Science.gov

Sample records for air ionization chamber

  1. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  2. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  3. PTRAC File Utilization for Calculation of Free-Air Ionization Chamber Correction Factors by MCNPX

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír

    2014-06-01

    A free-air ionization chamber is used as a standard of photon air-kerma. Several correction factors are applied to the air-kerma value. Correction factors for electron loss (kloss) and for additional ionization current caused by photon scatter (ksc), photon fluorescence (kfl), photon transmission through diaphragm edge (kdtr), and photon scatter from the surface of the diaphragm aperture (kdsc) were determined by the MCNPX code utilizing information stored in Particle Track (PTRAC) output files. Individual steps of the procedure are described and the calculated values of the correction factors are presented. The values are in agreement with the correction factors published in a literature for similar free-air chambers.

  4. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  5. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  6. Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method.

    PubMed

    Lin, Uei-Tyng; Chu, Chien-Hau

    2006-05-01

    Monte Carlo method was used to simulate the correction factors for electron loss and scattered photons for two improved cylindrical free-air ionization chambers (FACs) constructed at the Institute of Nuclear Energy Research (INER, Taiwan). The method is based on weighting correction factors for mono-energetic photons with X-ray spectra. The newly obtained correction factors for the medium-energy free-air chamber were compared with the current values, which were based on a least-squares fit to experimental data published in the NBS Handbook 64 [Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chambers. National Bureau Standards Handbook, No. 64. US Government Printing Office, Washington, DC, pp. 1-16; Chen, W.L., Su, S.H., Su, L.L., Hwang, W.S., 1999. Improved free-air ionization chamber for the measurement of X-rays. Metrologia 36, 19-24]. The comparison results showed the agreement between the Monte Carlo method and experimental data is within 0.22%. In addition, mono-energetic correction factors for the low-energy free-air chamber were calculated. Average correction factors were then derived for measured and theoretical X-ray spectra at 30-50 kVp. Although the measured and calculated spectra differ slightly, the resulting differences in the derived correction factors are less than 0.02%.

  7. Monte Carlo Simulation in the Optimization of a Free-Air Ionization Chamber for Dosimetric Control in Medical Digital Radiography

    SciTech Connect

    Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C. M.; Montano, L. M.

    2008-08-11

    During the earliest tests of a free-air ionization chamber a poor response to the X-rays emitted by several sources was observed. Then, the Monte Carlo simulation of X-rays transport in matter was employed in order to evaluate chamber behavior as X-rays detector. The photons energy deposition dependence with depth and its integral value in all active volume were calculated. The obtained results reveal that the designed device geometry is feasible to be optimized.

  8. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  9. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    NASA Astrophysics Data System (ADS)

    Poirier, Aurélie; Douysset, Guilhem

    2006-10-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  10. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  11. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  12. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    NASA Astrophysics Data System (ADS)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  13. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  14. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  15. Quantification of static magnetic field effects on radiotherapy ionization chambers

    NASA Astrophysics Data System (ADS)

    Agnew, J.; O’Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  16. Quantification of static magnetic field effects on radiotherapy ionization chambers.

    PubMed

    Agnew, J; O'Grady, F; Young, R; Duane, S; Budgell, G J

    2017-03-07

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  17. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  18. Liquid-filled ionization chamber temperature dependence

    NASA Astrophysics Data System (ADS)

    Franco, L.; Gómez, F.; Iglesias, A.; Pardo, J.; Pazos, A.; Pena, J.; Zapata, M.

    2006-05-01

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a ˜20C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27×10-2 K-1 for an operation electric field of 1.67×106 V m-1 has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  19. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  20. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  1. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-08-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  2. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  3. Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms.

    PubMed

    Maehata, Itsumi; Hayashi, Hiroaki; Kimoto, Natsumi; Takegami, Kazuki; Okino, Hiroki; Kanazawa, Yuki; Tominaga, Masahide

    2016-07-01

    We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %.

  4. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  5. Zero-Net-Charge Air Ionizer

    NASA Technical Reports Server (NTRS)

    Woods, W. R., Jr.

    1985-01-01

    Instrument monitors air supplied by air ionizer and regulates ionizer to ensure net charge neutral. High-impedance electrometer and nulling control amplifier regulate output of air ionizer. Primarily intended to furnish ionized air having no net charge, instrument adaptable to generating air with positive or negative net charge is so desired. Useful where integrated circuit chips are manufactured, inspected, tested or assembled.

  6. Performance of electret ionization chambers in magnetic field.

    PubMed

    Kotrappa, P; Stieff, L R; Mengers, T F; Shull, R D

    2006-04-01

    Electret ionization chambers are widely used for measuring radon and radiation. The radiation measured includes alpha, beta, and gamma radiation. These detectors do not have any electronics and as such can be introduced into magnetic field regions. It is of interest to study the effect of magnetic fields on the performance of these detectors. Relative responses are measured with and without magnetic fields present. Quantitative responses are measured as the magnetic field is varied from 8 kA/m to 716 kA/m (100 to 9,000 gauss). No significant effect is observed for measuring alpha radiation and gamma radiation. However, a significant systematic effect is observed while measuring beta radiation from a 90Sr-Y source. Depending upon the field orientation, the relative response increased from 1.0 to 2.7 (vertical position) and decreased from 1.0 to 0.60 (horizontal position). This is explained as due to the setting up of a circular motion for the electrons by the magnetic field, which may increase or decrease the path length in air depending upon the experimental configuration. It is concluded that these ionization chambers can be used for measuring alpha (and hence radon) and gamma radiation in the range of magnetic fields studied. However, caution must be exercised if measuring beta radiation.

  7. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  8. Radiation damage to tetramethylsilane and tetramethylgermanium ionization chambers

    SciTech Connect

    Hoshi, Y.; Higuchi, M.; Oyama, K. . Dept. of Applied Physics)

    1994-08-01

    Two detector media suitable for a warm liquid, ionization chamber filled with tetramethylsilane (TMS) and tetramethylgermanium (TMG) were exposed to [gamma] radiation form a [sup 60]Co source up to dose 579 Gray and 902 Gray, respectively. The electron lifetimes and the free ion yields were measured as a function of accumulated radiation dose. A similar behavior of the electron lifetimes and the free ion yields with increasing radiation does was observed between the TMS and TMG ionization chambers.

  9. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  10. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-07

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  11. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  12. Segmented ionization chambers for beam monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio; Cirio, Roberto; Donetti, Marco; Marchetto, Flavio; Pittà, Giuseppe; Lavagno, Marco; La Rosa, Vanessa

    2015-05-01

    Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.

  13. Stability of A-150 plastic ionization chamber response over a ~30 year period

    SciTech Connect

    Kroc, Thomas K.; Lennox, Arlene J.; /Fermilab

    2007-08-01

    At the NIU Institute for Neutron Therapy at Fermilab, the clinical tissue-equivalent ionization chamber response is measured every treatment day using a cesium source that was configured to match readings obtained at the National Bureau of Standards. Daily measurements are performed in air using the air-to-tissue dose conversion factors given in AAPM Report no. 7. The measured exposure calibration factors have been tabulated and graphed as a function of time from 1978 to present. For A-150 plastic ionization chambers, these factors exhibit a sinusoidal variation with a period of approximately one year and amplitude of {+-} 1%. This variation, attributable to the hygroscopic nature of A-150 plastic, is correlated with the relative humidity of the facility, and is greater than the humidity corrections for gas described in the literature. Our data suggest that chamber calibration should be performed at least weekly to accommodate these variations.

  14. EML pulse ionization chamber systems for /sup 222/Rn measurements

    SciTech Connect

    Fisenne, I M; Keller, H W

    1985-03-01

    Radon measurements have been performed with pulse ionization chambers at the Environmental Measurements Laboratory (EML) for over 35 years. This report describes the evolution of radon measurement systems, with emphasis on the continuous quality control efforts at EML. 38 refs., 3 figs., 3 tabs.

  15. A magnetically levitated electrode ionization chamber of the noncontact measurement type

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshiro; Yoshimura, Atsushi

    2002-04-01

    A new type of ionization chamber with levitated electrode has been developed. In this ionization chamber, an ion-collection electrode levitates in the air without getting any physical support from the insulator. The electrode is charged by an electrostatic charger without physical contact. The charge of the electrode is read out at a Faraday cage periodically at a given time interval without physical contact. Because its electrode levitates, the ionization chamber produces no background current caused by leaks or piezo current. In addition, as the charging of its electrode and the read-out of its charge are carried out without physical contact, no irregular charge or contact potential difference due to the chattering between electrode and contact point occurs. Through experiments, it was found that this ionization chamber was able to measure the γ-ray dose such as the environmental radiation with a high degree of sensitivity. The minimum detectable value of ionization current when accumulated for 1 h is about 1.3×10 -17 A.

  16. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    NASA Astrophysics Data System (ADS)

    Andersson, Jonas; Tölli, Heikki

    2011-01-01

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min-1. The liquids used as sensitive media in the chambers were isooctane (C8H18) and tetramethylsilane (Si(CH3)4). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  17. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams.

    PubMed

    Andersson, Jonas; Tölli, Heikki

    2011-01-21

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min(-1). The liquids used as sensitive media in the chambers were isooctane (C(8)H(18)) and tetramethylsilane (Si(CH(3))(4)). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  18. Ionization chamber gradient effects in nonstandard beam configurations

    SciTech Connect

    Bouchard, Hugo; Seuntjens, Jan; Carrier, Jean-Francois; Kawrakow, Iwan

    2009-10-15

    Purpose: For the purpose of nonstandard beam reference dosimetry, the current concept of reporting absorbed dose at a point in water located at a representative position in the chamber volume is investigated in detail. As new nonstandard beam reference dosimetry protocols are under development, an evaluation of the role played by the definition of point of measurement could lead to conceptual improvements prior to establishing measurement procedures. Methods: The present study uses the current definition of reporting absorbed dose to calculate ionization chamber perturbation factors for two cylindrical chamber models (Exradin A12 and A14) using the Monte Carlo method. The EGSnrc based user-code EGS lowbar chamber is used to calculate chamber dose responses of 14 IMRT beams chosen to cause considerable dose gradients over the chamber volume as previously used by Bouchard and Seuntjens [''Ionization chamber-based reference dosimetry of intensity modulated radiation beams,'' Med. Phys. 31(9), 2454-5465 (2004)]. Results: The study shows conclusively the relative importance of each physical effect involved in the nonstandard beam correction factors of 14 IMRT beams. Of all correction factors involved in the dosimetry of the beams studied, the gradient perturbation correction factor has the highest magnitude, on average, 11% higher compared to reference conditions for the Exradin A12 chamber and about 5% higher for the Extradin A14 chamber. Other perturbation correction factors (i.e., P{sub wall}, P{sub stem}, and P{sub cel}) are, on average, less than 0.8% different from reference conditions for the chambers and beams studied. The current approach of reporting measured absorbed dose at a point in water coinciding with the location of the centroid of the chamber is the main factor responsible for large correction factors in nonstandard beam deliveries (e.g., intensity modulated radiation therapy) reported in literature. Conclusions: To reduce or eliminate the magnitude

  19. Neutron Dosimetry Using a Tissue-Equivalent Ionization Chamber.

    DTIC Science & Technology

    1980-05-01

    procedures are described, and correction factors discussed. /’ On a montg et v~rifiA un systtme de niesure d’oZz la dose ou le kerma tissulaire neutronique ...tube 3.8 cm in diameter. At the same time, it is advantageous to keep the active volume as large as possible in order to maximize sensitivity. The...CHAMBER The construction of the FWT TE Ionization chamber is Illustrated in figure 1. The active volume lies between the central electrode and the

  20. a Liquid Ionization Chamber as Monitor in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Berghöfer, Th.; Engler, J.; Milke, J. M.; Hörandel, J. R.; Hartmann, G. H.

    2006-04-01

    First measurements with a prototype liquid ionization chamber are described to be applied as an online-monitor for intensity modulated radiotherapy. The detector consists of 480 individual electronic channels which allow parallel read-out of radiation induced currents at frequencies exceeding 10 Hz. Dose gradients in the direction of leaf movement of a multileaf collimator have been measured and a reconstruction method for individual leaf positions has been developed. The achieved reconstruction accuracy will be described.

  1. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    SciTech Connect

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  2. Monte Carlo aided design of an improved well-type ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Bohm, Tim D.; Micka, John A.; De Werd, Larry A.

    2007-04-15

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well-type ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, an improved well-type ionization chamber for low energy, low dose rate brachytherapy sources is designed using Monte Carlo transport calculations to aid in the design process. The design improvements are the elimination of the air density induced over-response effect seen in other air-communicating chambers for low energy photon sources, and a larger signal strength (response or current) for {sup 103}Pd and {sup 125}I based seeds. A prototype well chamber based on the Monte Carlo aided design but using graphite coated acrylic walls rather than the design basis air equivalent plastic (C-552) walls was constructed and experimentally evaluated. The prototype chamber produced an 85% stronger signal when measuring a commonly used {sup 103}Pd seed and a 26% stronger signal when measuring a commonly used {sup 125}I seed when compared to another commonly used well chamber. The normalized P{sub TP} corrected chamber response is, at most, 1.3% and 2.4% over unity for air densities/pressures corresponding to an elevation of 3048 m (10 000 feet) above sea level for the commonly used {sup 103}Pd and {sup 125}I based seeds respectively. Comparing calculated and measured chamber responses for common {sup 103}Pd and {sup 125}I based brachytherapy seeds show agreement within 0.6% and 0.2%, respectively. We conclude that Monte Carlo transport calculations accurately model the response of this new well chamber and in general can be used to predict the response of well chambers. The prototype chamber built in this work responds as predicted by the Monte Carlo calculations.

  3. Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Crop, F.; Lacornerie, T.; Vandevelde, F.; Reynaert, N.

    2013-04-01

    Liquid ionization chambers (LICs) offer an interesting tool in the field of small beam dosimetry, allowing better spatial resolution and reduced perturbation effects. However, some aspects remain to be addressed, such as the higher recombination and the effects from the materials of the detector. Our aim was to investigate these issues and their impact. The first step was the evaluation of the recombination effects. Measurements were performed at different SSDs to vary the dose per pulse, and the collection efficiency was obtained. The BEAMnrc code was then used to model the Cyberknife head. Finally, the liquid ionization chamber itself was modelled using the EGSnrc-based code Cavity allowing the evaluation of the influence of the volume and the chamber materials. The liquid ionization charge collection efficiency is approximately 0.98 at 1.5 mGy pulse-1, the highest dose per pulse that we have measured. Its impact on the accuracy of output factors is less than half a per cent. The detector modelling showed a significant contribution from the graphite electrode, up to 6% for the 5 mm collimator. The dependence of the average electronic mass collision stopping power of iso-octane with beam collimation is negligible and thus has no influence on output factor measurements. Finally, the volume effect reaches 5% for the small 5 mm collimator and becomes much smaller (<0.5%) for diameters above 10 mm. LICs can effectively be used for small beam relative dosimetry as long as adequate correction factors are applied, especially for the electrode and volume effects.

  4. Comparison of ionization chamber efficiencies for activity measurements.

    PubMed

    Schrader, H; Svec, A

    2004-01-01

    The calibration of ionization chamber measuring systems in terms of activity is described. The energy-dependent efficiency curves of three chambers at the Bureau International des Poids et Mesures, the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt are determined and compared using a fitting procedure for the experimental radionuclide efficiencies by the Microsoft (MS) EXCEL Solver program. An estimation of the uncertainty of the efficiency curves and the deviations of experimental and calculated radionuclide efficiencies are given. By this fitting method, discrepancies in the efficiency determination can be detected at a level of about one percent. Systematic deviations entering into the calculations either from emission probabilities per decay or from absolute activity standardization are discussed.

  5. Amplitude distribution of ionization jerks in ionization-chamber ASK-1 according long-term measurements

    NASA Astrophysics Data System (ADS)

    Timofeev, Vladislav

    2016-07-01

    As part of the Yakut complex systems by measuring the intensity of cosmic rays has a unique device spherical - ionization chamber ASK-1 with a lead screen thickness of 12 cm. The camera allows you to explore the physical characteristics of the so-called "ionization jerks " - sharp increases ionization current caused by the passage through the device much ionizing particles of cosmic origin. Due to a large increase in current nuclear cascade "showers", formed mainly by particles of cosmic rays in the camera screen. Over the entire period of observation (50 years old) camera ASK-1 was registered 59125 aftershocks. Their nature and properties still does not sufficiently studied, especially in medium and large amplitudes.

  6. SU-E-T-525: Ionization Chamber Perturbation in Flattening Filter Free Beams

    SciTech Connect

    Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2015-06-15

    Purpose: Changing the characteristic of a photon beam by mechanically removing the flattening filter may impact the dose response of ionization chambers. Thus, perturbation factors of cylindrical ionization chambers in conventional and flattening filter free photon beams were calculated by Monte Carlo simulations. Methods: The EGSnrc/BEAMnrc code system was used for all Monte Carlo calculations. BEAMnrc models of nine different linear accelerators with and without flattening filter were used to create realistic photon sources. Monte Carlo based calculations to determine the fluence perturbations due to the presens of the chambers components, the different material of the sensitive volume (air instead of water) as well as the volume effect were performed by the user code egs-chamber. Results: Stem, central electrode, wall, density and volume perturbation factors for linear accelerators with and without flattening filter were calculated as a function of the beam quality specifier TPR{sub 20/10}. A bias between the perturbation factors as a function of TPR{sub 20/10} for flattening filter free beams and conventional linear accelerators could not be observed for the perturbations caused by the components of the ionization chamber and the sensitive volume. Conclusion: The results indicate that the well-known small bias between the beam quality correction factor as a function of TPR20/10 for the flattening filter free and conventional linear accelerators is not caused by the geometry of the detector but rather by the material of the sensitive volume. This suggest that the bias for flattening filter free photon fields is only caused by the different material of the sensitive volume (air instead of water)

  7. Analytical form of current-voltage characteristic of parallel-plane, cylindrical and spherical ionization chambers with homogeneous ionization

    NASA Astrophysics Data System (ADS)

    Stoyanov, D. G.

    2007-11-01

    The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.

  8. DETAIL OF REPRESSURIZATION AIR PIPE, ALTITUDE CHAMBER L, FACING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF RE-PRESSURIZATION AIR PIPE, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. Differences between signal currents for both polarities of applied voltages on cavity ionization chambers

    NASA Astrophysics Data System (ADS)

    Takata, N.

    2001-06-01

    A difference between the surface potential of the charge collecting electrode and that of the guard electrode of an ionization chamber changes the charge collecting volume depending on the applied voltage. If the difference is large, the saturation curve of the signal current shows a maximum at a low applied voltage. Even when there is no electrical or mechanical defect, the signal current from a parallel plate ionization chamber irradiated with 60Co γ-rays increases or decreases with the applied voltage beyond the recombination region depending on the polarity of the applied voltage. The variation in the signal current is explained as a result of the change in the stopping power of air due to the acceleration or deceleration of secondary electrons. These electrons are emitted from the polarizing electrode towards the collector as a result of Compton scattering. In a range of low applied voltages, the signal current from a cylindrical ionization chamber is expected to be smaller for a negative applied voltage than for a positive applied voltage. This is because epithermal electrons are expected to have a higher probability of being lost by back diffusion than positive ions which are originally produced in a thermal equilibrium condition. An experimental result, however, showed no difference in the polarities of the applied voltage. The result may be explained as a consequence of the fact that epithemal electrons do not drift for long distances and maintain their energies.

  10. An automated ionization chamber for secondary radioactivity standards.

    PubMed

    Fitzgerald, R

    2010-01-01

    I report on the operation and characterization of a new ionization chamber system, "AUTOIC", featuring a commercial digital electrometer and a commercial robotic sample changer. The relative accuracy of the electrometer was improved significantly beyond the manufacturer's specifications through an in-house calibration of the various ranges, applied via software. The measurement precision and repeatability of the system have been determined by measuring multiple samples of the same radionuclide over the span of two or three years. The linearity of the system was examined by following the decay of (99m)Tc, (99)Mo and (133)Xe sources for up to 19 half-lives and determining half-life values. All of these values agree with the accepted literature values, within their combined uncertainties.

  11. A multiwire ionization chamber readout circuit using current mirrors

    NASA Astrophysics Data System (ADS)

    Rawnsley, W. R.; Smith, D.; Moskven, T.

    1997-01-01

    A circuit which utilizes current mirrors has been used to apply high voltage bias to the wires of a multiwire ionization chamber (MWIC) profile monitor while still allowing measurement of the beam-induced ion-electron currents collected on the wires. Bias voltages of up to 250 V have been used while wire currents over a range of 0.5 nA to 50 nA have been measured. The circuit is unipolar but can be designed for positive or negative bias. The mirrors also provide a current gain of 10, reducing the effects of transistor leakage and extending the useful range of the circuit to lower signal levels. A module containing 32 Wilson current mirrors has been constructed and is used with a MWIC monitor in TRIUMF's Parity experiment beamline.

  12. Assessment of ionization chamber correction factors in photon beams using a time saving strategy with PENELOPE code.

    PubMed

    Reis, C Q M; Nicolucci, P

    2016-02-01

    The purpose of this study was to investigate Monte Carlo-based perturbation and beam quality correction factors for ionization chambers in photon beams using a saving time strategy with PENELOPE code. Simulations for calculating absorbed doses to water using full spectra of photon beams impinging the whole water phantom and those using a phase-space file previously stored around the point of interest were performed and compared. The widely used NE2571 ionization chamber was modeled with PENELOPE using data from the literature in order to calculate absorbed doses to the air cavity of the chamber. Absorbed doses to water at reference depth were also calculated for providing the perturbation and beam quality correction factors for that chamber in high energy photon beams. Results obtained in this study show that simulations with phase-space files appropriately stored can be up to ten times shorter than using a full spectrum of photon beams in the input-file. Values of kQ and its components for the NE2571 ionization chamber showed good agreement with published values in the literature and are provided with typical statistical uncertainties of 0.2%. Comparisons to kQ values published in current dosimetry protocols such as the AAPM TG-51 and IAEA TRS-398 showed maximum percentage differences of 0.1% and 0.6% respectively. The proposed strategy presented a significant efficiency gain and can be applied for a variety of ionization chambers and clinical photon beams.

  13. A two-dose-rate method for general recombination correction for liquid ionization chambers in pulsed beams

    NASA Astrophysics Data System (ADS)

    Tölli, Heikki; Sjögren, Rickard; Wendelsten, Mikael

    2010-08-01

    The correction for general recombination losses in liquid ionization chambers (LICs) is more complex than that in air-filled ionization chambers. The reason for this is that the saturation charge in LICs, i.e. the charge that escapes initial recombination, depends on the applied voltage. This paper presents a method, based on measurements at two different dose rates in a pulsed beam, for general recombination correction in LICs. The Boag theory for pulsed beams is used and the collection efficiency is determined by numerical methods which are equivalent to the two-voltage method used in dosimetry with air-filled ionization chambers. The method has been tested in experiments in water in a 20 MeV electron beam using two LICs filled with isooctane and tetramethylsilane. The dose per pulse in the electron beam was varied between 0.1 mGy/pulse and 8 mGy/pulse. The relative standard deviations of the collection efficiencies determined with the two-dose-rate method ranged between 0.1% and 1.5%. The dose-rate variations of the general recombination corrected charge measured with the LICs are in excellent agreement with the corresponding values obtained with an air-filled plane parallel ionization chamber.

  14. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams

    SciTech Connect

    Hill, Robin; Mo Zhao; Haque, Mamoon; Baldock, Clive

    2009-09-15

    In this work, the authors have evaluated ten different ionization chambers for the relative dosimetry of kilovoltage x-ray beams in the energy range of 50-280 kVp. Percentage depth doses in water and relative detector response (in Solid Water and in air) were measured for each of the x-ray beams studied using a number of chambers. Measured depth dose data were compared with Monte Carlo calculated depth doses using the EGSnrc Monte Carlo package and the BEAMnrc user code. The accuracy of the phase space files generated by BEAMnrc was verified by calculating the half-value layer and comparing with the measured half-value layer of each x-ray beam. The results indicate that the Advanced Markus, Markus, NACP, and Roos parallel plate ionization chambers were suitable for the measurement of depth dose data in this beam quality range with an uncertainty of less than 3%, including in the regions close to the water surface. While the relative detector response of the Farmer and scanning thimble chambers exhibited a better energy response, they were not suitable for depth dose measurements in the first 5 mm below the water surface with differences of up to 12% in the surface dose measurement for the 50 kVp x-ray beam. These differences were due to dose artifacts generated by the chamber size and the dose gradient. However, at depths greater than 5 mm, the Farmer and thimble scanning chambers gave uncertainties of less than 3% for the depth dose measurements for all beam energies. The PTW PinPoint 31006 chamber was found to give varying dose differences of up to 8% depending on the x-ray beam energy; this was attributed to the steel central electrode. The authors recommend that one of the parallel plate ionization chambers investigated be used to determine depth dose data for kilovoltage x-ray beams in the energy range studied and give correct dose information close to the surface and at depth in the water phantom.

  15. NIST Ionization Chamber "A" Sample-Height Corrections.

    PubMed

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.

  16. A well-type ionization chamber geometric correction factor

    NASA Astrophysics Data System (ADS)

    Meiler, R. J.; Sibata, C. H.; Ho, A. K.; de Souza, C.; Shin, K. H.

    1996-07-01

    To correct for the influence of source configuration on the measured activity of spherical and cylindrical brachytherapy sources, a geometric correction factor was calculated for the Standard Imaging HDR-1000 well-type ionization chamber. A Fortran program modelled each source as a lattice of point sources. Because of the cylindrical symmetry of the well chamber, it could be uniquely modelled by point detectors along the perimeter of the radial plane of the detection volume. Path lengths were calculated and attenuation factors were applied to each source - detector point combination individually. The total dose rate at each detection point was found through a Sievert summation of the point source contributions. For sources with identical activities, a correction factor of was calculated, equal to the ratio of the dose rate of the cylindrical source to that of the sphere. Experimental verification using a Nuclear Associates 67-809 series cylindrical source and an Amersham spherical source yielded a correction factor of .

  17. Investigation of electron-loss and photon scattering correction factors for FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-02-01

    The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.

  18. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  19. The calibration and use of plane-parallel ionization chambers for dosimetry of electron beams.

    PubMed

    Almond, P R; Xu, Z; Li, H; Park, H C

    1995-08-01

    The AAPM TG 39 protocol has proposed three different methods of calibrating plane-parallel ionization chambers, i.e., in-phantom irradiation with a high-energy electron beam and in-phantom and in-air 60Co irradiation. To verify the consistency of the three methods, we have measured Ngaspp values using each of these techniques for the five most commonly used plane-parallel chambers considered by the protocol. Our results demonstrate that the measured Ngaspp values for the three different methods for any of the chambers agree to within +/- 0.6%. Once Ngaspp was measured, the determination of absorbed dose for electron beams with different energies for an AECL Therac 20 and Philips SL25 was carried out according to the AAPM TG 39 protocol. The results show that the determination of the absorbed dose outputs for any of the five chambers agree to within +/- 0.7% for electron-beam energies of 4-20 MeV if all five chambers had Ngaspp values determined by the electron-beam method. The uncertainties are well within the expected error for these approaches.

  20. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers.

    PubMed

    Ogata, Toshiyuki; Uehara, Kazuyuki; Nakayama, Masao; Tsudou, Shinji; Masutani, Takashi; Okayama, Takanobu

    2016-07-01

    In this study, we aimed to compare the polarity correction factor in ionization chambers for flattening filter free (FFF) photon beams and flattening filter (FF) beams. Measurements were performed with both 6 and 10 MV FFF and FF beams. Five commercial ionization chambers were evaluated: PTW TN30013; IBA Dosimetry CC01, CC04, and CC13; and Exradin A12S. Except for the CC01 ionization chamber, the other four chambers showed less than a 0.3 % difference in the polarity effect between the FFF and the FF beams. The CC01 chamber showed a strong field-size-dependence, unlike the other chambers. The polarity effect for all chambers with FFF beams did not change with the dose rate. Except in the case of the CC01 chamber, the difference in the polarity effect between FFF and FF beams was not significant.

  1. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  2. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  3. Feasibility of calibrating elongated brachytherapy sources using a well-type ionization chamber

    SciTech Connect

    Meigooni, Ali S.; Awan, Shahid B.; Dou, Kai

    2006-11-15

    Recently, elongated brachytherapy sources (active length >1 cm) have become commercially available for interstitial prostate implants. These sources were introduced to improve the quality of brachytherapy procedures by eliminating the migration and seed bunching associated with loose seed-type implants. However, the inability to calibrate elongated brachytherapy sources with the Wide-Angle Free-Air Chamber (WAFAC) used by the National Institute of Standards and Technology (NIST) hinders the experimental determination of dosimetric parameters of these source types. In order to resolve this shortcoming, an interim solution has been introduced for calibration of elongated brachytherapy sources using a commercially available well-type ionization chamber. The feasibility of this procedure was examined by calibrating RadioCoil{sup Tm} {sup 103}Pd sources with active lengths ranging from 1 to 7 cm.

  4. The response of prototype plane-parallel ionization chambers in small megavoltage x-ray fields.

    PubMed

    McNiven, Andrea L; Mulligan, Matt; Kron, Tomas; Battista, Jerry J

    2006-11-01

    Accurate small-field dosimetry has become important with the use of multiple small fields in modern radiotherapy treatments such as IMRT and stereotactic radiosurgery. In this study, we investigate the response of a set of prototype plane-parallel ionization chambers, based upon the Exradin T11 chamber, with active volume diameters of 2, 4, 10, and 20 mm, exposed to 6 MV stereotactic radiotherapy x-ray fields. Our goal was to assess their usefulness for accurate small x-ray field dose measurements. The relative ionization response was measured in circular fields (0.5 to 4 cm diameter) as compared to a 10 x 10 cm2 reference field. A large discrepancy (approximately 40%) was found between the relative response in the smallest plane-parallel chamber and other small volume dosimeters (radiochromic film, micro-metal-oxide-semiconductor field-effect transistor and diode) used for comparison. Monte Carlo BEAMnrc simulations were used to simulate the experimental setup in order to investigate the cause of the under-response and to calculate appropriate correction factors that could be applied to experimental measurements. It was found that in small fields, the air cavity of these custom-made research chambers perturbed the secondary electron fluence profile significantly, resulting in decreased fluence within the active volume, which in turn produces a chamber under-response. It is demonstrated that a large correction to the p(fl) correction factor would be required to improve dosimetric accuracy in small fields, and that these factors could be derived using Monte Carlo simulations.

  5. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed.

  6. Monte Carlo calculation of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Zhilin, Chen; Shuming, Peng; Dan, Meng; Yuehong, He; Heyi, Wang

    2014-10-01

    Energy deposition in ionization chambers for tritium measurements has been theoretically studied using Monte Carlo code MCNP 5. The influence of many factors, including carrier gas, chamber size, wall materials and gas pressure, has been evaluated in the simulations. It is found that β rays emitted by tritium deposit much more energy into chambers flowing through with argon than with deuterium in them, as much as 2.7 times higher at pressure 100 Pa. As chamber size gets smaller, energy deposition decreases sharply. For an ionization chamber of 1 mL, β rays deposit less than 1% of their energy at pressure 100 Pa and only 84% even if gas pressure is as high as 100 kPa. It also indicates that gold plated ionization chamber results in the highest deposition ratio while aluminum one leads to the lowest. In addition, simulations were validated by comparison with experimental data. Results show that simulations agree well with experimental data.

  7. Determinations of the correction factors for small fields in cylindrical ionization chambers based on measurement and numerical calculation

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Choi, Wonhoon; Park, Sungho; Choi, Jin Hwa; Park, Suk Won; Bak, Jino

    2015-07-01

    We investigated the volume averaging effect for air-filled cylindrical ionization chambers to determine the correction factors in a small photon field for a given chamber. We measured output factors with several cylindrical ionization chambers, and by using a mathematical method similar to deconvolution, we modeled the non-constant and inhomogeneous exposure function in the cavity of the chamber. The parameters in the exposure function and the correction factors were determined by solving a system of equations that we had developed by using the measured data and the geometry of the given chamber. The correction factors (CFs) were very similar to those obtained from Monte Carlo (MC) simulations. For example, the CFs in this study were found to be 1.116 for PTW31010 and 1.0225 for PTW31016 while the CFs obtained from MC simulations were reported as being approximately between 1.17 and 1.20 for PTW31010 and between 1.02 and 1.06 for PTW31016 in a 6-MV photon beam of 1 × 1 cm2. Furthermore, the method of deconvolution combined with the MC result for the chamber's response function showed a similar CF for PTW 30013, which was reported as 2.29 and 1.54 for a 1 × 1 cm2 and a 1.5 × 1.5 cm2 field size, respectively. The CFs from our method were similar, 2.42 and 1.54. In addition, we report CFs for PTW30013, PTW31010, PTW31016, IBA FC23-C, and IBA CC13. As a consequence, we suggest the use of our method to measure the correct output factor by using the fact that an inhomogeneous exposure causes a volume averaging effect in the cavity of air-filled cylindrical ionization chamber. The result obtained by using our method is very similar to that obtained from MC simulations. The method we developed can easily be applied in clinics.

  8. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  9. Matrix:. AN Innovative Pixel Ionization Chamber for On-Line Beam Monitoring in Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Pitta', G.; Donetti, M.; Cirio, R.; La Rosa, A.; Garella, M. A.; Giordanengo, S.; Marchetto, F.; Peroni, C.

    2006-04-01

    The control of intensity, position and shape of clinical beams are key issues in the treatment of tumours using hadron beams, especially in the case of active dose distribution systems. For this purpose an innovative pixel ionization chamber, named MATRIX, has been designed, constructed and tested. The chamber is conceived to be located very near the patient to precisely monitor the beam parameters used to verify the treatment planning specifications. MATRIX operates in air and is characterized by a 21 × 21 cm2 sensitive area subdivided in 1024 pixels of 6.5 × 6.5 mm2. To minimize the amount of material crossed by the beam, the anode is made of a 50 μm kapton foil, with a deposit of 17 μm copper on each side. A very sensitive electronics is used for the readout, based on a dedicated chip. In this paper the construction of the chamber and the very positive results of the first beam tests are described.

  10. On line high dose static position monitoring by ionization chamber detector for industrial gamma irradiators.

    PubMed

    Rodrigues, Ary A; Vieira, Jose M; Hamada, Margarida M

    2010-01-01

    A 1 cm(3) cylindrical ionization chamber was developed to measure high doses on line during the sample irradiation in static position, in a (60)Co industrial plant. The developed ionization chamber showed to be suitable for use as a dosimeter on line. A good linearity of the detector was found between the dose and the accumulated charge, independently of the different dose rates caused by absorbing materials.

  11. Construction of an ionization chamber for the measurement of dose of low energy x-rays

    SciTech Connect

    Perez, Y. B. Alcantara; Jimenez, F. J. Ramirez

    2008-08-11

    We designed and constructed the prototype of an ionization chamber to measure the dose of an X-ray tube with Molybdenum anode. This X-ray tube is located in the Physics department at CINVESTAV and is used for medical physics purposes in the imaging area. The ionization chamber is designed to measure doses on biological samples exposed to X-rays and will be applied in radiation protection studies.

  12. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  13. Performances of a VLSI wide dynamic range current-to-frequency converter for strip ionization chambers

    NASA Astrophysics Data System (ADS)

    Bonazzola, G. C.; Cirio, R.; Donetti, M.; Marchetto, F.; Mazza, G.; Peroni, C.; Zampieri, A.

    1998-02-01

    In this paper we report on the design and test of a 14-channel VLSI chip to perform the current to frequency conversion for parallel plate strip ionization chambers. The chambers measure the intensity and the geometrical characteristics of a therapeutical beam.

  14. Polarity and ion recombination corrections in continuous and pulsed beams for ionization chambers with high Z chamber walls.

    PubMed

    Aldosary, Ghada; Safigholi, Habib; Song, William; Seuntjens, Jan; Sarfehnia, Arman

    2017-03-01

    In this work, the response of Farmer-type ionization chambers fitted with high atomic number (Z) walls is studied, and results of the effects of such walls on polarity and ion recombination correction factors in both continuous and pulsed beams are presented. Measurements were made in a continuous Co-60 beam and a pulsed 6MV linac beam using an Exradin-A12 ionization chamber fitted with the manufacturer's C-552 plastic wall, as well as geometrically identical walls made from aluminum, copper and molybdenum. The bias voltage was changed between 10values (range: +50 to +560V). Ion recombination was determined from Jaffé plots and by using the "two-voltage technique". The saturation charge measured with each chamber wall was extrapolated from Jaffé plots. Additionally, the effect of different wall materials on chamber response was studied using MCNP simulations. Results showed that the polarity correction factor is not significantly affected by changes in chamber wall material (within 0.1%). Furthermore, although the saturation charges greatly vary with each chamber wall material, and charge multiplication increases for higher atomic number wall materials, the standard methods of calculating ion recombination yielded results that differed by only 0.2%. Therefore, polarity and ion recombination correction factors are not greatly affected by the chamber wall material. The experimental saturation charges for all the different wall materials agreed well within the uncertainty with MCNP simulations. The breakdown of the linear relationship in Jaffé plots that was previously reported to exist for conventional chamber walls was also observed with the different wall materials.

  15. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  16. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  17. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  18. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  19. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  20. Laser-induced air ionization microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, N.; Yang, J.; Zhu, X.

    2006-06-01

    A nonlinear scanning imaging method is introduced that uses the highly localized air ionization initiated by photoelectrons from the sample surface under irradiation of femtosecond laser pulses as the microprobe. This type of microscopy with realizable subdiffraction spatial resolution has the unique advantages of being highly sensitive to both elemental and topographical properties of the samples of interest. Microscopic images of a femtosecond laser ablated micropattern, the cross section and the side view profile of an optical fiber, and a fresh mulberry leaf are obtained with this imaging technique, which demonstrate this technique's broad applicability in microscopic studies of different materials.

  1. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  2. Theoretical study of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-01

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  3. Dosimetric characterization of a large area pixel-segmented ionization chamber.

    PubMed

    Amerio, S; Boriano, A; Bourhaleb, F; Cirio, R; Donetti, M; Fidanzio, A; Garelli, E; Giordanengo, S; Madon, E; Marchetto, F; Nastasi, U; Peroni, C; Piermattei, A; Sanz Freire, C J; Sardo, A; Trevisiol, E

    2004-02-01

    A pixel-segmented ionization chamber has been designed and built by Torino University and INFN. The detector features a 24 x 24 cm2 active area divided in 1024 independent cylindrical ionization chambers and can be read out in 500 micros without introducing dead time; the digital charge quantum can be adjusted between 100 fC and 800 fC. The sensitive volume of each single ionization chamber is 0.07 cm3. The purpose of the detector is to ease the two-dimensional (2D) verifications of fields with complex shapes and large gradients. The detector was characterized in a PMMA phantom using 60Co and 6 MV x-ray photon beams. It has shown good signal linearity with respect to dose and dose rate to water. The average sensitivity of a single ionization chamber was 2.1 nC/Gy, constant within 0.5% over one month of daily measurements. Charge collection efficiency was 0.985 at the operating polarization voltage of 400 V and 3.5 Gy/min dose rate. Tissue maximum ratio and output factor have been compared with a Farmer ionization chamber and were found in good agreement. The dose profiles have been compared with the ones obtained with an ionization chamber in water phantom for the field sizes supplied by a 3D-Line dynamic multileaf collimator. These results show that this detector can be used for 2D dosimetry of x-ray photon beams, supplying a good spatial resolution and sensibly reducing the time spent in dosimetric verification of complex radiation fields.

  4. Nuclear signal simulation applied to gas ionizing chambers

    SciTech Connect

    Coulon, Romain; Dumazert, Jonathan

    2015-07-01

    Particle transport codes used in detector simulation allow the calculation of the energy deposited by charged particles produced following an interaction. The pulses temporal shaping is more and more used in nuclear measurement into pulse shape analysis techniques. A model is proposed in this paper to simulate the pulse temporal shaping and the associated noise level thanks to the output track file PTRAC provides by Monte-Carlo particle transport codes. The model has been dedicated to ion chambers and more especially for High Pressure Xenon chambers HPXe where the pulse shape analysis can resolve some issues regarding with this technology as the ballistic deficit phenomenon. The model is fully described and an example is presented as a validation of such full detector simulation. (authors)

  5. An improved leakage current compensation technique for a 4πγ ionization chamber system

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kawada, Y.; Nazaroh

    1996-02-01

    A current integration method using a small capacitor is most commonly employed for precise measurements of small currents from 4πγ ionization chambers for the secondary standardization of radionuclides. An improved technique has been developed for eliminating the possible effect due to the electrical leakage and/or current loss across the feedback capacitor used in the integration of the ionization current. This method is based upon charge integration from a fixed negative level of potential to nearly the same level of positive potential via the zero point. The validity of this method is demonstrated for some typical applications of 4πγ ionization chamber systems. This technique can contribute to the improvement of accuracy and to the extension of the intensity range of radioactive source in 4πγ ionization measurement.

  6. Determination of (137)Cs half-life with an ionization chamber.

    PubMed

    Juget, Frédéric; Nedjadi, Youcef; Buchillier, Thierry; Bochud, François; Bailat, Claude

    2016-12-01

    The half-life of (137)Cs was measured with an ionization chamber by following the decay of 5 sources over a 30 years period between 1983 and 2013. The ratio between the ionization chamber current for the cesium sources and (226)Ra source was used for the half-life calculation. The value found for the (137)Cs half-life is 10,955.2±10.7 days, where the uncertainty evaluation combines type A and B for one standard deviation.

  7. Update of NIST half-life results corrected for ionization chamber source-holder instability.

    PubMed

    Unterweger, M P; Fitzgerald, R

    2014-05-01

    As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties.

  8. Construction of a fast ionization chamber for high-rate particle identification

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Ahn, S.; Bardayan, D. W.; Chipps, K. A.; Manning, B.; Pain, S. D.; Peters, W. A.; Schmitt, K. T.; Smith, M. S.; Strauss, S. Y.

    2014-07-01

    A new gas-filled ionization chamber for high count rate particle identification has been constructed and commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL). To enhance the response time of the ionization chamber, a design utilizing a tilted entrance window and tilted electrodes was adopted, which is modified from an original design by Kimura et al. [1]. A maximum counting rate of 700 , 000 particles per second has been achieved. The detector has been used for several radioactive beam measurements performed at the HRIBF.

  9. Design of ionization chambers for use in teaching x-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Ross, Joseph

    Ionization chambers are one of the most commonly used radiation detectors in radiation dosimetry. In this project, nine ionization chambers were constructed for use in teaching radiation dosimetry to students of health physics, medical physics, nuclear engineering, and related disciplines. The components of these detectors such as detector wall composition, type of electrode, type of leakage current guard ring, fill gas pressure, and interior conducting material differ in a systematic way to show that various parameters of ionization chamber design can affect the response of the detectors. Each of these variables was investigated using an 80 keV x-ray machine to determine detector response in terms of absorbed dose, HVL, polarity, and operating voltage. Of the components studied, wall thickness and composition was found to be the most sensitive variable. The pressure inside the chamber did have a significant effect on the amount of charge collected and the absorbed dose. The leakage current guard ring was not a critical component for this ionization chamber design.

  10. Pulse mode readout techniques for use with non-gridded industrial ionization chambers

    SciTech Connect

    Popov, Vladimir E.; Degtiarenko, Pavel V.

    2011-10-01

    Highly sensitive readout technique for precision long-term radiation measurements has been developed and tested in the Radiation Control Department at Jefferson Lab. The new electronics design is used to retrieve ionization data in a pulse mode. The dedicated data acquisition system works with M=Audio Audiophile 192 High-Definition 24-bit/192 kHz audio cards, taking data in continuous waveform recording mode. The on-line data processing algorithms extract signals of the ionization events from the data flow and measure the ionization value for each event. Two different ion chambers are evaluated. The first is a Reuter-Stokes Argon-filled (at 25 atm) High Pressure Ionization Chamber (HPIC), commonly used as a detector part in many GE Reuter-Stokes instruments of the RSS series. The second is a VacuTec Model 70181, 5 atm Xenon-filled ionization chamber. Results for both chambers indicate that the techniques allow using industrial ICs for high sensitivity and precision long-term radiation measurements, while at the same time providing information about spectral characteristics of the radiation fields.

  11. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  12. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  13. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  14. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Flotation material and air chambers. 183.222 Section 183.222 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  15. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  16. SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy

    SciTech Connect

    Togno, M; Wilkens, J; Menichelli, D

    2014-06-01

    Purpose: To characterize an ionization chamber array technology with high spatial resolution and high charge collection efficiency for external beam radiotherapy. Methods: The prototype under test is a linear array of air vented ionization chambers developed by IBA Dosimetry, consisting of 80 pixels with 3.5mm spatial resolution and 4mm{sup 3} sensitive volume. The detector was characterized in a plastic phantom with {sup 60} Co radiation and MV X-rays from an ELEKTA Agility LINAC (with flattened and unflattened beam qualities). Bias voltage was varied in order to evaluate charge collection efficiency. A commercial array of ionization chambers (MatriXX Evolution, IBA Dosimetry) and an amorphous silicon flat panel in direct conversion configuration were used as references. Results: Repeatability (0.4%) and stability under continuous gamma irradiation (0.3%) are very good, in spite of low active volume and sensitivity (∼200pC/Gy). Charge collection efficiency is higher than 99% already at 150V with ∼2mGy dose per pulse, leading to a ±1.1% sensitivity change with dose per pulse in the range 0.09-2mGy (covering all flattened and unflattened applications). Measured dose profiles are in agreement with MatriXX for fields larger than 2×2cm{sup 2}, in which case the linear array offers a much better characterization of the penumbra region. Down to 1×1cm{sup 2}, measured profiles are in very good agreement with the flat panel. Conclusion: The array represents a valuable tool for the characterization of treatment fields in which high spatial resolution is required, together with the dosimetric performance of air vented ionization chambers. Such a technology would be particularly valuable in association with advanced treatment modalities such as rotational radiotherapy, stereotactic treatments (even with unflattened beam qualities) and proton therapy, due to the insensitivity of the chambers on dose per pulse. In the future, a two dimensional prototype based on this

  17. Air Velocity Mapping of Environmental Test Chambers

    DTIC Science & Technology

    1989-07-01

    variable that must be measured for the evaluations of the air diffusion performance index (ADPI), or the thermal comfort indices such as predicted mean...altered. The impact of asymmetrical airflow patterns undoubtedly affect human thermal comfort votes. The standardized 6 technique described in this...report could be easily employed prior to or along with specific studies requiring precise air velocity data, and coupled with human thermal comfort surveys

  18. Development of a pixel ionization chamber for beam monitor in proton therapy

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Garella, M. A.; Attili, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Mazza, G.; Meyroneinc, S.; Pecka, A.; Peroni, C.; Pittà, G.

    2007-03-01

    We have developed a detector to be used as monitor for proton therapy beam lines. The detector is a 2-D parallel plate ionization chamber, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix. The detector characterization is presented.

  19. Absorbed dose dependence of the correction factors for ionization chamber cable irradiation effects.

    PubMed

    Campos, L L; Caldas, L V

    1991-03-01

    A simple method was developed, for possible use by hospital physicists, to evaluate the irradiation effects on cables and connectors during large-radiation-field dosimetry with ionization chambers and to determine correction factors for the used system or geometry. This method was based on the absorbed dose dependence of the correction factor.

  20. A VLSI analog pipeline read-out for electrode segmented ionization chambers

    NASA Astrophysics Data System (ADS)

    Bonazzola, G. C.; Bouvier, S.; Cirio, R.; Donetti, M.; Figus, M.; Marchetto, F.; Peroni, C.; Pernigotti, E.; Thenard, J. M.; Zampieri, A.

    1999-05-01

    We report on the design and test of a 32-channel VLSI chip based on the analog pipeline memory concept. The charge from a strip of a ionization chamber, is stored as a function of time in a switched capacitor array. The cell reading can be done in parallel with the writing.

  1. a Solution for Dosimetry and Quality Assurance in Imrt and Hadrontherapy:. the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Coda, S.; Nastasi, U.; Belletti, S.; Ghedi, B.; Boriano, A.; Cirio, R.; Luparia, A.; Marchetto, F.; Peroni, C.; Sanz Freire, C. J.; Donetti, M.; Madon, E.; Trevisiol, E.; Urgesi, A.

    2002-11-01

    The new radiotherapy techniques require new detectors to monitor and measure the clinical field. The Intensity Modulated Radiation Therapy (IMRT) techniques like step and shoot, sliding window, dynamic wedge or scanning beam add the time variable to the treatment field. In this case the water phantom with a single ionization chamber moving inside the field needs very long measurement time. Linear arrays of ionization chambers or diodes measure the field only along a line. 2D detectors like radiographic or gafchromic film are not suitable to be used as on line detectors. We have developed, built and tested an ionization chamber segmented in pixels that measure the dose in a plane at several points. Every channel has a dedicated electronic chain that digitizes the collected charge and data from all the channels are sent to the computer that performs the data acquisition. One read out cycle is very fast allowing to measure in real time the fluency and the shape of the field. The chamber can be used in two different ways, as monitor chamber and as relative dosemeter. A description of the detector, the electronics, and test results with both photon and hadron beams will be reported.

  2. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  3. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  4. SU-E-T-623: Polarity Effects for Small Volume Ionization Chambers in Cobalt-60 Beams

    SciTech Connect

    Xu, Y; Bhatnagar, J; Huq, M Saiful

    2015-06-15

    Purpose: To investigate the polarity effects for small volume ionization chambers in {sup 60}Co gamma-ray beams using the Leksell Gamma Knife Perfexion. Methods: Measurements were made for 7 small volume ionization chambers (a PTW 31016, an Exradin A14, 2 Capintec PR0-5P, and 3 Exradin A16) using a PTW UNIDOSwebline Universal Dosemeter and an ELEKTA solid water phantom with proper inserts. For each ion chamber, the temperature/pressure corrected electric charge readings were obtained for 16 voltage values (±50V, ±100V, ±200V, ±300V, ±400V, ±500V, ±600V, ±700V). For each voltage, a five-minute leakage charge reading and a series of 2-minute readings were continuously taken during irradiation until 5 stable signals (less than 0.05% variation) were obtained. The average of the 5 reading was then used for the calculation of the polarity corrections at the voltage and for generating the saturation curves. Results: The polarity effects are more pronounced at high or low voltages than at the medium voltages for all chambers studied. The voltage dependence of the 3 Exradin A16 chambers is similar in shape. The polarity corrections for the Exradin A16 chambers changes rapidly from about 1 at 500V to about 0.98 at 700V. The polarity corrections for the 7 ion chambers at 300V are in the range from 0.9925 (for the PTW31016) to 1.0035 (for an Exradin A16). Conclusion: The polarity corrections for certain micro-chambers are large even at normal operating voltage.

  5. Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

    NASA Astrophysics Data System (ADS)

    Smit, K.; van Asselen, B.; Kok, J. G. M.; Aalbers, A. H. L.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2013-09-01

    In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

  6. Particle and energy dependence of the statistical fluctuations of an ionization chamber current

    NASA Astrophysics Data System (ADS)

    Purghel, Lidia; Vaˆlcov, Nicolae

    For the purpose of getting more detailed information concerning the processes leading to statistical fluctuations of an ionization chamber current, measurements with various radioactive sources have been done. By using the experimental arrangement described elsewhere [A. Necula et al. Nucl. Instr. and Meth. A 332 (1993) 501] the mean value and the standard deviation of the ionization current for 3H (water vapours), 60Co (sealed source), 85Kr (gas), 204Tl (8 mm diameter disk) and 239Pu (10 mm diameter disk), beta, gamma and alpha sources have been measured. A statistical model explaining the experimental data is proposed.

  7. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  8. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    SciTech Connect

    Müller, O. Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-15

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  9. Hard disk drive based microsecond X-ray chopper for characterization of ionization chambers and photodiodes.

    PubMed

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  10. Hard disk drive based microsecond x-ray chopper for characterization of ionization chambers and photodiodes

    NASA Astrophysics Data System (ADS)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-03-01

    A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.

  11. Some specific features of ionization chamber calibrations in linac x-ray beams at the LNE-LNHB.

    PubMed

    Delaunay, F; Ostrowsky, A

    2007-05-07

    The purpose of this note is to give some details about the modus operandi employed today to calibrate ionization chambers in radiotherapy linac photon beams at the Laboratoire National Henri Becquerel (LNE-LNHB). Some specific features are described: first the equipment (including the external monitoring ionization chambers), second the calculations of the profile or radial non-uniformity correction factors (up to 0.5% effect for commonly used ionization chambers) and finally the calculations to get the calibration coefficients for customer beam qualities.

  12. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    NASA Astrophysics Data System (ADS)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  13. A numerical model of initial recombination for high-LET irradiation: Application to liquid-filled ionization chambers

    NASA Astrophysics Data System (ADS)

    Aguiar, P.; Pardo-Montero, J.

    2016-02-01

    In this paper we present a numerical model of initial recombination in media irradiated with high linear energy transfer (LET) ions, which relies on an amorphous track model of ionization of high LET particles, and diffusion, drift and recombination of ionized charge carriers. The model has fundamental applications for the study of recombination in non-polar liquids, as well as practical ones, like in modelling hadrontherapy dosimetry with ionization chambers. We have used it to study the response of liquid-filled ionization chambers to hadrontherapy beams: dependence of initial recombination on ion species, energy and applied external electric field.

  14. Calibration of the KRISS reference ionization chamber for certification of ²²²Rn gaseous sources.

    PubMed

    Lee, J M; Lee, K B; Lee, S H; Oh, P J; Park, T S; Kim, B C; Lee, M S

    2013-11-01

    A primary measurement system for gaseous (222)Rn based on the defined solid angle counting method has recently been constructed at KRISS and the reference ionization chamber used to measure the activities of gamma-emitting single radionuclides was adopted as a secondary standard for gaseous (222)Rn. A 20 mL flame-sealed glass ampoule source from the primary measurement system was used to calibrate the ionization chamber for (222)Rn. The (222)Rn efficiency of the ionization chamber was compared with that calculated by using a photon energy-dependent efficiency curve and that measured by using a standard (226)Ra solution. From the comparisons we draw the conclusion that the reference ionization chamber for gamma-emitting radionuclides can be a suitable secondary measurement system for gaseous (222)Rn sources.

  15. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  16. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    NASA Astrophysics Data System (ADS)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  17. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  18. Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Bencardino, R.; Oberstedt, S.; Pomp, S.

    2012-05-01

    Ionization chambers with Frisch grids have been very successfully applied to neutron-induced fission-fragment studies during the past 20 years. They are radiation resistant and can be easily adapted to the experimental conditions. The use of Frisch grids has the advantage to remove the angular dependency from the charge induced on the anode plate. However, due to the Grid Inefficiency (GI) in shielding the charges, the anode signal remains slightly angular dependent. The correction for the GI is, however, essential to determine the correct energy of the ionizing particles. GI corrections can amount to a few percent of the anode signal. Presently, two contradicting correction methods are considered in literature. The first method adding the angular-dependent part of the signal to the signal pulse height; the second method subtracting the former from the latter. Both additive and subtractive approaches were investigated in an experiment where a Twin Frisch-Grid Ionization Chamber (TFGIC) was employed to detect the spontaneous fission fragments (FF) emitted by a 252Cf source. Two parallel-wire grids with different wire spacing (1 and 2 mm, respectively), were used individually, in the same chamber side. All the other experimental conditions were unchanged. The 2 mm grid featured more than double the GI of the 1 mm grid. The induced charge on the anode in both measurements was compared, before and after GI correction. Before GI correction, the 2 mm grid resulted in a lower pulse-height distribution than the 1 mm grid. After applying both GI corrections to both measurements only the additive approach led to consistent grid independent pulse-height distributions. The application of the subtractive correction on the contrary led to inconsistent, grid-dependent results. It is also shown that the impact of either of the correction methods is small on the FF mass distributions of 235U(nth, f).

  19. Argon/propane ionization-chamber dosimetry for mixed x-ray/neutron fields.

    PubMed

    Schulz, R J

    1978-01-01

    The photoneutrons produced by high-energy x-ray machines can diffuse through the mazes usually employed at the treatment-room entrance and readily penetrate the lead-lined doors used for x-ray shielding. The measurement of these neutrons in the presence of x-rays and the determination of dose equivalent poses a problem for which there is currently no standard method of solution. In order to separate x-ray dose from neutron dose, the author employed an ionization chamber alternately filled with argon or propane. The response characteristics of this chamber to x-ray and neutrons are described. Quality factors were determined from a calculated neutron spectrum. As a result of these measurements, a 10-in. polyethylene door was added to the entranceway of a 25-MV linear accelerator.

  20. An ionization chamber and a Si-detector for lead-210 chronology

    NASA Astrophysics Data System (ADS)

    Farid, M.; El-Daoushy, A. F.; El-Daoushy, M. F. A. F.

    1981-09-01

    Radon emanation and isotopic dilution techniques were used for the determination of 226Ra and "total" 210Pb in sediment samples. The "unsupported" 210Pb were then used to construct lake-sediment chronologies. Polonium was extracted at 550-600°C, transferred to chloride, then plated by self-deposition on silver disks. Memory effects due to adsorption of polonium on glass were carefully studied. Si-detectors were used for α-activity measurements. Background studies indicated instabilities in a Si-detector when left without bias for longer periods. The radium was extracted with the help of a barium carrier, which not only made the extraction quantitative but also eliminated the adsorption of radium on the glasses used. The 222Rn was measured in an ionization chamber. The gas counter with its modified filling system allowed both low level measurements of sediment samples and counter calibration with comparably active 226Ra standards. The increasing background of the ionization chamber was explained by the adsorption of 222Rn on the surfaces of the counter. The background was reduced by the removal of the adsorbed atoms. Normalization for discrimination shifts, due to electronegative impurities, is required in case the counting gas is impure.

  1. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  2. High-rate axial-field ionization chamber for particle identification of Radioactive beams

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Vadas, Justin; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B.; Chbihi, A.; Famiano, M.; Bischak, M.

    2017-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. The detector is optimized for use with low-energy radioactive beams (<) 5 MeV/A. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a rise-time of 60 to 70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate while providing a time resolution of 6 to 8 ns. Tests with an α source establish the detector energy resolution as 8 % for an energy deposit of 3.5 MeV. Beam tests indicate that the detector is an effective tool for the characterization of low-energy radioactive beams at beam intensities up to 3 x 105 ions/s. Supported by the U.S. DOE under Award # DE-FG02-88ER-40404 and the NSF under Grant No. 1342962.

  3. High-rate axial-field ionization chamber for particle identification of radioactive beams

    NASA Astrophysics Data System (ADS)

    Vadas, J.; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B. B.; Chbihi, A.; Famiano, M.; Bischak, M. M.; deSouza, R. T.

    2016-11-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. Optimized for use with low-energy radioactive beams (< 5 MeV / A) the detector presents only three 0.5 μm/cm2 foils to the beam in addition to the detector gas. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a risetime of 60-70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate and providing a time resolution of 6-8 ns. Tests with an α source establish the detector energy resolution as ∼ 8 % for an energy deposit of ∼3.5 MeV. The energy resolution with beams of 2.5 and 4.0 MeV/A 39K ions and the dependence of the energy resolution on beam intensity is measured. At an instantaneous rate of 3×105 ions/s the energy resolution has degraded to 14% with a pileup of 12%. The good energy resolution of this detector at rates up to 3×105 ions/s makes it an effective tool in the characterization of low-energy radioactive beams.

  4. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  5. [The combined action of octafluoropropane and bipolar ionized air].

    PubMed

    Anisimov, B V; Mukhamedieva, L N; Ivanova, S M; Markin, A A; Mikos, K N; Naĭdina, V P

    2006-01-01

    An experiment with Wistar male rats was to look into the action of octafluoropropane (OFP, of 50 microg/m(3)) combined with bipolar ionized air (BIA) at a concentration of light air ions of 60,000 para-air in cm(3). The chamber experiment was 43 days long. Intoxication by OFP reduced body mass, as well as the erythrocyte count and hemoglobin level in peripheral blood. As for BIA, it appeared to bring these indices back to their normal values. Erythrocyte metabolism underwent phase-by-phase shifts; but breathing BIA mitigated these shifts markedly. As regards to erythrocyte metabolism in intoxicated animals, BIA had a compensatory effect Changes in the biochemical profile of blood plasma make us think, that BIA counteracts the OFP damaging action on the myocardium and, at the same time, aggravates impairment of metabolism in the liver and, probably, kidney. Variations in the spectrum and total content of higher fatty acids in the lung in the experiment were more pronounced in the event of exposure to OFP+BIA than to OFP alone. Also, the combined exposure increased the level of laurinic acid. Histological investigations of the liver, spleen, myocardium, trachea and the lung attested to the dystrophic damage of the liver, spleen plethora and reticular hyperplasia, and slight cloudy swelling of the myocardium attributed to OFP. After 14 days since the end of the experiment, histological changes were much less dramatic; in 39 days after the experiment all the changes were gone with the exception of weak emphysematosis. BIA had no effect on animals in the absence of OFP; neither was there any significant difference between control (intact) animals and those who breathed BIA in laboratory. To conclude, 50 microg/m(3) of OFP which falls far short of the existing maximum permissible levels, a strong toxic action on animals. Aside from mitigation of the OFP toxic action on erythrocytes and myocardium, BIA, when breathed with a long time, aggravated the metabolic disorders in

  6. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    USGS Publications Warehouse

    Bartkow, M.E.; Kennedy, K.E.; Huckins, J.N.; Holling, N.; Komarova, T.; Muller, J.F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. ?? 2006 Elsevier Ltd. All rights reserved.

  7. Technical Note: Experimental determination of the effective point of measurement of two cylindrical ionization chambers in a clinical proton beam

    SciTech Connect

    Sugama, Yuya; Nishio, Teiji; Onishi, Hiroshi

    2015-07-15

    Purpose: IAEA TRS-398 notes that cylindrical ionization chambers are preferred for reference proton dosimetry. If a cylindrical ionization chamber is used in a phantom to measure the dose as a function of depth, the effective point of measurement (EPOM) must be taken into account. IAEA TRS-398 recommends a displacement of 0.75 times the inner cavity radius (0.75R) for heavy ion beams. Theoretical models by Palmans and by Bhullar and Watchman confirmed this value. However, the experimental results vary from author to author. The purpose of this study is to accurately measure the displacement and explain the past experimental discrepancies. Methods: In this work, we measured the EPOM of cylindrical ionization chambers with high accuracy by comparing the Bragg-peak position obtained with cylindrical ionization chambers (PTW 30013, PTW 31016) to that obtained using a plane-parallel ionization chamber (PTW 34045). Results: The EPOMs of PTW 30013 and 31016 were shifted by 0.92 ± 0.07 R with R = 3.05 mm and 0.90 ± 0.14 R with R = 1.45 mm, respectively, from the reference point toward the source. Conclusions: The EPOMs obtained were greater than the value of 0.75R proposed by the IAEA TRS-398 and the analytical results.

  8. Design and use of an exposure chamber for air pollution studies on microarthropods

    SciTech Connect

    Andre, H.M.

    1982-10-01

    An exposure chamber for studying the effects of air pollution on microarthropods is described. The chamber was tested on a corticolous mite, Humerobates rostrolamellatus Grandjean (Acari: Oribatida). In the absence of pollutants, the overall mortality was about 2.5%.

  9. Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field

    NASA Astrophysics Data System (ADS)

    Smit, K.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2014-04-01

    At the UMC Utrecht a prototype MR-linac has been installed. The system consists of an 8 MV Elekta linear accelerator and a 1.5 T Philips MRI system. This paper investigates the performance of the IC PROFILER™, a multi-axis ionization chamber array, in a 1.5 T magnetic field. The influence of the magnetic field on the IC PROFILER™ reproducibility, dose response linearity, pulse rate frequency dependence, power to electronics, panel orientation and ionization chamber shape were investigated. The linearity, reproducibility, pulse rate frequency dependence, panel orientation and ionization chamber shape are unaffected by the magnetic field. When the measurements results are normalized to the centre reference chamber, the measurements can commence unaltered. Orientation of the ionization chambers in the magnetic field is of importance, therefore caution must be taken when comparing or normalizing results from several different axes. IC PROFILER™ dose profiles were compared with film dose profiles obtained simultaneously in the MR-linac. Deviation between the film and the IC PROFILER™ data was caused by the noise in the film, indicating correct performance of the IC PROFILER™ in the transverse 1.5 T magnetic field.

  10. [Theoretical investigation of the saturation correction for ionization chambers irradiated with pulsed beams of arbitrary pulse length].

    PubMed

    Karsch, Leonhard; Pawelke, Jörg

    2014-09-01

    In ionization chambers, not all released charge is collected due to the recombination of charge carriers. This effect is taken into account by the saturation correction factor kS. A physical description of the correction factor has been established for pulsed radiation. However, it is only accurate when the pulse length is short compared with the collection time of the ionization chamber. In this paper we develop a description of the saturation correction for radiation pulses of arbitrary length. For this, a system of partial differential equations is solved iteratively. The numerical solutions are verified experimentally for a Roos ionization chamber (PTW TM34001) exposed to a pulsed electron beam. The results of this iterative procedure describe the experimental data well. The calculations are also possible for beam structures which are experimentally hard to get and thereby contribute to a better understanding and correct description of the saturation correction at arbitrary pulse length. Among other things the pulse length dependent distributions of the charge carriers in the ionization chamber is calculated, inclusive of the transition to the conditions prevailing in the case of continuous irradiation. Furthermore is shown that the formula for kS established by Hochhäuser and Balk is applicable even at arbitrary pulse length, if pulse duration dependent effective values are used for the parameters a and p. These effective values have been determined for the Roos chamber at pulse lengths up to 300 μs.

  11. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    NASA Astrophysics Data System (ADS)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  12. Unexpected bias in NIST 4πγ ionization chamber measurements.

    PubMed

    Unterweger, M P; Fitzgerald, R

    2012-09-01

    In January of 2010, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) has not been stable. The positioning ring that determines the height of the sample in the reentrant tube of the IC has slowly shifted during 35 years of use. This has led to a slow change in the calibration factors for the various radionuclides measured by this instrument. The changes are dependent on γ-ray energy and the time the IC was calibrated for a given radionuclide. A review of the historic data with regard to when the calibrations were done has enabled us to approximate the magnitude of the changes with time. This requires a number of assumptions, and corresponding uncertainty components, including whether the changes in height were gradual or in steps as will be shown in drawings of sample holder. For calibrations the changes in calibration factors have been most significant for low energy gamma emitters such as (133)Xe, (241)Am, (125)I and (85)Kr. The corrections to previous calibrations can be approximated and the results corrected with an increase in the overall uncertainty. At present we are recalibrating the IC based on new primary measurements of the radionuclides measured on the IC. Likewise we have been calibrating a new automated ionization-chamber system. A bigger problem is the significant number of half-life results NIST has published over the last 35 years that are based on IC measurements. The effect on half-life is largest for long-lived radionuclei, especially low-energy γ-ray emitters. This presentation will review our results and recommend changes in values and/or uncertainties. Any recommendation for withdrawal of any results will also be undertaken.

  13. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    SciTech Connect

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  14. Measurement of absorbed dose-to-water for an HDR {sup 192}Ir source with ionization chambers in a sandwich setup

    SciTech Connect

    Araki, Fujio; Kouno, Tomohiro; Ohno, Takeshi; Kakei, Kiyotaka; Yoshiyama, Fumiaki; Kawamura, Shinji

    2013-09-15

    Purpose: In this study, a dedicated device for ion chamber measurements of absorbed dose-to-water for a Nucletron microSelectron-v2 HDR {sup 192}Ir brachytherapy source is presented. The device uses two ionization chambers in a so-called sandwich assembly. Using this setup and by taking the average reading of the two chambers, any dose error due to difficulties in absolute positioning (centering) of the source in between the chambers is cancelled to first order. The method's accuracy was examined by comparing measurements with absorbed dose-to-water determination based on the AAPM TG-43 protocol.Methods: The optimal source-to-chamber distance (SCD) for {sup 192}Ir dosimetry was determined from ion chamber measurements in a water phantom. The {sup 192}Ir source was sandwiched between two Exradin A1SL chambers (0.057 cm{sup 3}) at the optimal SCD separation. The measured ionization was converted to the absorbed dose-to-water using a {sup 60}Co calibration factor and a Monte Carlo-calculated beam quality conversion factor, k{sub Q}, for {sup 60}Co to {sup 192}Ir. An uncertainty estimate of the proposed method was determined based on reproducibility of measurements at different institutions for the same type of source.Results: The optimal distance for the A1SL chamber measurements was determined to be 5 cm from the {sup 192}Ir source center, considering the depth dependency of k{sub Q} for {sup 60}Co to {sup 192}Ir and the chamber positioning. The absorbed dose to water measured at (5 cm, 90°) on the transverse axis was 1.3% lower than TG-43 values and its reproducibility and overall uncertainty were 0.8% and 1.7%, respectively. The measurement doses at anisotropic points agreed within 1.5% with TG-43 values.Conclusions: The ion chamber measurement of absorbed dose-to-water with a sandwich method for the {sup 192}Ir source provides a more accurate, direct, and reference dose compared to the dose-to-water determination based on air-kerma strength in the TG-43 protocol

  15. The magic cube and the pixel ionization chamber: detectors for monitor and dosimetry of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Boriano, A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Garelli, E.; Giordanengo, S.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Sanz Freire, C. J.; Sardo, A.; Trevisiol, E.

    2003-09-01

    Tumor therapy takes advantage of the energy deposition of radiation to concentrate high doses in the target while sparing healthy tissue. Elective pathologies for highly conformal radiotherapies such as photon Intensity Modulated Radiotherapy (IMRT) and radiotherapy with hadrons are head and neck, eye, prostate and in general all tumors that are either deep or located close to critical organs. In the world there are several centers that are using such techniques and a common problem that is being experienced is the verification of treatment plans and monitoring of the beam. We have designed and built two detectors that allow 2D and 3D measurements of dose and fluence of such beams. The detectors allow measurements on big surfaces, up to 25∗25 cm2. The active media are parallel plate, strip and pixel segmented ionization chambers with front-end Very Large Scale Integration (VLSI) readout and PC based data acquistion. The description of dosimeter, chamber and electronics will be given with results from beam tests and therapy plan verification.

  16. Scintillation properties of N2 and CF4 and performances of a scintillating ionization chamber

    NASA Astrophysics Data System (ADS)

    Lehaut, G.; Salvador, S.; Fontbonne, J.-M.; Lecolley, F.-R.; Perronnel, J.; Vandamme, Ch.

    2015-10-01

    In this work, we studied the emission yields, decay times and coincidence resolving times (CRT) of two gases, nitrogen (N2) and tetrafluoromethane (CF4), used for particle detection in the context of fission products measurement. The set-up was made of an ionization chamber and two photomultiplier tubes (PMTs) placed front-to-front on each side of the active zone of the chamber. Using the photomultiplier tubes, the number of photoelectrons (phe) converted at the photocathodes from the scintillation processes in each gas was quantified and the scintillation time spectra were recorded. A scintillation emission yield of 24 phe MeV-1 with a decay time of τd = 2.5 ns in N2, and 225 phe MeV-1 with τd = 6.2 ns for CF4, has been measured. With our set-up, the coincidence resolving time (σ values) between the two PMTs have been measured using alpha particles at 1.4 ns and 0.34 ns for N2 and CF4, respectively.

  17. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  18. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    PubMed

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  19. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  20. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  1. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  2. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  3. Air entry into the anterior chamber post intravitreal injection of Eylea.

    PubMed

    Lim, Wei Sing; Sikandar, Munir; Jackson, Heather

    2016-07-20

    An 84-year-old man had air entry into the anterior chamber following intravitreal injection. The air bubble was reabsorbed over time without any complications. No further problems occurred with subsequent intravitreal injections.

  4. Super-resolution non-parametric deconvolution in modelling the radial response function of a parallel plate ionization chamber.

    PubMed

    Kulmala, A; Tenhunen, M

    2012-11-07

    The signal of the dosimetric detector is generally dependent on the shape and size of the sensitive volume of the detector. In order to optimize the performance of the detector and reliability of the output signal the effect of the detector size should be corrected or, at least, taken into account. The response of the detector can be modelled using the convolution theorem that connects the system input (actual dose), output (measured result) and the effect of the detector (response function) by a linear convolution operator. We have developed the super-resolution and non-parametric deconvolution method for determination of the cylinder symmetric ionization chamber radial response function. We have demonstrated that the presented deconvolution method is able to determine the radial response for the Roos parallel plate ionization chamber with a better than 0.5 mm correspondence with the physical measures of the chamber. In addition, the performance of the method was proved by the excellent agreement between the output factors of the stereotactic conical collimators (4-20 mm diameter) measured by the Roos chamber, where the detector size is larger than the measured field, and the reference detector (diode). The presented deconvolution method has a potential in providing reference data for more accurate physical models of the ionization chamber as well as for improving and enhancing the performance of the detectors in specific dosimetric problems.

  5. Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT

    SciTech Connect

    Louwe, Robert J. W. Satherley, Thomas; Day, Rebecca A.; Greig, Lynne; Wendling, Markus; Monshouwer, René

    2015-04-15

    Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed software was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This

  6. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications.

  7. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  8. Liquid ionization chamber initial recombination dependence on LET for electrons and photons.

    PubMed

    Johansson, Erik; Andersson, Jonas; Johansson, Lennart; Tölli, Heikki

    2013-06-21

    The possibility of indirect measurements of linear energy transfer (LET) with a liquid ionization chamber (LIC) has been investigated by studying initial recombination losses at different applied voltages. A linear fit is made to the voltage-signal curve and the intersection point of the fit and the voltage-axis is shown to correlate with LET. The LIC applied voltages were 100-700 V, which corresponds to electric field strengths between 0.3 and 2.0 MV m(-1). Several different photon and electron beams have been studied, and by using MCNPX™ the respective LET spectra have been determined. The beam qualities in this study were found to have a fluence averaged LET between 0.17 and 1.67 keV µm(-1) and a corresponding dose averaged LET between 0.97 and 4.62 keV µm(-1). For the experimental data in this study the linear fit method yields consistent results with respect to Monte Carlo simulated LET values. A calibration curve for LET determination is provided for the LIC used in the present work.

  9. Optimization of signal extraction and front-end design in a fast,multigap ionization chamber

    SciTech Connect

    Datte, P.S.; Manfredi, P.F.; Millaud, J.E.; Placidi, M.; Ratti,L.; Speziali, V.; Traversi, G.; Turner, W.C.

    2001-11-05

    This paper discusses the criteria that have been adopted tooptimize the signal processing in a shower detector to be employed as LHCbeam luminosity monitor. The original aspect ofthis instrument is itsablility to operate on a bunch-by-bunch basis. This means that it mustperform accurate charge measurements at a repetition rate of 40 MHz. Thedetector must withstand an integrated dose of 100 Grad, that is, two tothree orders of magnitude beyond those expected in the experiments. Tomeet the above requirements, an ionization chamber consisting of severalgaps of thickness 0.5 mm, filled with a gas that is expected to beradiation resistant, has been designed. Crucial in the development of thesystem is the signal processing, as the electronic noise may set thedominant limitation to the accuracy of the measurement. This is relatedto two aspects. One is the short time available for the chargemeasurement. The second one is the presence of a few meter cable betweenthe detector and the preamplifier, as this must be located out of theregion of highest radiation field. Therefore the optimization of thesignal-to-noise ratio requires that the best configuration of the chambergaps be determined under the constraint of the presence of a cable ofnon-negligible length between detector and preamplifier. The remoteplacement of the amplifying electronics will require that the front-endelectronics be radiation hard although to a lesser extent than thedetector.

  10. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  11. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  12. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer.

    PubMed

    Stasi, M; Giordanengo, S; Cirio, R; Boriano, A; Bourhaleb, F; Cornelius, I; Donetti, M; Garelli, E; Gomola, I; Marchetto, F; Porzio, M; Sanz Freire, C J; Sardo, A; Peroni, C

    2005-10-07

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32x32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24x24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip.The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3x3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3x3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with gamma parameter

  13. D-IMRT verification with a 2D pixel ionization chamber: dosimetric and clinical results in head and neck cancer

    NASA Astrophysics Data System (ADS)

    Stasi, M.; Giordanengo, S.; Cirio, R.; Boriano, A.; Bourhaleb, F.; Cornelius, I.; Donetti, M.; Garelli, E.; Gomola, I.; Marchetto, F.; Porzio, M.; Sanz Freire, C. J.; Sardo, A.; Peroni, C.

    2005-10-01

    Dynamic intensity-modulated radiotherapy (D-IMRT) using the sliding-window technique is currently applied for selected treatments of head and neck cancer at Institute for Cancer Research and Treatment of Candiolo (Turin, Italy). In the present work, a PiXel-segmented ionization Chamber (PXC) has been used for the verification of 19 fields used for four different head and neck cancers. The device consists of a 32 × 32 matrix of 1024 parallel-plate ionization chambers arranged in a square of 24 × 24 cm2 area. Each chamber has 0.4 cm diameter and 0.55 cm height; a distance of 0.75 cm separates the centre of adjacent chambers. The sensitive volume of each single ionization chamber is 0.07 cm3. Each of the 1024 independent ionization chambers is read out with a custom microelectronics chip. The output factors in water obtained with the PXC at a depth of 10 cm were compared to other detectors and the maximum difference was 1.9% for field sizes down to 3 × 3 cm2. Beam profiles for different field dimensions were measured with the PXC and two other types of ionization chambers; the maximum distance to agreement (DTA) in the 20-80% penumbra region of a 3 × 3 cm2 field was 0.09 cm. The leaf speed of the multileaf collimator was varied between 0.07 and 2 cm s-1 and the detector response was constant to better than 0.6%. The behaviour of the PXC was measured while varying the dose rate between 0.21 and 1.21 Gy min-1; the mean difference was 0.50% and the maximum difference was 0.96%. Using fields obtained with an enhanced dynamic wedge and a staircase-like (step) IMRT field, the PXC has been tested for simple 1D modulated beams; comparison with film gave a maximum DTA of 0.12 cm. The PXC was then used to check four different IMRT plans for head and neck cancer treatment: cervical chordoma, parotid, ethmoid and skull base. In the comparison of the PXC versus film and PXC versus treatment planning system, the number of pixels with γ parameter <=1 was 97.7% and 97

  14. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    NASA Astrophysics Data System (ADS)

    Dusciac, D.; Bordy, J.-M.; Daures, J.; Blideanu, V.

    2016-09-01

    In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists' demands for high-energy (6 - 9 MeV) photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors) are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes), a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV) has been built for radiation protection purposes. Due to the specific design of the target, this "realistic" radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  15. Investigation of the initial and volume recombination losses in gamma versatile cylindrical ionization chamber VGIC developed for gamma ray dosimetry

    SciTech Connect

    Fares, M.; Mameri, S.; Abdlani, I.; Negara, K.

    2015-07-01

    A versatile Gamma ionization chambers are used for flow control in systems with gamma nuclear reactors and reprocessing plants in and monitoring atmosphere around these facilities, this in order to protect staff. In the Laboratory Detection and Measures (LDM) Division for Study and Development of Nuclear Instrumentation (DSDNI) of CRNB, we designed, developed and characterized a versatile gamma ionization chamber (VGIC) to study experimentally its characteristics according to the geometry of the electrodes, the volume and pressure of the filler gas for the design of a gamma sealed chamber. The tests were conducted under the IEC (International Electro-technical Commission). In this paper, we present the results obtained in the various nuclear tests for characterization and calibration that we have made on the ionization chamber gamma VGIC prototype developed at our Department. To do this, three irradiators were operated at the Laboratory Calibration (SSDL) of the Department of Medical Physics Nuclear Research Center of Algiers (CRNA). Irradiator intensive gamma ({sup 60}Co: 1.25 MeV), one medium intensity gamma ({sup 137}Cs: 0.662 MeV) and 3rd low intensity ({sup 60}Co). Saturation curves and linearity were identified and the operating range and the sensitivity of the chamber have been deducted. The (I,V) characteristics of the chamber filled, with argon gas at 3 bar (0.3 M pa) pressure, for gamma ray irradiator sources were studied. To do so, the chamber was irradiated with gamma rays using different numbers of gamma sources (i.e. Up to 5). The plateau region is reached above 200 V and the detector operating voltage is found to be 600 V. It is observed that in the plateau region the slope is constant with an increase in the exposure rate. The (1/I, 1/V) and (I, l/V{sup 2}) characteristic curves reveal the presence of the initial and volume recombination losses. The volume recombination losses are found to be smaller than the initial recombination losses. Finally

  16. An experimental setup for the study of the steady air flow in a diesel engine chamber

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín; José Vega, Emilio; Castilla, Alejandro; Marcos, Alberto; María Montanero, José; Barrio, Raúl

    2012-04-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  17. Determination of the thermal neutron flux in a fast neutron beam by use of a boron-coated ionization chamber.

    PubMed

    Lüdemann, L; Matzen, T; Matzke, M; Schmidt, R; Scobel, W

    1995-11-01

    The thermal neutron distribution in slow and fast neutron beams is usually determined using the foil activation method. In this work a small magnesium walled ionization chamber, in which the inner surface of the wall has been coated with 10B to increase the sensitivity for thermal neutrons, is used to estimate the thermal neutron component of the beam. After calibration and determination of the directional response in a thermal neutron beam a comparison with foil activation at different depths in water was performed to investigate the reliability of the ionization measurements. The chamber was used in a computer controlled water phantom to measure the depth and lateral distribution of the thermal neutron dose. With this arrangement two-dimensional scans of the thermal neutrons could be performed quickly and with high accuracy.

  18. Diaphragm correction factors for free-air chamber standards for air kerma in x-rays.

    PubMed

    Burns, D T; Kessler, C

    2009-05-07

    At present, only a correction factor for photon transmission, k(l), is systematically applied for the entrance diaphragm of free-air chamber standards for air kerma. In the present work, the Monte Carlo code PENELOPE is used to re-evaluate k(l) for the BIPM standards and new correction factors are calculated for photon scatter and for fluorescence production in the diaphragm. An additional effect arising from electrons emitted from the diaphragm is shown to be significant at the highest photon energies. The results for the radiation qualities used for international comparisons give a combined diaphragm correction factor k(dia) = 0.9980(3) for the BIPM medium-energy standard at 250 kV. This is significantly different from the factor k(l) = 0.9996(1) in use at present and it might be concluded that differences are likely to exist for all free-air chamber standards. The effect of using a conical taper at the downstream edge of the diaphragm is shown to be negligible for these radiation qualities.

  19. The stability of liquid-filled matrix ionization chamber electronic portal imaging devices for dosimetry purposes.

    PubMed

    Louwe, R J W; Tielenburg, R; van Ingen, K M; Mijnheer, B J; van Herk, M B

    2004-04-01

    This study was performed to determine the stability of liquid-filled matrix ionization chamber (LiFi-type) electronic portal imaging devices (EPID) for dosimetric purposes. The short- and long-term stability of the response was investigated, as well as the importance of factors influencing the response (e.g., temperature fluctuations, radiation damage, and the performance of the electronic hardware). It was shown that testing the performance of the electronic hardware as well as the short-term stability of the imagers may reveal the cause of a poor long-term stability of the imager response. In addition, the short-term stability was measured to verify the validity of the fitted dose-response curve immediately after beam startup. The long-term stability of these imagers could be considerably improved by correcting for room temperature fluctuations and gradual changes in response due to radiation damage. As a result, the reproducibility was better than 1% (1 SD) over a period of two years. The results of this study were used to formulate recommendations for a quality control program for portal dosimetry. The effect of such a program was assessed by comparing the results of portal dosimetry and in vivo dosimetry using diodes during the treatment of 31 prostate patients. The improvement of the results for portal dosimetry was consistent with the deviations observed with the reproducibility tests in that particular period. After a correction for the variation in response of the imager, the average difference between the measured and prescribed dose during the treatment of prostate patients was -0.7%+/-1.5% (1 SD), and -0.6%+/-1.1% (1 SD) for EPID and diode in vivo dosimetry, respectively. It can be concluded that a high stability of the response can be achieved for this type of EPID by applying a rigorous quality control program.

  20. Poster — Thur Eve — 21: Off-axis dose perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam for the PTW microLion and Exradin A1SL ionization chambers

    SciTech Connect

    O'Grady, K; Davis, S D; Papaconstadopoulos, P; Seuntjens, J

    2014-08-15

    A PTW microLion liquid ionization chamber and an Exradin A1SL air-filled ionization chamber have been modeled using the egs-chamber user code of the EGSnrc system to determine their perturbation effects in water in a 5 × 5 cm{sup 2} 18 MV photon beam. A model of the Varian CL21EX linear accelerator was constructed using the BEAMnrc Monte Carlo code, and was validated by comparing measured PDDs and profiles from the microLion and A1SL chambers to calculated results that included chamber models. Measured PDDs for a 5 × 5 cm{sup 2} field for the microLion chamber agreed with calculations to within 1.5% beyond a depth of 0.5 cm, and the A1SL PDDs agreed within 1.0% beyond 1.0 cm. Measured and calculated profiles at 10 cm depth agreed within 1.0% for both chambers inside the field, and within 4.0% near the field edge. Local percent differences increased up to 15% at 4 cm outside the field. The ratio of dose to water in the absence of the chamber relative to dose in the chamber's active volume as a function of off-axis distance was calculated using the egs-chamber correlated sampling technique. The dose ratio was nearly constant inside the field and consistent with the stopping power ratios of water to detector material, but varied up to 3.3% near the field edge and 5.2% at 4 cm outside the field. Once these perturbation effects are fully characterized for more field sizes and detectors, they could be applied to clinical water tank measurements for improved dosimetric accuracy.

  1. SMOG CHAMBERS: A TOOL TO EXAMINE EFFECTS OF PHOTOCHEMICALLY AGED AIR POLLUTANTS ON BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Irradiative exposure chambers or 'Smog chambers' have been used at the University of North Carolina for over 30 years to study photochemically active mixtures of volatile organic compounds and their transformation products (a significant sub-set of Hazardous Air Pollutants, HAPs)...

  2. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    PubMed

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-08

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is < 1% for the MatriXX PT. Therefore the MatriXX(Evolution) should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be > 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.

  3. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    PubMed

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-01

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXXEvolution but utilizes a smaller 2 mm plate spacing instead of 5 mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2 mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXXEvolution, a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXXEvolution can be up to 4%, it is <1% for the MatriXX PT. Therefore the MatriXXEvolution should not be used for QA of PBS for conditions in which ion recombination is not negligible. Farmer chambers should be used with caution for measuring the absolute dose of PBS beams, as the uncertainty of Pion can be <1%; chambers with an electrode spacing of 2 mm or smaller are recommended. PACS number: 87.53.Qc.

  4. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  5. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry.

    PubMed

    Murawski, Ł; Zielczyński, M; Golnik, N; Gryziński, M A

    2014-10-01

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge.

  6. DETECTORS AND EXPERIMENTAL METHODS: Design and construction of the first prototype ionization chamber for CSNS and PA beam loss monitor (BLM) system

    NASA Astrophysics Data System (ADS)

    Xu, Mei-Hang; Tian, Jian-Min; Chen, Chang; Chen, Yuan-Bo; Xu, Tao-Guang; Lu, Shuang-Tong

    2009-02-01

    Design and construction of the first prototype ionization chamber for CSNS and Proton Accelerator (PA) beam loss monitor (BLM) system is reported. The low leakage current (<0.1 pA), good plateau (approx800 V) and linearity range up to 200 Roentgen/h are obtained in the first prototype. All of these give us good experience for further improving the ionization chamber construction.

  7. Effect of air sparging on fate and transport of trichloroethylene in chambers with alfalfa plants

    SciTech Connect

    Zhang, Q.; Hu, J.; Erickson, L.E.; Davis, L.C.

    1997-12-31

    To study the effect of air sparging in soil with trichloroethylene present as a dense nonaqueous phase, air was supplied through pipes installed at the bottom of two chambers planted with alfalfa. Air input rate was 2.14 L/m{sup 2}/day. The fate of trichloroethylene (TCE) was investigated by monitoring TCE concentration in both outflow groundwater and soil gas. Comparison of these results with those of the previous study without air sparging indicates that air sparging appreciably increases the groundwater concentration of TCE. The soil gas at the surface shows even greater concentration difference. The flux of TCE to the atmosphere is increased significantly by air input. Accordingly, the authors can conclude that air sparging improved mass transfer of TCE from the nonaqueous phase to groundwater phase. Air sparging appeared to negatively impact the health of the alfalfa because of the elevated TCE present in the vadose zone of the chamber.

  8. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.

    PubMed

    Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A

    2007-04-01

    Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.

  9. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.

    PubMed

    Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H

    2010-01-01

    Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry.

  10. Output current variation and polarity effect by electric field and ion-pair non-uniformity inside thimble-type ionization chamber

    NASA Astrophysics Data System (ADS)

    Kim, Jaecheon; Kim, Yong Kyun; Kim, Soon Young; Kim, Jong Kyung

    2007-09-01

    A new analytic approach considering both electric field and ion-pair non-uniformity has been proposed to accurately analyze the design characteristics of an ionization chamber and to interpret measurements. It is commonly assumed that ion-pairs are generated uniformly in the air volume, but such an assumption ignores various source and geometry conditions. The new approach was applied to angular dependence analysis and to polarity effect assessment in an ionization chamber. For the angular dependence analysis, whole, uniform, and non-uniform output currents were calculated as a function of the irradiation angle for an 241Am gamma-ray source. The non-uniform output current proposed in this paper was found to be closer to the measured one. This is because the non-uniform output current takes into account the ion-pair distribution in the air volume as well as the active volume determined by the electric field. For the polarity effect assessment, the amount of field distortion due to potential difference and actual current difference was calculated. Previous methods cannot appropriately estimate the variation of polarity effect because they ignore the influence of the ion-pair distribution. The polarity effect assessment using the non-uniform output current can be more useful for obtaining the practical current difference, because this assessment considers both the variation of active volume and the ion-pair non-uniformity according to source conditions such as the irradiation angle and the distance. It is important to precisely calculate not only the active volume, but also the variation in the ion-pair distribution.

  11. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  12. Indoor air pollution by organic emissions from textile floor coverings. Climate chamber studies under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Sollinger, S.; Levsen, K.; Wünsch, G.

    The time dependence of the emission of organic compounds from a polyamide floor covering with styrene-butadiene-rubber (SBR) backing was studied in three climate chambers (0.03, 1.0 and 38 m 3) at 23°C 5nd 45% RH. While volatile compounds such as toluene reach a maximum concentration in the gas phase within 1 h and decrease in concentration to less than 2% within 60 h, the concentration of less volatile compounds, such as 4-phenylcyclohexene, decreases slowly over a period of months. If the chamber is well mixed and a defined chamber loading is maintained the observed concentrations do not depend on the chamber size, the wall material and air velocity. The concentration of the observed emissions is roughly proportional to the chamber loading. Surprisingly it is not inversely proportional to the air exchange rate. Rather, at high air exchange rates mass transfer from the carpet to the gas phase is enhanced. The "decreasing source models" of Dunn and Tichenor ( Atmospheric Environment22, 885-894, 1988) have been applied to the data. They allow the extrapolation of experimental data beyond the time available for measurement. The model calculations reveal the presence of sink effects. The role of the chamber walls as sinks can be determined more reliably if constant sources of an organic compound are placed into the chamber and their increase in concentration with time is compared with the theoretical predictions neglecting sink effects.

  13. Direct measurement of absorbed dose to water in HDR {sup 192}Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    SciTech Connect

    Sarfehnia, Arman; Kawrakow, Iwan; Seuntjens, Jan

    2010-04-15

    Purpose: Gafchromic film and ionometric calibration procedures for HDR {sup 192}Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable S{sub k} calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361{+-}7 {mu}Gy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR {sup 192}Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  14. Patient specific quality assurance of RapidArc pre treatment plans using semiflex 0.125 cc ionization chamber

    NASA Astrophysics Data System (ADS)

    Kumar, S. A. Syam; Vivekanandan, Nagarajan

    2017-01-01

    Patient specific pre-treatment quality assurance for RapidArc plans were analyzed for hundred patients for different sites. Verification plan was created for each treatment plan in Eclipse 8.6 treatment planning system with the semiflex ionization chamber and the octavius phantom. Absolute point dose were measured for head and neck, thorax and abdomen cases using semiflex (0.125 cc) ionization chamber. Positive absolute mean dose variation of 0.56% was observed with thorax cases with a standard deviation (SD) of ±1.13 between the plans with a range of -1.78% to 2.70%. Negative percentage dose errors were found with head and neck and abdomen cases, with a mean variation of -0.43% (SD±1.50), (range -3.25% to 2.85%) and -0.35% (SD±1.48), (range -3.10% to 2.65%) for head and neck and abdomen cases respectively. Evaluation has been done using PTW verisoft software by keeping the passing criteria as 3 mm DTA, 3% DD, for 95% of the evaluated dose points. The maximum percentage value failed in gamma analysis was found to be 4.95, 4.75, and 4.88 for head and neck, thorax, and abdomen cases respectively. In all the cases analyzed the percentage dose points failed the gamma criteria is less than 5%. On the basis of the studies performed it can be concluded that the semiflex ionization chamber having a volume of 0.125 cc can be used efficiently for measuring the pre-treatment quality assurance of RapidArc plans for all the sites.

  15. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  16. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  17. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  18. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  19. Particle identification in a LKr ionization chamber by multiple induced current measurements using the shape analysis of the signal

    NASA Astrophysics Data System (ADS)

    Diaferia, R.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.; Cantoni, P.; Frabetti, P. L.; Stagni, L.

    1996-01-01

    Charged particle (π/K) separation in the momentum range 0.5-0.7 GeV/c using a new method of shape analysis of the signal from a liquid krypton ionization chamber has been studied experimentally. The detector has been exposed to pions and protons at the T11 test beam at CERN PS. The shape of preamplifier output signal has been recorded by a waveform digitizer and differentiated to obtain multiple measurements of induced current inside a 2 cm gap. Results on particle separation are presented and compared with a Monte Carlo simulation.

  20. Particle identification in a LKr ionization chamber by multiple induced current measurements using the shape analysis of the signal

    NASA Astrophysics Data System (ADS)

    Cantoni, P.; Frabetti, P. L.; Stagni, L.; Diaferia, R.; Lanni, F.; Maggi, B.; Palombo, F.; Sala, A.; Manfredi, P. F.; Re, V.; Speziali, V.

    1995-02-01

    Charged particle ( {π}/{K}) separation in the momentum range 0.5-0.7 GeV/ c using a new method of shape analysis of the signal from a liquid krypton ionization chamber has been studied experimentally. The detector has been exposed to the T11 test beam at CERN PS. The shape of the preamplifier output signal has been recorded by a waveform digitizer and differentiated to obtain multiple measurements of induced current inside a 2 cm gap. Results on particle separation are presented.

  1. Correction factors for ionization chamber dosimetry in CyberKnife: Machine-specific, plan-class, and clinical fields

    SciTech Connect

    Gago-Arias, Araceli; Antolin, Elena; Fayos-Ferrer, Francisco; Simon, Rocio; Gonzalez-Castano, Diego M.; Palmans, Hugo; Sharpe, Peter; Gomez, Faustino; Pardo-Montero, Juan

    2013-01-15

    Purpose: The aim of this work is the application of the formalism for ionization chamber reference dosimetry of small and nonstandard fields [R. Alfonso, P. Andreo, R. Capote, M. S. Huq, W. Kilby, P. Kjaell, T. R. Mackie, H. Palmans, K. Rosser, J. Seuntjens, W. Ullrich, and S. Vatnitsky, 'A new formalism for reference dosimetry of small and nonstandard fields,' Med. Phys. 35, 5179-5186 (2008)] to the CyberKnife robotic radiosurgery system. Correction factors for intermediate calibration fields, a machine-specific reference field (msr) and two plan-class specific reference fields (pcsr), have been studied. Furthermore, the applicability of the new formalism to clinical dosimetry has been analyzed through the investigation of two clinical treatments. Methods: PTW31014 and Scanditronix-Wellhofer CC13 ionization chamber measurements were performed for the fields under investigation. Absorbed dose to water was determined using alanine reference dosimetry, and experimental correction factors were calculated from alanine to ionization chamber readings ratios. In addition, correction factors were calculated for the intermediate calibration fields and one of the clinical treatment fields using the Monte Carlo method and these were compared with the experimental values. Results: Overall correction factors deviating from unity by approximately 2% were obtained from both measurements and simulations, with values below and above unity for the studied intermediate calibration fields and clinical fields for the ionization chambers under consideration. Monte Carlo simulations yielded correction factors comparable with those obtained from measurements for the machine-specific reference field, although differences from 1% to 3.3% were observed between measured and calculated correction factors for the composite intermediate calibration fields. Dose distribution inhomogeneities are thought to be responsible for such discrepancies. Conclusions: The differences found between overall

  2. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    SciTech Connect

    Evangelina, Figueroa M.; Gabriel, Resendiz G.; Miguel, Perez P.

    2008-08-11

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  3. A method for measuring the electron drift velocity in working gas using a Frisch-grid ionization chamber

    NASA Astrophysics Data System (ADS)

    Bai, Huaiyong; Wang, Zhimin; Zhang, Luyu; Chen, Jinxiang; Zhang, Guohui

    2016-12-01

    A method for measuring the electron drift velocity in working gas is proposed. Based on the cathode and the anode signal waveforms of the Frisch-grid ionization chamber, the electron drift velocity is extracted. With this method, the electron drift velocities in Ar + 10% CH4, Ar + 3.5% CO2 and Kr + 2.7% CO2 gases have been measured and the results are compared with the existing measurements and the simulating results. Using this method, the electron drift velocity can be monitored throughout the experiment of charged particle without bothering the measurement of other parameters, such as the energy and orientation.

  4. Discovery of multiple, ionization-created CS{sub 2} anions and a new mode of operation for drift chambers

    SciTech Connect

    Snowden-Ifft, Daniel P.

    2014-01-15

    This paper focuses on the surprising discovery of multiple species of ionization-created CS{sub 2} anions in gas mixtures containing electronegative CS{sub 2} and O{sub 2}, identified by their slightly different drift velocities. Data are presented to understand the formation mechanism and identity of these new anions. Regardless of the micro-physics, however, this discovery offers a new, trigger-less mode of operation for the drift chambers. A demonstration of trigger-less operation is presented.

  5. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry.

    PubMed

    Osinga-Blättermann, J-M; Brons, S; Greilich, S; Jäkel, O; Krauss, A

    2017-03-21

    Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm  ×  6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k  =  1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.

  6. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry

    NASA Astrophysics Data System (ADS)

    Osinga-Blättermann, J.-M.; Brons, S.; Greilich, S.; Jäkel, O.; Krauss, A.

    2017-03-01

    Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm  ×  6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k  =  1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.

  7. NOTE: The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data

    NASA Astrophysics Data System (ADS)

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-01

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within ±0.2% over 2-3 years. It is also shown that check source measurements can be repeated within ±0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  8. The calibration of parallel-plate electron ionization chambers at NPL for use with the IPEM 2003 code of practice: summary data.

    PubMed

    Bass, Graham; Thomas, Russell; Pearce, Julia

    2009-04-21

    The most recent electron dosimetry code of practice for radiotherapy written by the Institute of Physics and Engineering in Medicine was published in 2003 and is based on the NPL electron absorbed dose to water calibration service. NPL has calibrated many Scanditronix type NACP-02 and PTW Roos type 34001 parallel plate ionization chambers in terms of absorbed dose to water, for use with the code of practice. The results of the calibrations of these chamber types summarized here include the absorbed dose to water sensitivity, where the mean calibration factor standard deviations are 5.8% for NACP-02 chambers and 1.1% for PTW Roos chambers. The correction for the polarity effect is shown to be small (less than 0.2% for all beam qualities) but with a discernible beam quality dependence. The correction for recombination is shown to be consistent and reproducible, and an analysis of these results suggests that the plate separation of the NACP-02 chambers is more variable from chamber to chamber than with the PTW Roos chambers. The calibration of these chambers is shown to be repeatable within +/-0.2% over 2-3 years. It is also shown that check source measurements can be repeated within +/-0.3% over several years. The results justify the use of NACP-02 and PTW 34001 chambers as secondary standards, but also indicate that the PTW 34001 chambers show less variation from chamber to chamber.

  9. Relative decompression risk of dry and wet chamber air dives.

    PubMed

    Weathersby, P K; Survanshi, S S; Nishi, R Y

    1990-07-01

    The difference in risk of decompression sickness (DCS) between dry chamber subjects and wet, working divers is unknown and a direct test of the difference would be large and expensive. We used probabilistic models and maximum likelihood estimation to examine 797 dry (and generally resting and comfortable) and 244 wet (and generally working and cold) chamber dives from the Defence and Civil Institute of Environmental Medicine, supplemented with 483 wet (working, cold) dives from the Navy Experimental Diving Unit. Several analyses considered whether dry and wet data were distinguishable using several models, whether models obtained from one set of exposure conditions would correctly predict the occurrence of DCS in the other condition, and whether a single wet-dry risk difference parameter was different from zero. Although the two conditions may not produce identical risks, immersion appears to change relative risk of DCS by less than 30% and certainly involves less than a doubling of DCS risk. Uncontrolled differences in exercise and temperature stresses unavoidably complicate interpretation. Several methods are presented to extrapolate results from dry-test subjects in decompression trials to expected at-sea performance.

  10. 42 CFR 84.143 - Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Terminal fittings or chambers; Type B supplied-air... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.143 Terminal fittings or chambers; Type B... positive pressures shall not be approved for use on Type B supplied-air respirators. (b) Terminal...

  11. Controlled environment fumigation chambers for the study of reactive air pollutant effects on plants

    NASA Astrophysics Data System (ADS)

    Stokes, N. J.; Lucas, P. W.; Nicholas Hewitt, C.

    The design and construction of eight 1-m 3 fumigation chambers for exposing plants to reactive air pollutants at low concentrations are reported. Teflon surfaces are used where possible to minimize the adsorption, absorption, desorption and chemical reaction of the pollutants. A purified ambient air supply, to which metered quantities of gaseous pollutants are added, is used to give two air changes per minute at constant, low, pollutant concentrations. Comparative analysis of the chambers indicates that conditions may be maintained with a significant degree of precision, i.e. temperature ±0.3°C, RH ±6%, light intensity ±5 μmol m -2 s -1. Boundary layer analysis from models of cherry tree ( Prunus avium) leaves indicate that the minimum conductance value within these chambers is 2 cm s -1.

  12. General collection efficiency for liquid isooctane and tetramethylsilane used as sensitive media in a parallel-plate ionization chamber.

    PubMed

    Johansson, B; Wickman, G

    1997-01-01

    The general collection efficiency has been measured in liquid isooctane (C8H18) and tetramethylsilane (Si(CH3)4) used as the sensitive media in a parallel-plate ionization chamber, with an electrode distance of 1 mm, intended for photon and electron dosimetry applications. The liquid ionization chamber was irradiated at different dose rates by 140 keV photons from the decay of radioactive 99mTc. The measurements were made at potential differences of 50, 100, 200 and 500 V. Measurements were performed for each liquid and electric field strength, with the decay rate of 99mTc used as the dose-rate reference. The maximum dose rate was about 150 mGy min-1 in each experiment. When the measured general collection efficiency values are compared with the theoretical predictions for collection efficiency in gases, it is found that the latter also describe the general collection efficiency in the two liquids within 1% of the saturation current for collection efficiencies down to 60% when using experimentally determined recombination rate constants and on mobilities characteristic of each of the liquids.

  13. A combined segmented anode gas ionization chamber and time-of-flight detector for heavy ion elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Ström, Petter; Petersson, Per; Rubel, Marek; Possnert, Göran

    2016-10-01

    A dedicated detector system for heavy ion elastic recoil detection analysis at the Tandem Laboratory of Uppsala University is presented. Benefits of combining a time-of-flight measurement with a segmented anode gas ionization chamber are demonstrated. The capability of ion species identification is improved with the present system, compared to that obtained when using a single solid state silicon detector for the full ion energy signal. The system enables separation of light elements, up to Neon, based on atomic number while signals from heavy elements such as molybdenum and tungsten are separated based on mass, to a sample depth on the order of 1 μm. The performance of the system is discussed and a selection of material analysis applications is given. Plasma-facing materials from fusion experiments, in particular metal mirrors, are used as a main example for the discussion. Marker experiments using nitrogen-15 or oxygen-18 are specific cases for which the described improved species separation and sensitivity are required. Resilience to radiation damage and significantly improved energy resolution for heavy elements at low energies are additional benefits of the gas ionization chamber over a solid state detector based system.

  14. Assaying multiple 125I seeds with the well-ionization chamber SourceCheck4π 33005 and a new insert

    PubMed Central

    Ballester, Facundo; Perez-Calatayud, Jose; Vijande, Javier

    2015-01-01

    Purpose To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck4π 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten 125I seeds with one single measurement instead of measuring each seed individually. Material and methods The material required is: a) the SourceCheck4π 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds. The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S K. The proposed method is validated by comparing the mean S K of the ten seeds obtained from the new insert with the individual measurement of S K of each seed, evaluated with the PTW insert. Results The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck4π 33005 is 1.135 ± 0.007 (k = 1). The mean S K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S K of each seed. Conclusions The new insert and procedure allow evaluating the mean S K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S K of each seed. PMID:26816507

  15. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.

    PubMed

    Liu, Xiaoyu; Mason, Mark; Krebs, Kenneth; Sparks, Leslie

    2004-05-15

    Volatile organic compound (VOC) emissions from one electrical plug-in type of pine-scented air freshener and their reactions with O3 were investigated in the U.S. Environmental Protection Agency indoor air research large chamber facility. Ozone was generated from a device marketed as an ozone generator air cleaner. Ozone and oxides of nitrogen concentrations and chamber conditions such as temperature, relative humidity, pressure, and air exchange rate were controlled and/or monitored. VOC emissions and some of the reaction products were identified and quantified. Source emission models were developed to predict the time/concentration profiles of the major VOCs (limonene, alpha-pinene, beta-pinene, 3-carene, camphene, benzyl propionate, benzyl alcohol, bornyl acetate, isobornyl acetate, and benzaldehyde) emitted bythe air freshener. Gas-phase reactions of VOCs from the air freshener with O3 were simulated by a photochemical kinetics simulation system using VOC reaction mechanisms and rate constants adopted from the literature. The concentration-time predictions were in good agreement with the data for O3 and VOCs emitted from the air freshener and with some of the primary reaction products. Systematic differences between the predictions and the experimental results were found for some species. Poor understanding of secondary reactions and heterogeneous chemistry in the chamber is the likely cause of these differences. The method has the potential to provide data to predict the impact of O3/VOC interactions on indoor air quality.

  16. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry.

  17. SU-D-19A-01: Can Farmer-Type Ionization Chambers Be Used to Improve the Accuracy of Low-Energy Electron Beam Reference Dosimetry?

    SciTech Connect

    Muir, B R; McEwen, M R

    2014-06-01

    Purpose: To investigate the use of cylindrical Farmer-type ionization chambers to improve the accuracy of low-energy electron beam calibration. Historically, these chamber types have not been used in beams with incident energies less than 10 MeV (R{sub 5} {sub 0} < 4.3 cm) because early investigations suggested large (up to 5 %) fluence perturbation factors in these beams, implying that a significant component of uncertainty would be introduced if used for calibration. More recently, the assumptions used to determine perturbation corrections for cylindrical chambers have been questioned. Methods: Measurements are made with cylindrical chambers in Elekta Precise 4, 8 and 18 MeV electron beams. Several chamber types are investigated that employ graphite walls and aluminum electrodes with very similar specifications (NE2571, NE2505/3, FC65-G). Depth-ionization scans are measured in water in the 8 and 18 MeV beams. To reduce uncertainty from chamber positioning, measurements in the 4 MeV beam are made at the reference depth in Virtual Water™. The variability of perturbation factors is quantified by comparing normalized response of various chambers. Results: Normalized ion chamber response varies by less than 0.7 % for similar chambers at average electron energies corresponding to that at the reference depth from 4 or 6 MeV beams. Similarly, normalized measurements made with similar chambers at the reference depth in the 4 MeV beam vary by less than 0.4 %. Absorbed dose calibration coefficients derived from these results are stable within 0.1 % on average over a period of 6 years. Conclusion: These results indicate that the uncertainty associated with differences in fluence perturbations for cylindrical chambers with similar specifications is only 0.2 %. The excellent long-term stability of these chambers in both photon and electron beams suggests that these chambers might offer the best performance for all reference dosimetry applications.

  18. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  19. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  20. A novel convolution-based approach to address ionization chamber volume averaging effect in model-based treatment planning systems

    NASA Astrophysics Data System (ADS)

    Barraclough, Brendan; Li, Jonathan G.; Lebron, Sharon; Fan, Qiyong; Liu, Chihray; Yan, Guanghua

    2015-08-01

    The ionization chamber volume averaging effect is a well-known issue without an elegant solution. The purpose of this study is to propose a novel convolution-based approach to address the volume averaging effect in model-based treatment planning systems (TPSs). Ionization chamber-measured beam profiles can be regarded as the convolution between the detector response function and the implicit real profiles. Existing approaches address the issue by trying to remove the volume averaging effect from the measurement. In contrast, our proposed method imports the measured profiles directly into the TPS and addresses the problem by reoptimizing pertinent parameters of the TPS beam model. In the iterative beam modeling process, the TPS-calculated beam profiles are convolved with the same detector response function. Beam model parameters responsible for the penumbra are optimized to drive the convolved profiles to match the measured profiles. Since the convolved and the measured profiles are subject to identical volume averaging effect, the calculated profiles match the real profiles when the optimization converges. The method was applied to reoptimize a CC13 beam model commissioned with profiles measured with a standard ionization chamber (Scanditronix Wellhofer, Bartlett, TN). The reoptimized beam model was validated by comparing the TPS-calculated profiles with diode-measured profiles. Its performance in intensity-modulated radiation therapy (IMRT) quality assurance (QA) for ten head-and-neck patients was compared with the CC13 beam model and a clinical beam model (manually optimized, clinically proven) using standard Gamma comparisons. The beam profiles calculated with the reoptimized beam model showed excellent agreement with diode measurement at all measured geometries. Performance of the reoptimized beam model was comparable with that of the clinical beam model in IMRT QA. The average passing rates using the reoptimized beam model increased substantially from 92.1% to

  1. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  2. Hand and shoe monitor using air ionization probes

    SciTech Connect

    Fergus, R.W.

    1981-02-24

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  3. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  4. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber.

    PubMed

    Cirio, R; Garelli, E; Schulte, R; Amerio, S; Boriano, A; Bourhaleb, F; Coutrakon, G; Donetti, M; Giordanengo, S; Koss, P; Madon, E; Marchetto, F; Nastasi, U; Peroni, C; Santuari, D; Sardo, A; Scielzo, G; Stasi, M; Trevisiol, E

    2004-08-21

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 x 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 x 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 x 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  5. Two-dimensional and quasi-three-dimensional dosimetry of hadron and photon beams with the Magic Cube and the Pixel Ionization Chamber

    NASA Astrophysics Data System (ADS)

    Cirio, R.; Garelli, E.; Schulte, R.; Amerio, S.; Boriano, A.; Bourhaleb, F.; Coutrakon, G.; Donetti, M.; Giordanengo, S.; Koss, P.; Madon, E.; Marchetto, F.; Nastasi, U.; Peroni, C.; Santuari, D.; Sardo, A.; Scielzo, G.; Stasi, M.; Trevisiol, E.

    2004-08-01

    Two detectors for fast two-dimensional (2D) and quasi-three-dimensional (quasi-3D) verification of the dose delivered by radiotherapy beams have been developed at University and Istituto Nazionale di Fisica Nucleare (INFN) of Torino. The Magic Cube is a stack of strip-segmented ionization chambers interleaved with water-equivalent slabs. The parallel plate ionization chambers have a sensitive area of 24 × 24 cm2, and consist of 0.375 cm wide and 24 cm long strips. There are a total of 64 strips per chamber. The Magic Cube has been tested with the clinical proton beam at Loma Linda University Medical Centre (LLUMC), and was shown to be capable of fast and precise quasi-3D dose verification. The Pixel Ionization Chamber (PXC) is a detector with pixel anode segmentation. It is a 32 × 32 matrix of 1024 cylindrical ionization cells arranged in a square 24 × 24 cm2 area. Each cell has 0.4 cm diameter and 0.55 cm height, at a pitch of 0.75 cm separates the centre of adjacent cells. The sensitive volume of each single ionization cell is 0.07 cm3. The detectors are read out using custom designed front-end microelectronics and a personal computer-based data acquisition system. The PXC has been used to verify dynamic intensity-modulated radiotherapy for head-and-neck and breast cancers.

  6. WE-EF-207-11: Energy and Depth Response of Thermoluminescent Dosimeters and Ionization Chambers in Water for Kilovoltage X-Ray Beams

    SciTech Connect

    Lawless, M; Palmer, B; DeWerd, L

    2015-06-15

    Purpose: To assess the effects of changes in beam quality on detector response in the kilovoltage energy range by modulating the x-ray tube voltage and the measurement depth in water. Methods: Measurements were performed with TLD-100 and TLD-100H thermoluminescent dosimeters and an A12 farmer-type ionization chamber. To assess the energy response of the detectors, irradiations were performed at a depth of 3 cm in a custom-built thin-window water phantom using the moderately filtered x-ray beams at the UWADCL (20 kVp-250 kVp) and a Co-60 beam.The x-ray beams and detectors were modeled using the EGSnrc Monte Carlo code. The model was validated by simulating dose to the collecting volume of an A12 farmer chamber and comparing it with measured A12 signal as a function of depth. Dose was tallied to each detector and to water for comparison with measurements. Simulations were used to calculate the predicted energy response, which was compared to the measured response of each detector. Dose to each detector and dose to water as a function of depth were also simulated. Results: Detector output per dose to water was found to deviate by up to 15%, 20% and 30% as a function of energy relative to Co-60 for the A12, TLD-100H and TLD-100, respectively. The EGSnrc simulations produced results similar to the measurements for ionization chambers, but discrepancies of up to 30% were observed for TLD-100H. Simulated detector response as a function of depth was found to vary by up to 3%. Conclusion: These results suggest that changes in beam quality in kilovoltage x-ray beams can have a significant impact on detector response. In-water detector response was found to differ from the previously investigated in-air response. Deviations in detector response as a function of depth were less significant, but could potentially cause dosimetric errors if ignored.

  7. A pixel ionization chamber used as beam monitor at the Institut Curie—Centre de Protontherapie de Orsay (CPO)

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Garella, M. A.; Bourhaleb, F.; Cirio, R.; Donetti, M.; Giordanengo, S.; Givehchi, N.; Marchetto, F.; Martin, F.; Meyroneinc, S.; Peroni, C.; Pittà, G.

    2006-09-01

    The Dipartimento di Fisica Sperimentale and the Istituto Nazionale di Fisica Nucleare (INFN), Torino, in collaboration with the Institut Curie—Centre de Protontherapie de Orsay (CPO), have developed and built a pixel parallel plate ionization chamber to be used as monitor for the proton therapy beam line at the Institut Curie—CPO (Orsay, France). The sensitive area of the detector is (160×160) mm 2, with the anode segmented in 1024 square pixels arranged in a 32×32 matrix; the area of each pixel is (5×5) mm 2. The detector has been placed on the beam line just upstream of the last collimator to monitor the beam shape and to measure the stability and reproducibility of the delivery system. In this paper, we present a detailed description of the detector and the results of a set of preliminary tests.

  8. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  9. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  10. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  11. Simulation of the Mg(Ar) ionization chamber currents by different Monte Carlo codes in benchmark gamma fields

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chun; Liu, Yuan-Hao; Nievaart, Sander; Chen, Yen-Fu; Wu, Shu-Wei; Chou, Wen-Tsae; Jiang, Shiang-Huei

    2011-10-01

    High energy photon (over 10 MeV) and neutron beams adopted in radiobiology and radiotherapy always produce mixed neutron/gamma-ray fields. The Mg(Ar) ionization chambers are commonly applied to determine the gamma-ray dose because of its neutron insensitive characteristic. Nowadays, many perturbation corrections for accurate dose estimation and lots of treatment planning systems are based on Monte Carlo technique. The Monte Carlo codes EGSnrc, FLUKA, GEANT4, MCNP5, and MCNPX were used to evaluate energy dependent response functions of the Exradin M2 Mg(Ar) ionization chamber to a parallel photon beam with mono-energies from 20 keV to 20 MeV. For the sake of validation, measurements were carefully performed in well-defined (a) primary M-100 X-ray calibration field, (b) primary 60Co calibration beam, (c) 6-MV, and (d) 10-MV therapeutic beams in hospital. At energy region below 100 keV, MCNP5 and MCNPX both had lower responses than other codes. For energies above 1 MeV, the MCNP ITS-mode greatly resembled other three codes and the differences were within 5%. Comparing to the measured currents, MCNP5 and MCNPX using ITS-mode had perfect agreement with the 60Co, and 10-MV beams. But at X-ray energy region, the derivations reached 17%. This work shows us a better insight into the performance of different Monte Carlo codes in photon-electron transport calculation. Regarding the application of the mixed field dosimetry like BNCT, MCNP with ITS-mode is recognized as the most suitable tool by this work.

  12. Quality assurance for radon exposure chambers at the National Air and Radiation Environmental Laboratory, Montgomery, Alabama

    SciTech Connect

    Semler, M.O.; Sensintaffar, E.L.

    1993-12-31

    The Office of Radiation and Indoor Air, U.S. Environmental Protection Agency (EPA), operates six radon exposure chambers in its two laboratories, the National Air and Radiation Environmental Laboratory (NAREL) in Montgomery, Alabama, and the Las Vegas Facility, Las Vegas, Nevada. These radon exposure chambers are used to calibrate and test portable radon measuring instruments, test commercial suppliers of radon measurement services through the Radon Measurement Proficiency Program, and expose passive measurement devices to known radon concentrations as part of a quality assurance plan for federal and state studies measuring indoor radon concentrations. Both laboratories participate in national and international intercomparisons for the measurement of radon and are presently working with the National Institute of Standards and Technology (NIST) to receive a certificate of traceability for radon measurements. NAREL has developed an estimate of the total error in its calibration of each chamber`s continuous monitors as part of an internal quality assurance program. This paper discusses the continuous monitors and their calibration for the three chambers located in Montgomery, Alabama, as well as the results of the authors intercomparisons and total error analysis.

  13. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Boissonnat, G.; Brusasco, C.; Colin, J.; Cussol, D.; Fontbonne, J. M.; Marchand, B.; Mertens, T.; de Neuter, S.; Peronnel, J.

    2014-02-01

    Every radiotherapy center has to be equipped with real-time beam monitoring devices. In 2008, we developed an ionization chamber in collaboration with the IBA (Ion Beam Applications) company. This monitoring device called IC2/3 was developed to be used in IBA universal irradiation head for Pencil Beam Scanning (PBS). Here we present the characterization of the IC2/3 monitor in the energy and flux ranges used in protontherapy. The equipment has been tested with an IBA cyclotron able to deliver proton beams from 70 to 230 MeV. This beam monitoring device has been validated and is now installed at the Westdeutsches Protonentherapiezentrum Essen protontherapy center (WPE, Germany). The results obtained in both terms of spatial resolution and dose measurements are at least equal to the initial specifications needed for PBS purposes. The detector measures the dose with a relative uncertainty lower than 1% in the range from 0.5 Gy/min to 8 Gy/min while the spatial resolution is better than 250 μm. The technology has been patented and five IC2/3 chambers were delivered to IBA. Nowadays, IBA produces the IC2/3 beam monitoring device as a part of its Proteus 235 product.

  14. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  15. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    SciTech Connect

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  16. An automatic flux chamber for investigating gas flux at water - air interfaces

    NASA Astrophysics Data System (ADS)

    Duc, N. T.; Silverstein, S.; Lundmark, L.; Reyier, H.; Crill, P. M.; Bastviken, D.

    2011-12-01

    Aquatic ecosystems are major sources of greenhouse gases (GHG) and representative measurements of GHG fluxes from aquatic ecosystems to the atmosphere are vital in climate related biogeochemistry. One of the most important fluxes, ebullition (bubble flux) of methane (CH4) is episodic, with large fluxes during short time periods. To properly capture such fluxes long term measurement approaches are necessary which is labor intensive for manual flux chamber based methods, or require expensive equipment with e.g. eddy correlation methods. An inexpensive and easily mobile automatic flux chamber for long-term measurements has been designed to approach these drawbacks. This device includes a flux chamber, with a controller/datalogger, valves, a pump, a 12 V battery and a solar cell. Sensors used so far record CH4 concentration in the chamber headspace, temperature in water and air, barometric pressure. Other sensors for e.g. CO2 and weather variables can be attached. The unit can be programmed to measure in situ accumulation of gas in the chamber and also to collect gas samples in an array of sample bottles for subsequent analysis in the laboratory. Simultaneous deployment of many such units represent a cost efficient and easily managed solution for local long term flux monitoring.

  17. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    NASA Technical Reports Server (NTRS)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  18. A new test chamber to measure material emissions under controlled air velocity

    SciTech Connect

    Bortoli, M. de; Ghezzi, E.; Knoeppel, H.; Vissers, H.

    1999-05-15

    A new 20-L glass chamber for the determination of VOC emissions from construction materials and consumer products under controlled air velocity and turbulence is described. Profiles of air velocity and turbulence, obtained with precisely positioned hot wire anemometric probes, show that the velocity field is homogeneous and that air velocity is tightly controlled by the fan rotation speed; this overcomes the problem of selecting representative positions to measure air velocity above a test specimen. First tests on material emissions show that the influence of air velocity on the emission rate of VOCs is negligible for sources limited by internal diffusion and strong for sources limited by evaporation. In a velocity interval from 0.15 to 0.30 m s{sup {minus}1}, an emission rate increase of 50% has been observed for pure n-decane and 1,4-dichlorobenzene and of 30% for 1,2-propanediol from a water-based paint. In contrast, no measurable influence of turbulence could be observed during vaporization of 1,4-dichlorobenzene within a 3-fold turbulence interval. Investigations still underway show that the chamber has a high recovery for the heavier VOC (TXIB), even at low concentrations.

  19. Electron-Impact Excitation and Ionization in Air

    DTIC Science & Technology

    2009-09-01

    also exist in other disciplines dealing with plasma, including astrophysics , fusion science, plasma processing in microelectronics, etc. While the...cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and nitrogen,” The Astrophysical Journal Supplement Series Vol

  20. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  1. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M.; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V.; Pardo-Montero, Juan

    2012-08-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  2. On the interpretation of current-voltage curves in ionization chambers using the exact solution of the Thomson problem

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.

    2015-09-01

    The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.

  3. Chamber and field evaluations of air pollution tolerances of urban trees

    SciTech Connect

    Karnosky, D.F.

    1981-04-01

    Results are presented for a study of the relative air pollution tolerances of 32 urban-tree cultivars as determined by both chamber fumigations and field exposures. Tolerances to ozone and sulfur dioxide, alone and in combination, were determined using short-term, acute doses administered while the plants were inside a plastic fumigation chamber located inside the Cary Arboretum greenhouses. In a follow-up study still underway, representatives of the same cultivars were outplanted at four locations in the greater New York City area. To date, only oxidant-type injury has been observed on trees in the field plots. Cultivars tolerant to all chamber and field exposures were Acer platanoides Cleveland, Crimson King, Emerald Queen, Jade Glen, and Summershade; Acer rubrum Autumn Flame and Red Sunset; Acer saccharum Green Mountain and Temple's Upright; Fagus sylvatica Rotundifolia; Fraxinus pennsylvanica Summit; and Ginkgo biloba Fastigate and Sentry. Cultivars sensitive to ozone as determined by the chamber and field tests and that may serve as bioindicators of the presence of ozone were Gleditsia triacanthos inermis imperial and Platanus acerifolia Bloodgood.

  4. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  5. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    PubMed

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed.

  6. Chamber bioaerosol study: outdoor air and human occupants as sources of indoor airborne microbes.

    PubMed

    Adams, Rachel I; Bhangar, Seema; Pasut, Wilmer; Arens, Edward A; Taylor, John W; Lindow, Steven E; Nazaroff, William W; Bruns, Thomas D

    2015-01-01

    Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.

  7. Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes

    PubMed Central

    Adams, Rachel I.; Bhangar, Seema; Pasut, Wilmer; Arens, Edward A.; Taylor, John W.; Lindow, Steven E.; Nazaroff, William W.; Bruns, Thomas D.

    2015-01-01

    Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied. PMID:26024222

  8. Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej

    2016-08-01

    The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.

  9. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  10. Contamination of the turbine air chamber: a risk of cross infection.

    PubMed

    Checchi, L; Montebugnoli, L; Samaritani, S

    1998-08-01

    In the present work, we evaluated (a) the influx of contaminating fluid into the air chamber when a high-speed turbine stops rotating, (b) the significance of a series of variables (type of handpiece and dental unit, shape of the bur, number of stops set on the turbine) which condition it, and (c) the time required to expel the contaminating fluid from the turbine head. Results showed that contamination takes place every time the turbine stops rotating with the bur in contact with an external fluid. The main variable affecting the influx of contaminating fluid into the air chamber of the turbine head was represented by the shape of the bur (F=54.9; p<0.01). Another significant variable was the type of handpiece and dental unit (F=7.3; p<0.01). The number of stops set on the turbine was irrelevant (F=0.03; p=n.s.). The expulsion of the contaminant from the turbine head showed 2 different exponential rates: a very rapid-elimination phase within 30 s and a slow-elimination phase between 60 and 300 s. In order to remove over 99% of the contaminant from the air chamber, a turbine had to run for more than 4-7 min depending on the type of the handpiece. In conclusion, data from the present study suggest that a significant cross-infection potential exists with high-speed handpieces whenever they are only externally scrubbed and disinfected so the internal cleaning and sterilization between patients is mandatory. The practice of flushing by running the turbines between patients should be discouraged.

  11. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  12. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    SciTech Connect

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  13. Effect of ionization on microbial air pollution in the dental clinic.

    PubMed

    Gabbay, J; Bergerson, O; Levi, N; Brenner, S; Eli, I

    1990-06-01

    The use of spray-producing instruments in the dental clinic continuously creates a potentially harmful contamination of the room environment. In the present study a 13.5-kV corona discharge ionizing generator was used in order to investigate the effect of ions on the microbial air pollution of the dental clinic. Samples of microbial air population were collected in 9-cm-diameter plates containing either Bacto-Brain Heart Infusion Agar or Bacto-Mitis Salivarius Agar and exposed to different time periods in various locations of an active dental clinic. Microbial air levels in the dental clinic were significantly reduced with the generator (by 40-50%). The data suggest that the ionizing generator can be used to reduce the microbial air pollution within the dental clinic, thus reducing the environmental hazard of infections to the staff.

  14. The effect of a compression paddle on energy response, calibration and measurement with mammographic dosimeters using ionization chambers and solid-state detectors.

    PubMed

    Hourdakis, C J; Boziari, A; Koumbouli, E

    2009-02-21

    A compression paddle is always used in mammography x-ray examinations, in order to improve image quality and reduce patient doses. Although clinical dose measurements should be performed with the paddle to interfere with the x-ray beam, calibration of mammography dosimeters is performed free in air without the presence of the paddle. The paddle hardens the x-ray beam, which has an impact on a dosimeter performance, particularly on high-energy-dependent detectors. Due to the paddle, clinical mammography x-ray systems may exhibit beams with HVL values exceeding those of the IEC 61267 RQR-M series qualities at which dosimeters are usually calibrated. In this study, the influence of the paddle in mammography dosimetry is examined, in Mo/Mo anode/filter x-ray qualities. PMMA slabs of 1, 2 and 3 mm thickness and Al foils of 0.05, 0.10 and 0.15 mm thicknesses were used to simulate the paddles, producing beams with HVL values from 0.28 up to 0.43 mmAl. In these qualities, four solid-state (ST) detectors and three ionizations chambers (IC) were calibrated in terms of Kair and N(K) and k(Q) were deduced. The results showed that all IC and two modern-type ST dosimeters have a flat energy response in the above HVL range (less than 3%), so their calibration factor at RQR-M2 quality could be safely used for clinical measurements. Two other ST dosimeters exhibit up to 20% energy response, so differences up to 15% in dose measurement may be observed if the effect of paddle on their performance is ignored. Finally, the need of additional mammographic calibration qualities to the existing IEC 61267 RQR-M series is examined and discussed.

  15. Rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers

    SciTech Connect

    Snyder, E.A.; Palmes, E.D.

    1985-06-01

    A rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers has been validated using the pararosaniline-formaldehyde (PRA) method of West and Gaeke. This air-titration (iodate) method is an adaptation of iodometric methods using a starch indicator. Potassium iodate and an excess of potassium iodide are used in the reaction. Sampling is completed in ten minutes or less and concentration is calculated by use of a simple formula. Linear equations were derived over the range of concentrations from 0.5 to 100 ppm SO/sub 2/ for uncorrected iodate bubbler results, data corrected for tandem bubbler concentrations and data corrected for mean iodate bubbler efficiency. Linear correlation with the PRA method over this range was 0.999 for all three sets of data.

  16. An experimental validation of a turbulence model for air flow in a mining chamber

    NASA Astrophysics Data System (ADS)

    Branny, M.; Karch, M.; Wodziak, W.; Jaszczur, M.; Nowak, R.; Szmyd, J. S.

    2014-08-01

    In copper mines, excavation chambers are ventilated by jet fans. A fan is installed at the inlet of the dead-end chamber, which is usually 20-30m long. The effectiveness of ventilation depends on the stream range generated by the fan. The velocity field generated by the supply air stream is fully three-dimensional and the flow is turbulent. Currently, the parameters of 3D air flows are determined using the CFD approach. This paper presents the results of experimental testing and numerical simulations of airflow in a laboratory model of a blind channel, aired by a forced ventilation system. The aim of the investigation is qualitative and quantitative verification of computer modelling data. The analysed layout is a geometrically re-scaled and simplified model of a real object. The geometrical scale of the physical model is 1:10. The model walls are smooth, the channel cross-section is rectangular. Measurements were performed for the average airflow velocity in the inlet duct equal 35.4m/s, which gives a Reynolds number of about 180 000. The components of the velocity vector were measured using the Particle Image Velocimetry approach. The numerical procedures presented in this paper use two turbulence models: the standard k-ɛ model and the Reynolds Stress model. The experimental results have been compared against the results of numerical simulations. In the investigated domain of flow - extending from the air inlet to the blind wall of the chamber - we can distinguish two zones with recirculating flows. The first, reaching a distance of about lm from the inlet is characterized by intense mixing of air. A second vortex is formed into a distance greater than lm from the inlet. Such an image of the velocity field results from both the measurements and calculations. Based on this study, we can conclude that the RSM model provides better predictions than the standard k-ɛ model. Good qualitative agreement is achieved between Reynolds Stress model predictions and measured

  17. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  18. Impact of multisource VOC emission on in-vehicle air quality: test chamber simulation

    NASA Astrophysics Data System (ADS)

    Brodzik, K.; Faber, J.; Goƚda-Kopek, A.; Łomankiewicz, D.

    2016-09-01

    Air quality inside vehicle may be strongly influenced by the presence of volatile organic compounds (VOC). The sources of these compounds may be different. In case of new vehicles VOC mainly originate from off-gassing of interior materials, while in used cars exterior pollution, like exhaust gases, starts to dominate. The aim of this work was to check the influence of multiple VOC sources on concentration of volatile organic compounds emitted from car interior parts. For this purpose material emission tests were performed in 1 m3 emission testing chamber (WKE 1000, Weiss, Germany) at 65 °C, 5% RH and with air exchange. Three different car parts were studied: sun visor, headlining, and handbrake lever cover. It was stated that volatile organic compounds concentration inside test chamber during the test performed with three different parts inside was significantly lower than those being result of addition of the results obtained for parts tested separately. Presented results indicate interactions between different materials and their emissions as well as prove that some of materials acts like sorbents.

  19. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  20. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  1. Detection of Ionizing Radiation using Solar Blind Air Fluorescence

    DTIC Science & Technology

    2013-06-01

    14 16 Figure 1.2: Geant4 simulation of the solar blind photon flux from 1010 decays of Am241 viewed by a 40 cm diameter detector at a distance of 10 m...discharges and other sources, sufficiently low that it will not interfere with the operation of a solar blind radiological detector ? UNCLASSIFIED iii DSTO...Figures 1.2 through 1.4 show simulated solar blind photon air fluorescence emission from common radiological sources (Am240,Cs137 and Sr90). In each

  2. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    PubMed Central

    Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A

    2009-01-01

    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of

  3. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    SciTech Connect

    Tarasenko, V. F. Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  4. Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-01

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ˜500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF6 is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (˜30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ˜10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  5. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water.

    PubMed

    Bahar-Gogani, J; Grindborg, J E; Johansson, B E; Wickman, G

    2001-03-01

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min(-1) and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min(-1). The volume sensitivity of the chambers was measured to be of the order of 10(-9) C Gy(-1) mm3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (sigma < 0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility.

  6. SU-E-T-645: Qualification of a 2D Ionization Chamber Array for Beam Steering and Profile Measurement

    SciTech Connect

    Gao, S; Balter, P; Rose, M; Simon, W

    2015-06-15

    Purpose: Establish a procedure for beam steering and profile measurement using a 2D ionization chamber array and show equivalence to a water scanning system. Methods: Multiple photon beams (30×30cm{sup 2} field) and electron beams (25×25cm{sup 2} cone) were steered in the radial and transverse directions using Sun Nuclear’s IC PROFILER (ICP). Solid water was added during steering to ensure measurements were beyond the buildup region. With steering complete, servos were zeroed and enabled. Photon profiles were collected in a 30×30cm{sup 2} field at dmax and 2.9 cm depth for flattened and FFF beams respectively. Electron profiles were collected with a 25×25cm{sup 2} cone and effective depth (solid water + 0.9 cm intrinsic buildup) as follows: 0.9 cm (6e), 1.9 cm (9e), 2.9 cm (12e, 16e, 20e). Profiles of the same energy, field size and depth were measured in water with Sun Nuclear’s 3D SCANNER (3DS). Profiles were re-measured using the ICP after the in-water scans. Profiles measured using the ICP and 3DS were compared by (a) examining the differences in Varian’s “Point Difference Symmetry” metric, (b) visual inspection of the overlaid profile shapes and (c) calculation of point-by-point differences. Results: Comparing ICP measurements before and after water scanning showed very good agreement indicating good stability of the linac and measurement system. Comparing ICP Measurements to water phantom measurements using Varian’s symmetry metric showed agreement within 0.5% for all beams. The average magnitude of the agreement was within 0.2%. Comparing ICP Measurements to water phantom measurements using point-by-point difference showed agreement within 0.5% inside of 80% area of the field width. Conclusion: Profile agreement to within 0.5% was observed between ICP and 3DS after steering multiple energies with the ICP. This indicates that the ICP may be used for steering electron beams, and both flattened and FFF photon beams. Song Gao: Sun Nuclear

  7. SU-E-T-460: Impact of the LINAC Repetition Rate On a High-Resolution Liquid Ionization Chamber Array for Patient-Specific QA

    SciTech Connect

    Wang, S; Driewer, J; Zheng, D; Lei, Y; Zhang, Q; Zhu, X; Li, S; Enke, C; Zhou, S; Xu, B

    2015-06-15

    Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in the range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA

  8. Study of the PTW microLion chamber temperature dependence

    NASA Astrophysics Data System (ADS)

    Gómez, F.; González-Castaño, D.; Díaz-Botana, P.; Pardo-Montero, J.

    2014-06-01

    The use of liquid ionization chambers in radiotherapy has grown during the past few years. While for air ionization chambers the kTP correction for air mass density due to pressure and temperature variations is well known, less work has been done on the case of liquid ionization chambers, where there is still the need to take into account the influence of temperature in the free ion yield. We have measured the PTW microLion isooctane-filled ionization chamber temperature dependence in a ˜ ±10 °C interval around the standard 20 °C room temperature for three operation voltages, including the manufacturer recommended voltage, and two beam qualities, 60Co and 50 kV x-rays. Within the measured temperature range, the microLion signal exhibits a positive linear dependence, which is around 0.24% K-1 at 800 V with 60Co irradiation. This effect is of the same order of magnitude as the T dependence found in air ionization chambers, but its nature is completely different and its sign opposite to that of an air chamber. Onsager theory has been used to model the results and is consistent with this linear behaviour. However, some inconsistencies in the modelling of the 50 kV x-ray results have been found that are attributed to the failure of Onsager's isolated pair assumption for such radiation quality.

  9. [Experimental investigation of the collection efficiency of a PTW Roos ionization chamber irradiated with pulsed beams at high pulse dose with different pulse lengths].

    PubMed

    Karsch, Leonhard; Richter, Christian; Pawelke, Jörg

    2011-01-01

    In gas-filled ionization chambers as radiation detectors, the collection of the charge carriers is affected by the recombination effect. In dosimetry this effect must be accounted for by the saturation correction factor k(S). The physical description of the correction factor by Boag, Hochhäuser and Balk for pulsed radiation is well established. However, this description is only accurate when the pulse length is short compared to the collection time of the ionization chamber. In this work experimental investigations of the saturation correction factor have been made for pulses of 4 μ s up to pulse doses of about 230 mGy, and the theory of Boag, Hochhäuser and Balk was again confirmed. For longer pulses, however, the correction factor decreases and at a pulse duration of about 200μs reaches 75% of the value valid for short pulses. This reduced influence of the ion recombination is interpreted by the reaction kinetics of ion recombination as a second-order reaction. This effect is negligible for PTW Roos chambers at clinical linear accelerators with 4 μ s pulse duration for pulse doses up to 120 mGy.

  10. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  11. Effect of ionizing radiation on moist air systems

    SciTech Connect

    Reed, D.T.; Van Konynenburg, R.A.

    1987-12-31

    The radiation chemistry of nitrogen/oxygen/water systems is reviewed. General radiolytic effects in dry nitrogen/oxygen systems are relatively well characterized. Irradiation results in the formation of steady state concentrations of ozone, nitrous oxide and nitrogen dioxide. In closed systems, the concentration observed depends on the total dose, temperature and initial gas composition. Only three studies have been published that focus on the radiation chemistry of nitrogen/oxygen/water homogeneous gas systems. Mixed phase work that is relevant to the gaseous system is also summarized. The presence of water vapor results in the formation of nitric acid and significantly changes the chemistry observed in dry air systems. Mechanistic evidence from the studies reviewed are summarized and discussed in relation to characterizing the gas phase during the containment period of a repository in tuff.

  12. Ozone deposition to an oat crop ( Avena sativa L.) grown in open-top chambers and in the ambient air

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skarby, L.; Sellden, G.

    Fluxes and deposition velocities for ozone were determined for open-top chambers with and without an oat crop, and for the adjacent field, using a resistance analogue model and the aerodynamic wind-profile method, respectively. During a period when the canopy was green and the ambient wind speeds modest, the fluxes and deposition velocities were higher in the chamber with plants than in the field crop. The deposition to chamber walls and soil in the chamber only accounted for part of that difference. The deposition velocity for ozone to the crop was light-dependent both in the chamber with plants and in the ambient air. With increasing plant senescence, the deposition velocity declined and the light dependence disappeared. Fluctuations in deposition velocity superimposed on the overall declining trend followed the same temporal pattern in the chambers with and without plants. These fluctuations in deposition velocity may partly be explained by variations in surface wetness. Differences in boundary layer conductance between chamber and ambient, which under certain conditions may significantly influence the validity of the chamber as a test system, were observed.

  13. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  14. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    PubMed

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  15. Ionizing air affects influenza virus infectivity and prevents airborne-transmission

    PubMed Central

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m3 room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  16. Design, simulation, and fabrication of a MEMS-based air amplifier for electrospray ionization

    NASA Astrophysics Data System (ADS)

    Jurčíček, Petr; Zou, Helin; Gao, Shuai

    2013-04-01

    Recent developments in electrospray ionization mass spectrometry (ESI-MS) show that air amplifiers can be utilized to significantly enhance droplet desolvation and to focus gas-phase ions when provided between an electrospray (ES) source and the mass spectrometer (MS). However, these devices are bulky and expensive, which may be a factor prohibiting their broader utilization. We have developed a simple but effective method based on Bernoulli's principle, the Coanda effect and MEMS processing to focus electrosprayed droplets and liberated gas-phase ions. We demonstrate a computer simulation and fabrication process for a micromachined air amplifier. The simulation results are used to optimize the geometry and to meet performance requirements. The optimized results then provide a design guideline for the device's fabrication. The air amplifier is formed from two bonded polydimethylsiloxane (PDMS) casts. Each PDMS cast is fabricated through a molding process using a micromachined two-layer SU-8 mold. Experimental results show a 30-fold improvement in the ES current for certain operation conditions while the air amplifier is incorporated in the nano-electrospray ionization (nano-ESI) process. Compared with traditional air amplifiers, the micro-electro-mechanical systems (MEMS) based air amplifier provides good performance while keeping the fabrication process simple and cost effective.

  17. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.

    PubMed

    Becker, J; Brunckhorst, E; Schmidt, R

    2007-11-07

    When radiotherapy with photon energies greater than 10 MV is performed neutrons contaminate the photon beam. In this paper the neutron contamination of the 15 MV photon mode of the Siemens Primus accelerator was studied. The Monte Carlo code MCNPX was used for the description of the treatment head and treatment room. The Monte Carlo results were verified by studying the photon depth dose curve and beam profiles in a water phantom. After these verifications the locations of neutron production were studied and the neutron source spectrum and strength were calculated. The neutron response of the paired Mg/Ar and MgB/Ar ionization chamber system was calculated and experimentally verified for two experimental set-ups. The paired chamber system allowed us to measure neutrons inside the field borders and allowed rapid and point wise measurement in contrast to other methods of neutron detection.

  18. Instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute tissue specimens: an ionization chamber method

    SciTech Connect

    Davidson, W.D.; Klein, K.L.; Kurokawa, K.; Soll, A.H.

    1981-06-01

    The vibrating reed electrometer and ionization chamber have been adapted for the instantaneous and continuous measurement of /sup 14/C-labeled substrate oxidation to /sup 14/CO2 by minute quantities of isolated tissues. This modified technique, utilizing a ''closed'' circulation incubation system, is 10-50 times as sensitive as the previously described ''open'' circulation techniques. Substrate oxidation curves are described for human erythrocytes and polymorphonuclear leucocytes, canine parietal cells and isolated segments of the rat nephron. This apparatus should prove to be a useful tool for metabolic studies of small quantities of isolated tissue.

  19. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI).

  20. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  1. The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams.

    PubMed

    McEwen, M R; Kawrakow, I; Ross, C K

    2008-03-01

    A precision experimental investigation of the effective point of measurement (EPOM) of ion chambers in megavoltage beams has been carried out. A one-dimensional scanning phantom system was developed with an overall accuracy in the positioning of a chamber of better than 0.15 mm. Depth-dose data were acquired for a 25 MV beam from an Elekta Precise linac (field sizes of 10 x 10 cm and 25 x 25 cm) for measurement depths in the range 0.6-6 cm. The results confirmed the Monte Carlo calculations of an earlier theoretical investigation by Kawrakow [Med. Phys. 33, 1829-1839 (2006)] that the standard shift for cylindrical chambers, recommended in dosimetry protocols of -0.6r (where r is the internal radius of the cavity), is incorrect. A wide range of ion chambers were investigated and it was found that errors of up to 1.4 mm could occur for certain chamber designs (although typical errors for common chambers were around 0.5 mm). A comparison between measurements and Monte Carlo simulations showed that once the correct EPOM is used, the details of the linac geometry are correct, and the parameters of the electron beam striking the bremsstrahlung target have been adequately determined, the EGSnrc Monte Carlo package is capable of reproducing the experimental data to 0.2 mm or better. The investigation also confirmed that for the highest accuracy depth-dose curves in megavoltage photon beams one should use a well-guarded parallel-plate ion chamber. Three chamber designs were tested here and found to be satisfactory-the Scanditronix-Wellhöfer NACP-02, PTW Roos and Exradin All.

  2. Electrophysical and optophysical properties of air ionized by a short pulse of fast electrons

    NASA Astrophysics Data System (ADS)

    Vagin, Iu. P.; Stal', N. L.; Khokhlov, V. D.; Chernoiarskii, A. A.

    A method for solving the nonstationary kinetic equation of electron deceleration is developed which is based on the multigroup approximation. The electron distribution function in air ionized by nonstationary sources of primary electrons is determined, and the avalanche formation of secondary electrons is considered. Theoretical and experimental results are presented on the time dependence of the air luminescence intensity in two spectral intervals, one including the 391.4 nm N2(+) band and the other including the 337.1 nm N2 band, for different values of gas pressure under the effect of a short beam of electrons with energies of 100 keV.

  3. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  4. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  5. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    PubMed

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  6. A single-chamber microbial fuel cell without an air cathode.

    PubMed

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.

  7. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With increasing demand for agricultural products, more confidence is needed concerning impacts of rising atmospheric CO2 on crop yields. Despite debate about the merits of free-air CO2 enrichment (FACE) and open top chamber (OTC) systems, there has been only one reported experiment directly compari...

  8. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers.

    PubMed

    Britigan, Nicole; Alshawa, Ahmad; Nizkorodov, Sergey A

    2006-05-01

    Indoor air purifiers are advertised as safe household products for health-conscious individuals, especially for those suffering from allergies and asthma. However, certain air purifiers produce ozone (O3) during operation, either intentionally or as a byproduct of air ionization. This is a serious concern, because O3 is a criteria air pollutant regulated by health-related federal and state standards. Several types of air purifiers were tested for their ability to produce ozone in various indoor environments at 40-50% relative humidity, including office rooms, bathrooms, bedrooms, and cars. O3 levels generated by personal wearable air purifiers were also tested. In many cases, O3 concentrations were well in excess of public and/or industrial safety levels established by U.S. Environmental Protection Agency, California Air Resources Board, and Occupational Safety and Health Administration. Simple kinetic equations were obtained that can predict the steady-state level of O3 in a room from the O3 emission rate of the air purifier and the first-order decay rate of O3 in the room. The additivity of O3 levels generated by independent O3 generators was experimentally demonstrated.

  9. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  10. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    NASA Astrophysics Data System (ADS)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  11. Low-voltage ionization of air with carbon-based materials

    NASA Astrophysics Data System (ADS)

    Peterson, M. S.; Zhang, W.; Fisher, T. S.; Garimella, S. V.

    2005-11-01

    Polycrystalline diamond and carbon nanotubes (CNTs) exhibit excellent vacuum field emission properties, characterized by low turn-on voltage and high current density. Their atmospheric field emission and ionization capabilities are reported in this paper. Highly graphitic polycrystalline diamond (HGPD) film was grown in a plasma-enhanced chemical vapour deposition process, and its ability to ionize atmospheric air was characterized and compared against CNTs. The HGPD sample was activated by applying a moderate voltage bias (340 V) for an extended period across a 10 µm electrode gap. After activation, a turn-on voltage of 20 V and a sustainable current of 10 µA were observed with the same gap. Results also indicate that field emission helps to create a moderate ionization effect without catastrophic air breakdown. A hydrogen plasma treatment is shown to restore emission current back to or even exceeding the original level, which suggests an important role of surface termination in the electron emission process. CNTs were grown and tested but did not perform as well under similar conditions.

  12. Negative air ionization improves memory and attention in learning-disabled and mentally retarded children.

    PubMed

    Morton, L L; Kershner, J R

    1984-06-01

    The effect of increased concentrations of ambient negative air ions on incidental visual memory for words and purposive auditory memory for dichotic digits was investigated in 20 normal grade 4 children, 8 learning-disabled children, and 8 mildly mentally retarded children. Half in each group were assigned randomly to an unmodified air-placebo condition under double-blind testing procedures. All of the children breathing negatively ionized air were superior in incidental memory. In dichotic listening, the negative ions produced a counter-priming effect in the two learning-impaired groups, offsetting the difficulties that they showed under placebo in switching attention selectively from one ear to the other. The action of negative ions on the neurotransmitter, serotonin, may be the mechanism by which negative ions produce such behavioral effects. In view of the important environmental and remedial implications of these novel findings, interpretations should be made cautiously pending larger-scale replications.

  13. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.

  14. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    NASA Astrophysics Data System (ADS)

    Gomez-Heredia, C. L.; Macias, J.; Ordonez-Miranda, J.; Ares, O.; Alvarado-Gil, J. J.

    2017-01-01

    Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen's number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorr

  15. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer.

    PubMed

    Kim, H-J; Han, B; Kim, Y-J; Oda, T; Won, H

    2013-10-01

    A novel positive-polarity electrostatic precipitator (ESP) was developed using an ionization stage (0.4 × 0.4 × 0.14 m(3) ) with 16 carbon fiber ionizers in each channel and a collection stage (0.4 × 0.4 × 0.21 m(3) ) with parallel metallic plates. The single-pass collection efficiency and clean air delivery rate (CADR) were measured by standard tests using KCl particles in 0.25-0.35 μm. Performance was determined using the Deutsch equation and established diffusion and field charging theories and also compared with the commercialized HEPA filter-type air cleaner. Experimental results showed that the single-pass collection efficiency of the ESP ranged from 50 to 95% and decreased with the flow rate (10-20 m(3) /min), but increased with the voltage applied to the ionizers (6 to 8 kV) and collection plates (-5 to -7 kV). The ESP with 18 m(3) /min achieved a CADR of 12.1 m(3) /min with a voltage of 8 kV applied to the ionization stage and with a voltage of -6 kV applied to the collection stage. The concentration of ozone in the test chamber (30.4 m(3) ), a maximum value of 5.4 ppb over 12 h of continuous operation, was much lower than the current indoor regulation (50 ppb).

  16. SU-E-T-414: Experimental Correction of High-Z Electrode Effect in Mini-Ionization Chambers for Small Beam Dosimetry

    SciTech Connect

    Larraga-Gutierrez, J

    2015-06-15

    Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth with SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.

  17. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  18. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Liu, Tengyu; Zhang, Yanli; Situ, Shuping; Hu, Qihou; He, Quanfu; Zhang, Zhou; Lü, Sujun; Bi, Xinhui; Wang, Xuemei; Boreave, Antoinette; George, Christian; Ding, Xiang; Wang, Xinming

    2017-02-01

    Chamber studies on the formation of secondary aerosols are mostly performed with purified air as matrix, it is of wide concern in what extent they might be different from the situations in ambient air, where a variety of gaseous and particulate components preexist. Here we compared the photo-oxidation of "toluene + NOx + SO2" combinations in a smog chamber in real urban ambient air matrix with that in purified air matrix. The secondary organic aerosols (SOA) mass concentrations and yields from toluene in the ambient air matrix, after subtracted ambient air background primary and secondary organic aerosols, were 9.0-34.0 and 5.6-12.9 times, respectively, greater than those in purified air matrix. Both homogeneous and heterogeneous oxidation of SO2 were enhanced in ambient air matrix experiments with observed 2.0-7.5 times higher SO2 degradation rates and 2.6-6.8 times faster sulfate formation than that in purified air matrix, resulting in higher in-situ particle acidity and consequently promoting acid-catalyzed SOA formation. In the ambient air experiments although averaged OH radical levels were elevated probably due to heterogeneous formation of OH on particle surface and/or ozonolysis of alkenes, non-OH oxidation pathways of SO2 became even more dominating. Under the same organic aerosol mass concentration, the SOA yields of toluene in purified air matrix experiments matched very well with the two-product model curve by Ng et al. (2007), yet the yields in ambient air on average was over two times larger. The results however were much near the best fit curve by Hildebrandt et al. (2009) with the volatility basis set (VBS) approach.

  19. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    SciTech Connect

    Aragón-Martínez, Nestor Massillon-JL, Guerda; Gómez-Muñoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  20. Characterization of radiation beams used to determinate the correction factor for a CyberKnife® unit reference field using ionization chambers

    NASA Astrophysics Data System (ADS)

    Aragón-Martínez, Nestor; Gómez-Muñoz, Arnulfo; Massillon-JL, Guerda

    2014-11-01

    This paper aimed to characterize a 6 MV x-ray beam from a Varian® iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism1. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm × 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm × 10 cm and 5.4 cm × 5.4 cm fields was obtained in order to simulate the CyberKnife® conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm × 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm × 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife® conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  1. Measurements of miniature ionization chamber currents in the JSI TRIGA Mark II reactor demonstrate the importance of the delayed contribution to the photon field in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Fourmentel, Damien; Barbot, Loïc; Villard, Jean-François; Kaiba, Tanja; Gašper, Žerovnik; Snoj, Luka

    2015-12-01

    The characterization of experimental locations of a research nuclear reactor implies the determination of neutron and photon flux levels within, with the best achievable accuracy. In nuclear reactors, photon fluxes are commonly calculated by Monte Carlo simulations but rarely measured on-line. In this context, experiments were conducted with a miniature gas ionization chamber (MIC) based on miniature fission chamber mechanical parts, recently developed by the CEA (French Atomic Energy and Alternative Energies Commission) irradiated in the core of the Jožef Stefan Institute TRIGA Mark II reactor in Ljubljana, Slovenia. The aim of the study was to compare the measured MIC currents with calculated currents based on simulations with the MCNP6 code. A discrepancy of around 50% was observed between the measured and the calculated currents; in the latter taking into consideration only the prompt photon field. Further experimental measurements of MIC currents following reactor SCRAMs (reactor shutdown with rapid insertions of control rods) provide evidence that over 30% of the total measured signal is due to the delayed photon field, originating from fission and activation products, which are untreated in the calculations. In the comparison between the measured and calculated values, these findings imply an overall discrepancy of less than 20% of the total signal which is still unexplained.

  2. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate.

    PubMed

    Karsch, Leonhard

    2016-04-21

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  3. Influence of air exposure and storage condition on serum ionized magnesium level.

    PubMed

    Baek, E J; Park, I K

    2005-01-01

    The aim of this study was to evaluate whether reporting serum level of ionized magnesium (iMg) is appropriate when affected by various conditions such as exposure to air and delayed measurement. Serum levels of pH, iMg and normalized magnesium (nMg, normalized or adjusted concentration of iMg to pH 7.40) from 28 inpatients were measured at intervals of 3 min after exposing the samples to air at room temperature. Serum from 30 inpatients was stored in closed tubes at 4 degrees C and -20 degrees C and iMg and nMg levels were measured after 2 days. It was found that serum iMg and nMg concentrations exposed to air were decreased by 0.0023 mmol/l and 0.0001 mmol/l per minute, respectively. nMg did not display any significant changes compared with iMg at 0 min, whereas iMg showed significant changes, which exceeded between-day precision. For the stored serum, only iMg of serum at -20 degrees C showed no statistically significant changes (p = 0.169). It is concluded that to report the result as iMg, the sample should be kept anaerobically, and if exposed to air, the result should be reported as nMg. For storage, iMg of serum kept anaerobically at -20 degrees C is reliable.

  4. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    SciTech Connect

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A.

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  5. A device for precision neutralization of electric charge of small drops using ionized air

    NASA Astrophysics Data System (ADS)

    Fan, Sewan; Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Rogers, Howard; Loomba, Dinesh

    2003-10-01

    For use in our Millikan type liquid drop searches for fractional charge elementary particles we have developed a simple ionized air device for neutralizing a narrow stream of small drops. The neutralizer has been used for drops ranging in diameter from 10 to 25 μm. The width of the produced charge distribution is given by the Boltzmann equilibrium charge distribution and the mean of the distribution is set by a bias voltage. Using the bias voltage, the mean can be set with a precision of better than e, the electron charge. The use of the neutralizer is illustrated in an application to mineral oil drops produced with charges of the order of 1000e. We also show the interesting case of silicone oil drops that are produced in our drop generator with a charge distribution narrower than the Boltzmann equilibrium charge distribution, the charge distribution being broadened by the neutralizer.

  6. Air bubble in anterior chamber as indicator of full-thickness incisions in femtosecond-assisted astigmatic keratotomy.

    PubMed

    Vaddavalli, Pravin K; Hurmeric, Volkan; Yoo, Sonia H

    2011-09-01

    Femtosecond-assisted astigmatic keratotomy is predictable and precise but may occasionally lead to a full-thickness incision on the cornea and the attendant complications. The presence of an air bubble in the anterior chamber soon after creation of the keratotomy by the femtosecond laser may indicate a full-thickness incision. We present a case in which recognition of this clinical finding early in the procedure might have prevented undesirable complications, such as leakage of aqueous and the potential for intraocular infection.

  7. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.

    2003-01-01

    A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.

  8. Chamber validation of a passive air sampling device for measuring ambient VOCs at subzero temperatures

    SciTech Connect

    Gagner, R.V.; Hrudey, S.E.

    1997-12-31

    An evaluation was made of the performance of the 3M Organic Vapor Monitor No. 3500 through experiments conducted under permeation tube generated atmospheres in a controlled chamber environment. A range of typical ambient benzene and toluene concentrations were produced in the chamber to test the consistency of the sampling rate under different exposure levels. All tests were repeated at room temperature, and under subzero Celsius conditions to determine the effect of lowered temperatures on the performance of the badge. As expected, relatively low concentrations of benzene and toluene produced small incremental increases in analyte above the background levels inherent to the badge and analytical methods resulting in a loss of method precision. The badge sampling rate was not significantly affected by decreases in temperature to minus fifteen degrees Celsius. This finding was not consistent with the theoretically-based temperature correction factors identified in the product literature.

  9. Genotypes of Brassica rapa respond differently to plant-induced variation in air CO2 concentration in growth chambers with standard and enhanced venting.

    PubMed

    Edwards, Christine E; Haselhorst, Monia S H; McKnite, Autumn M; Ewers, Brent E; Williams, David G; Weinig, Cynthia

    2009-10-01

    Growth chambers allow measurement of phenotypic differences among genotypes under controlled environment conditions. However, unintended variation in growth chamber air CO2 concentration ([CO2]) may affect the expression of diverse phenotypic traits, and genotypes may differ in their response to variation in [CO2]. We monitored [CO2] and quantified phenotypic responses of 22 Brassica rapa genotypes in growth chambers with either standard or enhanced venting. [CO2] in chambers with standard venting dropped to 280 micromol mol(-1) during the period of maximum canopy development, approximately 80 micromol mol(-1) lower than in chambers with enhanced venting. The stable carbon isotope ratio of CO2 in chamber air (delta13C(air)) was negatively correlated with [CO2], suggesting that photosynthesis caused observed [CO2] decreases. Significant genotype x chamber-venting interactions were detected for 12 of 20 traits, likely due to differences in the extent to which [CO2] changed in relation to genotypes' phenology or differential sensitivity of genotypes to low [CO2]. One trait, 13C discrimination (delta13C), was particularly influenced by unaccounted-for fluctuations in delta13C(air) and [CO2]. Observed responses to [CO2] suggest that genetic variance components estimated in poorly vented growth chambers may be influenced by the expression of genes involved in CO2 stress responses; genotypic values estimated in these chambers may likewise be misleading such that some mapped quantitative trait loci may regulate responses to CO2 stress rather than a response to the environmental factor of interest. These results underscore the importance of monitoring, and where possible, controlling [CO2].

  10. Test and evaluation of the Argonne BPAC10 Series air chamber calorimeter designed for 20 minute measurements

    SciTech Connect

    Perry, R.B.; Fiarman, S.; Jung, E.A. ); Cremers, T. )

    1990-10-01

    This paper is the final report on DOE-OSS Task ANLE88002 Fast Air Chamber Calorimetry.'' The task objective was to design, construct, and test an isothermal air chamber calorimeter for plutonium assay of bulk samples that would meet the following requirements for sample power measurement: average sample measurement time less than 20 minutes. Measurement of samples with power output up to 10 W. Precision of better than 1% RSD for sample power greater than 1 W. Precision better than 0.010 watt SD, for sample power less than 1 W. This report gives a description of the calorimeter hardware and software and discusses the test results. The instrument operating procedure, included as an appendix, gives examples of typical input/output and explains the menu driven software. Sample measurement time of less than 20 minutes was attained by pre-equilibration of the samples in low cost precision preheaters and by prediction of equilibrium measurements. Tests at the TA55 Plutonium Facility at Los Alamos National Laboratory, on typical samples, indicates that the instrument meets all the measurement requirements.

  11. Effect of a commercial air ionizer on dust mites Dermatophagoides pteronyssinus and Dermatophagoides farinae (Acari: Pyroglyphidae) in the laboratory

    PubMed Central

    Abidin, Suhaili Zainal; Ming, Ho Tze

    2012-01-01

    Objective To investigate the short and long term efficacy of a commercial air ionizer in killing Dermatophagoides pteronyssinus (D. pteronyssinus) and Dermatophagoides farinae (D. farinae) mites. Methods The effect of a commercial ionizer on D. pteronyssinus and D. farinae was evaluated in the laboratory, using a specially designed test. Mortality was assessed after 6, 16 and 24 hours for direct exposure and after 24, 36, 48, 60 and 72 hours for exposure in simulated mattress. New batches of mites were used for each exposure time. Results LT50 for direct exposure of ionizer was 10 hours for D. pteronyssinus and 18 hours for D. farinae. The LT50 for exposure in simulated mattress was 132 hours or 5.5 days for D. pteronyssinus and 72 hours or 3 days for D. farinae. LT95 for direct exposure of ionizer was 36 hours for D. pteronyssinus and D. farinae. Meanwhile, the LT95 for exposure in simulated mattress was 956 hours or 39.8 days for D. pteronyssinus and 403 hours or 16.8 days for D. farinae. Conclusions This study demonstrates the increasing mite mortalities with increasing exposure time of a commercial ionizer and suggests that negative ions produced by an ionizer kill dust mites and can be used to reduce natural mite populations on exposed surfaces such as floors, clothes, curtains, etc. However, there is reduced efficacy on mites inside stuffed materials as in mattresses and furniture. PMID:23569888

  12. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  13. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    SciTech Connect

    Derbenev, I. N.; Filippov, A. V.

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  14. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  15. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  16. NOTE: Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX—a feasibility study

    NASA Astrophysics Data System (ADS)

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-01

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10° were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  17. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  18. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials.

  19. Emissions of air pollutants from scented candles burning in a test chamber

    NASA Astrophysics Data System (ADS)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  20. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  1. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  2. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  3. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    NASA Astrophysics Data System (ADS)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  4. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  5. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  6. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  7. Precursor ionization ahead of laser-supported detonation wave in air and argon

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Komurasaki, Kimiya; Koizumi, Hiroyuki; Arakawa, Yoshihiro

    2012-10-01

    Laser-produced plasma in a gaseous form is considered, which has attracted great interest for use in many devices. After breakdown one of possible mechanisms of occurrence of this process is noted as laser-supported detonation wave. This wave consisting of the shock wave and the beam absorbing plasma travels at several kilometers per second along the laser beam channel in the direction opposite to the beam incidence. A Nd: Glass laser and a TEA CO2 laser were utilized. According to shadowgraph and spectroscopic studies, the wave has a velocity of 1-10 km/s, an electron temperature of 2-5 eV and an electron density of 10^24 m-3 after breakdown. For simplicity, the discussion is restricted to one-dimensional flows that considers the radiation from plasma and the collisional ionization by laser irradiation. Assuming that UV photons radiating from laser plasma induce photoionization ahead of ionization front, this ionization frequency fp at the distance lp (mean free path of photon) from the wave front corresponds to 10^10 s-1. This is higher than the collisional ionization frequency (10^5-6 s-1). Analytical velocities (fplp) describing the avalanche ionization in the pre-ionization layer agree with the experimentally observed velocities. These results does not depend on background gas and laser-wavelength.

  8. SU-E-T-225: Correction Matrix for PinPoint Ionization Chamber for Dosimetric Measurements in the Newly Released Incise™ Multileaf Collimator Shaped Small Field for CyberKnife M6™ Machine

    SciTech Connect

    Zhang, Y; Li, T; Heron, D; Huq, M

    2015-06-15

    Purpose: For small field dosimetry, such as measurements of output factors for cones or MLC-shaped irregular small fields, ion chambers often Result in an underestimation of the dose, due to both the volume averaging effect and the lack of lateral charged particle equilibrium. This work presents a mathematical model for correction matrix for a PTW PinPoint ionization chamber for dosimetric measurements made in the newly released Incise™ Multileaf collimator fields of the CyberKnife M6™ machine. Methods: A correction matrix for a PTW 0.015cc PinPoint ionization chamber was developed by modeling its 3D dose response in twelve cone-shaped circular fields created using the 5mm, 7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm cones in a CyberKnife M6™ machine. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. The contribution of each dose pixel to a measurement point depended on the radial distance and the angle to the chamber axis. These readings were then compared with the theoretical dose as obtained with Monte Carlo calculation. A penalized least-square optimization algorithm was developed to generate the correction matrix. After the parameter fitting, the mathematical model was validated for MLC-shaped irregular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for PinPoint chamber for dosimetric measurements in small MLC-shaped irregular fields. The correction matrix is dependent on detector, treatment unit and the geometry of setup. The model can be applied to non-standard composite fields and provides an access to IMRT point dose validation.

  9. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min.

  10. Air kerma standard for calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources and its traceability

    SciTech Connect

    Di Prinzio, Renato; Almeida, Carlos Eduardo de

    2009-03-15

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian National Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.

  11. Flow chamber

    SciTech Connect

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  12. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    PubMed

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism.

  13. Calculation of reactivities using ionization chamber currents with different sets of kinetic parameters for reduced scram system efficiency in the VVER-1000 of the third unit of the Kalinin nuclear power plant at the stage of physical start-up

    SciTech Connect

    Zizin, M. N.; Zizina, S. N.; Kryakvin, L. V.; Pitilimov, V. A.; Tereshonok, V. A.

    2011-12-15

    The effectiveness of the VVER-1000 reactor scram system is analyzed using ionization chamber currents with different sets of kinetic parameters with allowance for the isotopic composition in the calculation of these parameters. The most 'correct, aesthetically acceptable' results are obtained using the eight-group constants of the ROSFOND (BNAB-RF) library. The difference between the maximum and minimum values of the scram system effectiveness calculated with different sets of kinetic parameters slightly exceeds 2{beta}. The problems of introducing corrections due to spatial effects are not considered in this study.

  14. Recombination characteristics of therapeutic ion beams on ion chamber dosimetry

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Matsuyama, Tetsuharu; Sato, Shinji; Kohno, Toshiyuki

    2016-09-01

    In heavy ion radiotherapy, ionization chambers are regarded as a standard for determining the absorbed dose given to patients. In ion dosimetry, it is necessary to correct the radiation quality, which depends on the initial recombination effect. This study reveals for the radiation quality dependence of the initial recombination in air in ion dosimetry. Ionization charge was measured for the beams of protons at 40-160 MeV, carbon at 21-400 MeV/n, and iron at 23.5-500 MeV/n using two identical parallel-plate ionization chambers placed in series along the beam axis. The downstream chamber was used as a monitor operated with a constant applied voltage, while the other chamber was used for recombination measurement by changing the voltage. The ratio of the ionization charge measured by the two ionization chambers showed a linear relationship with the inverse of the voltage in the high-voltage region. The initial recombination factor was estimated by extrapolating the obtained linear relationship to infinite voltage. The extent of the initial recombination was found to increase with decreasing incident energy or increasing atomic number of the beam. This behavior can be explained with an amorphous track structure model: the increase of ionization density in the core region of the track due to decreasing kinetic energy or increasing atomic number leads to denser initial ion production and results in a higher recombination probability. For therapeutic carbon ion beams, the extent of the initial recombination was not constant but changed by 0.6% even in the target region. This tendency was quantitatively well reproduced with the track-structure based on the initial recombination model; however, the transitional change in the track structure is considered to play an important role in further understanding of the characteristics of the initial recombination.

  15. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  16. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  17. Limitations to soybean photosynthesis at elevated carbon dioxide in free-air enrichment and open top chamber systems.

    PubMed

    Bunce, James A

    2014-09-01

    It has been suggested that the stimulation of soybean photosynthesis by elevated CO2 was less in free-air carbon dioxide enrichment (FACE) systems than in open top chambers (OTC), which might explain smaller yield increases at elevated CO2 in FACE systems. However, this has not been tested using the same cultivars grown in the same location. I tested whether soybean photosynthesis at high light and elevated CO2 (ambient+180 μmol mol(-1)) was limited by electron transport (J) in FACE systems but by ribulose-bisphosphate carboxylation capacity (VCmax) in OTC. FACE systems with daytime and continuous CO2 enrichment were also compared. The results indicated that in both cultivars examined, midday photosynthesis at high light was always limited by VCmax, both in the FACE and in the OTC systems. Daytime only CO2 enrichment did not affect photosynthetic parameters or limitations, but did result in significantly smaller yields in both cultivars than continuous elevation. Photosynthesis measured at low photosynthetic photon flux density (PPFD) was not higher at elevated than at ambient CO2, because of an acclimation to elevated CO2 which was only evident at low measurement PPFDs.

  18. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors.

    PubMed

    Shi, Bingbing; Ekberg, Lars

    2015-06-02

    Previous research has demonstrated that unipolar ionization can enhance the filter performance to collect airborne particles, aeroallergens, and airborne microorganisms, without affecting the filter pressure drop. However, there is a lack of research on the long-term system performance as well as the influence of environmental and operational parameters. In this paper, both field and laboratory tests were carried out to evaluate the long-term particle collection efficiency of a synthetic filter of class M6 with and without ionization. The effect of air velocity, temperature, relative humidity, and particle concentration were further investigated in laboratory tests. Results showed that ionization enhanced the filtration efficiency by 40%-units during most of the operation time. When the ionization system was managed by periodically switching the ionizer polarity, the filtration efficiency against PM0.3-0.5 was maintained above 50% during half a year. Furthermore, the pressure drop of the ionizer-assisted M6 filter was 25-30% lower than that of a filter of class F7. The evaluation of various influencing factors demonstrated that (1) air moisture reduced the increase of filtration efficiency; (2) higher upstream particle concentration and air velocity decreased the filtration efficiency; and (3) the air temperature had very limited effect on the filtration efficiency.

  19. Determination of volatile organic compounds in ambient air with gas chromatograph-flame ionization and ion trap detection

    SciTech Connect

    Liu, S.; Carley, R.J.; Kang, J.; Chen, J.; Stuart, J.D.

    1994-12-31

    Two new techniques are utilized to integrate the following three equipments: an Entech 2000 automated air concentrator, a Hewlett Packard gas chromatograph (GC) with flame ionization detector (FID) and an ion trap mass spectrometer detector (ITD). This combined analytical system is used to determine low ppb level volatile organic compounds (VOC) in ambient air. The first technique is to configure the inlet system of the GC, so that the pressure regulated flow control system of the GC injection port is used to control the flow of both the desorb gas of the automated air concentrator and the carrier gas of the GC column. The injection port still can be used to inject gas and liquid samples directly. The second technique is to split the effluent of GC column at a 1:1 ratio to the ITD and the FID. In this way, both FID and ITD data can be obtained for each analysis. For ambient air non-methane hydrocarbons monitoring, the FID detector is widely used. Oxygen containing and halogenated organic compounds cannot be differentiated by FID detector and would be quantified as coeluting hydrocarbons. However, volatile organic compounds other than target hydrocarbons can be identified by ITD. This analytical system is very valuable research tool for non-methane hydrocarbons and urban air toxic monitoring. The performances of this developed system have been presented.

  20. The effect of negative air ionization on the growth of four generations of laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Bellamy, D.; Head, E. L.

    1984-06-01

    Initial work indicated an inhibition of pre-weaning growth in the first generation of rats born and raised at high negative ion levels. This effect, however, was not carried through to the successive generations. Negative ionization had little apparent effect on post-weaning growth throughout the four generations studied.

  1. Ambient air analyses using nonspecific flame ionization and electron capture detection compared to specific detection by mass spectroscopy

    SciTech Connect

    Pleil, J.D.; Oliver, K.D.; McClenny, W.A.

    1988-08-01

    Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.

  2. Influence of air-staging on the concentration profiles of NH{sub 3} and HCN in the combustion chamber of a CFB boiler burning coal

    SciTech Connect

    Kassman, H.; Karlsson, M.; Aamand, L.E.

    1999-07-01

    The characterization of the concentration profiles of NH{sub 3} and HCN are of great importance for increasing the knowledge of the formation and destruction pathways of NO and N{sub 2}O in a fluidized bed boiler. Further improvements of the sampling methods for the determination of both NH{sub 3} and HCN in the combustion chamber in full-scale CFB boilers are also needed. A gas-sampling probe connected to a Fourier Transform Infrared (FTIR) instrument and a gas-quenching (GQ) probe in which the sample is quenched directly in the probe tip by a circulating trapper solution were used. The FTIR technique is based on analysis of hot combustion gases, whereas the trapper solutions from the GQ probe were analyzed by means of wet chemistry. The tests were performed during coal combustion in a 12 MW CFB boiler, which was operated at three air-staging cases with the addition of limestone for sulfur capture. The concentration profiles of NH{sub 3} and HCN in the combustion chamber showed a different pattern concerning the influence of air-staging. The highest levels of NH{sub 3} were observed during reducing condition (severe air-staging), and the lowest were found under oxidizing conditions (no air-staging). The levels of HCN were much lower than those measured for NH{sub 3}. The highest levels of HCN were observed for reversed air-staging and severe air-staging showed almost no HCN. The potential reactors involving NH{sub 3} and HCN in the combustion chamber as well as the potential measurement errors in each sampling technique are discussed for the three air-staging cases.

  3. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-05

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  4. The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes

    NASA Astrophysics Data System (ADS)

    Eckley, C. S.; Gustin, M.; Lin, C.-J.; Li, X.; Miller, M. B.

    2010-01-01

    Dynamic Flux Chambers (DFCs) are commonly applied for the measurement of non-point source mercury (Hg) emissions from a wide range of surfaces. A standard operating protocol and design for DFCs does not exist, and as a result there is a large diversity in methods described in the literature. Because natural and anthropogenic non-point sources are thought to contribute significantly to the atmosphere Hg pool, development of accurate fluxes during field campaigns is essential. The objective of this research was to determine how differences in chamber material, sample port placement, vertical cross sectional area/volume, and flushing flow rate influence the Hg flux from geologic materials. Hg fluxes measured with a Teflon chamber were higher than those obtained using a polycarbonate chamber, with differences related to light transmission and substrate type. Differences in sample port placement (side versus top) did not have an influence on Hg fluxes. When the same flushing flow rate was applied to two chambers of different volumes, higher fluxes were calculated for the chamber with the smaller volume. Conversely, when two chambers with different volumes were maintained at similar turnover times, the larger volume chamber yielded higher Hg fluxes. Overall, the flushing flow rate and associated chamber turnover time had the largest influence on Hg flux relative to the other parameters tested. Results from computational fluid dynamic (CFD) modeling inside a DFC confirm that the smaller diffusion resistance at higher flushing flows contributes to the higher measured flux. These results clearly illustrate that differences in chamber design and operation can significantly influence the resulting calculated Hg flux, and thus impact the comparability of results obtained using DFC designs and/or operating parameters. A protocol for determining a flushing flow rate that results in fluxes less affected by chamber operating conditions and design is proposed. Application of this

  5. The effect of fuel and air agitation on the combustion process in a low-emission combustion chamber

    NASA Astrophysics Data System (ADS)

    Bulysova, L. A.; Gorban', V. D.

    2013-09-01

    Methods for numerically simulating the working process in low-emission combustion chamber and for testing it are described. A method of using numerical simulation for predicting NO x emission and combustion process stability in a low-emission combustion chamber is proposed.

  6. SU-E-T-625: Use and Choice of Ionization Chambers for the Commissioning of Flattened and Flattening-Filter-Free Photon Beams: Determination of Recombination Correction Factor (ks)

    SciTech Connect

    Stucchi, C; Mongioj, V; Carrara, M; Pignoli, E; Bonfantini, F; Bresolin, A

    2014-06-15

    Purpose: To evaluate the recombination effect for some ionization chambers to be used for linacs commissioning for Flattened Filter (FF) and Flattening Filter Free (FFF) photon beams. Methods: A Varian TrueBeam linac with five photon beams was used: 6, 10 and 15 MV FF and 6 and 10 MV FFF. Measurements were performed in a water tank and in a plastic water phantom with different chambers: a mini-ion chamber (IC CC01, IBA), a plane-parallel ion chamber (IC PPC05, IBA) and two Farmer chambers (NE2581 and FPC05-IBA). Measurement conditions were Source- Surface Distance of 100 cm, two field sizes (10x10 and 40x40 cm2) and five depths (1cm, maximum buildup, 5cm, 10cm and 20cm). The ion recombination factors (kS), obtained from the Jaffe's plots (voltage interval 50-400 V), were evaluated at the recommended operating voltage of +300V. Results: Dose Per Pulse (DPP) at dmax was 0.4 mGy/pulse for FF beams, 1.0 mGy/pulse and 1.9 mGy/pulse for 6MV and 10 MV FFF beams respectively. For all measurement conditions, kS ranged between 0.996 and 0.999 for IC PPC05, 0.997 and 1.008 for IC CC01. For the FPC05 IBA Farmer IC, kS varied from 1.001 to 1.011 for FF beams, from 1.004 to 1.015 for 6 MV FFF and from 1.009 to 1.025 for 10 MV FFF. Whereas, for NE2581 IC the values ranged from 1.002 to 1.009 for all energy beams and measurement conditions. Conclusion: kS depends on the chamber volume and the DPP, which in turn depends on energy beam but is independent of dose rate. Ion chambers with small active volume can be reliably used for dosimetry of FF and FFF beams even without kS correction. On the contrary, for absolute dosimetry of FFF beams by Farmer ICs it is necessary to evaluate and apply the kS correction. Partially supported by Lega Italiana Lotta contro i Tumori (LILT)

  7. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  8. Assessing plant response to ambient ozone: growth of young apple trees in open-top chambers and corresponding ambient air plots.

    PubMed

    Manning, W J; Cooley, D R; Tuttle, A F; Frenkel, M A; Bergweiler, C J

    2004-12-01

    Open-top chambers (OTCs) and corresponding ambient air plots (AA) were used to assess the impact of ambient ozone on growth of newly planted apple trees at the Montague Field research center in Amherst, MA. Two-year-old apple trees (Malus domestica Borkh 'Rogers Red McIntosh') were planted in the ground in circular plots. Four of the plots were enclosed with OTCs where incoming air was charcoal-filtered (CF); four were enclosed with OTCs where incoming air was not charcoal-filtered (NF) and four were not enclosed, allowing access to ambient air conditions (AA). Conditions in both CF and NF OTCs resulted in increased tree growth and changed incidence of disease and arthropod pests, compared to trees in AA. As a result, we were not able to use the OTC method to assess the impact of ambient ozone on growth of young apple trees in Amherst, MA.

  9. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  10. Thermal ionization instability development in air plasma generated by repetitive ns dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhael; Marinov, Daniil; Starikovskaia, Svetlana; PU Team; LPP Team

    2013-09-01

    The aim of this paper is to study a transformation of a nanosecond discharge under conditions of high repetitive frequency in a barrier configuration of the electrodes. Nanosecond DBDs at atmospheric pressure are widely used for research in plasma medicine. At atmospheric pressure conditions the discharge develops as a set of microchannels bridging a gap between the electrodes covered with dielectric, the current in each microchannel is restricted by charging of a dielectric surface. With pressure decrease, a discharge becomes more uniform, still it is known that a slight change of a gas mixture composition, f.e. add of a fuel, may lead to significant problems with the uniformity. Estimations were made to analyze the possibility of discharge contruction due to thermal ionization instability development. We used the assumption that there is no convective cooling of the gas in the discharge cell. It was shown that NS discharge in DBD geometry is non-uniform. Initial electrical fields distribution and thermal ionization instability development form the non-uniform energy distribution in the discharge. This non-uniformity can play a key role in kinetic experiments in this type of the discharge.

  11. Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater during unstable combustion

    NASA Astrophysics Data System (ADS)

    Basok, B. I.; Gotsulenko, V. V.

    2015-01-01

    A procedure for simplified calculation of the parameters of self-oscillations excited during unstable (vibrating) combustion in the vertical combustion chambers of blast-furnace air heaters is developed. The proposed procedure is based on an independent nonlinear dynamic system similar to the equations from the theory of a blade supercharger stalling and surging mode. The head characteristic considered in the blade supercharger stalling and surging theory determines the part of the supercharger drive rotation energy that is converted into the head developed by the supercharger. In the considered system, the supercharger head characteristic is replaced by the combustion chamber head characteristic. Being a function of flow rate, this characteristic describes the part of heat supplied to flow that is converted to the flow head. Unlike the supercharger head characteristic, which is determined by experiment, the combustion chamber head characteristic is determined by calculation, due to which it becomes much easier to calculate the parameters of self-oscillations according to the proposed procedure. In particular, an analysis of the periodic solutions of the obtained dynamic system made it possible to determine the pattern in which the amplitude of considered self-oscillations depends on the surge impedance of the vertical combustion chamber.

  12. Development of a 12-Thrust Chamber Kerosene /Oxygen Primary Rocket Sub-System for an Early (1964) Air-Augmented Rocket Ground-Test System

    NASA Technical Reports Server (NTRS)

    Pryor, D.; Hyde, E. H.; Escher, W. J. D.

    1999-01-01

    Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.

  13. Evaluation of Nanoparticles Emitted from Printers in a Clean Chamber, a Copy Center and Office Rooms: Health Risks of Indoor Air Quality.

    PubMed

    Shi, Xiaofei; Chen, Rui; Huo, Lingling; Zhao, Lin; Bai, Ru; Long, Dingxin; Pui, David Y H; Rang, Weiqing; Chen, Chunying

    2015-12-01

    Indoor air quality has great impact on the human health. An increasing number of studies have shown that printers could release particulate matters and pose adverse effects on indoor air quality. In this study, a thorough investigation was designed to assess the aerosol printer particle total number concentration (TNC) and size distribution in normal office environment, one copy center, and a clean chamber. Particle analyzers, SMPS, OPS, and CPC3007 were used to monitor the total printing process. In normal office environment, 37 laser printers out of all surveyed 55 printers were classified as high particle emitters. Comparing to laser printers, 5 inkjet printers showed no particle emission. Particle emission level in a copy center increased slightly with TNC elevating to about 2 times of the aerosol background. Simulating test in a clean chamber indicated that printer-emitted particles were dominated by particles in nanoscale (diameter of particle, D(p) < 100 nm). These particles in a sealed clean chamber attenuated so slowly that it still held at high level with the concentration of 1.5 x 10(4) particles/cm3 after printing for 2.5 hours. Our present results demonstrate that printers indeed release particulates which keeping at a high concentration level in the indoor environment. Special care should be taken to this kind of widely applied machines and effective controls of particle emission at printing processes are necessary.

  14. Evaluation of wall correction factor of INER's air-kerma primary standard chamber and dose variation by source displacement for HDR ¹⁹²Ir brachytherapy.

    PubMed

    Lee, J H; Wang, J N; Huang, T T; Su, S H; Chang, B J; Su, C H; Hsu, S M

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) ¹⁹²Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the ¹⁹²Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR ¹⁹²Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR ¹⁹²Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  15. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  16. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  17. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  18. Compensating for wall effects in IAQ (indoor air quality) chamber tests by mathematical modeling. Report for June 1986-February 1987

    SciTech Connect

    Dunn, J.E.; Tichenor, B.A.

    1987-04-01

    The paper presents mechanistic mathematical models that account for two phenomena: interior surfaces of a state-of-the-art emissions test chamber acting as a transient sink for organic emissions; and the effect of increasing chamber concentration on the emission rate of the source. As a consequence of this mathematical development, a source emission rate as a function of time and a steady-state emission rate factor are given precise definitions. Applications involve modeling 1,4 dichlorobenzene emission from moth crystals, and mixed emissions from latex caulk.

  19. SU-E-P-35: Real-Time Patient Transit Dose Verification of Volumetric Modulated Arc Radiotherapy by a 2D Ionization Chamber Array

    SciTech Connect

    Liu, X

    2015-06-15

    Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteria of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.

  20. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign

    NASA Technical Reports Server (NTRS)

    Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)

    2003-01-01

    The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.

  1. Suitability of small environmental chambers to test the emission of biocides from treated materials into the air

    NASA Astrophysics Data System (ADS)

    Horn, Wolfgang; Jann, Oliver; Wilke, Olaf

    Biocides are used to protect materials that might be damaged by fungal, microbial or insect activity. The aim of this study is to develop a method for the measurement of these organic compounds, which generally have low or moderate vapor pressures. The biocides considered in this study are permethrin, dichlofluanid, tolylfluanid, iodpropinylbutylcarbamat, octylisothiazolinone, tebuconazole and propiconazole. The emission from two commercial products (plastic foil, wool carpet) containing biocides and of seven types of biocidal formulations applied to wood or clay tiles were investigated in 20-l glass emission test chambers. Each chamber test was performed over a period of 100-200 days, and one investigation was conducted over several years. Compared to volatile organic compounds, low-volatility compounds show totally different emission curves in chamber tests; maximal emission values may be reached in days or weeks. A period of 3 months is sometimes necessary for the determination of area-specific emission rates (SER a's). The SER a's (μg m -2 h -1) from biocide-containing products were determined for permethrin (0.006), propiconazole (0.3), dichlofluanid (2.0), tolylfluanid (1.0), octylisothiazolinone (2.5) and iodpropinylbutylcarbamat (2). In most cases, the SER a stayed at its maximum value or declined slowly over the test period. Additionally, a chamber test begun in 1994 with a piece of wood treated with a typical mixture of biocides dissolved in a technical solvent was continued. SER a's (μg m -2 h -1) for dichlofluanid (0.20), tebuconazole (0.49) and permethrin (0.08) remained detectable after the period of nearly 9 years during which the sample remained continuously in the chamber. This test proved the very slow decrease of emission of low-volatility compounds like permethrin and tebuconazole.

  2. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  3. Post-flight Analysis of the Argon Filled Ion Chamber

    NASA Technical Reports Server (NTRS)

    Tai, H.; Goldhagen, P.; Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Shinn, J. L.

    2003-01-01

    Atmospheric ionizing radiation is a complex mixture of primary galactic and solar cosmic rays and a multitude of secondary particles produced in collision with air nuclei. The first series of Atmospheric Ionizing Radiation (AIR) measurement flights on the NASA research aircraft ER-2 took place in June 1997. The ER-2 flight package consisted of fifteen instruments from six countries and were chosen to provide varying sensitivity to specific components. These AIR ER-2 flight measurements are to characterize the AIR environment during solar minimum to allow the continued development of environmental models of this complex mixture of ionizing radiation. This will enable scientists to study the ionizing radiation health hazard associated with the high-altitude operation of a commercial supersonic transport and to allow estimates of single event upsets for advanced avionics systems design. The argon filled ion chamber representing about 40 percent of the contributions to radiation risks are analyzed herein and model discrepancies for solar minimum environment are on the order of 5 percent and less. Other biologically significant components remain to be analyzed.

  4. Technical approach for the assessment of air emissions from municipal landfills using the US EPA flux chamber and dispersion modeling to predict off-site impact potential

    SciTech Connect

    Schmidt, C.E.; Wilsey, S.D.; Hasek, T. Jr.

    1998-12-31

    Municipal solid waste landfills are described as large, heterogeneous area sources with relatively high generation rates of methane and carbon dioxide and relatively low emission levels of total non-methane hydrocarbon compounds (TNMHCs) and reduced sulfur compounds (RSCs) including hydrogen sulfide. Recent public awareness and enacted air regulations have generated concerns from fugitive emissions of landfill gases as a significant contribution to air pollution and the potential health effects off-site. As such, assessing impacts to local ambient air quality around a municipal landfill can be a challenge to quantify and evaluate. A technical approach has been developed and used at a large municipal landfill in the Northeast in order to assess potential impact to local air quality with particular emphasis on identifying hazardous air pollutants (HAPs) and RSCs as well as other air toxics and odor-causing compounds. The technical approach includes: Screening the landfill surface using direct-reading field analyzers based on a surface grid system; Assigning areas of similar emission potential based on screening data and engineering descriptions of the landfill (surface condition and operation); Direct emission testing using the US EPA recommended flux chamber, estimating area-specific emissions using measured flux and surface area; Predicting off-site impact using a dispersion model with area source input capability; and Collection of collaborating off-site ambient air samples during periods of significant odor events to identify compounds and their concentrations. This approach was found to be superior to other assessment approaches including use of emission factors or indirect ambient air monitoring technologies.

  5. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb.

  6. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm(-3) could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm(-3)d(-1), and stable electricity production over 13.7Wm(-3) could be produced in a NB loading range of 1.2-14.7molm(-3)d(-1). The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm(-3)d(-1). The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy.

  7. High pressure (>1 atm) electrospray ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2011-03-01

    High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen's law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.

  8. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  9. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry.

    PubMed

    Robichaud, Guillaume; Dixon, R Brent; Potturi, Amarnatha S; Cassidy, Dan; Edwards, Jack R; Sohn, Alex; Dow, Thomas A; Muddiman, David C

    2011-03-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds).

  10. Electron-impact ionization of air molecules and its application to the abatement of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Wallman, P.H.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1995-05-21

    In this paper the authors present data on the non-thermal plasma processing of two representative VOCs: carbon tetrachloride and methanol. The investigation used a compact electron beam reactor, and two types of discharge reactors: a pulsed corona and a dielectric-barrier discharge. To the knowledge of the authors, this is the first comparison of the energy efficiency of electron beam, pulsed corona and dielectric-barrier discharge processing of these VOCs under identical gas conditions. For most electrical discharge reactors the analysis suggests that the attainable electron mean energy is rather limited and cannot be significantly enhanced by changing the electrode configuration or voltage waveform. The experimental data confirms that there is no significant difference in the performance of the pulsed corona and dielectric-barrier discharge reactors. The authors observe that electron beam processing is remarkably more energy efficiency than electrical discharge processing in decomposing either of these VOC molecules. During electron beam processing, the specific energy consumption is consistent with the energy required for the ionization of the background air molecules. For carbon tetrachloride, the dominant decomposition pathway is dissociative electron attachment. For methanol, the dominant decomposition pathway is dissociative charge exchange.

  11. Nucleation in an Ultra Low Ionization Environment

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Paling, S.; Svensmark, H.

    2010-12-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapor, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulfuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing radiation we then gauge the relative importance of ion

  12. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

    PubMed

    Liu, Hong; Logan, Bruce E

    2004-07-15

    Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely

  13. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined...

  14. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined...

  15. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  16. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  17. Development and application of dynamic air chambers for measurement of volatilization fluxes of benzene and MTBE from constructed wetlands planted with common reed.

    PubMed

    Reiche, Nils; Lorenz, Wilhelm; Borsdorf, Helko

    2010-03-01

    Phytoremediation of industrially contaminated groundwater has been a proven technique for several decades. However, mass balances of contaminants are often focused in laboratory investigations. The evaluation of the transfer of volatile organic compounds (VOCs) under field conditions from the saturated and vadose soil zone into the atmosphere, directly or via plants, is rarely part of the research scope. This can provoke problems--particularly with regard to legal issues--if large-scale phytoremediation sites are situated near residential areas. In this study volatilization of VOCs was quantified in a horizontal-flow constructed wetland planted with reed grass. For this purpose, a specially designed air chamber was constructed, validated, and routine sampling campaigns were performed over the course of one year. Results indicate that the overall volatilization of the observed contaminants benzene and methyl tert-butyl ether (MTBE) depended on seasonal variations with the highest volatilization fluxes measured in summer, when the detected volatilization fluxes of 846+/-116 and 252+/-11 microg m(-2) h(-1) for MTBE and benzene, respectively, accounted for 2.4% and 5.6% of the respective overall contaminant mass loss in the planted wetland. Furthermore, chamber data give strong evidence for the increased volatilization of VOCs through vegetation by direct comparison of planted and unplanted wetlands.

  18. The effect of ambient pressure on well chamber response: Monte Carlo calculated results for the HDR 1000 plus.

    PubMed

    Bohm, Tim D; Griffin, Sheridan L; DeLuca, Paul M; DeWerd, Larry A

    2005-04-01

    The determination of the air kerma strength of a brachytherapy seed is necessary for effective treatment planning. Well ionization chambers are used on site at therapy clinics to determine the air kerma strength of seeds. In this work, the response of the Standard Imaging HDR 1000 Plus well chamber to ambient pressure is examined using Monte Carlo calculations. The experimental work examining the response of this chamber as well as other chambers is presented in a companion paper. The Monte Carlo results show that for low-energy photon sources, the application of the standard temperature pressure PTP correction factor produces an over-response at the reduced air densities/pressures corresponding to high elevations. With photon sources of 20 to 40 keV, the normalized PTP corrected chamber response is as much as 10% to 20% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. At air densities corresponding to an elevation of 1524 m (5000 ft), the normalized PTP-corrected chamber response is 5% to 10% over unity for these photon sources. With higher-energy photon sources (>100 keV), the normalized PTP corrected chamber response is near unity. For low-energy beta sources of 0.25 to 0.50 MeV, the normalized PTP-corrected chamber response is as much as 4% to 12% over unity for air densities/pressures corresponding to an elevation of 3048 m (10000 ft) above sea level. Higher-energy beta sources (>0.75 MeV) have a normalized PTP corrected chamber response near unity. Comparing calculated and measured chamber responses for common 103Pd- and 125I-based brachytherapy seeds show agreement to within 2.7% and 1.9%, respectively. Comparing MCNP calculated chamber responses with EGSnrc calculated chamber responses show agreement to within 3.1% at photon energies of 20 to 40 keV. We conclude that Monte Carlo transport calculations accurately model the response of this well chamber. Further, applying the standard PTP correction

  19. A high rate proportional chamber

    SciTech Connect

    Henderson, R.; Fraszer, W.; Openshaw, R.; Sheffer, G.; Salomon, M.; Dew, S.; Marans, J.; Wilson, P.

    1987-02-01

    Gas mixtures with high specific ionization allow the use of small interelectrode distances while still maintaining full efficiency. With the short electron drift distances the timing resolution is also improved. The authors have built and operated two 25 cm/sup 2/ chambers with small interelectrode distances. Also single wire detector cells have been built to test gas mixture lifetimes. Various admixtures of CF/sub 4/, DME, Isobutane, Ethane and Argon have been tested. Possible applications of such chambers are as beam profile monitors, position tagging of rare events and front end chambers in spectrometers.

  20. Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India.

    PubMed

    Rai, Richa; Agrawal, Madhoolika

    2008-12-15

    Air pollutant concentrations are rising in India, causing potential threats to crop production. As air pollutants are known to interfere with physiological processes, this study was conducted to assess the relative responses of physiological and biochemical characteristics of two cultivars of rice (Oryza sativa L. cv. Saurabh 950 and NDR 97) leading to variable yield responses. Twelve hour monitoring of ambient concentrations of SO2, NO2 and O3 in filtered chambers (FCs), non-filtered chambers (NFCs) and open plots (OPs) showed that O3 was the main pollutant at the experimental site. Ozone concentrations often exceeded 40 ppb during anthesis but not during the vegetative growth period. Photosynthetic rate (Ps), stomatal conductance (g(s)) and Fv/Fm ratio, superoxide dismutase (SOD) and peroxidase (POD) activities and photosynthetic pigments, ascorbic acid, total phenolics and protein contents were assessed at different developmental stages and yield of grains were quantified. Lipid peroxidation, SOD and POD activities, ascorbic acid and total phenolics were higher, whereas Ps, g(s), Fv/Fm ratio and contents of protein and photosynthetic pigment were lower in plants of NFCs as compared to FCs. Yield decreased significantly in both cultivars grown in NFCs. NDR 97 showed less reductions in physiological characteristics, photosynthetic pigments and protein, but a greater increase in the antioxidative defense system as compared to Saurabh 950. Yield reduction was higher in NDR 97 than in Saurabh 950. This suggested that NDR 97 utilized more photosynthate in maintaining the metabolic machinery against O3 stress leading to lower translocation of photosynthate to reproductive parts. The study concluded that under natural field conditions, physiological and biochemical responses of plants varied with pollutant concentrations leading to different translocation strategies in plants, modifying their yield responses. NDR 97, a fast growing and high yielding cultivar was more

  1. DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE GROOVED RIM ON TOP FACE OF CHAMBER SHELL, ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin.

    PubMed

    Zeng, Libin; Li, Xinyong; Shi, Yueran; Qi, Yefei; Huang, Daqiong; Tadé, Moses; Wang, Shaobin; Liu, Shaomin

    2017-05-15

    A bio-electrochemical strategy was developed for constructing a simple and sensitive levofloxacin (LEV) sensor based on a single chamber microbial fuel cell (SC-MFC) using FePO4 nanoparticles (NPs) as the cathode catalyst instead of traditional Pt/C. In this assembled sensor device, FePO4 NPs dramatically promoted the electrooxidation of oxygen on the cathode, which helps to accelerate the voltage output from SC-MFC and can provide a powerful guarantee for LEV detection. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the FePO4 NPs. Under the optimized COD condition (3mM), the LEV with a concentration range of 0.1-1000µg/L could be detected successfully, and exhibited the excellent linear interval in the concentration range of 0.1-100µg/L. During this range of concentrations of LEV, a temporary effect on the anode of exoelectrogenic bacterial in less than 10min could occur, and then came back to the normal. It exhibited a long-term stability, maintaining the stable electricity production for 14 months of continuous running. Besides, the detection mechanism was investigated by quantum chemical calculation using density functional theory (DFT).

  3. Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    1998-11-01

    Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field*, Daisuke Okano, Kyushu Tokai University, 9-1-1 Toroku, Kumamoto, Japan. -----We have studied on guiding discharge path by weak ionized region between plasmas produced by a visible laser, that is, a YAG laser with wavelength 532nm, in an atmospheric air gap with DC non-uniform electric field using a rod-to-plate electrode. We succeeded in capturing the framing images in the temporal evolution on guiding discharge along the YAG laser light path. From the results of experiments, the region between two plasmas produced by a YAG laser can guide a discharge path, and the region between two plasmas on the laser light path is considered as well as a weak ionized one [1] produced by an excimer laser. [1]J.Sasaki, S.Kubodera, R.Ozaki and T.Uchiyama, J. Appl. Phys., 60 (1986) 3845. *This work was supported by Grant-in-Aid for Scientific Research (C)-no.10650295 of The Ministry of education, Science Sports and Culture in japan.

  4. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  5. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-05

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring.

  6. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  7. Automatic system for ionization chamber current measurements.

    PubMed

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  8. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  9. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  10. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.

    PubMed

    Burkart, S; Manderscheid, R; Wittich, K-P; Löpmeier, F J; Weigel, H-J

    2011-03-01

    An arable crop rotation (winter barley-sugar beet-winter wheat) was exposed to elevated atmospheric CO(2) concentrations ([CO(2) ]) using a FACE facility (Free-Air CO(2) Enrichment) during two rotation periods. The atmospheric [CO(2) ] of the treatment plots was elevated to 550 ppm during daylight hours (T>5°C). Canopy transpiration (E(C) ) and conductance (G(C) ) were measured at selected intervals (>10% of total growing season) using a dynamic CO(2) /H(2) O chamber measuring system. Plant available soil water content (gravimetry and TDR probes) and canopy microclimate conditions were recorded in parallel. Averaged across both growing seasons, elevated [CO(2) ] reduced E(C) by 9%, 18% and 12%, and G(C) by 9%, 17% and 12% in barley, sugar beet and wheat, respectively. Both global radiation (Rg) and vapour pressure deficit (VPD) were the main driving forces of E(C) , whereas G(C) was mostly related to Rg. The responses of E(C) and especially G(C) to [CO(2) ] enrichment were insensitive to weather conditions and leaf area index. However, differences in LAI between plots counteracted the [CO(2) ] impact on E(C) and thus, at least in part, explained the variability of seasonal [CO(2) ] responses between crops and years. As a consequence of lower transpirational canopy water loss, [CO(2) ] enrichment increased plant available soil water content in the course of the season by ca. 15 mm. This was true for all crops and years. Lower transpirational cooling due to a [CO(2) ]-induced reduction of E(C) increased canopy surface and air temperature by up to 2 °C and 0.5 °C, respectively. This is the first study to address effects of FACE on both water fluxes at canopy scale and water status of a European crop rotation.

  11. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    PubMed

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55 mW m(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21 V). The R0 of Fe-N-C decreased by 47% from 14.36 Ω (AC) to 7.6 Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment.

  12. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.

    PubMed

    Zhuang, Li; Zhou, Shungui; Li, Yongtao; Yuan, Yong

    2010-05-01

    In the course of microbial fuel cell (MFC) operation, the acidification of the anode and the alkalization of the cathode inevitably occur, resulting in reduction of the overall performance. In an attempt to reverse the membrane pH gradient, a tubular air-cathode two-chamber MFC was developed that allowed pH adjustment in both compartments. With an anodic pH of 10.0 and a cathodic pH of 2.0, the tubular MFC provided an open circuit voltage of 1.04V and a maximum power density of 29.9W/m(3), which were respectively 1.5 and 3.8 times higher than those obtained in the same MFC working at neutral pH. Particularly, the suppression of methanogenesis at high alkaline anode (pH 10.0) contributed to a significant enhancement in coulombic efficiency. The MFC maintained 74% of its performance after 15 days of operation in continuous-flow mode. The appropriate pH adjustment strategy in both compartments ensures a promising improvement in MFC performance.

  13. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.

    PubMed

    Cao, Yunqing; Hu, Yongyou; Sun, Jian; Hou, Bin

    2010-08-01

    Microbial fuel cell (MFC) holds a great promise to harvest electricity directly from a wide range of ready degradable organic matters and enhance degradation of some recalcitrant contaminants. Glucose, acetate sodium and ethanol were separately examined as co-substrates for simultaneous bioelectricity generation and Congo red degradation in a proton exchange membrane (PEM) air-cathode single-chamber MFC. The batch test results showed that more than 98% decolorization at the dye concentration of 300 mg/L were achieved within 36 h for all tested co-substrates during electricity generation. The decolorization rate was different with the co-substrates used. The fastest decolorization rate was achieved with glucose followed by ethanol and sodium acetate. Accumulated intermediates were observed during Congo red degradation which was demonstrated by UV-Visible spectra and high performance liquid chromatography (HPLC). Electricity generation was sustained and not significantly affected by the Congo red degradation. Glucose, acetate sodium and ethanol produced maximum power densities of 103 mW/m(2), 85.9 mW/m(2) and 63.2 mW/m(2), respectively, and the maximum voltage output decreased by only 7% to 15%. Our results demonstrated the feasibility of using various co-substrates for simultaneous decolorization of Congo red and bioelectricity generation in the MFC and showed that glucose was the preferred co-substrate.

  14. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.

    PubMed

    Hou, Bin; Sun, Jian; Hu, Yong-you

    2011-03-01

    Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1K (UFM-1K), 5K (UFM-5K) and 10K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m(2) coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/Lh) and PEM (1.72 mg/Lh). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance.

  15. Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hu, Yongyou; Bi, Zhe; Cao, Yunqing

    Substantial optimization and cost reduction are required before microbial fuel cells (MFCs) can be practically applied. We show here the performance improvement of an air-cathode single-chamber MFC by using a microfiltration membrane (MFM) on the water-facing side of the cathode and using multiple aerobic sludge (AES), anaerobic sludge (ANS), and wetland sediment (WLS) as anodic inoculums. Batch test results show that the MFC with an MFM resulted in an approximately two-fold increase in maximum power density compared to the MFC with a proton exchange membrane (PEM). The Coulombic efficiency increased from 4.17% to 5.16% in comparison with the membrane-less MFC, without a significant negative effect on power generation and internal resistance. Overall performance of the MFC was also improved by using multiple sludge inoculums in the anode. The MFC inoculated with ANS + WLS produced the greatest maximal power density of 373 mW m -2 with a substantially low internal resistance of 38 Ω. Higher power density with a decreased internal resistance was also achieved in MFC inoculated with ANS + AES and ANS + AES + WLS in comparison with those inoculated with only one sludge. The MFCs inoculated with AES + ANS achieved the highest Coulombic efficiency. Over 92% COD was removed from confectionery wastewater in all tested MFCs, regardless of the membrane or inoculum used.

  16. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  17. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  18. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  19. SU-E-T-350: Effective Point of Measurement and Total Perturbation Correction P for Parallel-Plate Ion Chambers in High-Energy Photon Beams

    SciTech Connect

    Langner, N; Czarnecki, D; Voigts-Rhetz, P von; Zink, K

    2015-06-15

    Purpose: This paper aims to determine the effective point of measurement and the total perturbation correction p of parallel-plate chambers for clinical photon dosimetry. Methods: The effective point of measurement (EPOM) was calculated using the EGSnrc Monte Carlo code system with the EGSnrc user code egs- chamber. Depth dose curves of the ionization chambers were calculated in a water phantom for several high energy photon spectra (4, 6, 10, 15, 18 MV-X). Different normalization criterions (normalization to the maximum of the depth dose curve and normalization to the value in 10 cm depth) have been applied. The EPOM was determined by shifting the normalized depth dose curve of a small water voxel against the depth ionization curve until the disagreement (calculated by the root mean square deviation) reaches a minimum. In addition, the total perturbation correction p was calculated by the ratio of the dose to water and the product of the dose determined in the chamber and the water to air stopping power ratio. Results: The EPOM varied slightly depending on the chosen normalization criterion. For all chambers the necessary shift of the EPOM decreased linearly with increasing beam quality specifier TPR{sub 20/10}. For the Roos and NACP chamber, the results were positive suggesting that the chambers need to be shifted towards the focus. For the Markus chamber, the required shift was negative and for the Advanced Markus chamber partly negative and partly positive. The total perturbation correction p was almost independent of the depth. Only for regions below 1 cm the perturbation correction deviated significantly from unity. Conclusion: In the present study, the effective point of measurement and the total perturbation correction p was determined for four parallel-plate ionization chambers and five clinical relevant photon spectra. Applying the calculated EPOM, the residual perturbation correction p was mostly depth independent.

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Nucleation in an ultra low ionization environment

    NASA Astrophysics Data System (ADS)

    Olaf Pepke Pedersen, Jens; Bødker Enghoff, Martin; Paling, Sean; Svensmark, Henrik

    2010-05-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the formation of cloud condensation nuclei and thus the Earth's radiation budget the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapour, ozone, and sulphur dioxide. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulphuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing

  2. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  3. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station.

    PubMed

    Bernier, Matthew C; Alberici, Rosana M; Keelor, Joel D; Dwivedi, Prabha; Zambrzycki, Stephen C; Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Symonds, Josh M; Orlando, Thomas M; Macatangay, Ariel; Fernández, Facundo M

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

  4. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station

    NASA Astrophysics Data System (ADS)

    Bernier, Matthew C.; Alberici, Rosana M.; Keelor, Joel D.; Dwivedi, Prabha; Zambrzycki, Stephen C.; Wallace, William T.; Gazda, Daniel B.; Limero, Thomas F.; Symonds, Josh M.; Orlando, Thomas M.; Macatangay, Ariel; Fernández, Facundo M.

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices.

  5. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Buchbinder, Avram M; Weitz, Eric; Geiger, Franz M

    2007-12-20

    We have used chemical ionization mass spectrometry (CIMS) to study the adsorption and photochemistry of several oxygenated organic species adsorbed to Degussa P25 TiO2, an inexpensive catalyst that can be used to mineralize volatile organic compounds. The molecules examined in this work include the common indoor air pollutant acetone and several of its homologs and possible oxidation and condensation products that may be formed during the adsorption and/or photocatalytic degradation of acetone on titanium dioxide catalysts. We report nonreactive uptake coefficients for acetone, formic acid, acetic acid, mesityl oxide, and diacetone alcohol, and results from photochemical studies that quantify, on a per-molecule basis, the room-temperature photocatalytic conversion of the species under investigation to CO2 and related oxidation products. The data presented here imply that catalytic surfaces that enhance formate and acetate production from acetone precursors will facilitate the photocatalytic remediation of acetone in indoor environments, even at room temperature.

  6. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  7. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  8. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  9. DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VACUUM PIPE OPENING WITHIN ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. DESIGN, CONSTRUCTION, AND EVALUATION OF A CHAMBER FOR AEROBIOLOGY

    EPA Science Inventory

    A chamber was designed and constructed for aeromicrobiology applications. An ultraviolet (UV) radiation source was incorporated to sterilize the chamber between trials. Twelve bacterial species originally isolated from air samples and obtained from the American Type Culture Colle...

  11. INTERIOR OF ALTITUDE CHAMBER L FROM TOP LEVEL OF ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM TOP LEVEL OF ACCESS PLATFORMS, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. EXTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  13. UPPER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPPER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING UP FROM BOTTOM LEVEL, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  14. INTERIOR OF ALTITUDE CHAMBER L, LOOKING UP FROM BOTTOM LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L, LOOKING UP FROM BOTTOM LEVEL OF INTERNAL PLATFORMS, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  15. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  16. VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE CONTROL ROOM FOR THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  17. BOTTOM LEVEL OF ALTITUDE CHAMBER L, FACING SOUTHWEST Cape ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOTTOM LEVEL OF ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  18. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER R, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  19. VIEW OF PUMP ROOM FOR ALTITUDE CHAMBERS, FACING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PUMP ROOM FOR ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  20. EXTERIOR AND INTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR AND INTERIOR VIEW OF AIRLOCK FOR ALTITUDE CHAMBER R, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  1. DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF DOMED BOTTOM, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. DETAIL OF WALLMOUNTED STAIRS ON INTERIOR OF ALTITUDE CHAMBER L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WALL-MOUNTED STAIRS ON INTERIOR OF ALTITUDE CHAMBER L, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF AIRLOCK FROM INTERIOR OF ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  4. LOWER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOWER HALF OF THE INTERIOR OF ALTITUDE CHAMBER R, LOOKING UP FROM BOTTOM LEVEL, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. DETAIL OF PLATFORM SUPPORT BRACKET, ALTITUDE CHAMBER L, FACING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF PLATFORM SUPPORT BRACKET, ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. INTERIOR OF ALTITUDE CHAMBER R, LOOKING DOWN FROM AIRLOCK, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER R, LOOKING DOWN FROM AIRLOCK, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OF ALTITUDE CHAMBERS R (TO LEFT) AND L (TO RIGHT), FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  8. DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF THE DOMED LID, ALTITUDE CHAMBER R, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. SU-F-BRA-08: An Investigation of Well-Chamber Responses for An Electronic Brachytherapy Source

    SciTech Connect

    Culberson, W; Micka, J

    2015-06-15

    Purpose: The aim of this study was to investigate the variation of well-type ionization chamber response between a Xoft Axxent™ electronic brachytherapy (EBT) source and a GE Oncoseed™ 6711 I-125 seed. Methods: A new EBT air-kerma standard has recently been introduced by the National Institute of Standards and Technology (NIST). Historically, the Axxent source strength has been based on a well chamber calibration from an I-125 brachytherapy source due to the lack of a primary standard. Xoft utilizes a calibration procedure that employs a GE 6711 seed calibration as a surrogate standard to represent the air-kerma strength of an Axxent source. This method is based on the premise that the energies of the two sources are similar and thus, a conversion factor would be a suitable interim solution until a NIST standard was established. For this investigation, a number of well chambers of the same model type and three different EBT sources were used to determine NIST-traceable calibration coefficients for both the GE 6711 seed and the Axxent source. The ratio of the two coefficients was analyzed for consistency and also to identify any possible correlations with chamber vintage or the sources themselves. Results: For all well chambers studied, the relative standard deviation of the ratio of calibration coefficients between the two standards is less than 1%. No specific trends were found with the well chamber vintage or between the three different EBT sources used. Conclusion: The variation of well chamber calibration coefficients between a Xoft Axxent™ EBT source versus a GE 6711 Oncoseed™ are consistent across well chamber vintage and between sources. The results of this investigation confirm the underlying assumptions and stability of the surrogate standard currently in use by Xoft, and establishes a migration path for future implementation of the new NIST air kerma standard. This research is supported in part by Xoft, a subsidiary of iCAD.

  11. Extraction of depth-dependent perturbation factors for parallel-plate chambers in electron beams using a plastic scintillation detector

    SciTech Connect

    Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Cojocaru, Claudiu; Gingras, Luc; Beddar, A. Sam; Beaulieu, Luc

    2010-08-15

    Purpose: This work presents the experimental extraction of the overall perturbation factor P{sub Q} in megavoltage electron beams for NACP-02 and Roos parallel-plate ionization chambers using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6, 12, and 18 MeV clinical electron beams. The authors also measured depth-dose curves using the NACP-02 and PTW Roos chambers. Results: The authors found that the perturbation factors for the NACP-02 and Roos chambers increased substantially with depth, especially for low-energy electron beams. The experimental results were in good agreement with the results of Monte Carlo simulations reported by other investigators. The authors also found that using an effective point of measurement (EPOM) placed inside the air cavity reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: A PSD can be used to experimentally extract perturbation factors for ionization chambers. The dosimetry protocol recommendations indicating that the point of measurement be placed on the inside face of the front window appear to be incorrect for parallel-plate chambers and result in errors in the R{sub 50} of approximately 0.4 mm at 6 MeV, 1.0 mm at 12 MeV, and 1.2 mm at 18 MeV.

  12. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  13. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  14. An inexpensive dual-chamber particle monitor: laboratory characterization

    SciTech Connect

    Rufus Edwards; Kirk R. Smith; Brent Kirby; Tracy Allen; Charles D. Litton; Susanne Hering

    2006-06-15

    In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. Existing monitoring equipment makes routine quantification of household particle pollution levels difficult. Recent advances have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravimetric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse and fine size distributions. The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries. 10 refs., 10 figs., 2 tabs.

  15. Simultaneous derivatization and air-assisted liquid-liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Khosrowshahi, Elnaz Marzi; Khorram, Parisa

    2013-11-01

    A simultaneous derivatization/air-assisted liquid-liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2-5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41-0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid-liquid microextraction technique. Furthermore, the sample preparation time is very short.

  16. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Weitz, Eric; Geiger, Franz M

    2006-11-07

    Preventing a build-up of indoor pollutant concentrations has emerged as a major goal in environmental chemistry. Here, we have applied chemical ionization mass spectrometry to study the interaction of acetone, a common indoor air pollutant, with Degussa P25 TiO2, an inexpensive catalyst that is widely used for the degradation of volatile organic compounds into CO2 and water. To better understand the adsorption of acetone onto Degussa P25, the necessary first step for its degradation, the experiments were carried out at room temperature in the absence of UV light. This allowed for the deconvolution of the nonreactive and reactive thermal binding processes on Degussa P25 at acetone partial pressures (10(-7)-10(-4) Torr) commonly found in indoor environments. On average, 30% of the adsorbed acetone is bound irreversibly, resulting in a surface coverage of irreversibly bound acetone of approximately 1 x 10(12) molecules/cm2 at 3-4 x 10(-5) Torr. Equilibrium and dynamic experiments yield a sticking coefficient of approximately 1 x 10(-4) that is independent of the acetone partial pressures examined here. Equilibrium binding constants and free energies of adsorption are reported.

  17. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  18. Calibration and performance of a secondary emission chamber as a beam intensity monitor

    SciTech Connect

    Sivertz, M.; Chiang, I-H,; Rusek, A.

    2011-03-28

    We report on a study of the behavior of a secondary emission chamber (SEC). We show the dependence of the SEC signal on the charge and velocity of the primary beam for beams of protons, and heavy ions including Helium, Neon, Chlorine and Iron. We fill the SEC with a selection of different gases including Hydrogen, Helium, Nitrogen, Argon, and air, studying the SEC response when it is acting as an ion chamber. We also investigate the behavior of the SEC at intermediate pressures between 10{sup -8} torr and atmospheric pressure. The SEC uses thin conducting foils as the source and collector of electrons in a vacuum chamber. When charged particles traverse the vacuum chamber, they pass through a series of thin conducting foils, alternating anode and cathode. Ionization produced in the cathode foils travels across the intervening gap due to an applied high voltage and is collected on the anode foils. Electron production is very inefficient because most of the ionization in the foils remains trapped within the foil due to the short range of most delta-rays and the work function of the foil. It is this inefficiency that allows the SEC to operate at high dose rates and short pulse duration where the standard ion chambers cannot function reliably. The SEC was placed in the NSRL ion beam to receive a variety of heavy ion beams under different beam conditions. We used these ion beams to study the response of the SEC to different species of heavy ion, comparing with proton beams. We studied the response to beam of different energies, and as a function of different counting rate. We compared the behaviour of the SEC when operating under positive and negative high voltage. The SEC can operate as an ion chamber if it is filled with gas. We measured the response of the SEC when filled with a variety of gases, from Hydrogen to Helium, Nitrogen, Argon and air. The performance of the SEC as an ion chamber is compared with the standard NSRL ion chamber, QC3. By evacuating the SEC and

  19. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  20. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  1. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  2. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  3. Semiclosed-circuit atmosphere control in a portable recompression chamber

    NASA Technical Reports Server (NTRS)

    Riegel, P. S.; Caudy, D. W.

    1972-01-01

    A small portable recompression chamber is described that can be used both to treat a diver for decompression sickness or to transport him to a larger chamber complex. The device can be operated in either open circuit or semiclosed circuit atmospheres, permits two way conversation between patient and attendant, and uses an air injector for circulation of the chamber atmosphere.

  4. VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE TOPS OF ALTITUDE CHAMBER R (TO LEFT) AND ALTITUDE CHAMBER L (TO RIGHT) FROM THE 42’-0” LEVEL OF ACCESS PLATFORMS, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. Air,

    DTIC Science & Technology

    each sampling point to account for the general bacterial inoculation and two dishes with chocolate agar for detecting streptococcus viridans. The...number of colonies, which grew on the two dishes, is computed. The dishes with chocolate agar are held in the thermostatically controlled chamber for two days, after which any suspicious colonies are computed.

  6. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV

    NASA Astrophysics Data System (ADS)

    Bailey, M.; Shipley, D. R.; Manning, J. W.

    2015-02-01

    Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.

  7. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  10. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  11. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams

    SciTech Connect

    Zink, K.; Wulff, J.

    2011-02-15

    Purpose: In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p{sub wall} and p{sub cav}) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount {Delta}z. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift {Delta}z for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. Methods: The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps {Delta}z around the depth of measurement. The optimal shift {Delta}z is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation

  12. Zero Power Warming (ZPW) Chamber Prototype Measurements, Barrow, Alaska, 2016

    DOE Data Explorer

    Ely, Kim; Serbin, Shawn; Rogers, Alistair

    2017-02-10

    Data were collected during one season of prototyping associated with the development of a passive warming technology. An experimental chamber, the Zero Power Warming (ZPW) chamber, was fitted with apparatus to modulate venting of a field enclosure and enhance elevation of air temperature by solar radiation. The ZPW chamber was compared with a control chamber (Control) and an ambient open air plot (Ambient). The control chamber was identical to the ZPW chamber but lacked the apparatus necessary to modulate venting, the chamber vents in the control chamber were fixed open for the majority of the trial period. The three plots were located over Carex aquatilis growing in an area of moderately degraded permafrost. Chambers were placed on the same footprints that were used for a similar exercise in 2015 (no data) and therefore those plots had experienced some thaw and degradation prior to 2016. The following data were collected for 80 days at 1 minute intervals from within two chambers and an ambient plot: solar input, chamber venting, air temperature, relative humidity, soil temperature (at 5, 10 and 15 cm), soil moisture, downward and upward NIR.

  13. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    PubMed

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  14. Prospects for the use of security air flow to prevent ion-molecule reactions in the ionization and drift zone in classical IMS

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Makarova, N. V.; Poturuy, A. A.; Beliakov, V. V.

    2016-10-01

    The effective transfer of sample problem is relevant in modern analytical equipment. The paper considered a problem in detection trace concentrations of explosives by Ion Mobility Spectrometry (IMS). The investigation deals with sample adsorption on the walls of transport tubes, the ion drift chamber and the chamber of the ion source in ion mobility spectrometer. The sample losses on inlet channel surface and diffusion through penetrable gas channels are comparable with the quantity of sample itself at the sensitivity level of 10-14 g / cm3. The trinitrotoluene (TNT) sorption in different channel materials depending on their sorption properties is analyzed. A new approach preventing sorption of the substance on the chamber walls by security airflow is presented. The study includes gas flow simulation and experiments of protective gas flow setup.

  15. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  16. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.

    PubMed

    Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C

    2009-06-01

    Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.

  17. Chamber study of polychlorinated biphenyl (PCB) emissions ...

    EPA Pesticide Factsheets

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ

  18. Chamber study of polychlorinated biphenyl {PCB} emissions ...

    EPA Pesticide Factsheets

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ

  19. Design and performance of a dynaniic gas flux chamber.

    PubMed

    Reichman, Rivka; Rolston, Dennis E

    2002-01-01

    Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.

  20. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  1. DETAIL OF VACUUM PIPE AT 0’0” LEVEL, ALTITUDE CHAMBER R, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VACUUM PIPE AT 0’-0” LEVEL, ALTITUDE CHAMBER R, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. DETAIL OF THE EXTERIOR OF PP44L (VIEWING PORTAL), ALTITUDE CHAMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF PP44L (VIEWING PORTAL), ALTITUDE CHAMBER L, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. DETAIL OF THE EXTERIOR OF PP45L (PATCHBOARD), ALTITUDE CHAMBER L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF PP45L (PATCHBOARD), ALTITUDE CHAMBER L, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  4. INTERIOR OF ALTITUDE CHAMBER L FROM 16’8” LEVEL OF INTERNAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM 16’-8” LEVEL OF INTERNAL PLATFORMS, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. INTERIOR OF ALTITUDE CHAMBER L FROM 6’4” LEVEL OF INTERNAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM 6’-4” LEVEL OF INTERNAL PLATFORMS, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. DETAIL OF THE INTERIOR OF PP45L (PATCHBOARD), ALTITUDE CHAMBER L, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE INTERIOR OF PP45L (PATCHBOARD), ALTITUDE CHAMBER L, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. INTERIOR OF ALTITUDE CHAMBER L FROM 6’4” LEVEL OF INTERNAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM 6’-4” LEVEL OF INTERNAL PLATFORMS, FACING EAST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  8. INTERIOR OF ALTITUDE CHAMBER L FROM 16’8” LEVEL OF INTERNAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF ALTITUDE CHAMBER L FROM 16’-8” LEVEL OF INTERNAL PLATFORMS, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    NASA Astrophysics Data System (ADS)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  10. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  11. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  12. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  13. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  14. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  15. The influence of small field sizes, penumbra, spot size and measurement depth on perturbation factors for microionization chambers

    NASA Astrophysics Data System (ADS)

    Crop, F.; Reynaert, N.; Pittomvils, G.; Paelinck, L.; DeWagter, C.; Vakaet, L.; Thierens, H.

    2009-05-01

    The purpose of this study was the investigation of perturbation factors for microionization chambers in small field dosimetry and the influence of penumbra for different spot sizes. To this purpose, correlated sampling was implemented in the EGSnrc Monte Carlo (MC) user code cavity: CScavity. CScavity was first benchmarked against results in the literature for an NE2571 chamber. An efficiency increase of 17 was attained for the calculation of a realistic chamber perturbation factor in a water phantom. Calculations have been performed for microionization chambers of type PinPoint 31006 and PinPoint 31016 in full BEAMnrc linac simulations. Investigating the physical backgrounds of the differences for these small field settings, perturbation factors have been split up into (1) central electrode perturbation, (2) wall perturbation, (3) air-to-water perturbation (chamber volume air-to-water) and (4) water volume perturbation (water chamber volume to 1 mm3 voxel). The influence of different spot sizes, position in penumbra, measuring depth and detector geometry on these perturbation factors has been investigated, in a 0.8 × 0.8 cm2 field setting. pcel for the PP31006 steel electrode shows a variation of up to 1% in the lateral position, but only 0.4% for the PP31016 with an Al electrode. The air-to-water perturbation in the optimal scanning direction for both profiles and depth is most influenced by the radiation field, and only to a small extent the chamber geometry. The PP31016 geometry (shorter, larger radius) requires less total perturbation within the central axis of the field, but results in slightly larger variations off axis in the optimal scanning direction. Smaller spot sizes (0.6 mm FWHM) and sharper penumbras, compared to larger spot sizes (2 mm FWHM), result in larger perturbation starting in the penumbra. The longer geometries of the PP31006/14/15 exhibit in the non-optimal scanning direction large variations in total perturbation (ptot 1.201(4) (0.6 mm

  16. Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser - A new avenue for air diagnostics

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Krauss, Roland H.; Grinstead, Jay H.

    1991-01-01

    Laser-induced N2 ionization is accomplished using a commercially available Nd:YAG laser, and confirmed by means of ion-collection and spectral measurements. Neutral N2 is excited by six photons of the third harmonic frequency, or 355 nm, and is transformed to an ionized state. The radiation at 355 nm is separated from the fundamental and frequency-doubled Nd:YAG radiation to guarantee monochromatic incident radiation. Intense lines near 391.4 nm are found in the initial laser polarization and for a 90-degree rotation of polarization. The radiation at 391.4 nm is associated with an incoherent laser-induced flourescence process related to an ionized-state transition, and increases quadratically with laser power. A 45-mJ laser pulse focused to a diameter of 17 microns can produce an ion concentration of 3.25 x 10 to the 13th ions/cu cm. The large ion concentration and robust fluorescence signal make this technique an efficient method for time-of-flight velocimetry and in-flight testing.

  17. Detecting X-rays with an optical imaging chamber

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Ramsey, Brian D.

    1992-10-01

    The light emitted by electron avalanches in a parallel plate chamber can be used to image the tracks of photoelectrons liberated by the interaction of an incident X-ray with the gas filling the chamber. The different morphologies of photoelectron tracks and minimum ionizing tracks can be used for charged particle rejection. The initial direction (before scattering) of the liberated photoelectron also contains information about the polarization of the incident radiation. We have built a small test chamber with which we have imaged photoelectron tracks using an intensified CCD camera. Our results show that optical imaging could be used in a hard X-ray imaging polarimeter useful for astronomy.

  18. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  19. Comsol Simulations as a Tool in Validating a Measurement Chamber

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Sairanen, Hannu; Heinonen, Martti; Högström, Richard

    2015-12-01

    The Centre for Metrology and Accreditation (MIKES) is developing a temperature-humidity calibration system for radiosondes. The target minimum air temperature and dew-point temperature are -80° C and -90° C, respectively. When operating in this range, a major limiting factor is the time of stabilization which is mainly affected by the design of the measurement chamber. To find an optimal geometry for the chamber, we developed a numerical simulation method taking into account heat and mass transfer in the chamber. This paper describes the method and its experimental validation using two stainless steel chambers with different geometries. The numerical simulation was carried out using Comsol Multiphysics simulation software. Equilibrium states of dry air flow at -70° C with different inlet air flow rates were used to determine the geometry of the chamber. It was revealed that the flow is very unstable despite having relatively small Reynolds number values. Humidity saturation abilities of the new chamber were studied by simulating water vapor diffusion in the chamber in time-dependent mode. The differences in time of humidity stabilization after a step change were determined for both the new chamber model and the MIKES Relative Humidity Generator III (MRHG) model. These simulations were used as a validation of the simulation method along with experimental measurements using a spectroscopic hygrometer. Humidity saturation stabilization simulations proved the new chamber to be the faster of the two, which was confirmed by experimental measurements.

  20. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  1. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the

  2. Photocopy of drawing, RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing, RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. ACCESS PLATFORM INSTALLATION. Sheet S2 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. 15 FT LEVEL EQUIPMENT LAYOUT. Sheet E13 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  4. DETAIL OF THE EXTERIOR OF ALTITUDE CHAMBER R FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE EXTERIOR OF ALTITUDE CHAMBER R FROM THE 15’-0” LEVEL OF ACCESS PLATFORMS, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. RIGHT ALTITUDE CHAMBER REACTIVATION. NASA, John F. Kennedy Space Center, Florida. Drawing 82K06032, Boeing, December, 1997. ACCESS PLATFORM DEMOLITION. Sheet S1 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  7. Expandable Purge Chambers Would Protect Cryogenic Fittings

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  8. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  9. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  10. Investigations of recombination chambers for BNCT beam dosimetry.

    PubMed

    Tulik, P; Golnik, N; Zielczynski, M

    2007-01-01

    A set of cylindrical recombination chambers, including a tissue-equivalent chamber and three graphite chambers filled with different gases-CO(2), N(2) and (10)BF(3), was designed for the dosimetry of therapeutic neutron radiation beams used for BNCT. The separation of the dose components is based on differences of the shape of the saturation curve depending on the LET spectrum of the investigated radiation. The measurements using all the chambers were performed in a reactor beam of NRI ReZ (Czech Republic) and in the reference radiation fields of a (252)Cf radiation source free in air or in filters.

  11. Search for the best timing strategy in high-precision drift chambers

    SciTech Connect

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/..mu..sec and the individual ionization clusters are not resolved due to a finite speed of our electronics.

  12. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  13. Target Chamber Manipulator

    NASA Astrophysics Data System (ADS)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  14. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  15. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  16. A double chamber system for producing constant radon concentration.

    PubMed

    Haider, B; Peter, J

    1995-01-01

    An experimental arrangement of a radon chamber with an intrinsic constancy of the relative radon concentration is described. The system consists of a reference chamber and an auxiliary storage chamber. The only active device is a timer-controlled pump or valve which feeds radon gas from the storage into the reference chamber. The switching pattern of the timer is extracted from model calculations and theoretically performs an exact compensation of the radon loss by radioactive decay. If the calculations are done in real time and online, every known external event influencing the radon concentration can be compensated. This paper presents a simple timer circuit and a computer code which generates the timer program. The influence of the air flow stability and the leakage of the chambers are discussed. It is planned to apply this theoretical approach to provide a constant radon gas concentration for an actual chamber.

  17. SU-E-T-382: Influence of Compton Currents On Profile Measurements in Small- Volume Ion Chambers

    SciTech Connect

    Tanny, S; Parsai, E; Holmes, S

    2014-06-01

    Purpose: Ionization chambers in electron radiation fields are known to exhibit polarity effects due to Compton currents. Previously we have presented a unique manifestation of this effect observed with a microionization chamber. We have expanded that investigation to include three micro-ionization chambers commonly used in radiation therapy. The purpose of this project is to determine what factors influence this polarity effect for micro-chambers and how it might be mitigated. Methods: Three chambers were utilized: a PTW 31016, an Exradin A-16, and an Exradin A- 26. Beam profile scans were obtained on a Varian TrueBeam linear accelerator in combination with a Wellhofer water phantom for 6, 9, and 12 MeV electrons. Profiles were obtained parallel and perpendicular to the chamber's long axis, with both positive and negative collecting bias. Profiles were obtained with various chamber components shielded by 5 mm of Pb at 6 MeV to determine their relative contributions to this polarity effect. Results: The polarity effect was observed for all three chambers, and the ratio of the polarity effect for the Exradin chambers is proportional to the ratio of chamber volumes. Shielding the stem of both Exradin chambers diminished, but did not remove the polarity effect. However, they demonstrated no out-of-field effect when the cable was shielded with Pb. The PTW chamber demonstrated a significantly reduced polarity effect without any shielding despite its comparable volume with the A-26. Conclusions: The sensitive volume of these micro-chambers is relatively insensitive to collecting polarity. However, charge deposition within the cable can dramatically alter measured ionization profiles. This is demonstrated by the removal of the out-of-field ionization when the cable is shielded for the Exradin chambers. We strongly recommend analyzing any polarity dependence for small-volume chambers used in characterization of electron fields.

  18. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  19. Photocopy of drawing. ALTITUDE CHAMBER LIGHTING MODS., O&C BUILDING. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBER LIGHTING MODS., O&C BUILDING. NASA, John F. Kennedy Space Center, Florida. Drawing 203-644, U.S. Army Corps of Engineers, February, 1967. LIGHTING LAYOUT, RIGHT CHAMBER. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. ALTITUDE CHAMBER LIGHTING MODS., O&C BUILDING. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBER LIGHTING MODS., O&C BUILDING. NASA, John F. Kennedy Space Center, Florida. Drawing 203-644, U.S. Army Corps of Engineers, May, 1967. LIGHTING LAYOUT, LEFT CHAMBER. Sheet 5 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “R” ELEVATION. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  2. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “L” ELEVATION. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  3. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  4. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  5. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  6. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  7. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  8. Metabolic simulation chamber

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work.

  9. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  10. Monte Carlo-based correction factors for ion chamber dosimetry in heterogeneous phantoms for megavoltage photon beams.

    PubMed

    Araki, Fujio

    2012-11-21

    The purpose of this study was to investigate the perturbation correction factors and inhomogeneity correction factors (ICFs) for a thin-walled cylindrical ion chamber in a heterogeneous phantom including solid water, lung and bone plastic materials. The perturbation factors due to the replacement of the air cavity, non-water equivalence of the wall and the stem, non-air equivalence of the central electrode and the overall perturbation factor, P(Q), for a cylindrical chamber, in the heterogeneous phantom were calculated with the EGSnrc/Cavity Monte Carlo code for 6 and 15 MV photon beams. The PTW31010 (0.125 cm(3)) chamber was modeled with Monte Carlo simulations, and was used for measurements and calculations of percentage depth ionization (PDI) or percentage depth dose (PDD). ICFs were calculated from the ratio of the product of the stopping power ratios (SPRs) and P(Q) of lung or bone to solid water. Finally, the measured PDIs were converted to PDDs by using ICFs and were compared with those calculated by the Monte Carlo method. The perturbation effect for the ion chamber in lung material is insignificant at 5 × 5 and 10 × 10 cm(2) fields, but the effect needs to be considered under conditions of lateral electron disequilibrium with a 3 × 3 cm(2) field. ICFs in lung varied up to 2% and 4% depending on the field size for 6 and 15 MV, respectively. For bone material, the perturbation effects due to the chamber wall and the stem were more significant at up to 3.5% and 1.6% for 6 MV, respectively. ICFs for bone material were approximately 0.945 and 0.940 for 6 and 15 MV, respectively. The converted PDDs by using ICFs were in good agreement with Monte Carlo calculated PDDs. The chamber perturbation correction and SPRs should strictly be considered for ion chamber dosimetry in heterogeneous media. This is more important for small field dosimetry in lung and bone materials.

  11. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  12. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  13. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  14. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  15. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  16. Effect of ionization on the behavior of n-eicosanephosphonic acid monolayers at the air/water interface. Experimental determinations and molecular dynamics simulations.

    PubMed

    Schulz, Erica P; Piñeiro, Ángel; Miñones, José; Miñones Trillo, José; Frechero, Marisa A; Pieroni, Olga; Schulz, Pablo C

    2015-03-03

    Monolayers of n-eicosanephosphonic acid, EPA, were studied using a Langmuir balance and a Brewster angle microscope at different subphase pH values to change the charge of the polar headgroups (Zav) from 0 to -2. Molecular dynamics simulations (MDS) results for |Zav| = 0, 1, and 2 were compared with the experimental ones. EPA monolayers behave as mixtures of mutually miscible species (C20H41-PO3H2, C20H41-PO3H(-), and C20H41-PO3(2-), depending on the subphase pH). The order and compactness of the monolayers decrease when increasing |Zav|, while go from strongly interconnected by phosphonic-phosphonic hydrogen bonds (|Zav| = 0-0.03) through an equilibrium between the total cohesive energy and the electrostatic repulsion between the charged polar groups (0.03 < |Zav| < 1.6) to an entirely ionic monolayer (|Zav| ≈ 2). MDS reveal for |Zav| = 0 that the chains form spiralled nearly rounded structures induced by the hydrogen-bonded network. When |Zav| ≈ 1 fingering domains were identified. When Z ≈ 2, the headgroups are more disordered and distanced, not only in the xy plane but also in the z direction, forming a rough layer and responding to compression with a large plateau in the isotherm. The monolayers collapse behavior is consistent with the structures and domains founds in the different ionization states and their consequent in-plane rigidity: there is a transition from a solid-like response at low pH subphases to a fluid-like response at high pH subphases. The film area in the close-packed state increases relatively slow when the polar headgroups are able to form hydrogen bonds but increases to near twice that this value when |Zav| ≈ 2. Other nanoscopic properties of monolayers were also determined by MDS. The computational results confirm the experimental findings and offer a nanoscopic perspective on the structure and interactions in the phosphonate monolayers.

  17. Optical Time Projection Chamber for imaging nuclear decays

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Dominik, W.; Czyrkowski, H.; Dabrowski, R.; Fomitchev, A.; Golovkov, M.; Janas, Z.; Kuśmierz, W.; Pfützner, M.; Rodin, A.; Stepantsov, S.; Slepniev, R.; Ter-Akopian, G. M.; Wolski, R.

    2007-10-01

    We present a novel type of a Time Projection Chamber in which tracks of charged particles ionizing an active gas volume are recorded by means of optical signals. By combining a CCD camera image with the electron drift-time profile measured by a photomultiplier, it is possible to reconstruct trajectories of particles in three dimensions. The chamber was developed to study exotic nuclear decays in which charged particles are emitted. The results of first measurements will be demonstrated in which beta-delayed protons from 13O, the two-alpha decay of 8Be, and the triple-alpha decay of 12C excited states were recorded.

  18. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  19. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  20. Organic Aerosol Nucleation and Growth at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Lethipalo, Katrianne; Bianchi, Federico; Sipilä, Mikko; Nieminen, Tuomo; Wagner, Robert; Frege, Carla; Simon, Mario; Weingartner, Ernest; Gysel, Martin; Dommen, Josef; Baltensperger, Urs

    2014-05-01

    the beam, different ion concentrations can be simulated, from the planetary boundary layer to the upper troposphere (Kirkby et al. 2011). Precursor concentration and oxidiation products were measured with one proton transfer reaction time-of-flight mass spectrometer (precursor concentration), two atmospheric pressure interface time-of-flight mass spectrometer (APi-ToF, charged cluster composition) and two chemical ionization APi-ToF (neutral cluster composition and concentration). Aerosol formation and growth rates were determined using particle size magnifier (size rage: 1-3 nm), neutral air ion spectrometer (size rage: 0.8 -30 nm), nano scanning mobility particle sizer (size rage: 5-80 nm) and several low cut-off condensation particle counters. The presented results will include nucleation and growth rates depending on oxidized organics and sulfuric acid concentration. Another focus will be on the contribution of organics to aerosol growth. For this, different size ranges will be considered. The results will also include the influence of ions on nucleation and growth. References: Almeida, J., et al. Nature 502.7471 (2013): 359-363. IPCC, 2007: Climate Change 2007: The Physical Science Basis. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Kirkby, J., et al. Nature 476.7361 (2011): 429-433. Merikanto, J., et al. Atmospheric Chemistry and Physics 9.21 (2009): 8601-8616.