, Rev. Sci. Instrum. 76(2), 2005; Hadjar, J. Am. Soc. Mass Spectrom. 22(4), 612-624, 2011) is implemented in a miniature mass spectrometer of sector-field instrument type and Mattauch-Herzog (MH)-geometry (Rev. Sci. Instrum. 62(11), 2618-2620, 1991; Burgoyne, Hieftje and Hites J. Am. Soc. Mass Spectrom. 8(4), 307-318, 1997; Nishiguchi, Eur. J. Mass Spectrom. 14(1), 7-15, 2008) for simultaneous ion detection. In this article, we present first experimental evidence for the signature of energy loss the detected ion experiences in the detector material. The two energy loss processes involved at keV ion kinetic energies are electronic and nuclear stopping. Nuclear stopping is related to surface modification and thus damage of the IonCCD detector material. By application of the surface characterization techniques atomic force microscopy (AFM) and X-ray photoelectrons spectroscopy (XPS), we could show that the detector performance remains unaffected by ion impact for the parameter range observed in this study. Secondary electron emission from the (detector) surface is a feature typically related to electronic stopping. We show experimentally that the properties of the MH-mass spectrometer used in the experiments, in combination with the IonCCD, are ideally suited for observation of these stopping related secondary electrons, which manifest in reproducible artifacts in the mass spectra. The magnitude of the artifacts is found to increase linearly as a function of detected ion velocity. The experimental findings are in agreement with detailed modeling of the ion trajectories in the mass spectrometer. By comparison of experiment and simulation, we show that a detector bias retarding the ions or an increase of the B-field of the IonCCD can efficiently suppress the artifact, which is necessary for quantitative mass spectrometry.

  18. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  19. First signal on the cryogenic Fourier-transform ion cyclotron resonance mass spectrometer.

    PubMed

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B

    2007-12-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix-assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C(60)(+*) ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C(60) spectrum showing approximately 350,000 resolving power at m/z approximately 720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy.

  20. Development of Ion and Neutral Mass Spectrometers (INMS) for Heliophysics and Planetary Missions

    NASA Astrophysics Data System (ADS)

    Sittler, Edward; Paschalidis, Nikolaos; Cooper, John; Zesta, Eftyhia; Ali, Ashraf; Chornay, Dennis; Durachka, David; Brambora, Clifford; Benna, Mehdi; Mahaffy, Paul

    2014-05-01

    Goddard's Geospace Physics Laboratory is developing INMS concepts that can be used for future Geospace missions to the Earth's ionosphere and for future planetary missions to bodies with atmospheres and ionospheres, in collaboration with the Planetary Environments Laboratory. Our group is designing ion mass spectrometers (IMS) for energy-per-charge range 1 V to 50 kV that can be used for solar wind ion composition measurements, the Earth's magnetosphere , lunar orbiters, and planetary magnetospheres. We will focus this presentation in our efforts and results for future CubeSat Missions to the Earth's ionosphere and a High Precision Electric Gate (HPEG) design that can be used with a reflectometer to achieve very high mass resolution capability. The HPEG design has been patented by Goddard with E. C. Sittler Jr. as inventor. The HPEG design allows for miniaturization so it is ideally suited to CubeSat missions. Engineers at Goddard's Instrument Electronics Development Branch have prototyped a pulse generator that can deliver a required train of pulses with ~ ns pulses on a Field Programmable Gate Array (FPGA) platform that will allow miniature designs of the HPEG. The burst of pulses can be triggered at MHz rates. We will present initial lab results for a simpler CubeSat design instrument and a more complex version using the HPEG.

  1. The Fourier transform spectrometer of the Université Pierre et Marie Curie QualAir platform.

    PubMed

    Té, Y; Jeseck, P; Payan, S; Pépin, I; Camy-Peyret, C

    2010-10-01

    A Bruker Optics IFS 125HR Fourier transform spectrometer (FTS) and the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique retrieval algorithm were adapted for ground based atmospheric measurements. As one of the major instruments of the experimental research platform QualAir, this FTS is dedicated to study the urban air composition of large megacity such as Paris. The precise concentration measurements of the most important atmospheric pollutants are a key to improve the understanding and modeling of urban air pollution processes. Located in the center of Paris, this remote sensing spectrometer enables to monitor many pollutants. Examples for NO(2) and CO are demonstrating the performances of this new experimental setup. PMID:21034070

  2. The Fourier transform spectrometer of the Université Pierre et Marie Curie QualAir platform.

    PubMed

    Té, Y; Jeseck, P; Payan, S; Pépin, I; Camy-Peyret, C

    2010-10-01

    A Bruker Optics IFS 125HR Fourier transform spectrometer (FTS) and the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique retrieval algorithm were adapted for ground based atmospheric measurements. As one of the major instruments of the experimental research platform QualAir, this FTS is dedicated to study the urban air composition of large megacity such as Paris. The precise concentration measurements of the most important atmospheric pollutants are a key to improve the understanding and modeling of urban air pollution processes. Located in the center of Paris, this remote sensing spectrometer enables to monitor many pollutants. Examples for NO(2) and CO are demonstrating the performances of this new experimental setup.

  3. Wide-band, high-resolution soft x-ray spectrometer for the Electron Beam Ion Trap

    SciTech Connect

    Brown, G.V.; Beiersdorfer, P.; Widmann, K.

    1999-01-01

    We have constructed two wide-band, high-resolution vacuum flat crystal spectrometers and implemented them on the Electron Beam Ion Trap located at the Lawrence Livermore National Laboratory. Working in unison, these spectrometers can measure an x-ray bandwidth {le}9 {Angstrom} in the soft x-ray region below 21 {Angstrom}. In order to achieve this large bandwidth each spectrometer houses either two 125 mm {times} 13 mm {times} 2 mm RAP (rubidium acid phthalate, 2d=26.121 {Angstrom}), two 114 mm {times} 13 mm {times} 2 mm TlAP (thallium acid phthalate, 2d=25.75 {Angstrom}) crystals, or some combination thereof, for dispersion and two position sensitive proportional counters for detection of x rays. The spectrometers are used to measure wavelengths and relative intensities of the L-shell line emission from FethinspXVII{endash}XXIV for comparison with spectra obtained from astrophysical and laboratory plasmas. The wide wavelength coverage attainable by these spectrometers makes it possible to measure all the L-shell emission from a given iron ion species simultaneously. {copyright} {ital 1999 American Institute of Physics.}

  4. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  5. Novel control modes to improve the performance of rectilinear ion trap mass spectrometer with dual pressure chambers

    NASA Astrophysics Data System (ADS)

    Huo, Xinming; Tang, Fei; Zhang, Xiaohua; Chen, Jin; Zhang, Yan; Guo, Cheng'an; Wang, Xiaohao

    2016-10-01

    The rectilinear ion trap (RIT) has gradually become one of the preferred mass analyzers for portable mass spectrometers because of its simple configuration. In order to enhance the performance, including sensitivity, quantitation capability, throughput, and resolution, a novel RIT mass spectrometer with dual pressure chambers was designed and characterized. The studied system constituted a quadrupole linear ion trap (QLIT) in the first chamber and a RIT in the second chamber. Two control modes are hereby proposed: Storage Quadrupole Linear Ion Trap-Rectilinear Ion Trap (SQLIT-RIT) mode, in which the QLIT was used at high pressure for ion storage and isolation, and the RIT was used for analysis; and Analysis Quadrupole Linear Ion Trap-Rectilinear Ion Trap (AQLIT-RIT) mode, in which the QLIT was used for ion storage and cooling. Subsequently, synchronous scanning and analysis were carried out by QLIT and RIT. In SQLIT-RIT mode, signal intensity was improved by a factor of 30; the limit of quantitation was reduced more than tenfold to 50 ng mL-1, and an optimal duty cycle of 96.4% was achieved. In AQLIT-RIT mode, the number of ions coexisting in the RIT was reduced, which weakened the space-charge effect and reduced the mass shift. Furthermore, the mass resolution was enhanced by a factor of 3. The results indicate that the novel control modes achieve satisfactory performance without adding any system complexity, which provides a viable pathway to guarantee good analytical performance in miniaturization of the mass spectrometer.

  6. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  7. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  8. High performance compact magnetic spectrometers for energetic ion and electron measurement in ultra intense short pulse laser solid interactions

    SciTech Connect

    Chen, H; Link, A; van Maren, R; Patel, P; Shepherd, R; Wilks, S C; Beiersdorfer, P

    2008-05-08

    Ultra intense short pulse lasers incident on solid targets can generate relativistic electrons that then accelerate energetic protons and ions. These fast electrons and ions can effectively heat the solid target, beyond the region of direct laser interaction, and are vital to realizing the fast ignition concept. To study these energetic ions and electrons produced from the laser-target interactions, we have developed a range of spectrometers that can cover a large energy range (from less than 0.1 MeV to above 100 MeV). They are physically compact and feature high performance and low cost. We will present the basic design of these spectrometers and their test results from recent laser experiments.

  9. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    SciTech Connect

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  10. A Virtual Research Environment for a Secondary Ion Mass Spectrometer (SIMS)

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M.; Schäfer, L.; Klump, J.; Galkin, A.

    2013-12-01

    Overview: This poster describes the development of a Virtual Research Environment for the Secondary Ion Mass Spectrometer (SIMS) at GFZ Potsdam. Background: Secondary Ion Mass Spectrometers (SIMS) are extremely sensitive instruments for analyzing the surfaces of solid and thin film samples. These instruments are rare, expensive and experienced operators are very highly sought after. As such, measurement time is a precious commodity, until now only accessible to small numbers of researchers. The challenge: The Virtual SIMS Project aims to set up a Virtual Research Environment for the operation of the CAMECA IMS 1280-HR instrument at the GFZ Potsdam. The objective of the VRE is to provide SIMS access not only to researchers locally present in Potsdam but also to scientists working with SIMS cooperation partners in e.g., South Africa, Brazil or India. The requirements: The system should address the complete spectrum of laboratory procedures - from online application for measurement time, to remote access for data acquisition to data archiving for the subsequent publication and for future reuse. The approach: The targeted Virtual SIMS Environment will consist of a: 1. Web Server running the Virtual SIMS website providing general information about the project, lab access proposal forms and calendar for the timing of project related tasks. 2. LIMS Server, responsible for scheduling procedures, data management and, if applicable, accounting and billing. 3. Remote SIMS Tool, devoted to the operation of the experiment within a remote control environment. 4. Publishing System, which supports the publication of results in cooperation with the GFZ Library services. 5. Training Simulator, which offers the opportunity to rehearse experiments and to prepare for possible events such as a power outages or interruptions to broadband services. First results: The SIMS Virtual Research Environment will be mainly based on open source software, the only exception being the CAMECA IMS

  11. Measuring GAMMA 10 end-loss ions with an ELIS (end-loss-ion spectrometers) from TMX-U

    SciTech Connect

    Foote, J.H.

    1987-09-03

    The author spent the period from March 22 to July 10, 1987, at the GAMMA 10 tandem-mirror experiment at the University of Tsukuba in Tsukuba, Japan. The purpose of this extended trip was to install on GAMMA 10 one of the end-loss-ion spectrometers (ELIS) used on TMX-U (Tandem Mirror Experiment-Upgrade) at LLNL and to make plasma measurements there with this diagnostic instrument. This report discusses the considerable planning and preparations that preceded the trip, the actual experience with the ELIS equipment at GAMMA 10, data and results obtained while the author was there, GAMMA 10 experimental procedures, the scientific and technical support during the stay, and some final comments and suggestions concerning an international exchange such as this one. The data acquired on GAMMA 10 while there, along with earlier data, present an encouraging picture of a plasma in a thermal-barrier mode in a tandem-mirror, magnetic-fusion machine. 6 refs.

  12. Reduction of air ion mobility to standard conditions

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  13. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  14. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer.

    PubMed

    Hellesen, C; Skiba, M; Dzysiuk, N; Weiszflog, M; Hjalmarsson, A; Ericsson, G; Conroy, S; Andersson-Sundén, E; Eriksson, J; Binda, F

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  15. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  16. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  17. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer.

    PubMed

    Hellesen, C; Skiba, M; Dzysiuk, N; Weiszflog, M; Hjalmarsson, A; Ericsson, G; Conroy, S; Andersson-Sundén, E; Eriksson, J; Binda, F

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons. PMID:25430238

  18. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements

    NASA Astrophysics Data System (ADS)

    Sigaud, L.; de Jesus, V. L. B.; Ferreira, Natalia; Montenegro, E. C.

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell—to study ionization of atoms and molecules by electron impact—is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed.

  19. Observations of plasma dynamics in the coma of P/Halley by the Giotto Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Fuselier, S. A.; Shelley, E. G.; Balsiger, H.; Kettmann, G.; Ip, W.-H.; Rosenbauer, H.; Schwenn, R.

    1991-01-01

    Observations in the coma of P/Halley by the Giotto Ion Mass Spectrometer (IMS) are reported. The High Energy Range Spectrometer (HERS) of the IMS obtained measurements of protons and alpha particles from the far upstream region to the near ionopause region and of ions from mass 12 to 32 at distances of about 250,000 to 40,000 km from the nucleus. Plasma parameters from the High Intensity Spectrometer (HIS) of the IMS obtained between 150,000 to 5000 km from the nucleus are also discussed. The distribution functions of water group ions (water group will be used to refer to ions of 16 to 18 m/q, where m is in AMU and q is in unit charges) are observed to be spherically symmetric in velocity space, indicating strong pitch angle scattering. The discontinuity known as the magnetic pile-up boundary (MPB) is apparent only in proton, alpha, and magnetometer data, indicating that it is a tangential discontinuity of solar wind origin. HERS observations show no significant change in the properties of the heavy ions across the MPB. A comparison of the observations to an MHD model is made. The plasma flow directions at all distances greater than 30,000 km from the nucleus are in agreement with MHD calculations. However, despite the agreement in flow direction, within 200,000 km of the nucleus the magnitude of the velocity is lower than predicted by the MHD model and the density is much larger (a factor of 4). Within 30,000 km of the nucleus there are large theoretical differences between the MHD model flow calculations for the plane containing the magnetic field and for the plane perpendicular to the magnetic field. The observations agreed much better with the pattern calculated for the plane perpendicular to the magnetic field. The data obtained by the High Energy Range Spectrometer (HERS) of the IMS that are published herein were provided to the International Halley Watch archive.

  20. Characteristics of thermal and suprathermal ions associated with the dayside plasma trough as measured by the dynamics explorer retarding ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Johnson, J. F. E.; Waite, J. H.; Chappell, C. R.

    1983-01-01

    The thermal and suprathermal ion populations present in the refilling regions after a magnetic storm are examined using retarding ion mass spectrometer (RIMS) data from the Dynamics Explorer 1 spacecraft. The RIMS instrument is described, and data are presented and discussed in detail for the outer plasmasphere, plasmapause, depleted dayside magnetosphere, and dayside cusp. Three distinct populations were observed: thermal ions, warm anisotropic plasma, and the polar wind. The characteristics of these populations are considered, including the densities, temperatures, and density ratios. Aspects of the ionospheric plasma outflow are discussed, including the field-aligned flow speed, the ionospheric plasma escape flux, plasmaspheric refilling, and wave-particle phenomena.

  1. Temperature Variations in the Martian Upper Atmosphere from the MAVEN Neutral Gas and Ion Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Stone, Shane W.; Yelle, Roger; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith K.; Bougher, Stephen W.; MAVEN

    2016-10-01

    The MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) measures composition and variability of neutral and ionic species in the Martian upper atmosphere, allowing us to calculate neutral temperatures from roughly 130 km to 300 km above the surface. Over the past two years at Mars, NGIMS has collected an extensive and useful data set that covers much of the Martian thermosphere and exosphere. We use new, improved algorithms for the most accurate determination of densities from the NGIMS data. We use the densities of inert species (specifically CO2, Ar, and N2) along with a hydrostatic equilibrium model to infer the temperature profile and its uncertainty. Uncertainties include the errors in the density measurements, unknown upper boundary conditions, and horizontal variations in the atmosphere. Our calculations reveal diurnal temperature variations of up to 90 K and maximum latitudinal temperature variations of 130 K. These fluctuations in temperature in the upper atmosphere are surprising because they are significantly larger than those predicted by the latest 3D general circulation models for Mars.

  2. A new echelle spectrometer for measuring UV branching fractions of Fe-group ions

    NASA Astrophysics Data System (ADS)

    Wood, Michael Patrick

    2014-12-01

    Unexpected trends in relative Fe-group abundances are observed in old, metal-poor stars which may offer insights into the history of nucleosynthesis in the Galaxy. Abundances are traditionally derived using lines in the neutral species, though Fe-group elements are predominately singly-ionized in the photospheres of stars of interest. Using weak UV lines connected to the ground and low metastable levels of Fe-group ions eliminates errors associated with departures from LTE, resulting in more accurate abundances. A new echelle spectrometer, combined with an aberration-corrected cross dispersion system, has been developed to measure accurate branching fractions for these UV lines. This instrument is capable of recording spectra at high resolving power with very broad wavelength coverage. The instrument is also free from the multiplex noise of a FTS, making it ideal for measurements of weak line branching fractions which are free from optical depth errors. These branching fractions are combined with published radiative lifetimes to produce accurate transition probabilities for UV lines connected to the ground and low metastable levels of singly-ionized Fe-group elements.

  3. Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Combi, Michael R.; Ip, Wing-Huen; Cravens, Thomas E.; McNutt, Ralph L.; Kasprzak, Wayne; Yelle, Roger; Luhmann, Janet; Niemann, Hasso; Gell, David; Magee, Brian; Fletcher, Greg; Lunine, Jonathan; Tseng, Wei-Ling

    2006-03-01

    The Cassini spacecraft passed within 168.2 kilometers of the surface above the southern hemisphere at 19:55:22 universal time coordinated on 14 July 2005 during its closest approach to Enceladus. Before and after this time, a substantial atmospheric plume and coma were observed, detectable in the Ion and Neutral Mass Spectrometer (INMS) data set out to a distance of over 4000 kilometers from Enceladus. INMS data indicate that the atmospheric plume and coma are dominated by water, with significant amounts of carbon dioxide, an unidentified species with a mass-to-charge ratio of 28 daltons (either carbon monoxide or molecular nitrogen), and methane. Trace quantities (<1%) of acetylene and propane also appear to be present. Ammonia is present at a level that does not exceed 0.5%. The radial and angular distributions of the gas density near the closest approach, as well as other independent evidence, suggest a significant contribution to the plume from a source centered near the south polar cap, as distinct from a separately measured more uniform and possibly global source observed on the outbound leg of the flyby.

  4. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure.

    PubMed

    Waite, J Hunter; Combi, Michael R; Ip, Wing-Huen; Cravens, Thomas E; McNutt, Ralph L; Kasprzak, Wayne; Yelle, Roger; Luhmann, Janet; Niemann, Hasso; Gell, David; Magee, Brian; Fletcher, Greg; Lunine, Jonathan; Tseng, Wei-Ling

    2006-03-10

    The Cassini spacecraft passed within 168.2 kilometers of the surface above the southern hemisphere at 19:55:22 universal time coordinated on 14 July 2005 during its closest approach to Enceladus. Before and after this time, a substantial atmospheric plume and coma were observed, detectable in the Ion and Neutral Mass Spectrometer (INMS) data set out to a distance of over 4000 kilometers from Enceladus. INMS data indicate that the atmospheric plume and coma are dominated by water, with significant amounts of carbon dioxide, an unidentified species with a mass-to-charge ratio of 28 daltons (either carbon monoxide or molecular nitrogen), and methane. Trace quantities (<1%) of acetylene and propane also appear to be present. Ammonia is present at a level that does not exceed 0.5%. The radial and angular distributions of the gas density near the closest approach, as well as other independent evidence, suggest a significant contribution to the plume from a source centered near the south polar cap, as distinct from a separately measured more uniform and possibly global source observed on the outbound leg of the flyby.

  5. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  6. MSM, an Efficient Workflow for Metabolite Identification Using Hybrid Linear Ion Trap Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Cho, Robert; Huang, Yingying; Schwartz, Jae C.; Chen, Yan; Carlson, Timothy J.; Ma, Ji

    2012-05-01

    Identification of drug metabolites can often yield important information regarding clearance mechanism, pharmacologic activity, or toxicity for drug candidate molecules. Additionally, the identification of metabolites can provide beneficial structure-activity insight to help guide lead optimization efforts towards molecules with optimal metabolic profiles. There are challenges associated with detecting and identifying metabolites in the presence of complex biological matrices, and new LC-MS technologies have been developed to meet these challenges. In this report, we describe the development of an experimental approach that applies unique features of the hybrid linear ion trap Orbitrap mass spectrometer to streamline in vitro and in vivo metabolite identification experiments. The approach, referred to as MSM, utilizes multiple collision cells, dissociation methods, mass analyzers, and detectors. With multiple scan types and different dissociation modes built into one experimental method, along with flexible post-acquisition analysis options, the MSM workflow offers an attractive option to fast and reliable identification of metabolites in different kinds of in vitro and in vivo samples. The MSM workflow was successfully applied to metabolite identification analysis of verapamil in both in vitro rat hepatocyte incubations and in vivo rat bile samples.

  7. An integrated ion trap and time-of-flight mass spectrometer for chemical and photo- reaction dynamics studies.

    PubMed

    Schowalter, Steven J; Chen, Kuang; Rellergert, Wade G; Sullivan, Scott T; Hudson, Eric R

    2012-04-01

    We demonstrate the integration of a linear quadrupole trap with a simple time-of-flight mass spectrometer with medium-mass resolution (m/Δm ∼ 50) geared towards the demands of atomic, molecular, and chemical physics experiments. By utilizing a novel radial ion extraction scheme from the linear quadrupole trap into the mass analyzer, a device with large trap capacity and high optical access is realized without sacrificing mass resolution. This provides the ability to address trapped ions with laser light and facilitates interactions with neutral background gases prior to analyzing the trapped ions. Here, we describe the construction and implementation of the device as well as present representative ToF spectra. We conclude by demonstrating the flexibility of the device with proof-of-principle experiments that include the observation of molecular-ion photodissociation and the measurement of trapped-ion chemical reaction rates.

  8. An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics.

    PubMed

    Belov, Mikhail E; Anderson, Gordon A; Wingerd, Mark A; Udseth, Harold R; Tang, Keqi; Prior, David C; Swanson, Kenneth R; Buschbach, Michael A; Strittmatter, Eric F; Moore, Ronald J; Smith, Richard D

    2004-02-01

    We describe a fully automated high performance liquid chromatography 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer system designed for proteomics research. A synergistic suite of ion introduction and manipulation technologies were developed and integrated as a high-performance front-end to a commercial Bruker Daltonics FTICR instrument. The developments incorporated included a dual-ESI-emitter ion source; a dual-channel electrodynamic ion funnel; tandem quadrupoles for collisional cooling and focusing, ion selection, and ion accumulation, and served to significantly improve the sensitivity, dynamic range, and mass measurement accuracy of the mass spectrometer. In addition, a novel technique for accumulating ions in the ICR cell was developed that improved both resolution and mass measurement accuracy. A new calibration methodology is also described where calibrant ions are introduced and controlled via a separate channel of the dual-channel ion funnel, allowing calibrant species to be introduced to sample spectra on a real-time basis, if needed. We also report on overall instrument automation developments that facilitate high-throughput and unattended operation. These included an automated version of the previously reported very high resolution, high pressure reversed phase gradient capillary liquid chromatography (LC) system as the separations component. A commercial autosampler was integrated to facilitate 24 h/day operation. Unattended operation of the instrument revealed exceptional overall performance: Reproducibility (1-5% deviation in uncorrected elution times), repeatability (<20% deviation in detected abundances for more abundant peptides from the same aliquot analyzed a few weeks apart), and robustness (high-throughput operation for 5 months without significant downtime). When combined with modulated-ion-energy gated trapping, the dynamic calibration of FTICR mass spectra provided decreased mass measurement errors for

  9. HISS spectrometer

    SciTech Connect

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented.

  10. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  11. Air-Stable Black Phosphorus Devices for Ion Sensing.

    PubMed

    Li, Peng; Zhang, Dongzhi; Liu, Jingjing; Chang, Hongyan; Sun, Yan'e; Yin, Nailiang

    2015-11-11

    Black phosphorus (BP) is one of the most attractive graphene analogues, and its properties make it a promising nanomaterial for chemical sensing. However, mono- and few-layer BP flakes are reported to chemically degrade rapidly upon exposure to ambient conditions. Therefore, little is known about the performance and sensing mechanism of intrinsic BP, and chemical sensing of intrinsic BP with acceptable air stability remains only theoretically explored. Here, we experimentally demonstrated the first air-stable high-performance BP sensor using ionophore coating. Ionophore-encapsulated BP demonstrated significantly improved air stability. Its performance and sensing mechanism for trace ion detection were systematically investigated. The BP sensors were able to realize multiplex ion detection with superb selectivity, and sensitive to Pb(2+) down to 1 ppb. Additionally, the time constant for ion adsorption extracted was only 5 s. The detection limit and response rate of BP were both superior to those of graphene based sensors. Moreover, heavy metal ions can be effectively detected over a wide range of concentration with BP conductance change following the Langmuir isotherm for molecules adsorption on surface. The simplicity of this ionophore-encapsulate approach provides a route for achieving air-stable intrinsic black phosphorus sensors that may stimulate further fundamental research and potential applications.

  12. Negative air ions as a source of superoxide

    NASA Astrophysics Data System (ADS)

    Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

    1992-06-01

    The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/—} and the superoxide anion O{2/—}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

  13. Measurements of ion and electron temperature profiles on NSTX with an X-ray imaging crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Beiersdorfer, P.; Gu, M. F.

    2005-10-01

    The prototype of a new X-ray imaging crystal spectrometer has been installed on NSTX to measure profiles of the ion and electron temperatures from spatially resolved dielectronic satellite spectra of ArXVII in the wavelength range from 3.9 to 4.0 A [1]. The spectrometer consists of a spherically bent 110-quartz crystal, with a radius of curvature of 389 cm and a diameter of 10 cm, and a 10 cm x 30 cm, two-dimensional, position-sensitive, multi-wire proportional counter. It projects an image of a large area of the plasma with an extension of +/- 40 cm below and above the horizontal mid-plane of NSTX onto the detector with a demagnification of 2.5. The resolution in the plasma is solely determined by the Bragg angle, the height of the crystal and its distance from the plasma; and it is about 3 cm, if the crystal is fully opened. The concept of this new spectrometer is also of interest for ion temperature measurements on ITER [2]. The paper will present results from profile measurements of the ion and electron temperature from NSTX discharges with pure ohmic heating as well as RF and neutral-beam heating. [1] M. Bitter et al., Rev. Sci. Instrum.75, 3660 (2004); [2] R. Barnsley et al., Rev. Sci. Instrum.75, 3743 (2004).

  14. Fragmentation reactions of labeled and untabeled Rhodamine B in a high-resolution Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Clemen, Martin; Gernert, Claus; Peters, Jonathan; Grotemeyer, Jürgen

    2013-01-01

    The fragmentation reactions of Rhodamine B have been investigated by the use of electrospray ionization mass spectra in a high mass resolving ion cyclotron resonance mass spectrometer. Using high resolution, it could be shown that the loss of 44 mass units from the molecular ion is due to propane; the measured masses were inconsistent with loss of carbon dioxide. These conclusions are supported using deuterium-labeled Rhodamine B. This sample again only shows the loss of fully-deuterated propane verifying the high-resolution data. These findings illustrate very clearly that the conclusions based solely on low resolution spectra were false. The general implication on fragmentations of aromatic acids is discussed.

  15. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  16. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral

  17. Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions

    SciTech Connect

    Gulyuz, Kerim; Stedwell, Corey N.; Wang Da; Polfer, Nick C.

    2011-05-15

    We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarily increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.

  18. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system.

    PubMed

    Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P

    2014-06-01

    A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide.

  19. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; Zacny, K.; Rogacki, S.; Grubisic, A.; Cornish, T.

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  20. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    NASA Astrophysics Data System (ADS)

    Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.

    2016-11-01

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°-3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  1. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  2. Theoretical calculations for mass resolution of a quadrupole ion trap reflectron time-of-flight mass spectrometer.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Park, Chang Joon; Kim, Nam Joon

    2010-02-01

    We have developed a theoretical method of predicting the mass resolution for a quadrupole ion trap reflectron time-of-flight (QIT-reTOF) mass spectrometer as a function of the spatial and velocity distributions of ions, voltages applied to the electrodes, and dimensions of the instrument. The flight times of ions were calculated using theoretical equations derived with an assumption of uniform electric fields inside the QIT and with the analytical description of the potential including the monopole, dipole, and quadrupole components. The mass resolution was then estimated from the flight-time spread of the ions with finite spatial and velocity distributions inside the QIT. The feasibility of the theoretical method was confirmed by the reasonable agreement of the theoretical resolution with the experimental one measured by varying the extraction voltage of the QIT or the deceleration voltage of the reflectron. We found that the theoretical resolution estimated with the assumption of the uniform electric fields inside the QIT reproduced the experimental one better than that with the analytical description of the potential. The possible applications of this theoretical method include the optimization of the experimental parameters of a given QIT-reTOF mass spectrometer and the design of new instruments with higher mass resolution.

  3. Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer.

    PubMed

    Kozole, Joseph; Tomlinson-Phillips, Jill; Stairs, Jason R; Harper, Jason D; Lukow, Stefan R; Lareau, Richard T; Boudries, Hacene; Lai, Hanh; Brauer, Carolyn S

    2012-09-15

    A commercial-off-the-shelf (COTS) ion trap mobility spectrometry (ITMS) based explosive trace detector (ETD) has been interfaced to a triple quadrupole mass spectrometer (MS/MS) for the purpose of characterizing the gas phase ion chemistry intrinsic to the ITMS instrument. The overall objective of the research is to develop a fundamental understanding of the gas phase ionization processes in the ITMS based ETD to facilitate the advancement of its operational effectiveness as well as guide the development of next generation ETDs. Product ion masses, daughter ion masses, and reduced mobility values measured by the ITMS/MS/MS configuration for a suite of nitro, nitrate, and peroxide containing explosives are reported. Molecular formulas, molecular structures, and ionization pathways for the various product ions are inferred using the mass and mobility data in conjunction with density functional theory. The predominant product ions are identified as follows: [TNT-H](-) for trinitrotoluene (TNT), [RDX+Cl](-) for cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX), [NO(3)](-) for ethylene glycol dinitrate (EGDN), [NG+NO(3)](-) for nitroglycerine (NG), [PETN+NO(3)](-) for pentaerythritol tetranitrate (PETN), [HNO(3)+NO(3)](-) for ammonium nitrate (NH(4)NO(3)), [HMTD-NC(3)H(6)O(3)+H+Cl](-) for hexamethylene triperoxide diamine (HMTD), and [(CH(3))(2)CNH(2)](+) for triacetone triperoxide (TATP). The predominant ionization pathways for the formation of the various product ions are determined to include proton abstraction, ion-molecule attachment, autoionization, first-order and multi-order thermolysis, and nucleophilic substitution. The ion trapping scheme in the reaction region of the ITMS instrument is shown to increase predominant ion intensities relative to the secondary ion intensities when compared to non-ion trap operation. PMID:22967626

  4. The charge-energy-mass spectrometer for 0.3-300 keV/e ions on the AMPTE CCE

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Ipavich, F. M.; Hamilton, D. C.; Lundgren, R. A.; Studemann, W.; Wilken, B.; Kremser, G.; Hovestadt, D.; Gliem, F.; Rieck, W.

    1985-01-01

    The charge-energy-mass (CHEM) spectrometer on the Charge Composition Explorer (CCE) has the function to measure the energy spectra, pitch-angle distributions, and ionization states of ions in the earth's magnetosphere and magnetosheath in the energy range from 0.3 to 300 keV/charge with a time resolution of less than 1 min. The obtained data will provide essential information on outstanding problems related to ion sources and dynamical processes of space plasmas and of suprathermal ions. A description of the CHEM experiment is given, taking into account the principle of operation, the sensor, the electronics, instrument characteristics, specifications, and requirements. Questions of postlaunch performance are also discussed.

  5. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Abicht, F.; Borghesi, M.; Braenzel, J.; Nickles, P. V.; Priebe, G.; Schnürer, M.; Ter-Avetisyan, S.

    2013-05-01

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  6. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    SciTech Connect

    Prasad, R.; Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M.; Borghesi, M.; Ter-Avetisyan, S.; Nickles, P. V.

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  7. Recent developments and applications with gas cell correlation spectrometer. [IR sensing of air pollution

    NASA Technical Reports Server (NTRS)

    Barringer, A. R.; Davies, J. H.; Floyd, G.

    1978-01-01

    Gaspec, a gas filter correlation spectrometer, is described. Gaspec is a dual-gas three-channel instrument using two detectors which receive amplitude-shared source signals modulated at the frequency of the chopper. Several units for operation around the 3-5 micron and the 8-15 micron region have been constructed, and gases such as CO2, CO, CH4, HCl, NO, and hydrazines can be detected. Advantages of Gaspec are considered with reference to improvements developed for the basic Cospec (gas cell correlation spectrometer) instrument.

  8. Simulations of a Johann/Johansson diffraction spectrometer for x-ray experiments at an electron beam ion source

    NASA Astrophysics Data System (ADS)

    Jabłoński, Ł.; Jagodziński, P.; Banaś, D.; Pajek, M.

    2013-09-01

    The ray tracing simulations of x-ray spectra for a compact six-crystal Johann/Johansson diffraction spectrometer covering a wide photon energy range (70 eV-15 keV), i.e. from the extended ultraviolet to the hard x-ray region, are discussed in the context of x-ray experiments at an electron beam ion source facility. In particular, the x-ray line profiles and energy resolution for different diffraction crystals and multilayers were studied, and the effects of extension of x-ray source size and misalignment were investigated. The simulations were also performed for x-ray emission from solid targets bombarded by electrons, which will be used for calibration of the x-ray spectrometer.

  9. Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Cui, J.; Yelle, R. V.; Vuitton, V.; Waite, J. H.; Kasprzak, W. T.; Gell, D. A.; Niemann, H. B.; Müller-Wodarg, I. C. F.; Borggren, N.; Fletcher, G. G.; Patrick, E. L.; Raaen, E.; Magee, B. A.

    2009-04-01

    In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N 2, CH 4, H 2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N 2, CH 4, H 2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C 2H 2, C 2H 4, C 2H 6, CH 3C 2H, C 4H 2, C 6H 6, CH 3CN, HC 3N, C 2N 2 and NH 3 in Titan's upper atmosphere. Upper limits are given for other minor species. The globally averaged distributions of N 2, CH 4 and H 2 are each modeled with the diffusion approximation. The N 2 profile suggests an average thermospheric temperature of 151 K. The CH 4 and H 2 profiles constrain their fluxes to be 2.6×10 cms and 1.1×10 cms, referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion

  10. Validation of an ion optics software model against the DANDE Wind & Temperature Spectrometer

    NASA Astrophysics Data System (ADS)

    Kemble, Kyle Dux

    The Drag & Atmospheric Neutral Density Explorer (DANDE) is slated for launch in the first half of 2013 into a highly eccentric near polar orbit to study the neutral thermosphere. It is a 50kg ˜0.45m diameter spherical payload that will attempt to make measurements of the drag forces on spacecraft in LEO between 200-400km altitude and simultaneously sample the composition, thermal energy, and wind vector of the atmosphere. These two measurements together on a single platform will offer greater spatial and temporal detail to space weather measurements in this region on a single low-cost platform. This will be done with a sub-microg resolution accelerometer suite designed and built at the University of Colorado at Boulder. Complementary measurements by a Wind & Temperature Spectrometer (WTS) developed in part with Goddard Space Flight Center will gather information of the wind vector and atmospheric composition. This work focuses primarily on the WTS instrument and the operational considerations levied on it through analysis of proto-flight and flight testing results. Additionally an ion optics modeling software is utilized called SIMION to take these empirical results and form a test correlated model of the instrument. The process for validation of the instrument behavior in SIMION is outlined by first identifying the performance metrics of the final instrument and running a similar testing campaign on the simulate instrument. The performance components in question are the relation the Small Deflection Energy Analyzer (SDEA) voltage to particle energy called the SDEA Plate factor observed at 3.6eV/V. The energy resolution of the system, or its ability to differentiate between selected energies and unselected energies which is ˜7% of the overall sampled species. Finally for consideration is the overall selection efficiency of the instrument across an energy spectra within the SDEA chamber, lower selection efficiency will result in less overall observable particles

  11. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  12. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  13. Finnigan ion trap mass spectrometer detection limits and thermal energy analyzer interface status report and present capabilities

    SciTech Connect

    Alcaraz, A.; Andresen, B.; Martin, W.

    1990-10-18

    A new Finnigan ion trap mass spectrometer was purchased and installed at LLNL. Over a period of several months the instrument was tested under a variety of conditions utilizing a capillary gas chromatography interface which allowed separated organic compounds to be carried directly into the ion source of the mass spectrometer. This direct interface allowed maximum analytical sensitivity. A variety of critical tests were performed in order to optimize the sensitivity of the system under a variety of analysis conditions. These tests altered the critical time cycles of the ionization, ion trapping, and detection. Various carrier gas pressures were also employed in order to ascertain the overall sensitivity of the instrument. In addition we have also interfaced a thermal energy analyzer (TEA) to the gas chromatograph in order to simultaneously detect volatile nitrogen containing compounds while mass spectral data is being acquired. This is the first application at this laboratory of simultaneous ultra-trace detections while utilizing two orthogonal analytical techniques. In particular, explosive-related compound and/or residues are of interest to the general community in water, soil and gas sampler. In this paper are highlighted a few examples of the analytical power of this new GC-TEA-ITMS technology.

  14. First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer

    NASA Astrophysics Data System (ADS)

    Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.

    2016-07-01

    The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.

  15. Investigating the performance of an ion luminescence probe as a multichannel fast-ion energy spectrometer using pulse height analysis

    SciTech Connect

    Zurro, B.; Baciero, A.; Jimenez-Rey, D.; Rodriguez-Barquero, L.; Crespo, M. T.

    2012-10-15

    We investigate the capability of a fast-ion luminescent probe to operate as a pulse height ion energy analyzer. An existing high sensitivity system has been reconfigured as a single channel ion detector with an amplifier to give a bandwidth comparable to the phosphor response time. A digital pulse processing method has been developed to determine pulse heights from the detector signal so as to obtain time-resolved information on the ion energy distribution of the plasma ions lost to the wall of the TJ-II stellarator. Finally, the potential of this approach for magnetic confined fusion plasmas is evaluated by studying representative TJ-II discharges.

  16. A Quadrupole Ion Trap Mass Spectrometer for Quantitative Analysis of Nitrogen-Purged Compartments within the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Griffin, Timothy P.; Helms, William R.; Yost, Richard A.; Steinrock, T. (Technical Monitor)

    2001-01-01

    To enter orbit, the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the Shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sensors around the Space Shuttle. As part of this project, numerous mass analyzer technologies are being investigated. Presented here are the preliminary results for one such technology, quadrupole ion trap mass spectrometry (QITMS). A compact QITMS system has been developed in-house at the University of Florida for monitoring trace levels of four primary gases, hydrogen, helium, oxygen, and argon, all in a nitrogen background. Since commercially available QITMS systems are incapable of mass analysis at m/z(exp 2), the home-built system is preferred for the evaluation of QITMS technology.

  17. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    SciTech Connect

    Hellesen, C.; Skiba, M. Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-15

    The fuel ion ratio n{sub t}/n{sub d} is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., n{sub t}/n{sub d} = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine n{sub t}/n{sub d} with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  18. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP.

  19. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.

    PubMed

    Tomlinson-Phillips, Jill; Wooten, Alfred; Kozole, Joseph; Deline, James; Beresford, Pamela; Stairs, Jason

    2014-09-01

    Identification of the fragment ion species associated with the ion reaction mechanism of triacetone triperoxide (TATP), a homemade peroxide-based explosive, is presented. Ion mobility spectrometry (IMS) has proven to be a key analytical technique in the detection of trace explosive material. Unfortunately, IMS alone does not provide chemical identification of the ions detected; therefore, it is unknown what ion species are actually formed and separated by the IMS. In IMS, ions are primarily characterized by their drift time, which is dependent on the ion׳s mass and molecular cross-section; thus, IMS as a standalone technique does not provide structural signatures, which is in sharp contrast to the chemical and molecular information that is generally obtained from other customary analytical techniques, such as NMR, Raman and IR spectroscopy and mass spectrometry. To help study the ion chemistry that gives rise to the peaks observed in IMS, the hardware of two different commercial IMS instruments has been directly coupled to triple quadrupole (QQQ) mass spectrometers, in order to ascertain each ion׳s corresponding mass/charge (m/z) ratios with different dopants at two temperatures. Isotope labeling was then used to help identify and confirm the molecular identity of the explosive fragment and adduct ions of TATP. The m/z values and isotope labeling experiments were used to help propose probable molecular formulas for the ion fragments. In this report, the fragment and adduct ions m/z 58 and 240 of TATP have been confirmed to be [C3H6NH·H](+) and [TATP·NH4](+), respectively; while the fragment ions m/z 73 and 89 of TATP are identified as having the molecular formulas [C4H9NH2](+) and [C4H9O2](+), respectively. It is anticipated that the work in this area will not only help to facilitate improvements in mobility-based detection (IMS and MS), but also aid in the development and optimization of MS-based detection algorithms for TATP. PMID:24913870

  20. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users. PMID:26091892

  1. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  2. Detection of Nitro-Based and Peroxide-Based Explosives by Fast Polarity-Switchable Ion Mobility Spectrometer with Ion Focusing in Vicinity of Faraday Detector

    PubMed Central

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-01-01

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H]− and [HMTD+H]+ could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP. PMID:26021282

  3. Signal generator exciting an electromagnetic field for ion beam transport to the vacuum chamber of a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Tubol'tsev, Yu. V.; Kogan, V. T.; Bogdanov, A. A.; Chichagov, Yu. V.; Antonov, A. S.

    2015-02-01

    A high-voltage high-frequency signal generator is described that excites an electric field for ion beam transport from an ion source to the vacuum chamber of a mass spectrometer. Excitation signals to the number of two are high-frequency sine-wave out-of-phase signals with the same amplitudes. The amplitude and phase of the signals vary from 20 to 100 V and from 10 kHz to 1 MHz, respectively. The generator also produces a controlled bias voltage in the interval 50-200 V. The frequency and amplitude of the signals, as well as the bias voltage, are computer-controlled via the USB interface.

  4. Identification of microcystin toxins from a strain of Microcystis aeruginosa by liquid chromatography introduction into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Diehnelt, Chris W; Dugan, Nicholas R; Peterman, Scott M; Budde, William L

    2006-01-15

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment ions produced by collision-activated dissociation of the [M + H]+ ions. The cyanobacteria B2666 strain was cultured in a standard growth medium, and the toxins were released from the cells, extracted from the aqueous phase, and concentrated using standard procedures. The microcystins were separated by reversed-phase microbore liquid chromatography and introduced directly into a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer with electrospray ionization. The known microcystins (MC) MC-LR, MC-LA, [MeSer7]MC-LR, MC-LL, MC-LF, and MC-L(Aba) were identified along with the two previously unreported structural variants [Asp3]MC-LA and [Asp3]MC-LL. In addition to the [M + H]+ ions, accurate m/z measurements were made of 12-18 product ions for each identified microcystin. The mean difference between measured and calculated exact m/z was less than 2 parts per million, which often allowed assignment of unique compositions to the observed ions. A mechanism is presented that accounts for an important collision-activated dissociation process that gives valuable sequence ions from microcystins that do not contain arginine. The analytical technique used in this work is capable of supporting fairly rapid and very reliable identifications of known microcystins when standards are not available and of most structural variants independent of additional information from other analytical techniques.

  5. A comparative study between different alternatives to prepare gaseous standards for calibrating UV-Ion Mobility Spectrometers.

    PubMed

    Criado-García, Laura; Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel

    2013-07-15

    An UV-Ion Mobility Spectrometer is a simple, rapid, inexpensive instrument widely used in environmental analysis among other fields. The advantageous features of its underlying technology can be of great help towards developing reliable, economical methods for determining gaseous compounds from gaseous, liquid and solid samples. Developing an effective method using UV-Ion Mobility Spectrometry (UV-IMS) to determine volatile analytes entails using appropriate gaseous standards for calibrating the spectrometer. In this work, two home-made sample introduction systems (SISs) and a commercial gas generator were used to obtain such gaseous standards. The first home-made SIS used was a static head-space to measure compounds present in liquid samples and the other home-made system was an exponential dilution set-up to measure compounds present in gaseous samples. Gaseous compounds generated by each method were determined on-line by UV-IMS. Target analytes chosen for this comparative study were ethanol, acetone, benzene, toluene, ethylbenzene and xylene isomers. The different alternatives were acceptable in terms of sensitivity, precision and selectivity.

  6. Miniature focal plane mass spectrometer with 1000-pixel modified-CCD detector array for direct ion measurement

    SciTech Connect

    Sinha, Mahadeva P.; Wadsworth, Mark

    2005-02-01

    A high performance, focal plane miniature mass spectrometer (MMS) of Mattauch-Herzog geometry with a CCD-based array detector for the direct and simultaneous measurements of different mass ions is described. Miniaturization (10 cmx5 cmx5 cm,395 g) was accomplished by using high-energy-product magnet material (Nd-B-Fe alloy) and a high permeability yoke material (V-Co-Fe Alloy) for the fabrication of the magnetic sector. The electrostatic sector was machined from a single piece of machinable ceramic (MACOR). All the components of the analyzer are mounted on a single plate, which facilitate their alignment and make the instrument rugged. The modified-CCD based ion detector array has 1000 elements (20 {mu}mx2 mm) and was invented in our laboratory. The photosensitive part of the CCD was replaced with a metal-oxide-semiconductor (MOS) capacitor for ion detection. The ion sensing capacitor plates are connected to the CCD gates that are operated in the fill-and spill mode providing a gain in the charge domain for the signal ions and minimizing various noises during measurements. The results reported in this article are the first application of this detector array for direct ion measurement and successfully prove the new technology. The MMS with the array detector can measure masses up to 250 u with a unit mass resolution and expected to possess a sensitivity of detecting {approx}5 ions. The above attributes make MMS suitable for space applications for isotopic and chemical analysis and also for field applications on earth.

  7. Effects of air ions on some aspects of learning and memory of rats and mice

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.

    1981-03-01

    When submitted to a single avoidance task male mice showed different behavioral responses if previously treated with opposite aeroionization polarities. Whereas negative air ions tend to improve learning, positive ions have disturbing effects. Male rats submitted to a single — trial inhibitory avoidance step-through task showed that retention processes may also be influenced by air ions. The positive air-ion-treated animals exhibit signs of impaired short and long term memory. The slightly impaired score of negative air-ion-treated animals seems only dependent upon the simultaneously increased locomotor activity. A separate experiment supported this hypothesis showing conspicuous differential effects of air ion polarity on spontaneous activity of male rats. On the basis of these findings and the results of other studies in biological air ion dependence field, the behavioral significance of aero-ionization in learning and memory processes is discussed in relation to serotonin metabolism and other neuroendocrine mechanisms.

  8. Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Funsten, H. O.; Barraclough, B. L.; Mccomas, D. J.; Nordholt, J. E.

    1992-01-01

    Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed.

  9. Flat-field grating spectrometer for high-resolution soft x-ray and EUV measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P; Magee, E; Trabert, E; Chen, H; Lepson, J K; Gu, M F; Schmidt, M

    2004-03-27

    A R = 44.3 m grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Angstrom up to 50 Angstrom. The instrument uses a grating with variable line spacing (about 2400 l/mm) for a flat field of view. Spectra are recorded with a back-illuminated charge-coupled device detector. The new instrument greatly improves upon the resolution achieved with existing grating spectrometers and complements crystal spectrometers at the shorter wavelengths both in terms of wavelength coverage and polarization independent reflectivity response.

  10. Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization

    SciTech Connect

    Bomme, C.; Guillemin, R.; Marin, T.; Journel, L.; Marchenko, T.; Pilette, B.; Avila, A.; Ringuenet, H.; Kushawaha, R. K.; Simon, M.; Dowek, D.; Trcera, N.

    2013-10-15

    We have developed a new momentum spectrometer dedicated to momentum vector correlations in the context of deep core photoionization of atomic and molecular species in the gas phase. In this article, we describe the design and operation of the experimental setup. The capabilities of the apparatus are illustrated with a set of measurements done on the sulphur core 1s photoionization of gas-phase CS{sub 2}.

  11. Maximizing Ion Transmission from Atmospheric Pressure into the Vacuum of Mass Spectrometers with a Novel Electrospray Interface

    NASA Astrophysics Data System (ADS)

    Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.

    2015-04-01

    We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term "ConDuct," uses a conductive plastic pipette tip containing an approximately 1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (less than 1°) and persists for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to the commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2 to 3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length.

  12. Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface.

    PubMed

    Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert; Chait, Brian T

    2015-04-01

    We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term "ConDuct," uses a conductive plastic pipette tip containing an approximately 1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (less than 1°) and persists for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to the commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2 to 3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length.

  13. Maximizing Ion Transmission from Atmospheric Pressure into the Vacuum of Mass Spectrometers with a Novel Electrospray Interface

    PubMed Central

    Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.

    2015-01-01

    We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term “ConDuct”, uses a conductive plastic pipette tip containing a ≈1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (< 1°) and persisted for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2–3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length. PMID:25588722

  14. Atmospheric light air ion concentrations and related meteorologic factors in Rezekne city, Latvia.

    PubMed

    Skromulis, Andris; Noviks, Gotfrids

    2012-04-01

    The well-minded impact of light negative air ions on human organism is still under discussion. The measurements of air ions are not widespread in Latvia yet. The paper presents new results of air pollution evaluation in Rezekne city. Measurements of positive and negative air ion concentrations in Rezekne city were taken during the spring, summer and autumn 2009 and during the winter 2010. Measurements were taken by portative air ions counter "Sapfir-3M" in eight different points of Rezekne city thrice a day. The concentrations of positive and negative air ions with mobility factor k > or = 0.4 cm2 V(-1) s(-1) were measured. Temperature, relative humidity, wind velocity, direction, etc., were also taken into account. The approximate interconnection between ionization and chemical and mechanical air pollution in relation with meteorological conditions was analyzed. The highest level of air ion concentration was observed in mornings, whereas in afternoons this concentration level decreased due to the growth of anthropogenic air pollution in the city, as light air ions, because of their charge, promoted the coagulation and the settlement of pollution particles. This regularity is typical for summer, whereas in spring, autumn and winter it is not characteristic. The unipolarity factor was usually less than 1 in mornings, but usually larger than 1 in afternoons especially in the most polluted city areas where minor concentration of air ions was detected. The ionization level is an original indicator of energetic saturation and aerosol pollution of atmospheric air.

  15. Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Kruppa, Gary; Kobliha, Václav; Novák, Petr; Lemr, Karel; Kotiaho, Tapio; Kostiainen, Risto; Havlícek, Vladimír; Volný, Michael

    2009-10-15

    A fully automated atmospheric pressure ionization platform has been built and coupled with a commercial high-resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) instrument. The outstanding performance of this instrument allowed screening on the basis of exact masses in imaging mode. The main novel aspect was in the integration of the atmospheric pressure ionization imaging into the current software for matrix-assisted laser desorption ionization (MALDI) imaging, which allows the user of this commercial dual-source mass spectrometer to perform MALDI-MS and different ambient MS imaging from the same user interface and to utilize the same software tools. Desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) were chosen to test the ambient surface imaging capabilities of this new ionization platform. Results of DESI imaging experiments performed on brain tissue sections are in agreement with previous MS imaging reports obtained by DESI imaging, but due to the high resolution and mass accuracy of the FTICR instrument it was possible to resolve several ions at the same nominal mass in the DESI-MS spectra of brain tissue. These isobaric interferences at low resolution are due to the overlap of ions from different lipid classes with different biological relevance. It was demonstrated that with the use of high-resolution MS fast imaging screening of lipids can be achieved without any preseparation steps. DAPPI, which is a relatively new and less developed ambient ionization technique compared to DESI, was used in imaging mode for the first time ever. It showed promise in imaging of phytocompounds from plant leaves, and selective ionization of a sterol lipid was achieved by DAPPI from a brain tissue sample.

  16. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  17. Unambiguous characterization of analytical markers in complex, seized opiate samples using an enhanced ion mobility trace detector-mass spectrometer.

    PubMed

    Liuni, Peter; Romanov, Vladimir; Binette, Marie-Josée; Zaknoun, Hafid; Tam, Maggie; Pilon, Pierre; Hendrikse, Jan; Wilson, Derek J

    2014-11-01

    Ion mobility spectroscopy (IMS)-based trace-compound detectors (TCDs) are powerful and widely implemented tools for the detection of illicit substances. They combine high sensitivity, reproducibility, rapid analysis time, and resistance to dirt with an acceptable false alarm rate. The analytical specificity of TCD-IMS instruments for a given analyte depends strongly on a detailed knowledge of the ion chemistry involved, as well as the ability to translate this knowledge into field-robust analytical methods. In this work, we introduce an enhanced hybrid TCD-IMS/mass spectrometer (TCD-IMS/MS) that combines the strengths of ion-mobility-based target compound detection with unambiguous identification by tandem MS. Building on earlier efforts along these lines (Kozole et al., Anal. Chem. 2011, 83, 8596-8603), the current instrument is capable of positive and negative-mode analyses with tightly controlled gating between the IMS and MS modules and direct measurement of ion mobility profiles. We demonstrate the unique capabilities of this instrument using four samples of opium seized by the Canada Border Services Agency (CBSA), consisting of a mixture of opioid alkaloids and other naturally occurring compounds typically found in these samples. Although many analytical methods have been developed for analyzing naturally occurring opiates, this is the first detailed ion mobility study on seized opium samples. This work demonstrates all available analytical modes for the new IMS-MS system including "single-gate", "dual-gate", MS/MS, and precursor ion scan methods. Using a combination of these modes, we unambiguously identify all signals in the IMS spectra, including previously uncharacterized minor peaks arising from compounds that are common in raw opium. PMID:25302672

  18. Geostationary Coastal and Air Pollution Events (GeoCAPE) Wide Angle Spectrometer (WAS)

    NASA Technical Reports Server (NTRS)

    Kotecki, Carl; Chu, Martha; Mannino, Antonio; Marx, Catherine Trout; Bowers, Gregory A.; Bolognese, Jeffrey A.; Matson, Elizabeth A.; McBirney, Thomas R.; Earle, Cleland P.; Choi, Michael K.; Stoneking, Eric; Luu, Kequan; Monosmith, William B.; Secunda, Mark S.; Brall, Aron; Samuels, Cabin

    2014-01-01

    The GeoCAPE Wide Angle Spectrometer (WAS) Study was a revisit of the COEDI Study from 2012. The customer primary goals were to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Riding on a commercial GEO satellite minimizes total mission costs. For this study, it is desired to increase the coverage rate,km2min, while maintaining ground sample size, 375m, and spectral resolution, 0.4-0.5nm native resolution. To be able to do this, the IFOV was significantly increased, hence the wide angle moniker. The field of view for COEDI was +0.6 degrees or (2048) 375m ground pixels. The WAS Threshold (the IDL study baseline design) is +2.4 degrees IDL study baseline design) is +2.4 degrees.

  19. Continuum flow sampling mass spectrometer for elemental analysis with an inductively coupled plasma ion source

    SciTech Connect

    Olivares, J.A.

    1985-01-01

    The sampling of ions from an atmospheric pressure inductively coupled plasma for mass spectrometry (ICP-MS) with a supersonic nozzle and skimmer is shown to follow similar behavior found for neutral beam studies and of ion extraction from other plasmas and flames. The dependence of count rates for metal oxide and doubly charged ions on ICP operating parameters, and sampling interface configuration are discussed for this instrument. A simple method is described for the approximate measurement of the ion energy distribution in ICP-MS. The average ion kinetic energy, kinetic energy spread, and maximum kinetic energy are evaluated from a plot of ion signal as a function of retarding voltage applied to the quadrupole mass analyzer. The effects of plasma operating parameters on ion signals and energies are described. The interference on the ionization of cobalt by five salts, NaCl, MgCl/sub 2/, NH/sub 4/I, NH/sub 4/Br and NH/sub 4/Cl, in an ICP is first considered theoretically and subsequently the theoretical trends are established experimentally by ICP-MS. The interference trends are found to be in the order of the most easily ionized element in the matrix salt, i.e., Na > Mg > I > Br > Cl.

  20. A Volatile Organic Analyzer for Space Station - Description and evaluation of a gas chromatography/ion mobility spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Brokenshire, John; Cumming, Colin; Overton, ED; Carney, Ken; Cross, Jay; Eiceman, Gary; James, John

    1992-01-01

    An on-board Volatile Organic Analyzer (VOA), an essential component of the Environmental Health System (EHS) air-quality monitoring strategy, is described. The strategy is aimed at warning the crew and ground personnel if volatile compounds exceed safe exposure limits. The VOA uses a combination of gas chromatography (GC) and ion-mobility spectrometry (IMS) for environmental monitoring and analysis. It is concluded that the VOA dual-mode detection capability and the ion mobilities in the drift region are unique features that can assist in the resolution of coeluting GC peaks. The VOA is capable of accurately identifying and quantifying target compounds in a complex mixture.

  1. An electrostatic ion guide for efficient transmission of low energy externally formed ions into a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Limbach, Patrick A.; Marshall, Alan G.; Wang, Mingda

    1993-06-01

    A new method for transmitting externally formed ions into an ICR ion trap is demonstrated. In an electrostatic ion guide, a potential difference is applied between a conductive cylinder and a rigid wire suspended along the central axis of the cylinder. The cylinder is then positioned between an ion source located outside the bore of superconducting solenoidal magnet and an ion trap located at or near the center of the solenoid. simion simulations predict that low-energy ions entering the ion guide will spiral around the central wire and pass through the fringe of the magnet to reach the ICR ion trap. The theoretical predictions are borne out by experiments in which Na+ and K+ ions from a thermionic emitter are transmitted with high efficiency through the fringe field of the magnet to the ICR ion trap. Mass resolving power of 285 000 for K+ is shown. The electrostatic ion guide offers the advantages that: (a) a wide range of low-energy external sources (e.g., fast-atom on fast-ion bombardment, electrospray, glow discharge, etc.) may be used; (b) prior acceleration of the ions along the magnetic field direction (and subsequent deceleration to slow the ions on entry into the ICR ion trap) is not required; (c) ions are focused along magnetic field lines once the ions have passed through the magnetic fringe field; and (d) ions formed initially off axis are efficiently captured and transmitted by the ion guide without additional focusing.

  2. Ions with low charges in the solar wind as measured by SWICS on board Ulysses. [Solar Wind Ion Composition Spectrometer

    NASA Technical Reports Server (NTRS)

    Geiss, J.; Ogilvie, K. W.; Von Steiger, R.; Mall, U.; Gloeckler, G.; Galvin, A. B.; Ipavich, F.; Wilken, B.; Gliem, F.

    1992-01-01

    We present new data on rare ions in the solar wind. Using the Ulysses-SWICS instrument with its very low background we have searched for low-charge ions during a 6-d period of low-speed solar wind and established sensitive upper limits for many species. In the solar wind, we found He(1+)/He(2+) of less than 5 x 10 exp -4. This result and the charge state distributions of heavier elements indicate that all components of the investigated ion population went through a regular coronal expansion and experienced the typical electron temperatures of 1 to 2 million Kelvin. We argue that the virtual absence of low-charge ions demonstrates a very low level of nonsolar contamination in the source region of the solar wind sample we studied. Since this sample showed the FlP effect typical for low-speed solar wind, i.e., an enhancement in the abundances of elements with low first ionization potential, we conclude that this enhancement was caused by an ion-atom separation mechanism operating near the solar surface and not by foreign material in the corona.

  3. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    SciTech Connect

    Puri, Prateek Schowalter, Steven J.; Hudson, Eric R.; Kotochigova, Svetlana; Petrov, Alexander

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36 000–46 000 cm{sup −1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}Σ{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}Π state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  4. Activated Ion ETD Performed in a Modified Collision Cell on a Hybrid QLT-Oribtrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Ledvina, Aaron R.; Rose, Christopher M.; McAlister, Graeme C.; Syka, John E. P.; Westphall, Michael S.; Griep-Raming, Jens; Schwartz, Jae C.; Coon, Joshua J.

    2013-11-01

    We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge ( m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety's high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.

  5. Observations of plasma dynamics in the coma of P/Halley by the Giotto ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Fuselier, S. A.; Shelley, E. G.; Balsiger, H.; Kettmann, G.; Ip, W.-H.; Rosenbauer, H.; Schwenn, R.

    1992-01-01

    The paper reports observations of plasma dynamics in the coma of P/Halley by the Giotto ion mass spectrometer. Measurements of protons and alpha particles from the far upstream region to the near ionopause region and of ions of mass 12-32 at distances of about 250,000 to 40,000 km from the nucleus are presented. The discontinuity known as the magnetic pileup boundary (MPB) is apparent only in proton, alpha particle, and magnetometer data, indicating that it is a tangential discontinuity of solar wind origin. No significant change is found in the properties of the heavy ions across the MPB. The issue of whether a cometopause was unambiguously observed at Comet Halley is discussed; it is concluded that the observations do not convincingly support the idea of a boundary due to internal cometary processes. A comparison of the observations to MHD models is made. The plasma flow directions at all distances greater than 30,000 km from the nucleus are in agreement with MHD calculations.

  6. Development of an automated cylindrical ion trap mass spectrometer for the determination of atmospheric volatile organic compounds.

    PubMed

    Edwards, Gavin D; Shepson, P B; Grossenbacher, J W; Wells, J M; Patterson, G E; Barket, D J; Pressley, S; Karl, T; Apel, E

    2007-07-01

    Volatile organic compounds released from the biosphere are known to have a large impact on atmospheric chemistry. Field instruments for the detection of these trace gases are often limited by the lack of instrument portability and the inability to distinguish compounds of interest from background or other interfering compounds. We have developed an automated sampling and preconcentration system, coupled to a lightweight, low-power cylindrical ion trap mass spectrometer. The instrument was evaluated by measuring isoprene concentrations during a field campaign at the University of Michigan Biological Station PROPHET lab. Isoprene was preconcentrated by sampling directly into a short capillary column precooled without the aid of cryogens. The capillary column was then rapidly heated by moving the column to a preheated region to obtain fast separation of isoprene from other components, followed by detection with a cylindrical ion trap. This combination yielded a detection limit of approximately 80 ppt (parts per trillion) for isoprene with a measurement frequency of one sample every 11 min. The data obtained by the automated sampling and preconcentration system during the PROPHET 2005 campaign were compared to those of other field instruments measuring isoprene at this site in an intercomparison exercise. The intercomparisons suggest the new inlet system, when coupled with this ion trap detector, provides a viable field instrument for the fast, precise, and quantitative determination of isoprene and other trace gases over a variety of atmospheric conditions.

  7. Development of AN External Cavity Quantum Cascade Laser Spectrometer for High-Resolution Spectroscopy of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Gibson, Bradley M.; McCall, Benjamin J.

    2013-06-01

    Quantum cascade lasers (QCLs) have proven to be valuable tools for performing high-resolution infrared spectroscopy because of their high output powers and availability throughout the mid-infrared region of the electromagnetic spectrum. Despite their usefulness, typical QCLs can only be frequency tuned within a narrow window, requiring a specific laser to be used for measuring a specific molecular target. Recent advances in QCL technology have improved the tuning range of QCLs by creating lasers with broader gain profiles which can be used in an external cavity setup to produce widely-tunable, single-mode infrared radiation. In collaboration with the Wysocki research group at Princeton, we are developing a high-resolution infrared spectrometer based on an external cavity QCL (EC-QCL) system, which will allow us to perform spectroscopy from ˜1120 - 1250 cm^{-1}. We will present details of the development of the instrument, as well as preliminary spectroscopic results using the EC-QCL system. We will also outline future work we plan to perform with this spectrometer, particularly high-resolution spectroscopy of molecular ions.

  8. Advanced Remote-sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred G.; Broberg, Steve E.

    2006-01-01

    This paper describes a space based instrument concept that will provide scientists with data needed to support key ongoing and future Earth System Science investigations. The measurement approach builds on the observations made by AIRS and MODIS and exceeds their capability with improved spatial and spectral resolution. This paper describes the expected products and the instrument concept that can meet those requirements.

  9. Relative Concentration of He+ in the Inner Magnetosphere as Observed by the DE 1 Retarding Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Gallagher, D. L.; Comfort, R. H.

    1997-01-01

    With Observations from the retarding ion mass spectrometer on the Dynamics Explorer I from 1981 through 1984, we examine the He(+) to H(+) density ratios as a function of altitude, latitude, season, local time, geomagnetic and solar activity. We find that the ratios are primarily a function of geocentric distance and the solar EUV input. The ratio of the densities, when plotted as a function of geocentric distance, decrease by an order of magnitude from 1 to 4.5 R(sub E). After the He(+) to H(+) density ratios are adjusted for the dependence on radial distance, they decrease nonlinearly by a factor of 5 as the solar EUV proxy varies from about 250 to about 70. When the mean variations with both these parameters are removed, the ratios appear to have no dependence on geomagnetic activity and weak dependence on local time or season, geomagnetic latitude, and L shell.

  10. Analysis of environmental contaminates in hair using an ion trap mass spectrometer with a filtered noise field waveboard

    SciTech Connect

    Alcaraz, A.; Hulsey, S.S.; Frantz, C.E.; Andresen, B.D.

    1994-12-31

    A variety of methods have been established using mass spectrometry (MS) for the analysis of chemicals in hair. Much of this past work has been focused on the detection of drugs of abuse. Human hair has been analyzed either directly by probe distillation (DIP) with some preliminary clean-up using HPLC or solid phase extraction (SPE). However, established drug analysis methods do not apply for the detection of some environmental contaminates. In this study, the authors selected 2,4,6-trinitrotoluene (TNT) and malathion as the target compounds. In addition two types of hair samples were analyzed: (1) human hair fortified with either TNT or malathion and (2) hair from mice who ingested the same analytes. The analytical method was DIP-EI-MS/MS with an ion trap mass spectrometer equipped with a filtered noise field wave board.

  11. Hand-portable gas chromatography-ion mobility spectrometer for the determination of the freshness of fish

    NASA Technical Reports Server (NTRS)

    Snyder, A. Peter; Harden, Charles S.; Davis, Dennis M.; Shoff, Donald B.; Maswadeh, Waleed M.

    1995-01-01

    A hand-held, portable gas chromatography-ion mobility spectrometer (GC-IMS) device was used to detect the presence of volatile amine compounds in the headspace of decomposing fish. The Food and Drug Administration (FDA) largely relies on olfactory discrimination with respect to fresh and spoiled, frozen and unfrozen fish. The fish are delivered at ship docks on pallets, and each pallet of fish can range from 30-40 thousand dollars in value. Fresh fish were placed in a teflon bag and the direct headspace was interrogated. In the first three days, only low molecular weight volatile amines were detected. On the fourth day, a number of spectral signatures were observed which indicated the presence of 1,5-diaminopentane, cadaverine. Analyses typically took from 0.5-1 minute.

  12. Mass spectrometric characterization of a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Purves, Randy W.; Guevremont, Roger; Day, Stephen; Pipich, Charles W.; Matyjaszczyk, Matthew S.

    1998-12-01

    Ion mobility spectrometry (IMS) has become an important method for the detection of many compounds because of its high sensitivity and amenability to miniaturization for field-portable monitoring; applications include detection of narcotics, explosives, and chemical warfare agents. High-field asymmetric waveform ion mobility spectrometry (FAIMS) differs from IMS in that the electric fields are applied using a high-frequency periodic asymmetric waveform, rather than a dc voltage. Furthermore, in FAIMS the compounds are separated by the difference in the mobility of ions at high electric field relative to low field, rather than by compound to compound differences in mobility at low electric field (IMS). We report here the first cylindrical-geometry-FAIMS interface with mass spectrometry (FAIMS-MS) and the MS identification of the peaks observed in a FAIMS compensation voltage (CV) spectrum. Using both an electrometer-based-FAIMS (FAIMS-E) and FAIMS-MS, several variables that affect the sensitivity of ion detection were examined for two (polarity reversed) asymmetric waveforms (modes 1 and 2) each of which yields a unique spectrum. An increase in the dispersion voltage (DV) was found to improve the sensitivity and separation observed in the FAIMS CV spectrum. This increase in sensitivity and the unexpected dissimilarity in modes 1 and 2 suggest that atmospheric pressure ion focusing is occurring in the FAIMS analyzer. The sensitivity and peak locations in the CV spectra were affected by temperature, gas flow rates, operating pressure, and analyte concentration.

  13. Large-scale collision cross-section profiling on a travelling wave ion mobility mass spectrometer

    PubMed Central

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-01-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a travelling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions. PMID:24845359

  14. Large-Scale Collision Cross-Section Profiling on a Traveling Wave Ion Mobility Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-12-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a traveling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography ( LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions.

  15. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    SciTech Connect

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  16. Complementary ion and extreme ultra-violet spectrometer for laser-plasma diagnosis

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Sarri, G.; Zepf, M.; Borghesi, M.; Ehrentraut, L.; Stiel, H.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Priebe, G.

    2009-10-15

    Simultaneous detection of extreme ultra-violet (XUV) and ion emission along the same line of sight provides comprehensive insight into the evolution of plasmas. This type of combined spectroscopy is applied to diagnose laser interaction with a spray target. The use of a micro-channel-plate detector assures reliable detection of both XUV and ion signals in a single laser shot. The qualitative analysis of the ion emission and XUV spectra allows to gain detailed information about the plasma conditions, and a correlation between the energetic proton emission and the XUV plasma emission can be suggested. The measured XUV emission spectrum from water spray shows efficient deceleration of laser accelerated electrons with energies up to keV in the initially cold background plasma and the collisional heating of the plasma.

  17. Trial of a negative ion generator device in remediating problems related to indoor air quality

    SciTech Connect

    Daniell, W.; Camp, J.; Horstman, S. )

    1991-06-01

    It has been suggested that supplementation of indoor air with negative ions can improve air quality. This study examined the effects of a negative ion-generator device on air contaminants and symptom reporting in two office buildings. Separate sets of functional and nonfunctional negative ion generators were monitored using a double blind, crossover design involving two 5-week exposure periods. There were no detectable direct or residual effects of negative ion generator use on air ion levels, airborn particulates, carbon dioxide levels, or symptom reporting. Symptom reporting declined at both sites initially and appeared to be consistent with placebo effect. Job dissatisfaction was an apparent contributor to symptom reporting, with a magnitude comparable to presumed effects of air quality. Further testing of such devices is needed before they should be considered for office air quality problems.

  18. First continuous measurements of δ18O-CO2 in air with a Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Hammer, S.; Sabasch, M.; Griffith, D. W. T.; Levin, I.

    2015-02-01

    The continuous in situ measurement of δ18O in atmospheric CO2 opens a new door to differentiating between CO2 source and sink components with high temporal resolution. Continuous 13C-CO2 measurement systems have already been commercially available for some time, but until now, only few instruments have been able to provide a continuous measurement of the oxygen isotope ratio in CO2. Besides precise 13C/12C observations, the Fourier transform infrared (FTIR) spectrometer is also able to measure the 18O / 16O ratio in CO2, but the precision and accuracy of the measurements have not yet been evaluated. Here we present a first analysis of δ18O-CO2 (and δ13C-CO2) measurements with the FTIR analyser in Heidelberg. We used Allan deviation to determine the repeatability of δ18O-CO2 measurements and found that it decreases from 0.25‰ for 10 min averages to about 0.1‰ after 2 h and remains at that value up to 24 h. We evaluated the measurement precision over a 10-month period (intermediate measurement precision) using daily working gas measurements and found that our spectrometer measured δ18O-CO2 to better than 0.3‰ at a temporal resolution of less than 10 min. The compatibility of our FTIR-spectrometric measurements to isotope-ratio mass-spectrometric (IRMS) measurements was determined by comparing FTIR measurements of cylinder gases and ambient air with IRMS measurements of flask samples, filled with gases of the same cylinders or collected from the same ambient air intake. Two-sample t tests revealed that, at the 0.01 significance level, the FTIR and the IRMS measurements do not differ significantly from each other and are thus compatible. We describe two weekly episodes of ambient air measurements, one in winter and one in summer, and discuss what potential insights and new challenges combined highly resolved CO2, δ13C-CO2 and δ18O-CO2 records may provide in terms of better understanding regional scale continental carbon exchange processes.

  19. Automated gas-phase purification for accurate, multiplexed quantification on a stand-alone ion trap mass spectrometer

    PubMed Central

    Vincent, Catherine E.; Rensvold, Jarred W.; Westphall, Michael S.; Pagliarini, David J.; Coon, Joshua J.

    2012-01-01

    Isobaric tagging enables the acquisition of highly-multiplexed proteome quantification but is hindered by the pervasive problem of precursor interference. The elimination of co-isolated contaminants prior to reporter tag generation can be achieved through the use of gas-phase purification via proton transfer ion/ion reactions (QuantMode); however, the original QuantMode technique was implemented on the high resolution linear ion trap-Orbitrap hybrid mass spectrometer enabled with electron transfer dissociation (ETD). Here we extend this technology to stand-alone linear ion trap systems (trapQuantMode). Facilitated by the use of inlet beam-type activation (i.e., trapHCD) for production and observation of the low mass-to-charge reporter region, this scan sequence comprises three separate events to maximize peptide identifications, minimize duty cycle requirements, and increase quantitative accuracy, precision, and dynamic range. Significant improvements in quantitative accuracy were attained over standard methods when using trapQuantMode (trapQM) to analyze an interference model system comprising tryptic peptides of yeast that we contaminated with human peptides. Finally, we demonstrate practical benefits of this method by analysis of the proteomic changes that occur during mouse skeletal muscle myoblast differentiation. While trapQM’s reduced duty cycle led to the identification of fewer proteins than conventional operation (4,050 vs. 2,964), trapQM identified more significant differences (>1.5 fold, 1,362 vs 1,132, respectively; P<0.05) between the proteomes of undifferentiated myoblasts and differentiated myotubes and nearly ten-fold more differences with changes greater than 5-fold (96 vs. 12). We further show that our trapQM dataset is superior for identifying changes in protein abundance that are consistent with the metabolic and structural changes known to accompany myotube formation. PMID:23046161

  20. Characterization of positive air ions in boreal forest air at the Hyytiälä SMEAR station

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2007-07-01

    The behavior of the concentration of positive small (or cluster) air ions and naturally charged nanometer aerosol particles (aerosol ions) has been studied on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. Statistical characteristics of the concentrations of cluster ions, two classes of aerosol ions of the sizes of 2.5-8 nm and 8-ca. 20 nm and the quantities that determine the balance of small ions in the atmosphere have been given for the nucleation event days and non-event days. The dependence of small ion concentration on the ion loss (sink) due to aerosol particles was investigated applying a model of bipolar diffusion charging of particles by small ions. The small ion concentration and the ion sink were closely correlated (correlation coefficient -87%) when the fog events and the hours of high relative humidity (above 95%), as well as nocturnal calms and weak wind (wind speed <0.6 m s-1) had been excluded. However, an extra ion loss term presumably due to small ion deposition on coniferous forest with a magnitude equal to the average ion loss to pre-existing particles is needed to explain the observations. Also the hygroscopic growth correction of measured aerosol particle size distributions was found to be necessary for proper estimation of the ion sink. In the case of nucleation burst events, variations in the concentration of small positive ions were in accordance with the changes caused by the ion sink due to aerosols; no clear indication of positive ion depletion by ion-induced nucleation was found. The estimated average ionization rate of the air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 6 ion pairs cm-3 s-1. The study of the charging state of nanometer aerosol particles (2.5-8 nm) revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles and positively

  1. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  2. Spatial location of the space charge effect in individual ion clouds using monodisperse dried microparticulate injection with a twin quadrupole inductively coupled plasma mass spectrometer.

    PubMed

    Allen, L A; Leach, J J; Houk, R S

    1997-07-01

    Pulses of analyte and matrix ions from individual drops are measured simultaneously using a twin quadrupole inductively coupled plasma mass spectrometer (ICP-MS). The sample solution is introduced by monodisperse dried microparticulate injection (MDMI). At modest Pb concentrations (500 ppm), a shoulder on the leading edge of the Li(+) signal appears. At higher matrix concentrations (1000 to at least 1500 ppm), a dip in the leading edge of the Li(+) signal develops. These changes in the shapes of the Li(+) pulses are attributed to space charge effects in the extraction system and ion optics of the mass spectrometer. A qualitative depiction for this behavior is proposed, in which the Li(+) ions are deflected out of the preferred ion path and then refocused by the ion optics. Part of the Li(+) ion cloud is driven ahead of the Pb(+) cloud, and part is trapped behind the Pb(+) cloud. The result is a shoulder on the leading edge of the Li(+) signal. With the Pb matrix present, the shapes of the analyte ion pulses are sensitive to the voltages applied to the first two ion lenses, especially the extractor lens. This observation shows that the part of the matrix effect that occurs in the ion optics takes place mainly in the first two lenses.

  3. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  4. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  5. Sensitive detection of black powder by stand-alone ion mobility spectrometer with chlorinated hydrocarbon modifiers in drift gas.

    PubMed

    Liang, Xixi; Wang, Xin; Wang, Weiguo; Zhou, Qinghua; Chen, Chuang; Peng, Liying; Wen, Meng; Qu, Tuanshuai; Wang, Zhenxin; Zhao, Kun; Li, Jinghua; Li, Haiyang

    2014-04-01

    This paper introduces a simple method for selective and sensitive detection of black powder by adding chlorinated hydrocarbons in the drift gas instead of changing the structure of conventional ion mobility spectrometer (IMS). The function of chloride modifiers was to substitute Cl(-)(H₂O)n for [O₂⁻ (H₂O)(n)] in the drift region so as to avoid the overlap between O₂⁻ (H₂O)(n) and sulfur ion peaks. Among CH₂Cl₂, CHCl₃ and CCl₄, CCl₄ was chosen as the modifier due to the best peak-to-peak resolution and stability towards the fluctuation of modifier concentration. With 1.4 ppm CCl₄ as the modifier, the minimum detectable quantity of 0.1 ng for sulfur was achieved. Moreover, this method showed the ability for detection of common explosives at sub-nanogram level, such as black powder (BP), ammonium nitrate fuel oil (ANFO), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN). In summary, this method requiring no configuration modification has high sensitivity and selectivity, and consumes trace amount of modifier. And these characteristics make it easy to be adopted in current deployed IMS to detect black powder explosives.

  6. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  7. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  8. Adjusting mobility scales of ion mobility spectrometers using 2,6-DtBP as a reference compound.

    PubMed

    Viitanen, A-K; Mauriala, T; Mattila, T; Adamov, A; Pedersen, C S; Mäkelä, J M; Marjamäki, M; Sysoev, A; Keskinen, J; Kotiaho, T

    2008-09-15

    Performance of several time-of-flight (TOF) type ion mobility spectrometers (IMS) was compared in a joint measurement campaign and their mobility scales were adjusted based on the measurements. A standard reference compound 2,6-di-tert butylpyridine (2,6-DtBP) was used to create a single peak ion mobility distribution with a known mobility value. The effective length of the drift tube of each device, considered here as an instrument constant, was determined based on the measurements. Sequentially, two multi-peaked test compounds, DMMP and DIMP, were used to verify the performance of the adjustment procedure in a wider mobility scale. By determining the effective drift tube lengths using 2,6-DtBP, agreement between the devices was achieved. The determination of effective drift tube lengths according to standard reference compound was found to be a good method for instrument inter-comparison. The comparison procedure, its benefits and shortcomings as well as dependency on accuracy of literature value are discussed along with the results.

  9. On-line desalting of crude oil in the source region of a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chanthamontri, C Ken; Stopford, Andrew P; Snowdon, Ryan W; Oldenburg, Thomas B P; Larter, Stephen R

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pK(a); 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H₂O/toluene solution-phase extraction of oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  10. Research report on the physiological effects of air ions and their significance as environmental factors

    NASA Technical Reports Server (NTRS)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  11. Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Cloutier, Paul A.

    1996-01-01

    Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.

  12. A miniaturised electron ionisation time-of-flight mass spectrometer that uses a unique helium ion removal pulsing technique specifically for gas analysis.

    PubMed

    Qing, Jiang; Huang, Zhengxu; Zhang, Yan; Zhu, Hui; Tan, Guobin; Gao, Wei; Yang, Peng-yuan

    2013-06-21

    A miniaturised reflectron time-of-flight mass spectrometer combined with an electron ionisation ion source has been developed for the analysis of gases. An entirely new helium ion removal pulsing technique in this mass spectrometer is used to achieve an improved performance for the first time. The helium carrier gas, which enters into the source along with the gaseous sample, is simultaneously ionised and then orthogonally introduced into the time-of-fight mass analyser. Once the relatively light helium ions in the ion packet become extremely close to the reflectron plate (B-plate for short in this article), a modulated pulse is instantaneously applied on the B-plate and a negative reflectron voltage is set to the B-plate and lasts for a very short period, during which all the helium ions are directly bumped into the B-plate and subsequently removed. The helium ion removal pulsing technique can efficiently avoid saturation of the micro-channel plate caused by too many helium ions. A compact and durable instrument is designed, which has a mass resolving resolution greater than 400 FWHM for online gas analysis. The technology may also be further developed to remove other ions for TOF mass spectrometry.

  13. Evaluating Multiplexed Quantitative Phosphopeptide Analysis on a Hybrid Quadrupole Mass Filter/Linear Ion Trap/Orbitrap Mass Spectrometer

    PubMed Central

    2015-01-01

    As a driver for many biological processes, phosphorylation remains an area of intense research interest. Advances in multiplexed quantitation utilizing isobaric tags (e.g., TMT and iTRAQ) have the potential to create a new paradigm in quantitative proteomics. New instrumentation and software are propelling these multiplexed workflows forward, which results in more accurate, sensitive, and reproducible quantitation across tens of thousands of phosphopeptides. This study assesses the performance of multiplexed quantitative phosphoproteomics on the Orbitrap Fusion mass spectrometer. Utilizing a two-phosphoproteome model of precursor ion interference, we assessed the accuracy of phosphopeptide quantitation across a variety of experimental approaches. These methods included the use of synchronous precursor selection (SPS) to enhance TMT reporter ion intensity and accuracy. We found that (i) ratio distortion remained a problem for phosphopeptide analysis in multiplexed quantitative workflows, (ii) ratio distortion can be overcome by the use of an SPS-MS3 scan, (iii) interfering ions generally possessed a different charge state than the target precursor, and (iv) selecting only the phosphate neutral loss peak (single notch) for the MS3 scan still provided accurate ratio measurements. Remarkably, these data suggest that the underlying cause of interference may not be due to coeluting and cofragmented peptides but instead from consistent, low level background fragmentation. Finally, as a proof-of-concept 10-plex experiment, we compared phosphopeptide levels from five murine brains to five livers. In total, the SPS-MS3 method quantified 38 247 phosphopeptides, corresponding to 11 000 phosphorylation sites. With 10 measurements recorded for each phosphopeptide, this equates to more than 628 000 binary comparisons collected in less than 48 h. PMID:25521595

  14. Laboratory Astrophysics using a Microcalorimeter and Bragg Crystal Spectrometer on an Electron Beam Ion Trap

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Silver, Eric

    2004-01-01

    During the past year we have been preparing our new microcalorimeter system for permanent delivery to the NIST EBIT. Unfortunately, there have been delays due to technical difficulties in the fabrication of the two-stage adiabatic demagnetization refrigerator and in the life expectancy of the thin windows used for internal thermal baffling of the infrared radiation. These problems have been solved and we are completing tests of the entire system and it will be set up at NIST during the first week of May. Several photos of the new system are shown in Figures 1A and 1B. This microcalorimeter spectrometer only requires helium refills every three days (as opposed to every 24 hours) and it will hold a temperature! of 65 mK for up to 48 hours (as opposed to 8 hours). Consequently, the efficiency of data acquisition will improve dramatically. In parallel we have published a paper that reviews our previous work (Takacs et al. 2003), especially on Fe XVII, in the context of recent measurements by other groups. This paper is included. We highlight a recent measurement of a broad band spectrum of Fe in Figure 2 that simultaneously includes L and K radiation. It is compared with the simulated spectrum of the Perseus Cluster that one could expect to obtain with a microcalorimeter in the focus of a grazing incidence telescope such as the one being designed for Constellation X. Both the charge state distributions and the relative intensity ratios of the emission lines within the particular charge state are very similar in the two spectra. This further demonstrates the importance and relevance of the laboratory measurements in predicting the components of cosmic spectra.

  15. Laboratory Astrophysics using a Microcalorimeter and Bragg Crystal Spectrometer on an Electron Beam Ion Trap

    NASA Technical Reports Server (NTRS)

    Silver, Eric

    2004-01-01

    When we last reported, our new microcalorimeter system was being prepared for delivery and permanent installation at the NIST EBIT. This occurred in June 2003 and check-out with the internal calibration source and EBIT plasma x-rays took place over the next several months during which time we modified several component parts to improve the performance. These changes included: 1) A redesign of the x-ray calibration source from a direct electron impact source to one that irradiates the microcalorimeter with fluorescent x-rays. The resulting calibration lines are free of bremsstrahlung background; 2) The microcalorimeter electronic circuit has been significantly improved to ensure long-term stability for the lengthy upcoming runs of the EBIT. Both the preamplifier feedback resistors were changed and the first stage of the preamplifier redesigned. Several photos of the new system are shown in slides 3 and 4. This microcalorimeter spectrometer only requires helium refills every three days (as opposed to every 24 hours in our earlier system) and it will hold a temperature of 65 mK for up to 48 hours (as opposed to 8 hours). Consequently, the efficiency of data acquisition will improve dramatically. The first x-ray spectra of the new calibration source made with the 4-element detector array is shown. An example of the temperature control capabilities of the ADR for a 23 hour interval is shown. The horizontal line shows the temperature stability (about +/- 3 micro kelvin). There are a few short-lived heating excursions caused by technical staff working on the EBIT machine simultaneously. During actual experimental runs these are absent. This temporal profile was interrupted to test additional components of the system; otherwise, the temperature controlling would have continued for another 24 hours.

  16. Electron transfer dissociation in the hexapole collision cell of a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Kaplan, Desmond A; Hartmer, Ralf; Speir, J Paul; Stoermer, Carsten; Gumerov, Dmitry; Easterling, Michael L; Brekenfeld, Andreas; Kim, Taeman; Laukien, Frank; Park, Melvin A

    2008-01-01

    Electron transfer dissociation (ETD) of proteins is demonstrated in a hybrid quadrupole-hexapole Fourier transform ion cyclotron resonance mass spectrometer (Qh-FTICRMS). Analyte ions are selected in the mass analyzing quadrupole, accumulated in the hexapole linear ion trap, reacted with fluoranthene reagent anions, and then analyzed via an FTICR mass analyzer. The hexapole trap allows for a broad fragment ion mass range and a high ion storage capacity. Using a 3 T FTICRMS, resolutions of 60 000 were achieved with mass accuracies averaging below 1.4 ppm. The high resolution, high mass accuracy ETD spectra provided by FTICR obviates the need for proton transfer reaction (PTR) charge state reduction of ETD product ions when analyzing proteins or large peptides. This is demonstrated with the ETD of ubiquitin and apomyoglobin yielding sequence coverages of 37 and 20%, respectively. We believe this represents the first reported successful combination of ETD and a FTICRMS.

  17. Interaction of solar wind ions with thin carbon foils: Calibration of time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Gonin, M.; Buergi, Alfred; Oetliker, M.; Bochsler, P.

    1992-11-01

    With the KAFKA (German acronym for carbon foils collisions analyzer) experiment, charge exchange, energy loss and angular scattering of solar wind ions in thin (1 to 10 microg/sq cm) carbon foils, are studied. Such foils are extensively used in time of flight mass spectrometry. So far, the properties of H, He, B, C, N, O, F, Ne, Na, Mg, Al, Si, S, Cl, Ar, K, Ti, Fe, and Ni and in the 0.5 to 5 keV/u energy range have been investigated.

  18. The development of an Omegratron plasma ion mass spectrometer for Alcator C-Mod

    SciTech Connect

    Thomas, E.E. Jr.

    1993-05-01

    A new diagnostic device, the Omegatron Probe, has been developed to investigate relative impurity levels and impurity charge state distribution in the Alcator C-Mod Tokamak edge plasma. The Omegatron probe consists of two principal components, a ``front-end`` of independently biased grids, arranged in a gridded energy analyzer fashion and a large collection cavity. Particles enter the probe in a thin ``ribbon`` through a knife-edge slit. The grids provide a means to measure and control the parallel energy distribution of the ions. In the collection cavity, an oscillating electric field is applied perpendicularly to the ambient magnetic field. Ions whose cyclotron frequencies are resonant with this electric field oscillation will gain perpendicular energy and be collected. In this way, the probe can be operated in two modes: first, by fixing the potentials on the grids and sweeping frequencies to obtain a `` Z/m spectrum`` of ion species and second, by fixing the frequency and sweeping the grid potentials to obtain the distribution function of an individual impurity species. The Omegatron probe performed successfully in tests on a Hollow Cathode Discharge (HCD) linear plasma column. It obtained measurements of T{sub e} {approx} 5 eV, T{sub i} (H{sup +}) {approx} 2.0 {plus_minus} 0.2 eV, n{sub 0} {approx} 9 {times} 10{sup 15} m{sup {minus}3}, RMS potential fluctuation levels of {approximately} 0.5 {plus_minus} 0.05 {plus_minus} T{sub e}, and obtained ``Z/m`` spectra for the plasma ions (H{sup +}, H{sub 2}{sup +}, He{sup +}). Additional experiments confirmed the theoretical scalings of the f/{delta}f resolution with the applied electric field and magnetic field strengths. The instrument yielded an absolute level of resolution, f/{delta}f, of approximately 2.5 to 3 times the theoretical values. Finally, the results from the HCD are used to project operation on Alcator C-Mod.

  19. Improved atmospheric trace gas measurements with an aircraft-based tandem mass spectrometer: Ion identification by mass-selected fragmentation studies

    NASA Astrophysics Data System (ADS)

    Reiner, Thomas; MöHler, Ottmar; Arnold, Frank

    1998-12-01

    We have built and employed an aircraft-borne triple quadrupole mass spectrometer (TQMS) for fragmentation studies of mass-selected ions in the upper troposphere and lower stratosphere. The fragmentation studies included both ambient and artificially produced ions relevant for the measurement of atmospheric trace gases by ion molecule reaction mass spectrometry (IMRMS) and led to an unambiguous identification of the chemical composition of important ions used for IMRMS measurements. Among these are the product ions of ion molecule reactions of CO3-(H2O)n and H3O+(H2O)n ions with HNO3, SO2, acetone, HCN, and methyl cyanide. These reactions have been studied in the laboratory, and ions having the same masses as the expected product ions have been previously observed in atmospheric IMRMS spectra. The present fragmentation studies are the first to actually identify the chemical composition of these ions during aircraft measurements in the upper troposphere and lower stratosphere and demonstrate that these ions can reliably be used for atmospheric trace gas measurements. Furthermore, the fragmentation studies gave indications for the existence and the possible identification of previously unknown ions. Among these the tentative identification of CO3-H2O2 offers the possibility for sensitive measurements of H2O2 by IMRMS. The fragmentation studies were accompanied by IMRMS measurements of atmospheric trace gases using the TQMS. Altitude profiles of HNO3, SO2, and lower limits for H2O2 are shown.

  20. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    PubMed Central

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-01-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations. PMID:26569277

  1. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults.

    PubMed

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-11-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm³ vs. 1038/cm³) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  2. A spectrometer on chemical vapour deposition-diamond basis for the measurement of the charge-state distribution of heavy ions in a laser-generated plasma

    SciTech Connect

    Cayzac, Witold; Frank, Alexander; Schumacher, Dennis; Roth, Markus; Blazevic, Abel; Wamers, Felix; Traeger, Michael; Berdermann, Eleni; Voss, Bernd; Hessling, Thomas

    2013-04-15

    This article reports on the development and the first applications of a new spectrometer which enables the precise and time-resolved measurement of both the energy loss and the charge-state distribution of ion beams with 10 < Z < 30 at energies of 4-8 MeV/u after their interaction with a laser-generated plasma. The spectrometer is based on five 20 Multiplication-Sign 7 mm{sup 2} large and 20 {mu}m thick polycrystalline diamond samples produced via the Chemical Vapour Deposition (CVD) process and was designed with the help of ion-optical simulations. First experiments with the spectrometer were successfully carried out at GSI using {sup 48}Ca ions at an energy of 4.8 MeV/u interacting with a carbon plasma generated by the laser irradiation of a thin foil target. Owing to the high rate capability and the short response time of the spectrometer, pulsed ion beams with 10{sup 3}-10{sup 4} ions per bunch at a bunch frequency of 108 MHz could be detected. The temporal evolution of the five main charge states of the calcium ion beams as well as the corresponding energy loss values could be measured simultaneously. Due to the outstanding properties of diamond as a particle detector, a beam energy resolution ({Delta}E/E) Almost-Equal-To 0.1% could be reached using the presented experimental method, while a precision of 10% in the energy loss and charge-state distribution data was obtained.

  3. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. PMID:26889929

  4. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation.

  5. A highly miniaturized electron and ion energy spectrometer prototype for the rapid analysis of space plasmas

    SciTech Connect

    Bedington, R.; Kataria, D. O.; Smith, A.

    2014-02-15

    MEMS (Micro Electro-Mechanical Systems) plasma analyzers are a promising possibility for future space missions but conventional instrument designs are not necessarily well suited to micro-fabrication. Here, a candidate design for a MEMS-based instrument has been prototyped using electron-discharge machining. The device features 10 electrostatic analyzers that, with a single voltage applied to it, allow five different energies of electron and five different energies of positive ion to be simultaneously sampled. It has been simulated using SIMION and the electron response characteristics tested in an instrument calibration chamber. Small deviations found in the electrode spacing of the as-built prototype were found to have some effect on the electron response characteristics but do not significantly impede its performance.

  6. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.

    2009-12-01

    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  7. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    NASA Astrophysics Data System (ADS)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  8. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  9. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    PubMed Central

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  10. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    PubMed

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  11. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    SciTech Connect

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  12. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith; Bougher, Stephen; Benna, Mehdi; Yelle, Roger; Jakosky, Bruce; Bell, Jared; Mahaffy, Paul; Stone, Shane

    2016-07-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  13. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Stone, S. W.; Elrod, M. K.; Mahaffy, P. R.; Benna, M.; Bell, J. M.; Bougher, S. W.; Yelle, R. V.; Jakosky, B. M.

    2015-12-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He 'bulge' in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  14. He Bulge Detection by MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS) in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Elrod, Meredith K.; Mahaffy, Paul R.; Yelle, Roger; Stone, Shane; Benna, Mehdi; Jakowski, Bruce

    2015-11-01

    Studies of the Venusian atmospheres have demonstrated enhanced He densities at high latitudes and on the night-side detections. To determine if Mars has a similar enhanced He ‘bulge’ in the same region, we compared several periapsis passes from night to dayside. The first six weeks of the MAVEN prime mission had periapsis at high latitudes on the night-side, followed by the next three months at mid latitudes on the dayside moving to low latitudes on the night-side. In addition to its normal orbit, which has a periapsis of approximately 150 km, MAVEN conducts a few deep dip orbits where the spacecraft has a periapsis closer to 125km. The first deep dip was at dusk at mid latitudes, the second at noon at the equator, with the third going from dawn to night in the southern hemisphere. Initial analysis of the Neutral Gas and Ion Mass Spectrometer (NGIMS) closed source data from all orbits with good pointing revealed an enhanced He density on the night-side orbits and a decreased He density on the dayside. This enhancement of He demonstrates a bulge at Mars that will continue to be explored over the course of the mission.

  15. Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

    SciTech Connect

    Nachtrieb, R.; LaBombard, B.

    2000-11-01

    {sup 3}He gas was puffed from the wall into Ohmic low confinement-mode discharges of the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1551 (1994)] tokamak and the charged states were measured near the wall with the omegatron ion mass spectrometer. Analysis of the data shows that the concentrations of singly- and doubly-ionized helium near the wall are approximately equal. The electron temperature and density at the omegatron are too low to account for ionization of helium in the local flux tube, therefore the helium is ionized in a hotter region of the edge plasma and is transported to the omegatron. A simple one-dimensional radial transport model reproduces the observed values of charge state flux and density, but only if rapid cross-field transport is included, increasing with distance from the separatrix. A constant cross-field diffusion coefficient of order 2m{sup 2}/s and an outward convection velocity profile increasing to of order 100 m/s in the far scrape-off layer is implied.

  16. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Huang, X. H. Hilda; Griffith, Stephen M.; Li, Mei; Li, Lei; Zhou, Zhen; Wu, Cheng; Meng, Junwang; Chan, Chak K.; Louie, Peter K. K.; Yu, Jian Zhen

    2016-10-01

    Single Particle Aerosol Mass Spectrometers (SPAMS) have been increasingly deployed for aerosol studies in Asia. To date, SPAMS is most often used to provide unscaled information for both the size and chemical composition of individual particles. The instrument's lack of accuracy is primarily due to only a fraction of particles being detected after collection, and the instrumental sensitivity is un-calibrated for various chemical species in mixed ambient aerosols. During a campaign from January to April 2013 at a coastal site in Hong Kong, the particle number information and ion intensity of major PM2.5 components collected by SPAMS were scaled by comparing with collocated bulk PM2.5 measurements of hourly or higher resolution. The bulk measurements include PM2.5 mass by a SHARP 5030 Monitor, major ions by a Monitor for Aerosols & Gases in ambient Air (MARGA), and organic carbon (OC) and elemental carbon (EC) by a Sunset OCEC analyzer. During the data processing, both transmission efficiency (scaled with the Scanning Mobility Particle Sizer) and hit efficiency conversion were considered, and component ion intensities quantified as peak area (PA) and relative peak area (RPA) were analyzed to track the performance. The comparison between the scaled particle mass assuming a particle density of 1.9 g cm-3 from SPAMS and PM2.5 concentration showed good correlation (R2 = 0.81) with a slope of 0.814 ± 0.004. Regression analysis results suggest an improved scaling performance using RPA compared with PA for most of the major PM2.5 components, including sulfate, nitrate, potassium, ammonium, OC and EC. Thus, we recommend preferentially scaling these species using the RPA. For periods of high K+ concentrations (>1.5 μg m-3), under-estimation of K+ by SPAMS was observed due to exceeding the dynamic range of the acquisition board. When only applying the hit efficiency correction, data for sulfate, nitrate, ammonium, potassium and OC were in reasonably good correlation (R2 = 0

  17. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  18. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  19. Measurement of radial profiles of density ratio of helium to hydrogen ion using charge exchange spectroscopy with two-wavelength spectrometer.

    PubMed

    Ida, K; Yoshinuma, M; Wieland, B; Goto, M; Nakamura, Y; Kobayashi, M; Murakami, I; Moon, C

    2015-12-01

    Radial profiles of density ratio of helium to hydrogen ions are measured using the charge exchange spectroscopy technique with the two-wavelength spectrometer system in the large helical device. The two-wavelength spectrometer system consists of a dichroic mirror box, a spectrometer with two grating and two camera lenses, and one CCD detector. The dichroic mirror box is used to divide the light of one fiber from the plasma to two fibers, one for HeII (λ = 468.6 nm) and the other for H(α) (λ = 656.3 nm), that are connected to the entrance slit of the spectrometer to eliminate the interference between the HeII and the H(α) spectra on the CCD. This system provides a simultaneous measurement of helium and hydrogen ion density ratio at 8 exact same locations (8 spatial channels) with a time resolution of >40 ms in the wide range of the density ratio of 0.05-5.

  20. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses.

    PubMed

    Anderson, Kim A; Szelewski, Michael J; Wilson, Glenn; Quimby, Bruce D; Hoffman, Peter D

    2015-11-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC-EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC-EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC-EI/MS/MS have a large linear range of 1-10,000pgμl(-1) and detection limits of <2pgμl(-1). Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAH isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r(2) values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02±0.84pgμl(-1) with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26pgμl(-1) and only two analytes above 2.0pgμl(-1); acenaphthalene (2.33pgμl(-1)) and dibenzo[a,e]pyrene (6.44pgμl(-1)).

  1. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses

    PubMed Central

    Anderson, Kim A.; Szelewski, Michael J.; Wilson, Glenn; Quimby, Bruce D.; Hoffman, Peter D.

    2015-01-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC–EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9 mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC–EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC–EI/MS/MS have a large linear range of 1–10,000 pg μl−1 and detection limits of <2 pg μl−1. Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAHs isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r2 values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02 ± 0.84 pg μl−1 with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26 pg μl−1 and only two analytes above 2.0 pg μl−1; acenaphthalene (2.33 pg μl−1) and dibenzo[a,e]pyrene (6.44 pg μl−1). PMID:26454790

  2. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses.

    PubMed

    Anderson, Kim A; Szelewski, Michael J; Wilson, Glenn; Quimby, Bruce D; Hoffman, Peter D

    2015-11-01

    We describe modified gas chromatography electron-impact/triple-quadrupole mass spectrometry (GC-EI/MS/MS) utilizing a newly developed hydrogen-injected self-cleaning ion source and modified 9mm extractor lens. This instrument, with optimized parameters, achieves quantitative separation of 62 polycyclic aromatic hydrocarbons (PAHs). Existing methods historically limited rigorous identification and quantification to a small subset, such as the 16 PAHs the US EPA has defined as priority pollutants. Without the critical source and extractor lens modifications, the off-the-shelf GC-EI/MS/MS system was unsuitable for complex PAH analysis. Separations were enhanced by increased gas flow, a complex GC temperature profile incorporating multiple isothermal periods, specific ramp rates, and a PAH-optimized column. Typical determinations with our refined GC-EI/MS/MS have a large linear range of 1-10,000pgμl(-1) and detection limits of <2pgμl(-1). Included in the 62 PAHs, multiple-reaction-monitoring (MRM) mode enabled GC-EI/MS/MS identification and quantitation of several constituents of the MW 302 PAH isomers. Using calibration standards, values determined were within 5% of true values over many months. Standard curve r(2) values were typically >0.998, exceptional for compounds which are archetypally difficult. With this method benzo[a]fluorene, benzo[b]fluorene, benzo[c]fluorene were fully separated as was benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[j]fluoranthene. Chrysene and triphenylene, were sufficiently separated to allow accurate quantitation. Mean limits of detection (LODs) across all PAHs were 1.02±0.84pgμl(-1) with indeno[1,2,3-c,d] pyrene having the lowest LOD at 0.26pgμl(-1) and only two analytes above 2.0pgμl(-1); acenaphthalene (2.33pgμl(-1)) and dibenzo[a,e]pyrene (6.44pgμl(-1)). PMID:26454790

  3. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  4. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  5. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  6. Rapid screening and characterization of drug metabolites using multiple ion monitoring dependent product ion scan and postacquisition data mining on a hybrid triple quadrupole-linear ion trap mass spectrometer.

    PubMed

    Yao, Ming; Ma, Li; Duchoslav, Eva; Zhu, Mingshe

    2009-06-01

    Multiple ion monitoring (MIM)-dependent acquisition with a triple quadrupole-linear ion trap mass spectrometer (Q-trap) was previously developed for drug metabolite profiling. In the analysis, multiple predicted metabolite ions are monitored in both Q1 and Q3 regardless of their fragmentations. The collision energy in Q2 is set to a low value to minimize fragmentation. Once an expected metabolite is detected by MIM, enhanced product ion (EPI) spectral acquisition of the metabolite is triggered. To analyze in vitro metabolites, MIM-EPI retains the sensitivity and selectivity similar to that of multiple reaction monitoring (MRM)-EPI in the analysis of in vitro metabolites. Here we present an improved approach utilizing MIM-EPI for data acquisition and multiple data mining techniques for detection of metabolite ions and recovery of their MS/MS spectra. The postacquisition data processing tools included extracted ion chromatographic analysis, product ion filtering and neutral loss filtering. The effectiveness of this approach was evaluated by analyzing oxidative metabolites of indinavir and glutathione (GSH) conjugates of clozapine and 4-ethylphenol in liver microsome incubations. Results showed that the MIM-EPI-based data mining approach allowed for comprehensive detection of metabolites based on predicted protonated molecules, product ions or neutral losses without predetermination of the parent drug MS/MS spectra. Additionally, it enabled metabolite detection and MS/MS acquisition in a single injection. This approach is potentially useful in high-throughout screening of metabolic soft spots and reactive metabolites at the drug discovery stage.

  7. AN ION CORRELATION PROGRAM FOR DECONVOLUTING COMPOSITE MASS SPECTRA ACQUIRED USING A DIRECT SURFACE IONIZATION SOURCE INTERFACED TO A TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The rapid sampling provided by the DART in ambient air will allow rapid delineation of areas of dispersed chemicals after natural or man-made disasters. Exact masses and RIAs of dimer, precursor, and product ions measured by the oa-TOFMS entered dinto the Ion Correlation Program...

  8. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  9. The effects of negative air ions on various physiological functions during work in a hot environment

    NASA Astrophysics Data System (ADS)

    Inbar, O.; Rotstein, A.; Dlin, R.; Dotan, R.; Sulman, F. G.

    1982-06-01

    The effects of negative air-ions on human physical performance has been investigated. Twenty-one healthy males, 20 25 years old (X=23.6±2.6) were exposed to two 180-min rest and exercise sessions two weeks apart. The subjects were randomly assigned into either an experimental group (n=12) or to a control group (n=9). The experimental group performed the first session in neutral air conditions and the second one in air containing 1.36 to 1.90×105 negative air ions and 1.40 to 1.66×102 positive air ions/ml. The control group performed both sessions under neutral air conditions. All sessions were held at Ta=40±1‡C and 25±5% RH. Each session included one hour of resting under the respective ionization conditions, followed by 3 30-min cycle ergometer work bouts, separated by 7-min rest periods. The mechanical work-load during the bicycle exercise was 1.64±0.6 W/kg BW. The experimental group showed a significant reduction with negative air-ions in heart rate (HR), in rectal temperature, and in the rating of perceived exertion (RPE), all when compared with their own neutral session. The control group showed no significant changes between the first and the second exposure. Although not statistically significant, being exposed to negative air-ions seems also to reduce total sweat rate and minute ventilation (VE), and to increase O2 pulse. It is suggested that under the conditions of this study negative air ions can improve various cardiovascular and thermoregulatory functions as well as subjective feelings during physical effort. It is felt that such positive influences may be augmented by increasing the exposure time to negative ionized air and/or prolonging the stressful conditions.

  10. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  11. Advanced stored waveform inverse Fourier transform technique for a matrix-assisted laser desorption/ionization quadrupole ion trap mass spectrometer.

    PubMed

    Doroshenko, V M; Cotter, R J

    1996-01-01

    The stored waveform inverse Fourier transform (SWIFT) technique is used for broadband excitation of ions in an ion-trap mass spectrometer to perform mass-selective accumulation, isolation, and fragmentation of peptide ions formed by matrix-assisted laser desorption/ionization. Unit mass resolution is achieved for isolation of ions in the range of m/z up to 1300 using a two-step isolation technique with stretched-in-time narrow band SWIFT pulses at the second stage. The effect of 'stretched-in-time' waveforms is similar to that observed previously for mass-scan-rate reduction. The asymmetry phenomenon resulting from the stretched ion-trap electrode geometry is observed during application of normal and time-reversed waveforms and is similar to the asymmetry effects observed for forward and reverse mass scans in the resonance ejection mode. Mass-selective accumulation of ions from multiple laser shots was accomplished using a method described earlier that involves increasing the trapping voltage during ion introduction for more efficient trapping of ions.

  12. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  13. Scintillation imaging of air during proton and carbon-ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Komori, Masataka

    2016-10-01

    We previously reported that the luminescence imaging of water during proton or carbon-ion irradiation is possible using a charge-coupled device (CCD) camera, and these luminescence images can be used for the range estimations for these therapies. In the images during these irradiations to water phantoms, we observed scintillation images in the air parts. We conducted analysis of these images during proton and carbon-ion irradiations to use them for beam width estimations. We set profiles on the air part of the luminescence images of water during 100.2 MeV proton and 241.5 MeV/n carbon-ion irradiations. We estimated the widths of the beams from the scintillation images and compared them with those by simulation results. We also estimated the intensity and light spectrum of the scintillation of air and compared with those of the luminescence of water. The estimated widths of the proton and carbon-ion beams from the scintillation images of air were almost the same as those measured with simulations. The intensities of the scintillation of air were 3% and 5% of those of the luminescence of water for the proton and carbon-ion beams, respectively. The light spectrum of the scintillation of air peaked around 350-450 nm while those of luminescence of water showed wide distribution which peaked 450-550 nm. We confirmed that scintillation imaging of air during proton and carbon-ion beam irradiations were possible. The scintillation imaging of air could be used for the width estimations of proton and carbon-ion beams.

  14. Photo-ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1992-03-17

    A thin film structure for providing predetermined electric field boundary conditions. A thin film configuration is disposed on an insulator substrate in a selected spatial pattern with substantially uniform electrically resistive character in each of the different areas of the spatial pattern.

  15. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1992-01-01

    A thin film structure for providing predetermined electric field boundary conditions. A thin film configuration is disposed on an insulator substrate in a selected spatial pattern with substantially uniform electrically resistive character in each of the different areas of the spatial pattern.

  16. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100-300 Å spectral band.

    PubMed

    Widmann, K; Beiersdorfer, P; Magee, E W; Boyle, D P; Kaita, R; Majeski, R

    2014-11-01

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li(+) or Li(2 +), which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li(+) and 65 eV for the 135 Å Li(2 +) lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  17. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    SciTech Connect

    Widmann, K. Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  18. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  19. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  20. Differentiation of regioisomeric aromatic ketocarboxylic acids by positive mode atmospheric pressure chemical ionization collision-activated dissociation tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Amundson, Lucas M; Owen, Benjamin C; Gallardo, Vanessa A; Habicht, Steven C; Fu, Mingkun; Shea, Ryan C; Mossman, Allen B; Kenttämaa, Hilkka I

    2011-04-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS(n)) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  1. Structure of the martian ionosphere as revealed by the Neutral Gas and Ion Mass Spectrometer during the first two years of the MAVEN mission

    NASA Astrophysics Data System (ADS)

    Benna, Mehdi; Yelle, Roger; Grebowsky, Joseph; Fox, Jane L.; Mahaffy, Paul

    2016-07-01

    We report the results of the observations of the ionosphere of Mars by the Neutral Gas and Ion Mass Spectrometer (NGIMS). These observations were conducted during the first two years of the Mars Atmosphere and Volatile Evolution mission (MAVEN), which also cover a full Martian year. The NGIMS observations revealed the spatial and temporal structures in the density distributions of major and several minor ion species (H_2^+, H_3^+, He^+, O_2^+, C^+, CH^+, N^+, NH^+, O^+, OH^+, H_2O^+, H_3O^+, N_2^+/CO^+, CO^+/HOC^+/N_2H^+, NO^+, HNO^+, O_2^+, HO_2^+, Ar^+, ArH^+, CO_2^+, and OCOH^+). Dusk/dawn and day/night asymmetries in the density distributions were also observed for nearly all ion species. Additionally, NGIMS revealed the presence of a persistent metal layer below 140 km. This layer was accessible for measurement during the MAVEN's "deep-dip" campaigns.

  2. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  3. Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona

    NASA Astrophysics Data System (ADS)

    de La Haye, V.; Waite, J. H.; Johnson, R. E.; Yelle, R. V.; Cravens, T. E.; Luhmann, J. G.; Kasprzak, W. T.; Gell, D. A.; Magee, B.; Leblanc, F.; Michael, M.; Jurac, S.; Robertson, I. P.

    2007-07-01

    The neutral nitrogen and methane measurements made by Ion and Neutral Mass Spectrometer during Cassini flybys TA, TB, and T5 in Titan's upper atmosphere and exosphere are presented. Large horizontal variations are observed in the total density, recorded to be twice as large during TA as during T5. Comparison between the atmospheric and exospheric data show evidence for the presence of a significant population of suprathermal molecules. Using a diffusion model to simultaneously fit the N2 and CH4 density profiles below 1500 km, the atmospheric structure parameters are determined, taking into account recent changes in the calibration parameters. The best fits are obtained for isothermal profiles with values 152.8 ± 4.6 K for TA, 149.0 ± 9.2 K for TB, and 157.4 ± 4.9 K for T5, suggesting a temperature ≃5 K warmer at night than at dusk, a trend opposite to that determined by solar-driven models. Using standard exospheric theory and a Maxwellian exobase distribution, a temperature of 20 to 70 K higher would be necessary to fit the TA, TB, and egress-T5 data above 1500 km. The suprathermal component of the corona was fit with various exobase energy distributions, using a method based on the Liouville theorem. This gave a density of suprathermals at the exobase of 4.4 ± 5.1 × 105 cm-3 and 1.1 ± 0.9 × 105 cm-3, and an energy deposition rate at the exobase of 1.1 ± 0.9 × 102 eV cm-3 s-1 and 3.9 ± 3.5 × 101 eV cm-3 s-1 for the hot N2 and CH4 populations, respectively. The energy deposition rate allowed us to roughly estimate escape rates for nitrogen of ≃7.7 ± 7.1 × 107 N cm-2 s-1 and for methane of ≃2.8 ± 2.1 × 107 CH4 cm-2 s-1. Interestingly, no suprathermal component was observed in the ingress-T5 data.

  4. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study

    PubMed Central

    Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K

    2015-01-01

    Background: Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Materials and Methods: Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Results: Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson’s correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Conclusion: Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an

  5. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.

    PubMed

    Naganuma, Tamaki; Traversa, Enrico

    2014-06-21

    Abundant oxygen vacancies coexisting with Ce(3+) ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce(3+) ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce(3+) ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce(3+) and Ce(4+) ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce(3+) ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce(3+) ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce(3+) ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce(3+) to Ce(4+) occurred at 350 °C in air. Highly concentrated Ce(3+) ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce(3+) stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce(3+) sites. This study also illuminates the potential interaction mechanisms of stable Ce(3+) ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments.

  6. Performance of the Linear Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 Exomars Rover

    NASA Technical Reports Server (NTRS)

    Arevalo, Ricardo, Jr.; Brinckerhoff, William B.; Pinnick, Veronica T.; van Amerom, Friso H. W.; Danell, Ryan M.; Li, Xiang; Getty, Stephanie; Hovmand, Lars; Atanassova, Martina; Mahaffy, Paul R.; Chu, Zhiping; Goesmann, Fred; Steininger, Harald

    2014-01-01

    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015.

  7. Imaging MS Methodology for More Chemical Information in Less Data Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer

    SciTech Connect

    Perdian, D. C.; Lee, Young Jin

    2010-11-15

    A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement. The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser. Using this approach, a high spatial resolution of 10 {micro}m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 {micro}m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MSn ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MSn, ion trap, and orbitrap images were all acquired in a single data acquisition.

  8. A high-resolution time-of-flight chemical ionization mass spectrometer utilizing hydronium ions (H3O+ ToF-CIMS) for measurements of volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Stark, Harald; de Gouw, Joost A.

    2016-07-01

    Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100-1000 cps ppb-1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20-600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m/Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The measured mixing ratios of several aromatics from the H3O+ ToF-CIMS agreed within ±10 % with independent gas chromatography measurements from whole air samples. Initial results from the SONGNEX measurements demonstrate that the H3O+ ToF-CIMS data set will be valuable for the identification and characterization of emissions from various sources, investigation of secondary

  9. A Quadrupole Ion Trap Mass Spectrometer for Quantitative Analysis of Nitrogen-Purged Compartments within the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ottens, Andrew K.; Griffin, Timothy P.; Helms, William R.; Yost, Richard A.; Steinrock, T. (Technical Monitor)

    2001-01-01

    To enter orbit the Space Shuttle burns 1.8 million liters of liquid hydrogen combined with 0.8 million liters of liquid oxygen through three rocket engines mounted in the aft. NASA monitors the nitrogen-purged aft compartment for increased levels of hydrogen or oxygen in order to detect and determine the severity of a cryogenic fuel leak. Current monitoring is accomplished with a group of mass spectrometer systems located as much as 400 feet away from the shuttle. It can take up to 45 seconds for gas to reach the mass spectrometer, which precludes monitoring for leaks in the final moments before liftoff (the orbiter engines are started at T-00:06 seconds). To remedy the situation, NASA is developing a small rugged mass spectrometer to be used as point-sources around the Space Shuttle.

  10. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  11. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces.

    PubMed

    Tobias, Douglas J; Stern, Abraham C; Baer, Marcel D; Levin, Yan; Mundy, Christopher J

    2013-01-01

    Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces.

  12. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-07-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N2+, O2+, CO2+, H2O+ and O-) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N2, CO2, H2O and O2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N2, 20% O2), a ternary gas mixture (82% N2, 12% CO2, 6% O2) and a typical flue gas (76% N2, 12% CO2, 6% O2, 6% H2O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H2O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling.

  13. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  14. Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study--Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, and compound identification.

    PubMed

    Warneke, Carsten; Kato, Shuji; De Gouw, Joost A; Goldan, Paul D; Kuster, William C; Shao, Min; Lovejoy, Edward R; Fall, Ray; Fehsenfeld, Fred C

    2005-07-15

    We have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle. During the experiment, the PIT-MS instrument had a detection limit between 0.05 and 0.3 pbbv (S/N = 3 (signal-to-noise ratio)) for 2-min integration time for most tested VOCs. PIT-MS was used for ambient air measurements onboard a research ship and agreed well with a gas chromatography mass spectrometer). The comparison included oxygenated VOCs, aromatic compounds, and others such as isoprene, monoterpenes, acetonitrile, and dimethyl sulfide. Automated collision-induced dissociation measurements were used to determine the contributions of acetone and propanal to the measured signal at 59 amu; both species are detected at this mass and are thus indistinguishable in conventional PTR-MS.

  15. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  16. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  17. Dithranol as a matrix for matrix assisted laser desorption/ionization imaging on a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2013-11-26

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.

  18. Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Le, Cuong H.; Han, Jun; Borchers, Christoph H.

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  19. Airborne Multiangle SpectroPolarimeteric Imager (AirMSPI): Calibration and Comparison with Collocated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Diner, D. J.; Bruegge, C. J.; Rheingans, B. E.; Garay, M. J.; Daugherty, B. J.; Chipman, R. A.; Davis, A.

    2014-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a pushbroom multiangle spectropolarimetric camera with spectral bands near 355, 380, 445, 470, 555, 660, 865, and 935 nm. Flying on NASAs's high-altitude ER-2 aircraft since 2010, AirMSPI uses dual photoelastic modulator (PEM)-based technology to provide accurate measurements of the Stokes linear polarization parameters Q and U in the 470, 660, and 865 nm bands, providing unique observing capabilities for aerosol, cloud, and surface studies. We describe the methodologies used for radiometric and polarimetric calibration and characterization of the AirMSPI instrument, which make use of a combination of laboratory and vicarious techniques. A 1.65 m integrating sphere and overflights of Ivanpah Playa, NV are used for radiometric calibration. Radiometric cross-comparisons with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), also flying on the ER-2, are used to validate the radiometric scale. For polarimetric calibration, a well-calibrated Polarization State Generator is used to provide known polarimetric inputs. A high-extinction rotating wiregrid polarizer is used to derive polarimetric calibration coefficients for each pixel, and the results are then validated using partially polarized light generated using tilted glass plates. Examples of collocated multiangular, polarimetric imagery from AirMSPI and hyperspectral imagery from AVIRIS will be shown, presenting new opportunities for atmosphere and surface remote sensing.

  20. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  1. Identification of oxidized organic atmospheric species during the Southern Oxidant and Aerosol Study (SOAS) using a novel Ion Mobility Time-of-Flight Chemical Ionization Mass Spectrometer (IMS-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Canagaratna, M.; Kimmel, J.; Junninen, H.; Knochenmuss, R.; Cubison, M.; Massoli, P.; Stark, H.; Jayne, J. T.; Surratt, J. D.; Jimenez, J. L.; Worsnop, D. R.

    2013-12-01

    We present results from the field deployment of a novel Ion Mobility Time-of-flight Chemical Ionization Mass Spectrometer (CI-IMS-TOF) during the Southern Oxidant and Aerosol Study (SOAS). IMS-TOF is a 2-dimensional analysis method, which separates gas-phase ions by mobility prior to determination of mass-to-charge ratio by mass spectrometry. Ion mobility is a unique physical property that is determined by the collisional cross section of an ion. Because mobility depends on size and shape, the IMS measurement is able to resolve isomers and isobaric compounds. Additionally, trends in IMS-TOF data space can be used to identify relationships between ions, such as common functionality or polymeric series. During SOAS we interfaced the IMS-TOF to a nitrate ion (NO3-) chemical ionization source that enables the selective ionization of highly oxidized gas phase species (those having a high O:C ratio) through clustering with the reagent ion. Highly oxidized products of terpenes and isoprene are important secondary organic aerosol precursors (SOA) that play an uncertain but important role in particle-phase chemistry. We present several case studies of atmospheric events during SOAS that exhibited elevated concentrations of sulfuric acid and/or organics. These events exhibited a rise in particle number and provide an opportunity to examine the role that organic species may have in local atmospheric new particle formation events. We also present the results from the field deployment and subsequent laboratory studies utilizing a Potential Aerosol Mass (PAM) flow reactor as the inlet for the CI-IMS-TOF. The reactor draws in ambient air and exposes it to high concentrations of the OH radical, created by photolysis O3 in the presence of water. The highly oxidized products are then sampled directly by the CI-IMS-TOF. We performed several experiments including placing pine and deciduous plants directly in front of the reactor opening and observed large increases in the number and

  2. An electron/ion spectrometer with the ability of low energy electron measurement for fast ignition experiments.

    PubMed

    Ozaki, T; Kojima, S; Arikawa, Y; Shiraga, H; Sakagami, H; Fujioka, S; Kato, R

    2014-11-01

    An electron energy spectrometer (ESM) is one of the most fundamental diagnostics in the fast ignition experiment. It is necessary to observe the spectra down to a low energy range in order to obtain the accurate deposition efficiency toward the core. Here, we realize the suitable ESM by using a ferrite magnet with a moderate magnetic field of 0.3 T and a rectangular magnetic circuit covered with a steel plate in the inlet side. PMID:25430292

  3. An electron/ion spectrometer with the ability of low energy electron measurement for fast ignition experiments

    SciTech Connect

    Ozaki, T.; Sakagami, H.; Kojima, S.; Arikawa, Y.; Shiraga, H.; Fujioka, S.; Kato, R.

    2014-11-15

    An electron energy spectrometer (ESM) is one of the most fundamental diagnostics in the fast ignition experiment. It is necessary to observe the spectra down to a low energy range in order to obtain the accurate deposition efficiency toward the core. Here, we realize the suitable ESM by using a ferrite magnet with a moderate magnetic field of 0.3 T and a rectangular magnetic circuit covered with a steel plate in the inlet side.

  4. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  5. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    NASA Astrophysics Data System (ADS)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  6. Resonance activation and collision-induced-dissociation of ions using rectangular wave dipolar potentials in a digital ion trap mass spectrometer.

    PubMed

    Xu, Fuxing; Wang, Liang; Dai, Xinhua; Fang, Xiang; Ding, Chuan-Fan

    2014-04-01

    Collision-induced dissociation (CID) of ions by resonance activation in a quadrupole ion trap is usually accomplished by resonance exciting the ions to higher kinetic energy, whereby the high kinetic energy ions collide with a bath gas, such as helium or argon, inside the trap and dissociate to fragments. A new ion activation method using a well-defined rectangular wave dipolar potential formed by dividing down the trapping rectangular waveform is developed and examined herein. The mass-selected parent ions are resonance excited to high kinetic energies by simply changing the frequency of the rectangular wave dipolar potential and dissociation proceeds. A relationship between the ion mass and the activation waveform frequency is also identified and described. This highly efficient (CID) procedure can be realized by simply changing the waveform frequency of the dipolar potential, which could certainly simplify tandem mass spectrometry analysis methods.

  7. Superthermal >36-eV ions observed in the near-tail region of Venus by the Pioneer Venus Orbiter neutral mass spectrometer

    SciTech Connect

    Kasprzak, W.T.; Grebowsky, J.M.; Niemann, H.B. ); Brace, L.H. )

    1991-07-01

    The Pioneer Venus orbiter neutral mass spectrometer (ONMS) has made measurements of >36-eV ions in the altitude range 1,300-3,700 km for solar zenith angles greater than 120 {degrees}. The superthermal ions form part of the near-tail region of Venus termed the ionotail. The ONMS superthermal ions represent only a small fraction (about 0.3%) of the plasma density in the ionotail region. The composition is mainly O{sup +}, but He{sup +}, N{sup +}, (CO{sup +} N{sub 2}{sup +}), NO{sup +}, and O{sub 2}{sup +} have been identified. CO{sub 2}{sup +} is very rarely observed in this region, and H{sup +} is not measured. The directions of the apparent O{sup +} ion flow in the ecliptic plane show predominantly tailward components with a similar number of nontailward components. Since the energy of the superthermal ions is sufficient for planetary escape, the >36-eV O{sup +} escape flux in the ionotail is estimated to be about 10{sup 5} cm{sup {minus}2} s{sup {minus}1}. Other species observed also have enough energy to escape. The O{sup +} flux data show a factor of 2.5 increase from solar minimum to solar maximum implying a photoionization source for these ions. Neither the origin of the >36-eV ions nor the acceleration mechanism is precisely known. The O{sup +} flux observations do not appear to be correlated with the direction of the cross-tail magnetic field as might be expected if the ions were due to the asymmetric pickup of newly ionized atmospheric neutrals above the ionopause. The composition of the superthermal ions in the ionotail suggests that their source is most likely the high-altitude nightside ionosphere where O{sup +} and not O{sub 2}{sup +} is the dominant ion. Transport of the superthermal O{sup +} across the terminator to the nightside has been observed, and measurements in the ionotail region at solar minimum near 2,000 km show that {sup +} is mainly superthermal.

  8. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  9. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  10. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields. PMID:26094455

  11. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  12. DE-1 phase 3 extended mission data analysis of Dynamics Explorer retarding ion mass spectrometer flight data

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Field-aligned motion of ionospheric ions at a low altitudes and different pitch angle distributions of ionospheric ions at high altitudes were studied. The objective is twofold: (1) to discover the degree to which observations made by Dynamics Explorer 1 (DE-1) and DE-2 agree when taken in the same ionospheric volume; (2) to understand the processes operating along a magnetic field tube connecting DE-1 and DE-2 that allow a reconciliation of the two data sets. A second investigation has two facets; to reconcile the observed occurrence of ionospheric ions at high altitudes with a point source injection in the ionosphere and subsequent E x B drift, and to reconcile the observed fluxes of ionospheric ions at high altitudes with the measured upward flux at low altitudes. An understanding of the effects of E x B drift molten on the dispersion of ionospheric ions is attained.

  13. Identification of N-Oxide and Sulfoxide Functionalities in Protonated Drug Metabolites by Using Ion-Molecule Reactions Followed by Collisionally Activated Dissociation in a Linear Quadrupole Ion Trap Mass Spectrometer.

    PubMed

    Sheng, Huaming; Tang, Weijuan; Yerabolu, Ravikiran; Max, Joann; Kotha, Raghavendhar R; Riedeman, James S; Nash, John J; Zhang, Minli; Kenttämaa, Hilkka I

    2016-01-15

    The in vivo oxidation of sulfur and nitrogen atoms in many drugs into sulfoxide and N-oxide functionalities is a common biotransformation process. Unfortunately, the unambiguous identification of these metabolites can be challenging. In the present study, ion-molecule reactions of tris(dimethylamino)borane followed by collisionally activated dissociation (CAD) in an ion trap mass spectrometer are demonstrated to allow the identification of N-oxide and sulfoxide functionalities in protonated polyfunctional drug metabolites. Only ions with N-oxide or sulfoxide functionality formed diagnostic adducts that had lost dimethyl amine (DMA). This was demonstrated even for an analyte that contains a substantially more basic functionality than the functional group of interest. CAD of the diagnostic product ions (M) resulted mainly in type A (M - DMA) and B fragment ions (M - HO-B(N(CH3)2)2) for N-oxides, but sulfoxides also formed diagnostic C ions (M - O═BN(CH3)2), thus allowing differentiation of the functionalities. Some protonated analytes yielded abundant TDMAB adducts that had lost two DMA molecules instead of just one. This provides information on the environment of the N-oxide and sulfoxide functionalities. Quantum chemical calculations were performed to explore the mechanisms of the above-mentioned reactions. The method can be implemented on HPLC for real drug analysis. PMID:26651970

  14. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead. PMID:19387888

  15. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead.

  16. Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.

    PubMed

    Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas

    2015-09-01

    In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources. PMID:26414524

  17. Superthermal over 36-eV ions observed in the near-tail region of Venus by the Pioneer Venus Orbiter neutral mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Grebowsky, J. M.; Niemann, H. B.; Brace, L. H.

    1991-01-01

    The PVO neutral mass spectrometer has measured the over 36-eV ions in the 1300-3700 km altitude range for solar zenith angles greater than 120 deg. The composition is mainly O(+), but He(+), N(+), NO(+), and O2(+) have been identified. The average O(+) flux is about 100,000/sq cm/s, but higher fluxes from 10 to the 6th to 10 to the 8th/sq cm/s are observed about 10 percent of the time. The directions of the apparent O(+) flow in the ecliptic plane show predominantly tailward components with a smaller number of nontailward components. The over 36-eV O(+) escape flux in the ionotail is estimated to be about 100,000/sq cm/s. The O(+) flux data show a factor of 2.5 increase from solar minimum to maximum, implying a photoionization source for these ions. The composition of the superthermal ions in the ionotail suggests that their source is most likely the high-altitude nightside ionosphere. Transport of superthermal O(+) across the terminator to the nightside has been observed.

  18. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  19. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.

    PubMed

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m(3) to 6.3 μg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ.

  20. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.

    PubMed

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m(3) to 6.3 μg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ. PMID:27020924

  1. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  2. Detection of Amines and Ammonia with an Ambient Pressure Mass Spectrometer using a Corona Discharge Ion Source, in an Urban Atmosphere and in a Teflon Film Chamber

    NASA Astrophysics Data System (ADS)

    Alves, M.; Hanson, D. R.; Grieves, C.; Ortega, J. V.

    2015-12-01

    Amines and ammonia are an important group of molecules that can greatly affect atmospheric particle formation that can go on to impact cloud formation and their scattering of thermal and solar radiation, and as a result human health and ecosystems. In this study, an Ambient Pressure Mass Spectrometer (AmPMS) that is selective and sensitive to molecules with a high proton affinity, such as amines, was coupled with a newly built corona discharge ion source. AmPMS was used to monitor many different nitrogenous compound that are found in an urban atmosphere (July 2015, Minneapolis), down to the single digit pmol/mol level. Simultaneous to this, a proton transfer mass spectrometer also sampled the atmosphere through an inlet within 20 m of the AmPMS inlet. In another set of studies, a similar AmPMS was attached to a large Teflon film chamber at the Atmospheric Chemistry Division at NCAR (August 2015, Boulder). Exploratory studies are planned on the sticking of amines to the chamber walls as well as oxidizing the amine and monitoring products. Depending on the success of these studies, results will be presented on the reversability of amine partitioning and mass balance for these species in the chamber.

  3. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    PubMed

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Direct analysis of volatile organic compounds in human breath using a miniaturized cylindrical ion trap mass spectrometer with a membrane inlet.

    PubMed

    Riter, Leah S; Laughlin, Brian C; Nikolaev, Eugene; Cooks, R Graham

    2002-01-01

    Membrane introduction mass spectrometry (MIMS) coupled to a miniature mass spectrometer equipped with a cylindrical ion trap (CIT) analyzer was used to monitor the flavor components, 3-phenyl-2-propenal and methyl salicylate, found in cinnamon and wintergreen candies, respectively, directly from human breath. The poly(dimethylsiloxane) (PDMS) membrane was operated in a trap-and-release mode, where the temperature of the membrane was cycled during the experiments, which permitted temporal resolution of the two compounds of interest, facilitating their observation in the complex sample. Under these thermally driven conditions, the 10-90% rise times for both compounds are similar (15 s for methyl salicylate, 17 s for 3-phenyl-2-propenal), but the difference in diffusivity means that the signal for 3-phenyl-2-propenal is delayed and the 10% point occurs 6 s later than that for wintergreen. Additional specificity needed for complex samples was gained by using tandem mass spectrometry.

  5. Grating spectrometer system for beam emission spectroscopy diagnostics using high-energy negative-ion-based neutral beam injection on LHD.

    PubMed

    Kado, S; Oishi, T; Yoshinuma, M; Ida, K

    2010-10-01

    A beam emission spectroscopy (BES) system was developed for density gradient and fluctuation diagnostics in the Large Helical Device (LHD). In order to cover the large Doppler shift of the Hα beam emission because of the high-energy negative-ion-based neutral beam atom (acceleration voltage V(acc)=90-170 kV) and the large motional Stark splitting due to the large v×B field (magnetic field B=3.0 T), a grating spectrometer was used instead of a conventional interference filter system. The reciprocal linear dispersion is about 2 nm/mm, which is sufficient to cover the motional Stark effect spectra using an optical fiber with a diameter of 1 mm.

  6. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  7. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  8. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.

    1996-06-11

    A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.

  9. Portable gas chromatograph-mass spectrometer

    SciTech Connect

    Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

    1994-12-31

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  10. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    PubMed

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  11. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  12. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  13. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  14. Ultra High-Resolution Electrospray Ionization/Ion Mobility Spectrometer System for In-Situ Detection of Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Beegle, L. W.; Hill, H. H.

    2001-01-01

    The potential of the high-resolution Electrospray Ionization/Ion Mobility Spectrometry (ESI/IMS) technique as analytical separation tool in analyzing bio-molecular mixtures in the search for the chemical signatures of life is demonstrated. Additional information is contained in the original extended abstract.

  15. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  16. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces

    SciTech Connect

    Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.; Levin, Yan; Mundy, Christopher J.

    2013-04-01

    Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  17. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  18. Application and field test of a mobile thermal desorption - single photon ionization - ion trap mass spectrometer (TD-SPI-ITMS) for trace detection of security relevant substances

    NASA Astrophysics Data System (ADS)

    Schramm, Elisabeth; Heindl, Thomas; Hölzer, Jasper; McNeish, Alexander; Puetz, Michael; Ries, Hermann; Schall, Patricia; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Sklorz, Martin; Spieker, Gerd; Trebbe, Roman; Ulrich, Andreas; Wieser, Jochen; Zimmermann, Ralf

    2009-05-01

    The objective of this accomplished project funded by the German BMBF was to develop a single photon ionization ion trap mass spectrometer (SPI-ITMS) for detection of security relevant substances in complex matrices at low concentrations. The advantage of such a soft ionization technique is a reduction of target ion fragmentation allowing identification of signals from complex matrices and enabling MS/MS capability. To obtain low detection limits, the applied photon energy has to be below the ionization potential (IP) of the bulk matrix components. Therefore, photon energies between 8 eV (155 nm) and 12 eV (103 nm) are necessary which was achieved with newly developed electron beam excimer lamps (EBEL). They generate light at different wavelengths depending on the selected rare gas emitting wavelengths adapted to the analyzed substances. So, e.g. with a krypton-EBEL with 8.4 eV photon energy most narcotics can be ionized without notable fragmentation. Due to their higher IPs, EBEL with higher photon energy have to be used for most explosives. Very low false-positive and false-negative rates have been achieved using MS/MS studies. First field tests of a demonstrator provided the proof of principle.

  19. Laboratory astrophysics and atomic physics using the NASA/GSFC microcalorimeter spectrometers at the LLNL Electron Beam Ion Trap and Radiation Properties Facility

    SciTech Connect

    Brown, G; Beiersdorfer, P; Boyce, K; Chen, H; Gu, M F; Kahn, S; Kelley, R; Kilbourne, C; May, M; Porter, F S; Szymkowiak, A; Thorn, D; Widmann, K

    2005-08-18

    The 32 pixel laboratory microcalorimeter spectrometer built by the NASA/Goddard Space Flight Center is now an integral part of the spectroscopy suite used routinely by the electron beam ion trap and radiative properties group at the Lawrence Livermore National Laboratory. The second generation laboratory instrument, dubbed the XRS/EBIT, is nearly identical to the XRS instrument on the Suzaku X-ray Observatory, formerly Astro-E2. The detector array is from the same processed wafer and uses the same HgTe absorbers. it is being used to measure the photon emission from a variety of radiation sources. These include x-ray emission from laboratory simulated celestial sources, x-ray emission from highly charged ions of Au, and x-ray emission following charge exchange and radiative electron capture. The wide range of applications demonstrates the versatility of a high-resolution, high-efficiency low temperature detector that is able to collect data continually with minimal operator servicing.

  20. A detailed investigation of the effects of molecules and defocusing in the high resolution mass spectrogram of Cassini Plasma Suites Ion Mass Spectrometer (CAPS IMS)

    NASA Astrophysics Data System (ADS)

    Shappirio, M.; Sittler, E. C.; Chornay, D. J.; Brown, S.; Simpson, D. G.; Young, D. T.

    2010-12-01

    CAPS IMS was designed to generate both a low and high resolution time of flight (TOF) mass spectra, with the low resolution spectra having a better count rate then the high resolution. The high resolution spectra is made possible by using a liner electric field (LEF) within the spectrometer to reflect those ions that retain a positive charge after passing through the carbon foils which generate the start signal. Because the LEF causes the ions to react like a mass on a spring the TOF of one cycle can be largely independent of energy. However in order to distinguish between atoms which come from molecules from those which are atomic in nature, the LEF was purposely defocused by making the electric field slightly stronger by the entrance to the TOF region then the far end. This causes low energy particles of any given species to have a shorter TOF than higher energy particles. By re-examining the original flight calibration data and analysis of additional data taken recently with the prototype model we are able to define the response of the IMS LEF to molecular species. This will allows us to develop our understanding of how to use the LEF spectra to determine relative abundances of molecular species such as O, OH, H2O and H3O within the magnetosphere of Saturn.

  1. Efficiency Calibration of the Multilayer-coated Holographic Ion-Etched Flight Gratings for the J-PEX Sounding Rocket Spectrometer

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Barbee, T. W., Jr.; Heidemann, K. F.; Gursky, H.; Rife, J. C.; Hunter, W. R.; Fritz, G. G.; Cruddace, R. G.

    1999-05-01

    In the extreme ultraviolet, high spectral resolution and sensitivity are required for measuring linewidths and Doppler shifts and for resolving the many weak lines, absorption edges and other features that may appear in the spectra of astrophysical sources. For over a decade we have been pursuing the goal of achieving high effective area at normal-incidence by using ultra-smooth holographic ion-etched gratings that have been coated with high-reflectance multilayers. The four flight gratings for the J-PEX sounding rocket spectrometer have been fabricated using the holographic ion-etching technique. The gratings are spherical (4000 mm radius of curvature), large (160 mm x 90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. We present the results of grating surface measurements, made using an atomic force microscope. The average roughness of the first grating is about 3 A rms after coating. We also present efficiency calibration maps, made over the wavelength range 225-245 A using synchrotron radiation. At an angle of incidence of 5 and a wavelength of 234 A, the average efficiency of the first grating in the first inside order is 10.4 +/- 0.5 the derived groove efficiency is 34.8 +/- 1.6 exceed all previously published results for a high density grating.

  2. A New Era of Air Quality Monitoring from Space in East Asia: Korea's Geostationary Environmental Monitoring Spectrometer (GEMS) and an Integrated Korea-US Air Quality (KORUS-AQ) Study

    NASA Astrophysics Data System (ADS)

    Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Park, J. H.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Lefer, B. L.; Al-Saadi, J. A.; Crawford, J. H.

    2015-12-01

    Due to remarkable economic growth over the last two decades, East Asia has become a region experiencing some of the poorest air quality in the world. In addition to local sources of pollution, the Korea peninsula is downwind of the largest emission sources in East Asia, complicating the understanding of air quality over Korea. Thus, knowing the factors controlling changes in air pollution across urban-rural and marine-continental interfaces, in addition to the contributions from local emissions and transboundary transport, is important for building effective management strategies and improving air quality in East Asia. GEMS (Geostationary Environmental Monitoring Spectrometer) is a satellite instrument planned for launch in 2019 by the Republic of Korea. The instrument will observe East Asia and the western Pacific region, providing real-time monitoring of air quality (e.g. O3, NO2, SO2, HCHO, AOD, etc.) and enabling better scientific understanding of the transboundary transport of air pollutants. The KORUS-AQ (the Korea and U.S. Air Quality) field campaign will take place in May - June 2016 and will employ an integrated observing strategy including multiplatform observations (i.e. ground stations, aircraft, ships, and satellites) and chemical transport models. This mission aims to not only strengthen our knowledge of atmospheric chemistry but also provide important data sets for validating GEMS retrieval algorithms. In preparation for KORUS-AQ, a pre-campaign has been successfully conducted in Korea during early summer 2015 with observations from multiple ground sites and a small aircraft. A brief summary of pre-field campaign results will be presented. Moving forward, the GEMS mission and KORUS-AQ study will lead to a new era of air quality monitoring in East Asia. GEMS will also make critical contributions to the global air quality perspective working in concert with geostationary missions launched by the U.S. (TEMPO: Tropospheric Emissions: Monitoring of

  3. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  4. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  5. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  6. Calculations for Calibration of a Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2008-01-01

    A computer program performs calculations to calibrate a quadrupole mass spectrometer in an instrumentation system for identifying trace amounts of organic chemicals in air. In the operation of the mass spectrometer, the mass-to-charge ratio (m/z) of ions being counted at a given instant of time is a function of the instantaneous value of a repeating ramp voltage waveform applied to electrodes. The count rate as a function of time can be converted to an m/z spectrum (equivalent to a mass spectrum for singly charged ions), provided that a calibration of m/z is available. The present computer program can perform the calibration in either or both of two ways: (1) Following a data-based approach, it can utilize the count-rate peaks and the times thereof measured when fed with air containing known organic compounds. (2) It can utilize a theoretical proportionality between the instantaneous m/z and the instantaneous value of an oscillating applied voltage. The program can also estimate the error of the calibration performed by the data-based approach. If calibrations are performed in both ways, then the results can be compared to obtain further estimates of errors.

  7. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  8. Collection of ethanolamines in air and determination by mobile phase ion chromatography

    SciTech Connect

    Bouyoucos, S.A.; Melcher, R.G.

    1986-03-01

    A method is described for the collection and determination of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) in air. Samples were collected by pulling air through a glass tube containing alumina, cleaned especially to remove interfering inorganic ions. The ethanolamines were desorbed with water and determined by Mobile Phase Ion Chromatography (MPIC). The recovery and total relative precision for MEA, DEA, and TEA - all collected from air at a flow rate of 100 mL/min for 7 hr - was 93.1 +/- 17%, 92.7 +/- 15% and 89.4 +/- 21%, respectively (95% confidence level). The method was validated for all three compounds from approximately the limit of detection (3 x noise) to ten times the limit of detection. Based on a sample size of 42 L, MEA was validated over the range from 0.12 to 3.0 ppm v/v (TLV=3), DEA over the range from 0.25 to 3.3 ppm v/v (TLV=3) and TEA from 0.31 to 3.7 ppm v/v (no TLV assigned). No effect on recovery was observed when sampling at high humidity or on storage of the samples for up to 31 days.

  9. Ion mobility spectrometry-mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene

    NASA Astrophysics Data System (ADS)

    Sabo, Martin; Malásková, Michaela; Matejčík, Štefan

    2014-02-01

    In this study we have investigated the negative reactant ion formation in a negative corona discharge (CD) using the corona discharge ion mobility spectrometry orthogonal acceleration time-of-flight (CD-IMS-oaTOF) technique. The reactant ions were formed in the CD operating in the reverse gas flow mode at an elevated temperature of 363.5 K in synthetic and ambient air. Under these conditions mainly O_{2}^{-} and their clusters were formed. We have also studied the influence of CCl4 admixture to air (dopant gas) on the composition of the reactant ions, which resulted in the formation of Cl- and its clusters with a reduced ion mobility of 3.05 cm2 V-1 s-1 as a major reactant ion peak. Additional IMS peaks with reduced ion mobilities of 2.49, 2.25 and 2.03 cm2 V-1 s-1 were detected, and Cl- · (NO2) and Cl- · (NO)n(n = 2, 3) anions were identified. The negative reactant ions were used to detect 2,4,6 trinitrotoluene (TNT) using the thermal desorption (TD) technique using a CD-IMS instrument. Using TD sampling and a negative CD ion source doped by CCl4 we have achieved a limit of detection of 350 pg for direct surface analysis of TNT.

  10. Ionization of the Nitroaromatic Compounds in an Ion Mobility Spectrometer with an Ion Source based on Porous Silicon Under Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Martynov, Igor; Kuzishchin, Yury; Dovzhenko, Dmitriy; Kotkovskii, Genadii; Chistyakov, Alexander

    Nowadays surface assisted laser desorption/ionization is widely used in different analytical methods. Some of the most interest methods are based on laser irradiation of nanostructured surfaces, porous silicon (pSi) in particular. This method already proved itself in mass spectrometry due to the combination of high sensitivity and possibility of investigation of small molecules because of the absence of the influence of a substrate on the ion signal. In this work we present summarized results of our investigations dedicated to the use of the surface assisted laser desorption/ionization on pSi in ion mobility spectrometry (IMS), which is one of the most promising analytical methods in the area of fast detection of low concentrations of organic molecules. We use trinitrotoluene (TNT) as a substance to be investigated. Obtained results show that TNT ionization mechanism under laser irradiation is complicated and relates both to the electron emission process from the pSi surface and subsequent ion-molecular reactions in gas phase and to the surface proton transfer as well.

  11. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  12. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  13. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  14. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    NASA Astrophysics Data System (ADS)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p < 0.05). However, there is no significant difference in TSP and PM10 between the treatment with air cleaner and the control without air cleaner (p > 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p < 0.05). Based on the results obtained from this study, it was concluded that the air cleaner had a positive reduction effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  15. DETERMINATION OF ION AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF PRODUCT ION MASS SPECTRA USING AN ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTROMETER AND AN ION CORRELATION PROGRAM

    EPA Science Inventory

    Exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of ions greater in mass by 1 and 2 Da than the monoisotopic ion are independent and complementary physical properties useful for istinguishing among ion compositions possible for a given nominal mass. U...

  16. Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Laakso, L.; Kulmala, M.

    2006-08-01

    A new mathematical model describing air ion balance was developed and tested. It has improved approximations and includes dry deposition of ions onto the forest canopy. The model leads to an explicit algebraic solution of the balance equations. This allows simple calculation of both the ionization rate and the average charge of aerosol particles from measurements of air ions and aerosol particles, with some parameters of the forest. Charged aerosol particles are distinguished from cluster ions by their size, which exceeds 1.6 nm diameter. The relative uncertainty of the ionization rate is about the same or less than the relative uncertainties of the measurements. The model was tested with specific air ion measurements carried out simultaneously at two heights at the Hyytiälä forest station, Finland. Earlier studies have shown a difference in the predictions of the ionization rate in the Hyytiälä forest when calculated in two different ways: based on the measurements of the environmental radioactivity and based on the air ion and aerosol measurements. The new model explains the difference as a consequence of neglecting dry deposition of ions in the earlier models. The ionization rate during the 16 h campaign was 5.6±0.8 cm-3 s-1 at the height of 2 m and 3.9±0.2 cm-3 s-1 at the height of 14 m, between the tops of the trees. The difference points out the necessity to consider the height variation when the ionization rate is used as a parameter in studies of ion-induced nucleation. Additional results are some estimates of the parameters of air ion balance. The recombination sink of cluster ions on the ions of opposite polarity made up 9-13%, the sink on aerosol particles 65-69%, and the sink on forest canopy 18-26% of the total sink of cluster ions. The average lifetime of cluster ions was about 130 s for positive and about 110 s for negative ions. At the height of 2 m, about 70% of the space charge of air was carried by aerosol particles, and at the height of 14

  17. Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer

    SciTech Connect

    Kowalski, Michael P.; Barbee, Troy W. Jr.; Heidemann, Klaus F.; Gursky, Herbert; Rife, Jack C.; Hunter, William R.; Fritz, Gilbert G.; Cruddace, Raymond G.

    1999-11-01

    We have fabricated the four flight gratings for a sounding rocket high-resolution spectrometer using a holographic ion-etching technique. The gratings are spherical (4000-nm radius of curvature), large (160 mmx90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. Using an atomic force microscope, we examined the surface characteristics of the first grating before and after multilayer coating. The average roughness is approximately 3 Aa rms after coating. Using synchrotron radiation, we completed in efficiency calibration map over the wavelength range 225-245 Aa. At an angle of incidence of 5 degree sign and a wavelength of 232 Aa, the average efficiency in the first inside order is 10.4{+-}0.5%, and the derived groove efficiency is 34.8{+-}1.6%. These values exceed all previously published results for a high-density grating. (c) 1999 Optical Society of America.

  18. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  19. On the high-resolution mass analysis of the product ions in tandem time-of-flight (TOF/TOF) mass spectrometers using a time-dependent re-acceleration technique.

    PubMed

    Kurnosenko, Sergey; Moskovets, Eugene

    2010-01-01

    The time-dependent reacceleration of product ions produced as a result of dissociation of a single precursor ion in a tandem time-of-flight mass spectrometer is considered for the first time. Analytical expressions for the shapes of electric pulses bringing all the kinetic energies of the product ions to the same value are derived for two cases: forward acceleration mode and deceleration, followed by re-acceleration in the reversed direction (reversed mode). Secondary time-of-flight focusing resulting from the re-acceleration in the reversed mode is shown to be mass-dependent and, when averaged over a wide mass range, the focusing is tight enough to provide mass resolution exceeding 10,000. After time-dependent re-acceleration, additional compression of the ion packet width leading to better mass resolution can be obtained by decelerating the ions in a constant field.

  20. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649