Science.gov

Sample records for air ions created

  1. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  2. Trails of Kilovolt Ions Created by Subsurface Channeling

    SciTech Connect

    Redinger, Alex; Standop, Sebastian; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of the ion's subsurface channel.

  3. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  4. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  5. Mobility spectrum of air ions at Tahkuse Observatory

    NASA Astrophysics Data System (ADS)

    Horrak, U.; Iher, H.; Luts, A.; Salm, J.; Tammet, H.

    1994-05-01

    Mobility spectra of air ions have been measured at a rural site in Estonia during several periods. The annual average mobility spectrum of natural small air ions is presented. The concentrations of two groups of air ions with mobilities 0.32-0.5 sq cm/(V s) and 0.5-2.5 sq cm/(V s) are not correlated; this fact indicates the different nature of the ions of the two groups. The air ions with mobilities 0.5-2.5 sq cm/(V s) are interpreted as cluster ions and the air ions with mobilities 0.32-0.5 sq cm/(V s) as charged aerosol particles that can be created in the process of ion-induced nucleation. A half-year average mobility spectrum of the large ions with mobilities 3.2 x 10(exp -4) - 1.5/(V s) is presented. The spectrum is well interpreted on the basis of the average size distribution of aerosol particles and on the theory of diffusion charging of the particles.

  6. Biological impact of small air ions.

    PubMed

    Krueger, A P; Reed, E J

    1976-09-24

    The thrust of the experimental data presented here is that small air ions are biologically active. There is convincing evidence that both negative and positive ions (i) inhibit growth of bacteria and fungi on solid media; (ii) exert a lethal effect on vegetative forms of bacteria suspended in water when opportunity is provided for contact of cells and ions; and (iii) reduce the viable count of bacterial aerosols. Through physical action, ions of either charge upset the stability of aerolosized bacterial suspensions and, in addition, have a direct lethal effect which is more prominent with negative ions than with positive ions. With regard to the serotonin hypothesis of air ions action, the situation is more complex. The essential fact is that mice and rats display a charge-related metabolic response to air ions and this phenomenon also occurs in humans. Because serotonin is such a potent hormone, the ultimate functional changes incident to air ion action are impressive and account for the signs of symptoms of the sharav syndrome. Alterations in the cumulative mortality rate with three experimental respiratory disease in the mouse also are charge-dependent, positive ions routinely exercising a detrimental effect. Further, in the case of mice infected with influenza virus, ion-deprivation increases the cumulative mortality rate. Since ion depletion is a constant concomitant of modern urban life, one reasonably may speculate about comparable inimical effects on humans.

  7. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  8. Creating and studying ion acoustic waves in ultracold neutral plasmas

    SciTech Connect

    Killian, T. C.; Castro, J.; McQuillen, P.; O'Neil, T. M.

    2012-05-15

    We excite ion acoustic waves in ultracold neutral plasmas by imprinting density modulations during plasma creation. Laser-induced fluorescence is used to observe the density and velocity perturbations created by the waves. The effect of expansion of the plasma on the evolution of the wave amplitude is described by treating the wave action as an adiabatic invariant. After accounting for this effect, we determine that the waves are weakly damped, but the damping is significantly faster than expected for Landau damping.

  9. Extreme atmospheric electron densities created by extensive air showers

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Camporeale, Enrico; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    A sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent bursts of extreme electron density in our atmosphere. Predicting these electron density bursts accurately one has to take the uncertainty of the input variables into account. To this end we use uncertainty quantification methods, like in [2], to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015) [2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317 [3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  10. Self-aligned nanostructures created by swift heavy ion irradiation

    SciTech Connect

    Gehrke, Hans-Gregor; Nix, Anne-Katrin; Hofsaess, Hans; Krauser, Johann; Trautmann, Christina; Weidinger, Alois

    2010-05-15

    In tetrahedral amorphous carbon (ta-C) swift heavy ions create conducting tracks of about 8 nm in diameter. To apply these nanowires and implement them into nanodevices, they have to be contacted and gated. In the present work, we demonstrate the fabrication of conducting vertical nanostructures in ta-C together with self-aligned gate electrodes. A multilayer assembly is irradiated with GeV heavy ions and subsequently exposed to several selective etching processes. The samples consist of a Si wafer as substrate covered by a thin ta-C layer. On top is deposited a SiN{sub x} film for insulation, a Cr layer as electrode, and finally a polycarbonate film as ion track template. Chemical track etching opens nanochannels in the polymer which are self-aligned with the conducting tracks in ta-C because they are produced by the same ions. Through the pores in the polymer template, the Cr and SiN{sub x} layers are opened by ion beam sputtering and plasma etching, respectively. The resulting structure consists of nanowires embedded in the insulating carbon matrix with a built in gate electrode and has potential application as gated field emission cathode.

  11. Wrinkled hard skins on polymers created by focused ion beam.

    PubMed

    Moon, Myoung-Woon; Lee, Sang Hoon; Sun, Jeong-Yun; Oh, Kyu Hwan; Vaziri, Ashkan; Hutchinson, John W

    2007-01-23

    A stiff skin forms on surface areas of a flat polydimethylsiloxane (PDMS) upon exposure to focused ion beam (FIB) leading to ordered surface wrinkles. By controlling the FIB fluence and area of exposure of the PDMS, one can create a variety of patterns in the wavelengths in the micrometer to submicrometer range, from simple one-dimensional wrinkles to peculiar and complex hierarchical nested wrinkles. Examination of the chemical composition of the exposed PDMS reveals that the stiff skin resembles amorphous silica. Moreover, upon formation, the stiff skin tends to expand in the direction perpendicular to the direction of ion beam irradiation. The consequent mismatch strain between the stiff skin and the PDMS substrate buckles the skin, forming the wrinkle patterns. The induced strains in the stiff skin are estimated by measuring the surface length in the buckled state. Estimates of the thickness and stiffness of the stiffened surface layer are estimated by using the theory for buckled films on compliant substrates. The method provides an effective and inexpensive technique to create wrinkled hard skin patterns on surfaces of polymers for various applications.

  12. A review on ion-ion plasmas created in weakly magnetized electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Aanesland, A.; Bredin, J.; Chabert, P.

    2014-08-01

    Ion-Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion-ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion-ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion-ion region is dropping only by a factor of 2-3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects.

  13. Rocket having barium release system to create ion clouds in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1974-01-01

    A chemical system for releasing a good yield of free barium atoms and barium ions to create ion clouds in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium is presented.

  14. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    2000-04-01

    A database of 8615 hourly averaged air ion mobility spectra in the range of 0.00041-3.2 cm2 V-1 s-1 was measured at Tahkuse Observatory, Estonia, during 14 months in 1993-1994. The average mobility spectrum over the whole period shows distinct peaks of small and large ions. Intermediate ions with mobilities of 0.034-0.5 cm2 V-1 s-1 are of low concentration of about 50 cm-3 in the average spectrum. They experience occasional bursts of up to about 900 cm-3 during 6-10 hours at daytime. The number of burst events recorded during 14 months was 101, with maximum frequency in spring and minimum frequency in winter. Physically, large and intermediate ions can be called aerosol ions, and small ions can be called cluster ions. The principal component analysis was applied to detect the structure of an air ion mobility spectrum. As a result, the mobility spectrum in the range of 0.00041-3.2 cm2 V-1 s-1 (diameters of 0.36-79 nm) was divided into five classes: small cluster, big cluster, intermediate, light large, and heavy large ions. The boundaries between the classes are 1.3 cm2 V-1 s-1 (diameter of 0.85 nm), 0.5 cm2 V-1 s-1 (1.6 nm), 0.034 cm2 V-1 s-1 (7.4 nm), and 0.0042 cm2 V-1 s-1 (22 nm). The five principal components that are closely correlated with the respective ion classes explain 92% of total variance. The classification of aerosol ions is in accord with the three-modal structure of the size spectrum of submicron aerosol particles.

  15. Creating new cities through the large air-cushion vehicle.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.; Finnegan, P. M.

    1972-01-01

    The air-cushion vehicle (ACV) can travel over concrete roads, grass, sand, mud, swamp, snow, ice, and water. This mobility makes possible a totally new geographical freedom in choosing transportation routes, locating ports, and laying out a city. By the 1980s fleets of large ACV freighters could begin carrying ocean-going cargo. The mobility of an ACV fleet would allow placing hoverports away from areas now crowded. New cities could rise along shallow or reef-bound seacoasts and rivers, just as cities once rose around deep-water seaports.

  16. Physical effects of negative air ions in a wet sauna

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  17. Daily variations of indoor air-ion and radon concentrations.

    PubMed

    Kolarz, P M; Filipović, D M; Marinković, B P

    2009-11-01

    Air-ions and radon are two atmospheric trace constituents which have two opposite effects on human health: the ions are beneficial, and radon gas is potentially lethal as it increases the risk of lung cancer. In the lower troposphere, radon is the most important generator of the air-ions. Ionization by cosmic rays and radioactive minerals is almost constant in daily cycles, and variation of air-ion concentrations is attributed to changes of the radon activity. Air-ion and radon concentrations in outdoor and indoor space and their vertical gradients in residential buildings were measured. Gerdien type air-ion detector "CDI-06" made in our laboratory and radon monitor "RAD7" were utilized for these measurements. Correlation coefficient between positive air-ion and Rn indoor concentrations was approximately 0.7. Outdoor and indoor peak values were simultaneous while vertical gradient of concentrations in indoor measurements was evident. The indoor experiments showed that positive air-ion concentration could be an alternative method of radon activity concentration evaluation. PMID:19700332

  18. Air-Microfluidics: Creating Small, Low-cost, Portable Air Quality Sensors

    EPA Science Inventory

    Air-microfluidics shows great promise in dramatically reducing the size, cost, and power requirements of future air quality sensors without compromising their accuracy. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical syste...

  19. A mirror instability associated with newly created ions in a moving plasma

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Krauss-Varban, D.; Huo, T. S.

    1988-10-01

    Using a plasma model in which the ambient magnetic field is parallel to the z axis and the wave vector, an instability that resembles the usual hydromagnetic mirror instability is demonstrated. The instability is caused by freshly created ions in a moving plasma; the source of its free energy is associated with the ring distribution of the newly created ions, resulting in a high ion kinetic temperature in the direction transverse to the ambient magnetic field. The results of a stability analysis indicate that this instability can lead to the amplification of magnetosonic waves.

  20. Effect of Air Ions on Submicron T1 Bacteriophage Aerosols

    PubMed Central

    Happ, John W.; Harstad, J. Bruce; Buchanan, Lee M.

    1966-01-01

    The effect of a high concentration of ionized air molecules on sampling T1 phage aerosols of submicron particle size was evaluated by comparing the phage recoveries of all-glass impingers (AGI-4) and type 6 filter papers. Sampler recoveries of all ionized aerosols were less than the recoveries of nonionized control aerosols. These reductions in recovery were greater with positive ions than with negative ions or ions of mixed polarity. The AGI-4 allowed considerable slippage, which was not affected by the air ions. Type 6 filter paper recoveries were less than AGI-4 recoveries. The air ions did not appear to affect the aerosol particle size as determined by an electron microscope. Images Fig. 1 Fig. 3 PMID:16349691

  1. Air ions and respiratory function outcomes: a comprehensive review

    PubMed Central

    2013-01-01

    Background From a mechanistic or physical perspective there is no basis to suspect that electric charges on clusters of air molecules (air ions) would have beneficial or deleterious effects on respiratory function. Yet, there is a large lay and scientific literature spanning 80 years that asserts exposure to air ions affects the respiratory system and has other biological effects. Aims This review evaluates the scientific evidence in published human experimental studies regarding the effects of exposure to air ions on respiratory performance and symptoms. Methods We identified 23 studies (published 1933–1993) that met our inclusion criteria. Relevant data pertaining to study population characteristics, study design, experimental methods, statistical techniques, and study results were assessed. Where relevant, random effects meta-analysis models were utilized to quantify similar exposure and outcome groupings. Results The included studies examined the therapeutic benefits of exposure to negative air ions on respiratory outcomes, such as ventilatory function and asthmatic symptoms. Study specific sample sizes ranged between 7 and 23, and studies varied considerably by subject characteristics (e.g., infants with asthma, adults with emphysema), experimental method, outcomes measured (e.g., subjective symptoms, sensitivity, clinical pulmonary function), analytical design, and statistical reporting. Conclusions Despite numerous experimental and analytical differences across studies, the literature does not clearly support a beneficial role in exposure to negative air ions and respiratory function or asthmatic symptom alleviation. Further, collectively, the human experimental studies do not indicate a significant detrimental effect of exposure to positive air ions on respiratory measures. Exposure to negative or positive air ions does not appear to play an appreciable role in respiratory function. PMID:24016271

  2. Distribution function of continuously created newborn and pickup ions in outer cometary exospheres

    SciTech Connect

    Gaffey, J.D. Jr.; Wu, C.S. )

    1989-07-01

    The time evolution of the distribution function of newborn ions in the solar wind is investigated within the context of a quasilinear theory in which the level of intrinsic turbulence is assumed to be moderate and known. The initial distribution is taken to be a ring beam, which is approximated by delta functions in pitch angle and velocity, and it is assumed that the ions are created at a constant rate with a similar distribution. The long-time asymptotic form of the distribution is obtained. This distribution is a mixture of ions created recently and ions generated throughout the entire process. The results obtained in the present analysis are found to be in good agreement with recent satellite observations. The time asymptotic distribution is also found to be unstable to low-frequency hydromagnetic waves propagating parallel to the ambient magnetic field.

  3. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates.

    PubMed

    Naganuma, Tamaki; Traversa, Enrico

    2014-06-21

    Abundant oxygen vacancies coexisting with Ce(3+) ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce(3+) ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce(3+) ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce(3+) and Ce(4+) ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce(3+) ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce(3+) ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce(3+) ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce(3+) to Ce(4+) occurred at 350 °C in air. Highly concentrated Ce(3+) ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce(3+) stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce(3+) sites. This study also illuminates the potential interaction mechanisms of stable Ce(3+) ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments.

  4. Distribution function of continuously created newborn and pickup ions in outer cometary exospheres

    NASA Technical Reports Server (NTRS)

    Gaffey, J. D., Jr.; Wu, C. S.

    1989-01-01

    The time evolution of the distribution function of newborn ions in the solar wind is investigated using a quasi-linear-type diffusion equation. The initial distribution is taken to be a ring beam, which is approximated by delta function in pitch angle and velocity, and it is assumed that the ions are created at a constant rate with a similar distribution. A long-time asymptotic form of ion distribution is obtained, which is a mixture of newborn ions and ions generated throughout the entire process. It is shown that the time asymptotic distribution function exists even in the presence of a continuous ionization process. The stability of the long-time asymptotic distribution was examined for the case of parallel propagation, and the results show that the distribution function can be unstable to low-frequency hydromagnetic waves. The results of the analysis were found to agree with recent satellite observations.

  5. Excitations of low-frequency hydromagnetic waves by freshly created ions in the solar wind

    SciTech Connect

    Price, C.P.; Gaffey J.D. Jr.; Dong, J.Q.

    1988-02-01

    Low-frequency hydromagnetic waves excited by newborn ions in the solar wind plasma are studied. The freshly created ions appear in the solar wind frame with a ring beam distribution. Both Alfven and fast magentosonic waves are made unstable by the presence of the newborn ions. The dependence of the growth rate of both waves on the newborn ion density, the angle between the interplanetary magnetic field (IMF) and solar wind flow, and the angle of wave propagation relative to the IMF is investigated. Analytic approximations for the growth rates are presented, and numerical solutions of the dispersion equation are shown. The approximations are quite close to the numerically determined growth rates. We find that the waves grow preferentially in the direction parallel to the IMF and that the growth rates increase with both newborn ion density and the angle between the IMF and the solar wind flow. copyright American Geophysical Union 1988

  6. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  7. Detection of artificially created negative ion clouds with incoherent scatter radar

    NASA Technical Reports Server (NTRS)

    Sultan, Peter J.; Mendillo, Michael; Oliver, William L.; Holt, John M.

    1992-01-01

    The physical mechanisms by which negative ions change the shape of the incoherent scatter spectrum, and the way in which shape changes may be used to detect the presence of heavy positive and negative ions in an ambient ionosphere are investigated. In order to detect heavy negative ions, the temperature structure of the ionosphere is fixed to a prevent average measurement, and any changes in spectral shape during the experiment are interpreted as being caused by changes in composition, and not by changes in the temperature ratio Te/Ti. The spatial and temporal development of heavy negative ion plasma clouds created during four active chemical release experiments was observed. Concentrations of 10-40-percent SF6(-) were detected in SPINEX 1, SPINEX 2, and IMS data sets. An average uncertainty of +/-10-percent SF6(-) is present in all three experiments. Concentrations of 30-percent Br(-) were detected in the NICARE 1 release, with uncertainties of +/-4 percent.

  8. Reduction of air ion mobility to standard conditions

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  9. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.

    PubMed

    Wang, Yudong; Boden, S A; Bagnall, D M; Rutt, H N; de Groot, C H

    2012-10-01

    We have fabricated and measured single domain wall magnetoresistance devices with sub-20 nm gap widths using a novel combination of electron beam lithography and helium ion beam milling. The measurement wires and external profile of the spin valve are fabricated by electron beam lithography and lift-off. The critical bridge structure is created using helium ion beam milling, enabling the formation of a thinner gap (and so a narrower domain wall) than that which is possible with electron beam techniques alone. Four-point probe resistance measurements and scanning electron microscopy are used to characterize the milled structures and optimize the He ion dose. Successful operation of the device as a spin valve is demonstrated, with a 0.2% resistance change as the external magnetic field is cycled. The helium ion beam milling efficiency as extracted from electrical resistance measurements is 0.044 atoms/ion, about half the theoretical value. The gap in the device is limited to a maximum of 20 nm with this technique due to sub-surface swelling caused by injected ions which can induce catastrophic failure in the device. The fine patterning capabilities of the helium ion microscope milling technique indicate that sub-5 nm constriction widths could be possible. PMID:22972003

  10. Air-Stable Black Phosphorus Devices for Ion Sensing.

    PubMed

    Li, Peng; Zhang, Dongzhi; Liu, Jingjing; Chang, Hongyan; Sun, Yan'e; Yin, Nailiang

    2015-11-11

    Black phosphorus (BP) is one of the most attractive graphene analogues, and its properties make it a promising nanomaterial for chemical sensing. However, mono- and few-layer BP flakes are reported to chemically degrade rapidly upon exposure to ambient conditions. Therefore, little is known about the performance and sensing mechanism of intrinsic BP, and chemical sensing of intrinsic BP with acceptable air stability remains only theoretically explored. Here, we experimentally demonstrated the first air-stable high-performance BP sensor using ionophore coating. Ionophore-encapsulated BP demonstrated significantly improved air stability. Its performance and sensing mechanism for trace ion detection were systematically investigated. The BP sensors were able to realize multiplex ion detection with superb selectivity, and sensitive to Pb(2+) down to 1 ppb. Additionally, the time constant for ion adsorption extracted was only 5 s. The detection limit and response rate of BP were both superior to those of graphene based sensors. Moreover, heavy metal ions can be effectively detected over a wide range of concentration with BP conductance change following the Langmuir isotherm for molecules adsorption on surface. The simplicity of this ionophore-encapsulate approach provides a route for achieving air-stable intrinsic black phosphorus sensors that may stimulate further fundamental research and potential applications.

  11. Negative air ions as a source of superoxide

    NASA Astrophysics Data System (ADS)

    Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

    1992-06-01

    The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/—} and the superoxide anion O{2/—}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

  12. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen

    light trapping in poly-Si thin films using ion implantation induced surface texturing. In addition to surface texturing produced by H and Ar ion implantations, metal nanostructures are also added to the surface to further suppress light reflection at the plasmonic resonance of metal nanostructures. Remarkable suppression has been achieved resulting in reflection from the air/Si interface to below ˜5%. In the second part, optical properties of embedded metal nanostructures in silicon matrix gettered into the ion implantation created nanocavities are studied. Embedded nanostructures can have a huge impact in future photonics applications by replacing the existing electronic and photonic components such as interconnects, waveguides, modulators and amplifiers with their plasmonic counterparts. This new method of encapsulating metal nanostructures in silicon is cost-effective and compatible with silicon fabrication technology. Spectroscopic ellipsometry is used to study the dielectric properties of silicon with embedded silver nanostructures. High absorption regions around 900 nm, corresponding to plasmonic absorption of Ag nanoparticles in Si, have been observed and compared to theoretical calculations and simulation results. The possibility of modifying the dielectric function of Si with metal nanostructures can lay the foundation for functional base structures for advanced applications in silicon photonics, photovoltaics and plasmonics.

  13. Extended plasma channels created by UV laser in air and their application to control electric discharges

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011-1.5×1013 and 3×106-3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109-1017 cm-3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  14. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  15. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  16. Creating analogs of thermal distributions from diabatic excitations in ion-trap-based quantum simulation

    NASA Astrophysics Data System (ADS)

    Lim, M. H.; Yoshimura, B. T.; Freericks, J. K.

    2016-04-01

    One broad goal of quantum simulation is to start a simple quantum system in its ground state and slowly evolve the Hamiltonian to a complex one, maintaining the ground state throughout the evolution (called adiabatic state preparation). This provides a natural setting to create a highly entangled and correlated quantum state if the final Hamiltonian supports such a ground state. In ion-trap-based quantum simulations, coherence times are too short to allow for such ground-state evolution for large chains, because the rapid evolution of the system creates excitations to higher energy states. Because the probability for this excitation depends exponentially on the excitation energy and because the thermal distribution also depends exponentially on the excitation energy, we investigate whether this so-called diabatic excitation can create the analog of a thermal distribution; as this could serve as an alternative for creating thermal states of complex quantum systems without requiring contact with a heat bath. In this work, we explore this relationship and determine situations, where diabatic excitation can approximately create thermal states.

  17. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    NASA Astrophysics Data System (ADS)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  18. Can induced theta vacua be created in heavy-Ion collisions?

    PubMed

    Buckley; Fugleberg; Zhitnitsky

    2000-05-22

    We discuss a phenomenon important to the development of the early Universe which may be experimentally testable in heavy-ion collisions. An arbitrary induced straight theta vacuum state should be created in heavy-ion collisions, similar to the creation of the disoriented chiral condensate. It should be a large domain with a wrong straight theta(ind) not equal0 orientation which will mimic the physics of the early Universe when it is believed that the fundamental parameter straight theta(fund) not equal0. We test this idea numerically in a simple model where we study the evolution of the phases of the chiral condensates in QCD with two quark flavors with nonzero straight theta(ind) parameter. We see the formation of a nonzero straight theta(ind) vacuum on a time scale of 10(-23) s. PMID:10990805

  19. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  20. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma

    NASA Astrophysics Data System (ADS)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Hamon, Jonathan; Thiry, Damien; Chauvin, Adrien; Chettab, Meriem; Gautron, Eric; Konstantinidis, Stephanos; Granier, Agnès; Tessier, Pierre-Yves

    2015-12-01

    Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

  1. Effects of air ions on some aspects of learning and memory of rats and mice

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.

    1981-03-01

    When submitted to a single avoidance task male mice showed different behavioral responses if previously treated with opposite aeroionization polarities. Whereas negative air ions tend to improve learning, positive ions have disturbing effects. Male rats submitted to a single — trial inhibitory avoidance step-through task showed that retention processes may also be influenced by air ions. The positive air-ion-treated animals exhibit signs of impaired short and long term memory. The slightly impaired score of negative air-ion-treated animals seems only dependent upon the simultaneously increased locomotor activity. A separate experiment supported this hypothesis showing conspicuous differential effects of air ion polarity on spontaneous activity of male rats. On the basis of these findings and the results of other studies in biological air ion dependence field, the behavioral significance of aero-ionization in learning and memory processes is discussed in relation to serotonin metabolism and other neuroendocrine mechanisms.

  2. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  3. Viscous evolution of the rapidity distribution of matter created in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bożek, Piotr

    2008-03-01

    The longitudinal hydrodynamic expansion of the fluid created in relativistic heavy-ion collisions is considered taking into account shear viscosity. We consider the dynamics of a non-boost-invariant energy density of the fluid in 1+1 dimensions, using the proper time and the space-time rapidity. Both a nonvanishing viscosity and a soft equation of state make the final particle distributions in rapidity narrower. The width of the initial Gaussian rapidity distribution and its central energy density are fitted to reproduce the rapidity distributions of pions and kaons as measured by the BRAHMS Collaboration. The presence of viscosity has dramatic consequences on the value of the initial energy density. Dissipative processes and the reduction of the longitudinal work due to the shear viscosity increase the total entropy and the particle multiplicity at central rapidities. Viscous corrections make the longitudinal velocity of the fluid stay close to the Bjorken scaling flow vz=z/t through the evolution.

  4. Atmospheric light air ion concentrations and related meteorologic factors in Rezekne city, Latvia.

    PubMed

    Skromulis, Andris; Noviks, Gotfrids

    2012-04-01

    The well-minded impact of light negative air ions on human organism is still under discussion. The measurements of air ions are not widespread in Latvia yet. The paper presents new results of air pollution evaluation in Rezekne city. Measurements of positive and negative air ion concentrations in Rezekne city were taken during the spring, summer and autumn 2009 and during the winter 2010. Measurements were taken by portative air ions counter "Sapfir-3M" in eight different points of Rezekne city thrice a day. The concentrations of positive and negative air ions with mobility factor k > or = 0.4 cm2 V(-1) s(-1) were measured. Temperature, relative humidity, wind velocity, direction, etc., were also taken into account. The approximate interconnection between ionization and chemical and mechanical air pollution in relation with meteorological conditions was analyzed. The highest level of air ion concentration was observed in mornings, whereas in afternoons this concentration level decreased due to the growth of anthropogenic air pollution in the city, as light air ions, because of their charge, promoted the coagulation and the settlement of pollution particles. This regularity is typical for summer, whereas in spring, autumn and winter it is not characteristic. The unipolarity factor was usually less than 1 in mornings, but usually larger than 1 in afternoons especially in the most polluted city areas where minor concentration of air ions was detected. The ionization level is an original indicator of energetic saturation and aerosol pollution of atmospheric air.

  5. Pollution prevention incentives and disincentives created by the Clean Air Act

    SciTech Connect

    Webb, C.F.; Wolffe, G.S.

    1998-12-31

    Environmental laws and regulations have not always been implemented in a manner which allows the consideration of pollution prevention alternatives as a means of achieving progress toward air quality goals. Recently EPA has been making strides to re-interpret laws and regulations to be more flexible and encourage pollution prevention projects which do not involve end-of-the-pipe controls. For instance when conducting control technology evaluations such as Best Available Control Technology (BACT) and Lowest Achievable Emission Rate (LAER), facilities can and should take into consideration P2 options which accomplish the same emission reduction goals as traditional end-of-the-pipe controls. There are also new emissions trading provisions building on those allowed in the acid rain and offset trading programs which promise to make P2 projects much more cost effective. Several traditional command and control programs of the CAA also promote P2 projects. For instance emission reductions realized through P2 projects show managers a direct cost savings due to reductions in Title V Facility annual emissions fees and possibly a direct cost benefit through sale of emission credits. Furthermore, the CAA encourages P2 indirectly through the detailed understanding of processes gained from emissions inventories and Risk Management Plans. However, many CAA prescriptive programs create disincentives for industry to select pollution prevention alternatives. This paper will discuss incentives and disincentives for using P2 alternatives to comply with the CAA and discuss some of the recent changes designed to encourage P2.

  6. Trial of a negative ion generator device in remediating problems related to indoor air quality

    SciTech Connect

    Daniell, W.; Camp, J.; Horstman, S. )

    1991-06-01

    It has been suggested that supplementation of indoor air with negative ions can improve air quality. This study examined the effects of a negative ion-generator device on air contaminants and symptom reporting in two office buildings. Separate sets of functional and nonfunctional negative ion generators were monitored using a double blind, crossover design involving two 5-week exposure periods. There were no detectable direct or residual effects of negative ion generator use on air ion levels, airborn particulates, carbon dioxide levels, or symptom reporting. Symptom reporting declined at both sites initially and appeared to be consistent with placebo effect. Job dissatisfaction was an apparent contributor to symptom reporting, with a magnitude comparable to presumed effects of air quality. Further testing of such devices is needed before they should be considered for office air quality problems.

  7. Characterization of positive air ions in boreal forest air at the Hyytiälä SMEAR station

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2007-07-01

    The behavior of the concentration of positive small (or cluster) air ions and naturally charged nanometer aerosol particles (aerosol ions) has been studied on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. Statistical characteristics of the concentrations of cluster ions, two classes of aerosol ions of the sizes of 2.5-8 nm and 8-ca. 20 nm and the quantities that determine the balance of small ions in the atmosphere have been given for the nucleation event days and non-event days. The dependence of small ion concentration on the ion loss (sink) due to aerosol particles was investigated applying a model of bipolar diffusion charging of particles by small ions. The small ion concentration and the ion sink were closely correlated (correlation coefficient -87%) when the fog events and the hours of high relative humidity (above 95%), as well as nocturnal calms and weak wind (wind speed <0.6 m s-1) had been excluded. However, an extra ion loss term presumably due to small ion deposition on coniferous forest with a magnitude equal to the average ion loss to pre-existing particles is needed to explain the observations. Also the hygroscopic growth correction of measured aerosol particle size distributions was found to be necessary for proper estimation of the ion sink. In the case of nucleation burst events, variations in the concentration of small positive ions were in accordance with the changes caused by the ion sink due to aerosols; no clear indication of positive ion depletion by ion-induced nucleation was found. The estimated average ionization rate of the air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 6 ion pairs cm-3 s-1. The study of the charging state of nanometer aerosol particles (2.5-8 nm) revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles and positively

  8. Research report on the physiological effects of air ions and their significance as environmental factors

    NASA Technical Reports Server (NTRS)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  9. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    PubMed Central

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-01-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations. PMID:26569277

  10. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults.

    PubMed

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-11-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm³ vs. 1038/cm³) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  11. Variation and balance of positive air ion concentrations in a boreal forest

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Aalto, P. P.; Salm, J.; Komsaare, K.; Tammet, H.; Mäkelä, J. M.; Laakso, L.; Kulmala, M.

    2008-02-01

    Air ions are characterized on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. The air ions were discriminated as small ions (charged molecular aggregates of the diameter of less than 2.5 nm), intermediate ions (charged aerosol particles of the diameter of 2.5-8 nm), and large ions (charged aerosol particles of the diameter of 8-20 nm). Statistical characteristics of the ion concentrations and the parameters of ion balance in the atmosphere are presented separately for the nucleation event days and non-event days. In the steady state, the ionization rate is balanced with the loss of small ions, which is expressed as the product of the small ion concentration and the ion sink rate. The widely known sinks of small ions are the recombination with small ions of opposite polarity and attachment to aerosol particles. The dependence of small ion concentration on the concentration of aerosol particles was investigated applying a model of the bipolar diffusion charging of particles by small ions. When the periods of relative humidity above 95% and wind speed less than 0.6 m s-1 were excluded, then the small ion concentration and the theoretically calculated small ion sink rate were closely negatively correlated (correlation coefficient -87%). However, an extra ion loss term of the same magnitude as the ion loss onto aerosol particles is needed for a quantitative explanation of the observations. This term is presumably due to the small ion deposition on coniferous forest. The hygroscopic growth correction of the measured aerosol particle size distributions was also found to be necessary for the proper estimation of the ion sink rate. In the case of nucleation burst events, the concentration of small positive ions followed the general balance equation, no extra ion loss in addition to the deposition on coniferous forest was detected, and the hypothesis of the conversion of ions

  12. Climate change and air pollution jointly creating nightmare for tourism industry.

    PubMed

    Sajjad, Faiza; Noreen, Umara; Zaman, Khalid

    2014-11-01

    The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World's largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975-2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause-effect relationship between the climatic factors, air pollution, and tourism indicators in the World's region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.

  13. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  14. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGES

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  16. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  17. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  18. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  19. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  20. Volcanic gases create air pollution on the Island of Hawai’i

    USGS Publications Warehouse

    Sutton, J.; Elias, T.

    1993-01-01

    The current eruption of Kilauea produces large quantities of volcanic gases that contribute to "volcanic air pollution." In this article we discuss the nature of the gases released from Kilauea, hoe we study them, and what happened to the gases in the environment after they are released. 

  1. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Carnes, K. D.; Cocke, C. L.; Chang, Z.; Ben-Itzhak, I.; Needham, H. V.; Rankin, A.

    2007-08-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined.

  2. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  3. Maryland's efforts to develop regulations creating an air emissions offset trading program

    SciTech Connect

    Guy, D.M.; Zaw-Mon, M.

    1999-07-01

    Under the federal Clean Air Act's New Source Review program, many companies located in or planning to locate in areas that do not meet federal air quality standards or in the Northeast Ozone Transport Region (northern Virginia to Maine) must obtain emission reductions (called offsets) of volatile organic compounds and nitrogen oxides that are greater than the new emissions that will be released. This offset requirement allows growth in industry while protecting air quality against deterioration. Despite the federal offset requirement, a formal banking and trading program is not mandated by the Clean Air Act Amendments of 1990. Still, a mechanism is needed to ensure that emission reduction credits (ERCs) are available for sources to use to meet the offset requirement. Currently, Maryland does not have regulations covering the sale or transfer of ERCs from one facility to another. Maryland works with industry on a case-by-case basis to identify potential sources of ERCs and to assist in obtaining them. Then, the offset requirement and the ERCs used to meet the offsets are incorporated into individual permits using various permitting mechanisms. Desiring certainty and stability in the banking and trading process, Maryland's business community has pressed for regulations to formalize Maryland's procedures. Working over several years through a stakeholder process, Maryland has developed concepts for a trading program and a draft regulation. This paper describes Maryland's current case-by-case banking and trading procedure and traces efforts to develop a regulation to formalize the process. The paper discusses complex policy issues related to establishing a banking and trading program, describes the principal elements of Maryland's draft regulation, and summarizes elements of other states' emissions banking and trading programs.

  4. Computed Tomography Artifact Created by Air in the X-ray Tube Oil.

    PubMed

    Hedrick, Wayne R; Markovic, Michael A; Short, James H; Vera, Chido D

    2016-01-01

    A subtle artifact of patchy hypodensities in computed tomography images of the head mimicked acute or subacute cerebral infarct. The cause of the artifact was air in the oil of the x-ray tube. The artifact manifested only when the acquisition parameters included a rotation time of 0.5 second and a gantry tilt angle of 11 to 20 degrees. Routine quality control testing did not detect nonuniformities in the water phantom. PMID:26466108

  5. The effects of negative air ions on various physiological functions during work in a hot environment

    NASA Astrophysics Data System (ADS)

    Inbar, O.; Rotstein, A.; Dlin, R.; Dotan, R.; Sulman, F. G.

    1982-06-01

    The effects of negative air-ions on human physical performance has been investigated. Twenty-one healthy males, 20 25 years old (X=23.6±2.6) were exposed to two 180-min rest and exercise sessions two weeks apart. The subjects were randomly assigned into either an experimental group (n=12) or to a control group (n=9). The experimental group performed the first session in neutral air conditions and the second one in air containing 1.36 to 1.90×105 negative air ions and 1.40 to 1.66×102 positive air ions/ml. The control group performed both sessions under neutral air conditions. All sessions were held at Ta=40±1‡C and 25±5% RH. Each session included one hour of resting under the respective ionization conditions, followed by 3 30-min cycle ergometer work bouts, separated by 7-min rest periods. The mechanical work-load during the bicycle exercise was 1.64±0.6 W/kg BW. The experimental group showed a significant reduction with negative air-ions in heart rate (HR), in rectal temperature, and in the rating of perceived exertion (RPE), all when compared with their own neutral session. The control group showed no significant changes between the first and the second exposure. Although not statistically significant, being exposed to negative air-ions seems also to reduce total sweat rate and minute ventilation (VE), and to increase O2 pulse. It is suggested that under the conditions of this study negative air ions can improve various cardiovascular and thermoregulatory functions as well as subjective feelings during physical effort. It is felt that such positive influences may be augmented by increasing the exposure time to negative ionized air and/or prolonging the stressful conditions.

  6. Investigation of accelerated neutral atom beams created from gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J.

    2013-07-01

    A new concept for ultra-shallow processing of surfaces known as accelerated neutral atom beam (ANAB) technique employs conversion of energetic gas cluster ions produced by the gas cluster ion beam (GCIB) method into intense collimated beams of coincident neutral gas atoms having controllable average energies from less than 10 eV per atom to beyond 100 eV per atom. A beam of accelerated gas cluster ions is first produced as is usual in GCIB, but conditions within the source ionizer and extraction regions are adjusted such that immediately after ionization and acceleration the clusters undergo collisions with non-ionized gas atoms. Energy transfer during these collisions causes the energetic cluster ions to release many of their constituent atoms. An electrostatic deflector is then used to eliminate charged species, leaving the released neutral atoms to still travel collectively at the same velocities they had as bonded components of their parent clusters. Upon target impact, the accelerated neutral atom beams produce effects similar to those normally associated with GCIB, but to shallower depths, with less surface damage and with superior subsurface interfaces. The paper discusses generation and characterization of the accelerated neutral atom beams, describes interactions of the beams with target surfaces, and presents examples of ongoing work on applications for biomedical devices.

  7. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  8. Scintillation imaging of air during proton and carbon-ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Komori, Masataka

    2016-10-01

    We previously reported that the luminescence imaging of water during proton or carbon-ion irradiation is possible using a charge-coupled device (CCD) camera, and these luminescence images can be used for the range estimations for these therapies. In the images during these irradiations to water phantoms, we observed scintillation images in the air parts. We conducted analysis of these images during proton and carbon-ion irradiations to use them for beam width estimations. We set profiles on the air part of the luminescence images of water during 100.2 MeV proton and 241.5 MeV/n carbon-ion irradiations. We estimated the widths of the beams from the scintillation images and compared them with those by simulation results. We also estimated the intensity and light spectrum of the scintillation of air and compared with those of the luminescence of water. The estimated widths of the proton and carbon-ion beams from the scintillation images of air were almost the same as those measured with simulations. The intensities of the scintillation of air were 3% and 5% of those of the luminescence of water for the proton and carbon-ion beams, respectively. The light spectrum of the scintillation of air peaked around 350-450 nm while those of luminescence of water showed wide distribution which peaked 450-550 nm. We confirmed that scintillation imaging of air during proton and carbon-ion beam irradiations were possible. The scintillation imaging of air could be used for the width estimations of proton and carbon-ion beams.

  9. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  10. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  11. Deuterium trapping at defects created with neutron and ion irradiations in tungsten

    SciTech Connect

    Y. Hatano; M. Shimada; T. Otsuka; Y. Oya; V.Kh. Alimov; M. Hara; J. Shi; M. Kobayashi; T. Oda; G. Cao; K. Okuno; T. Tanaka; K. Sugiyama; J. Roth; B. Tyburska-Püschel; J. Dorner; N. Yoshida; N. Futagami; H. Watanabe; M. Hatakeyama; H. Kurishita; M. Sokolov; Y. Katoh

    2013-07-01

    The effects of neutron and ion irradiations on deuterium (D) retention in tungsten (W) were investigated. Specimens of pure W were irradiated with neutrons to 0.3 dpa at around 323 K and then exposed to high-flux D plasma at 473 and 773 K. The concentration of D significantly increased by neutron irradiation and reached 0.8 at% at 473 K and 0.4 at% at 773 K. Annealing tests for the specimens irradiated with 20 MeV W ions showed that the defects which play a dominant role in the trapping at high temperature were stable at least up to 973 K, while the density decreased at temperatures equal to or above 1123 K. These observations of the thermal stability of traps and the activation energy for D detrapping examined in a previous study (˜1.8 eV) indicated that the defects which contribute predominantly to trapping at 773 K were small voids. The higher concentration of trapped D at 473 K was explained by additional contributions of weaker traps. The release of trapped D was clearly enhanced by the exposure to atomic hydrogen at 473 K, though higher temperatures are more effective for using this effect for tritium removal in fusion reactors.

  12. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces.

    PubMed

    Tobias, Douglas J; Stern, Abraham C; Baer, Marcel D; Levin, Yan; Mundy, Christopher J

    2013-01-01

    Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces.

  13. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-07-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N2+, O2+, CO2+, H2O+ and O-) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N2, CO2, H2O and O2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N2, 20% O2), a ternary gas mixture (82% N2, 12% CO2, 6% O2) and a typical flue gas (76% N2, 12% CO2, 6% O2, 6% H2O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H2O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling.

  14. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  15. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  16. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  17. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  18. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields. PMID:26094455

  19. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  20. Estimation of magnetospheric plasma ion composition for 1956-1975 by using high time resolution geomagnetic field data created from analog magnetograms

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Nosé, M.; Mashiko, N.; Morinaga, K.; Nagamachi, S.

    2016-06-01

    This study addresses the ion composition in the magnetosphere before the satellite era. We estimate the plasma ion mass for 1956-1975 from the period of low-latitude Pi2 pulsations found in digital geomagnetic field data that are created from analog magnetograms at Kakioka. The period of investigation covers most of solar cycle 19 and the whole solar cycle 20. To consider long-term variation, the moving average of the estimated plasma ion mass is calculated with a 1 year time window. We find that 1 year moving average of the plasma ion mass changed by a factor of ˜2 during one solar cycle (i.e., between ˜1.1 amu and ˜2.4 amu for solar cycle 19 and between ˜1.1 amu and ˜2.0 amu for solar cycle 20). The correlation coefficient between the 1 year moving average of the plasma ion mass and that of the F10.7 index is 0.86. This result supports the idea that in long-term variation, solar radiation increases the density and the temperature of O+ ions in the ionosphere, leads to the outflow of O+ ions, and contributes to the enhancement of the plasma ion mass in the nightside magnetosphere. The digital data created from analog magnetograms provide an important clue to know the space environment in old days and are advantageous for studies of the space weather and space climate.

  1. Laser-induced fluorescence from N2(+) ions generated by a corona discharge in ambient air.

    PubMed

    Konthasinghe, Kumarasiri; Fitzmorris, Kristin; Peiris, Manoj; Hopkins, Adam J; Petrak, Benjamin; Killinger, Dennis K; Muller, Andreas

    2015-09-01

    In this work, we present the measurement of laser-induced fluorescence from N2(+) ions via the B(2)Σu(+)-X(2)Σg(+) band system in the near-ultraviolet. The ions were generated continuously by a plasma glow discharge in low pressure N2 and by a corona discharge in ambient air. The fluorescence decay time was found to rapidly decrease with increasing pressure leading to an extrapolated decay rate of ≍10(10) s(-1) at atmospheric pressure. In spite of this quenching, we were able to observe laser induced fluorescence in ambient air by means of a time-gated spectral measurement. In the process of comparing the emission signal with that of N2 spontaneous Raman scattering, ion concentrations in ambient air of order 10(8-)10(10) cm(-3) were determined. With moderate increases in laser power and collection efficiency, ion concentrations of less than 10(6) cm(-3) may be measurable, potentially enabling applications in atmospheric standoff detection of ionizing radiation from hazardous radioactive sources. PMID:26414524

  2. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  3. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  4. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  5. Ion mobility spectrometry of hydrazine, monomethylhydrazine, and ammonia in air with 5-nonanone reagent gas

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Salazar, M. R.; Rodriguez, M. R.; Limero, T. F.; Beck, S. W.; Cross, J. H.; Young, R.; James, J. T.

    1993-01-01

    Hydrazine (HZ) and monomethylhydrazine (MMH) in air were monitored continuously using a hand-held ion mobility spectrometer equipped with membrane inlet, 63Ni ion source, acetone reagent gas, and ambient temperature drift tube. Response characteristics included detection limit, 6 ppb; linear range, 10-600 ppb; saturated response, >2 ppm; and stable response after 15-30 min. Ammonia interfered in hydrazines detection through a product ion with the same drift time as that for MMH and HZ. Acetone reagent gas was replaced with 5-nonanone to alter drift times of product ions and separate ammonia from MMH and HZ. Patterns in mobility spectra, ion identifications from mass spectra, and fragmentation cross-sections from collisional-induced dissociations suggest that drift times are governed by ion-cluster equilibria in the drift region of the mobility spectrometer. Practical aspects including calibration, stability, and reproducibility are reported from the use of a hand-held mobility spectrometer on the space shuttle Atlantis during mission STS-37.

  6. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces

    SciTech Connect

    Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.; Levin, Yan; Mundy, Christopher J.

    2013-04-01

    Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  7. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  8. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  9. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  10. Collection of ethanolamines in air and determination by mobile phase ion chromatography

    SciTech Connect

    Bouyoucos, S.A.; Melcher, R.G.

    1986-03-01

    A method is described for the collection and determination of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) in air. Samples were collected by pulling air through a glass tube containing alumina, cleaned especially to remove interfering inorganic ions. The ethanolamines were desorbed with water and determined by Mobile Phase Ion Chromatography (MPIC). The recovery and total relative precision for MEA, DEA, and TEA - all collected from air at a flow rate of 100 mL/min for 7 hr - was 93.1 +/- 17%, 92.7 +/- 15% and 89.4 +/- 21%, respectively (95% confidence level). The method was validated for all three compounds from approximately the limit of detection (3 x noise) to ten times the limit of detection. Based on a sample size of 42 L, MEA was validated over the range from 0.12 to 3.0 ppm v/v (TLV=3), DEA over the range from 0.25 to 3.3 ppm v/v (TLV=3) and TEA from 0.31 to 3.7 ppm v/v (no TLV assigned). No effect on recovery was observed when sampling at high humidity or on storage of the samples for up to 31 days.

  11. Ion mobility spectrometry-mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene

    NASA Astrophysics Data System (ADS)

    Sabo, Martin; Malásková, Michaela; Matejčík, Štefan

    2014-02-01

    In this study we have investigated the negative reactant ion formation in a negative corona discharge (CD) using the corona discharge ion mobility spectrometry orthogonal acceleration time-of-flight (CD-IMS-oaTOF) technique. The reactant ions were formed in the CD operating in the reverse gas flow mode at an elevated temperature of 363.5 K in synthetic and ambient air. Under these conditions mainly O_{2}^{-} and their clusters were formed. We have also studied the influence of CCl4 admixture to air (dopant gas) on the composition of the reactant ions, which resulted in the formation of Cl- and its clusters with a reduced ion mobility of 3.05 cm2 V-1 s-1 as a major reactant ion peak. Additional IMS peaks with reduced ion mobilities of 2.49, 2.25 and 2.03 cm2 V-1 s-1 were detected, and Cl- · (NO2) and Cl- · (NO)n(n = 2, 3) anions were identified. The negative reactant ions were used to detect 2,4,6 trinitrotoluene (TNT) using the thermal desorption (TD) technique using a CD-IMS instrument. Using TD sampling and a negative CD ion source doped by CCl4 we have achieved a limit of detection of 350 pg for direct surface analysis of TNT.

  12. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  13. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    NASA Astrophysics Data System (ADS)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p < 0.05). However, there is no significant difference in TSP and PM10 between the treatment with air cleaner and the control without air cleaner (p > 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p < 0.05). Based on the results obtained from this study, it was concluded that the air cleaner had a positive reduction effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  14. Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Laakso, L.; Kulmala, M.

    2006-08-01

    A new mathematical model describing air ion balance was developed and tested. It has improved approximations and includes dry deposition of ions onto the forest canopy. The model leads to an explicit algebraic solution of the balance equations. This allows simple calculation of both the ionization rate and the average charge of aerosol particles from measurements of air ions and aerosol particles, with some parameters of the forest. Charged aerosol particles are distinguished from cluster ions by their size, which exceeds 1.6 nm diameter. The relative uncertainty of the ionization rate is about the same or less than the relative uncertainties of the measurements. The model was tested with specific air ion measurements carried out simultaneously at two heights at the Hyytiälä forest station, Finland. Earlier studies have shown a difference in the predictions of the ionization rate in the Hyytiälä forest when calculated in two different ways: based on the measurements of the environmental radioactivity and based on the air ion and aerosol measurements. The new model explains the difference as a consequence of neglecting dry deposition of ions in the earlier models. The ionization rate during the 16 h campaign was 5.6±0.8 cm-3 s-1 at the height of 2 m and 3.9±0.2 cm-3 s-1 at the height of 14 m, between the tops of the trees. The difference points out the necessity to consider the height variation when the ionization rate is used as a parameter in studies of ion-induced nucleation. Additional results are some estimates of the parameters of air ion balance. The recombination sink of cluster ions on the ions of opposite polarity made up 9-13%, the sink on aerosol particles 65-69%, and the sink on forest canopy 18-26% of the total sink of cluster ions. The average lifetime of cluster ions was about 130 s for positive and about 110 s for negative ions. At the height of 2 m, about 70% of the space charge of air was carried by aerosol particles, and at the height of 14

  15. Cross-B convection of artificially created, negative-ion clouds and plasma depressions - Low-speed flow

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole.

  16. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649

  17. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry

    SciTech Connect

    Henkner, Katrin; Bassler, Niels; Sobolevsky, Nikolai; Jaekel, Oliver

    2009-04-15

    Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80{+-}2 eV instead of 67.2 eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power ratio, which is important in clinical dosimetry of proton and ion beams. For energies ranging from 50 to 330 MeV/u and for one spread out Bragg peak, the authors compare the impact of the I value on the water-to-air stopping power ratio. The authors calculate ratios from different ICRU stopping power tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping power ratio increases by up to 6% in the last few tenths of a mm toward the Bragg peak. For a spread out Bragg peak of 13.5 mm width at 130 mm depth, the stopping power ratio increases by about 1% toward the distal end.

  18. Evolution of a dynamic suspension created by the invasion of an air flow in a granular bed

    NASA Astrophysics Data System (ADS)

    Homan, Tess; Vidal, Valerie; Joubaud, Sylvain

    2014-11-01

    We experimentally investigate the behavior of an immersed granular bed when perturbed by an air inflow from a single inlet at the bottom of a 2D cell. In particular, we focus on quasi-suspensions, meaning that the grains are slightly heavier than the fluid. We observe the creation of a dynamic suspension. We characterize the evolution of the local packing fraction, the percentage of particles mixed in the dynamic suspension and the shape of the ``dead zone,'' i.e. a region where the grains remain motionless. In particular, we study the influence of the air flow-rate or injection pressure. We complement the study by considering the effect of the density difference between the grains and the fluid, the initial height of the fluid or the height of the bed.

  19. Estimating neutral nanoparticle steady state size distribution and growth according to measurements of intermediate air ions

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Komsaare, K.; Hõrrak, U.

    2013-05-01

    The concentration of nanometer aerosol particles in atmospheric air during quiet periods of new particle formation is low and direct measuring is difficult. We study what information about neutral particles can be drawn from measurements of intermediate ions, which are the electrically charged particles between 1.5-7.5 nm in diameter. If the coagulation sink of nanoparticles and the growth rate of charged particles are known, then the steady state equations allow us to calculate the size distribution of neutral nanoparticles. Variations in the trial value of the growth rate have a minor effect on the estimates of the concentrations and size distributions. There exists a value of the constant growth rate of charged nanoparticles that leads to a minimum deviation of the estimated growth rate of neutral nanoparticles from the growth rate of charged nanoparticles. Rough estimates of the growth rate and size distribution of neutral nanoparticles are derived despite the fact that the sample data of intermediate ion measurements is not accompanied by simultaneous measurements of the background aerosol and ionization rate. In the case of a near-median intermediate ion concentration of 21 ± 2 cm-3 in the urban air of a small town, the growth rate of nanoparticles is estimated to be about 2 nm h-1, while the growth flux or apparent nucleation rate is about 0.5 cm-3 s-1 at 3 nm and about 0.08 cm-3 s-1 at 7 nm. The results suggest that the process of new particle formation is not interrupted during the quiet periods between events of intensive nucleation of atmospheric aerosols.

  20. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise

    NASA Astrophysics Data System (ADS)

    Ryushi, T.; Kita, Ichirou; Sakurai, Tomonobu; Yasumatsu, Mikinobu; Isokawa, Masanori; Aihara, Yasutugu; Hama, Kotaro

    This study examined the effects of negative air ion exposure on the human cardiovascular and endocrine systems during rest and during the recovery period following moderate endurance exercise. Ten healthy adult men were studied in the presence (8,000-10,000 cm-3) or absence (200-400 cm-3) of negative air ions (25° C, 50% humidity) after 1 h of exercise. The level of exercise was adjusted to represent a 50-60% load compared with the subjects' maximal oxygen uptake, which was determined using a bicycle ergometer in an unmodified environment (22-23° C, 30-35% humidity, 200-400 negative air ions.cm-3). The diastolic blood pressure (DBP) values during the recovery period were significantly lower in the presence of negative ions than in their absence. The plasma levels of serotonin (5-HT) and dopamine (DA) were significantly lower in the presence of negative ions than in their absence. These results demonstrated that exposure to negative air ions produced a slow recovery of DBP and decreases in the levels of 5-HT and DA in the recovery period after moderate endurance exercise. 5-HT is thought to have contributed to the slow recovery of DBP.

  1. Factors of air ion balance in a coniferous forest according to measurements in Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Laakso, L.; Kulmala, M.

    2006-04-01

    A new theoretical model includes dry deposition of ions onto the forest canopy and takes into account different parameters of positive and negative ions. Explicit algebraic solution of the air ion balance equations allows calculating the ionization rate and the average charge of aerosol particles according to air ion and aerosol measurements, and parameters of forest. The transformation of direct measurements to the values of the ionization rate does not bring along amplification of measurement errors. The model was used to estimate the ionization rate at the Hyytiälä forest station, Finland, and it solved the controversy of different estimates in the earlier study. The ionization rate during one-day measurements proved to be 5.6±0.8 cm-3 s-1 at the standard measuring height of 2 m and 3.9±0.2 cm-3 s-1 at the height of 14 m between the tops of the trees. The height variation should be considered when the ionization rate is used as a parameter in models of ion-induced nucleation. The recombination sink of cluster ions on the ions of opposite polarity made up 9-13%, the sink on aerosol particles 65-69%, and the sink on forest canopy 18-26% of the total sink of cluster ions. The average lifetime of cluster ions was about 130 s for positive ions and about 110 s for negative ions. About 70% of the space charge of the air was carried by aerosol particles at the height of 2 m and about 84% at the height of 14 m.

  2. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  3. Formation of Langmuir Monolayers of Titanium Dioxide Nanoparticles at Air/Aqueous Interfaces by the Addition of Ions to the Subphase: Effect of Ion Concentration and Type.

    PubMed

    Iwafuji, Yuya; McNamee, Cathy E

    2015-09-17

    A Langmuir monolayer of bare, hydrophilic TiO2 nanoparticles (diameter = 75 nm) was formed at an air/pH 5.8 aqueous interface by adding salt to the subphase. The effect of the concentration and type of salt in the subphase on the surface pressure-area per particle isotherms was determined. Increasing the concentration of NaCl from 0 to 3.8 M increased the maximum surface pressure (Πmax) and shifted the isotherms to a larger area per particle. The ion type also affected the area at which the close packing commenced and the value of Πmax. The presence of salt in the subphase also stabilized SiO2 nanoparticles, suggesting that the ions in the subphase interacted with the dioxide groups on the particles. The combination of structure making or borderline ions with structure breaking ions (LiCl, MgCl2, NaCl, and CaCl2) appeared to stabilize the particulate monolayers more than the combination of structure breaking ions (KBr and KCl). These results suggested that the particles were stabilized by a hydrogen bond network between the particles or the formation of a salt bridge between the particles. Attractions between particles at the air/aqueous interface caused the particles to aggregate, resulting in the particles becoming more stable at the air/aqueous interface.

  4. Negative chlorine ion chemistry in the upper stratosphere and its application to an artificially created dense electron cloud

    NASA Astrophysics Data System (ADS)

    Prasad, S. S.

    1995-03-01

    This paper discusses new potential reactions of chlorine-bearing anions (negative ions) in the upper stratosphere. These reactions are then applied to the negative-ion chemistry following the injection of an electron cloud of very high density, of the order of 10(exp 6)-10(exp 7) e(-)/cu cm, in the 40-45 km region. The idea is to evaluate the recently proposed scheme to mitigate ozone depletion by converting the reactive chlorine atoms at these altitudes into Cl(-) ions which are unreactive towards ozone, i.e., electron scavenging of Cl. We find that the previously neglected photodetachment from Cl(-) is fast. For an overhead sun, this process may have a rate coefficient of 0.08/s when multiple scattering is included. The rate could be even higher, depending on the ground albedo. Switching reaction between Cl(-)-H2O and HCl might lead to the formation of Cl(-)-H2O and Cl(-)-HCl with O atoms could produce ClO(-) and CL2(-). The production of ClO(-) in this manner is significant because Cl(-) having a high photodetachment rate constant would be regenerated in the very likely reactions of ClO(-) with O. When these possibilities are considered, then it is found that the chlorine anions may not be the major ions inside the electron cloud due to the rapid photodetachment from Cl(-). Furthermore, in such a cloud, there may be the hazard that the Cl(-) - Cl(-)- H2O - ClO(-) - Cl(-) cycle amounts to catalytic destruction of two O atoms. Thus, the scheme could be risky if practised in the altitude region where atomic oxygen is an important constituent. Similar conclusions apply even if the ClO(-) species forms ClO3(-) by three-body association with O2, instead of reacting with O. It must be emphasized that the present study is speculative at this time, because none of the relevant reactions have been investigated in the laboratory as yet. The situation at the lower altitudes could be even more complex due to the formation of large cluster ions and the ion-induced aerosol

  5. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    PubMed Central

    Burr, Loic; Trautmann, Christina; Toimil-Molares, Maria Eugenia

    2015-01-01

    Summary Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial. Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology. Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons. PMID:26199830

  6. [Air negative ion concentration in different modes of courtyard forests in southern mountainous areas of Jinan, Shandong Province of East China].

    PubMed

    Wang, Xiao-Lei; Li, Chuan-Rong; Xu, Jing-Wei; Hu, Ding-Meng; Zhao, Zhen-Lei; Zhang, Liu-dong

    2013-02-01

    Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.

  7. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  8. Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study

    NASA Astrophysics Data System (ADS)

    Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R.

    2014-09-01

    Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; : 57 ± 7 mL min-1 kg-1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm-3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm-3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II response ( τ) and the magnitude of the slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.

  9. Differential negative air ion effects on learning disabled and normal-achieving children

    NASA Astrophysics Data System (ADS)

    Morton, L. L.; Kershner, J. R.

    1990-03-01

    Forty normal-achieving and 33 learning disabled (LD) children were assigned randomly to either a negative ion or placebo test condition. On a dichotic listening task using consonant-vowel (CV) combinations, both groups showed an ioninduced increase in the normal right ear advantage (REA). However, the mechanisms for this effect were different for each group. The LDs showed the effect at the right ear/left hemisphere (enhancement). The normal achievers showed the effect at the left ear/right hemisphere (inhibition). The results are consistent with an activation-inhibition model of cerebral function and suggest a functional relationship between arousal, interhemispheric activation-inhibition, and learning disabilities. The LDs may have an interhemispheric dysfunction. Both groups showed superior right ear report and the normal achiever showed overall superiority. Normal achievers showed higher consonant intrusion scores, probably due to a greater cognitive capacity. Age was a significant covariate reflecting developmental capacity changes. Negative air ions are seen to be a tool with potential theoretical and remedial applications.

  10. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2012-08-15

    The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 mM. Effects of sub-lethal exposures to nitrite (0mM, 1.4mM, and 3.0mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60% of total Hb. Haematocrit and total Hb were unaffected by nitrite. Although the effects of nitrite exposure seemed minor in terms of plasma nitrite and metHb increases, ion balance was strongly affected. In the high exposure group, total osmolality decreased from 320 mOsm to 260 mOsm, and plasma sodium from 150 mM to 120 mM, while plasma chloride fell from 105 mM to 60mM and plasma bicarbonate rose from 12 mM in controls to 20mM in exposed fish. The extreme changes in ion balance in C. striata are different from the response reported in other fish, and further studies are needed to investigate the mechanism behind the observed changes in regulation. PMID:22516674

  11. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2012-08-15

    The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 mM. Effects of sub-lethal exposures to nitrite (0mM, 1.4mM, and 3.0mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60% of total Hb. Haematocrit and total Hb were unaffected by nitrite. Although the effects of nitrite exposure seemed minor in terms of plasma nitrite and metHb increases, ion balance was strongly affected. In the high exposure group, total osmolality decreased from 320 mOsm to 260 mOsm, and plasma sodium from 150 mM to 120 mM, while plasma chloride fell from 105 mM to 60mM and plasma bicarbonate rose from 12 mM in controls to 20mM in exposed fish. The extreme changes in ion balance in C. striata are different from the response reported in other fish, and further studies are needed to investigate the mechanism behind the observed changes in regulation.

  12. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  13. Application of MeV ion bombardment to create micro-scale annealing of Silica-Gold films

    SciTech Connect

    Bouyard, A.; Blanchet, X.; Ila, D.; Muntele, C.I.; Muntele, I.C.; Zimmerman, R.L.

    2003-08-26

    This project studies the production of nanoscale annealing using MeV Si ion beams. To test the technique we produced thin films of Au-Silica by sequential deposition of Au and SiO2 on Suprasil substrates. We measured the thickness of the deposited films with an interferometer and by using Rutherford backscattering spectrometry (RBS). Using the measured thickness we calculated the concentration of Au in each film. TRIM simulation was used to confirm our results. Since the localized annealing causes the formation of gold nano-clusters, we performed optical absorption photospectrometry (OAP) on all slides, before deposition, after deposition, and after bombardment by MeV Si beams. Optical index changes are apparent in the sequentially deposited multilayer samples that were not seen in Au-silica co-deposited samples with the same volume fraction of gold.

  14. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy.

    PubMed

    Sánchez-Parcerisa, D; Gemmel, A; Jäkel, O; Parodi, K; Rietzel, E

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (s(w, air)), with an uncertainty of 2%. The variation of (s(w, air)) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (s(w, air)) with penetration depth was observed. Since a consensus on I(w, air) and I(air) has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, s(w,air)(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of I(w) and I(air) values with I(air)/I(w) = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of s(w,air) = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in s(w,air)(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  15. Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices.

    PubMed

    Chen, Chengpeng; Mehl, Benjamin T; Sell, Scott A; Martin, R Scott

    2016-09-21

    those cultured on a thin layer of PCL in a channel or directly on the inner channel wall. Overall, this study represents a new approach for in vitro cell studies, where electrospinning can be used to easily and quickly create 3D scaffolds that can improve the culture conditions in microfluidic devices.

  16. Magnetic properties of nanoparticle systems of iron, cobalt, nickel, and iron-platinum, created by ion implantation

    NASA Astrophysics Data System (ADS)

    Sorge, Korey Dean

    2002-08-01

    Magnetization measurements have been performed on nanoparticle arrays of Fe, Co, Ni, and FePt in single-crystal substrates. Materials are formed by ion implantation into a layer followed by thermal annealing to give electrically isolated but crystallographically textured arrays. Studies show competition between effective single-particle anisotropy (due to magnetocrystalline, shape, surface, and stress effects) and macroscopic anisotropy due to dipolar interactions. Results of these measurements are compared to expectations found in the well-known Stoner-Wohlfarth model of non-interacting, uniaxial particles. While this model is extensively used in magnetic materials research, the missing effects from dipolar interactions between particles give very different results than those measured here. To gauge the importance of interactions with respect to anisotropy, the magnetic length scales of Holz and Scherer are used. Finite size effects associated with shrinking lengths to the nanometer scale have also been measured. Some examples of these effects are an enhanced moment in Ni nanoparticles due to a transition from ferromagnetic to paramagnetic behavior and an enhanced critical exponent beta in FePt. Micromagnetic simulations have been used to model these arrays. They confirm the effects of stabilized magnetization from dipolar interactions found in experiment. Also, they predict a differing behavior between more typical 2D arrays and the thicker arrays formed in this project.

  17. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  18. Long-term biological effects of air ions and D.C. electric fields on Namru mice: First year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Krueger, A. P.

    1985-09-01

    This report describes for the first time the effects of long-term continuous exposures of animals to small air ions and D.C. electric fields. In this study we exposed 200 female NAMRU mice (25/cage) to the following conditions: ± high ions (2×105/cm3), ± low ions (2×103/cm3), ± field only and ground (ion depleted, no field). Specially designed cages provided a defined D.C. field of about 2 kV/meter in ionized environments, with somewhat lower values in the field only cages. Detailed mapping of ion flux originating from a tritium foil generating system (multiple sources in an overhead plate) indicated a well defined, but heterogenous pattern with eight peak areas. Using a 100 cm2 probe, ion flux values ranged from 10-12 10-14 A/cm2, with an average flux of 8.7±6.8×10-13 A/cm2 in high negative ion cages, with good reproducibility between cages. Measurements of serum glucose, cholesterol, and urea nitrogen (samples taken every three months) showed a number of small but consistent and statistically significant differences between animals maintained in different environments during the first year of exposure. Serum globulin and whole blood serotonin, however, did not show any significant environmental effects. Interestingly, pairwise comparisons between high negative and low negative ion conditions, or between high positive and low positive ion conditions, or between the two ground conditions, revealed no significant differences between cages. This argues for a similarity of environmental responses for the mice maintained in each of the compared conditions. The results of a multiple classification analysis for the entire first year showed a preponderence of effects for the ionized cages, although other conditions also had highly significant differences as compared to the grand mean value. While this study has shown effects of only small magnitude (compared to normal physiological variations) in the female NAMRU mice studied here, the significance of these results

  19. Analysis of air ions in biological exposure systems, near HV dc electric power transmission lines, in rooms containing ion generators, and near exposed humans and animals

    NASA Astrophysics Data System (ADS)

    Kaune, William T.; Gillis, Murlin F.; Weigel, Richard J.

    1983-11-01

    A number of systems containing space charge are analyzed using the transit-time technique developed in an earlier paper. (1) An inequality is derived for a room containing an air-ion generator which relates the ion source current to the minimum space-charge density. (2) Published wind-tunnel data are treated, and the characteristics of space-charge plumes produced downstream from localized corona and radioactive sources are explained. (3) Space-charge data published by other researchers can be evaluated; three examples are given, and in two of them published space-charge densities substantially exceed calculated upper-bound values. (4) Formulae are derived for the extrapolation of ground-level space-charge-density, electric field, and ion-current-density data to points above ground level; these formulae are useful for characterizing the three-dimensional environments in systems where only ground-level measurements are available. (5) A simple upper bound is derived for ground-level space-charge densities produced by high-voltage direct-current (HV dc) transmission lines, and it is shown that actual lines do produce densities closely approaching this upper-bound value. (6) The perturbed space-charge density at the surface of the body of an animal or human exposed to air ions and electric fields is estimated, and it is shown that perturbed and unperturbed space-charge densities are approximately equal for exposure conditions simulating those at ground level near HV dc transmission lines.

  20. Simultaneous determination of nitrite and nitrate ions by air-segmented amplitude-modulated multiplexed flow analysis.

    PubMed

    Yoshida, Haruka; Inui, Koji; Takeuchi, Masaki; Tanaka, Hideji

    2012-01-01

    The concept of amplitude-modulated multiplexed flow analysis has been extended to the simultaneous determination of multiple analytes in a sample. A sample solution containing nitrite and nitrate ions is delivered from two channels, but the flow rates are varied at different frequencies. One of the channels has a reduction column for converting nitrate ions to nitrite ions. Downstream, the absorbance of the diazo-coupling product is monitored after the merging of both solutions with a Griess reagent. The signal is analyzed by a fast Fourier transform (FFT) in real time. From the thus-obtained amplitude, a µmol dm(-3) level of the ions can be determined. The introduction of air bubbles is effective to reduce any axial dispersion, and hence to improve the sensitivity.

  1. Ion swarm data of N{4}+ in N2, O2 and dry air for streamer dynamics simulation

    NASA Astrophysics Data System (ADS)

    Bekstein, A.; Benhenni, M.; Yousfi, M.; Ducasse, O.; Eichwald, O.

    2008-04-01

    The ion swarm data such as reduced mobilities, diffusion coefficients and reaction rates of N{4}+ in N{2}, O{2} and dry air (80% N{2}, 20% O{2}) have been determined from a Monte Carlo simulation using calculated and measured elastic and inelastic cross sections. The elastic cross sections used have been determined from a semi-classical JWKB approximation based on a rigid core potential model. The inelastic cross section of N{4}+ in N{2} has been deduced from the measured experimental rates whereas for N{4}+ in O{2} the measured inelastic cross sections have been extended to low and high energies by appropriate approximations. Then the cross sections sets have been validated from comparison of calculated and measured ion swarm data. From the cross sections sets obtained in pure N{2} and O{2}, the ion swarm data for N{4}+ in dry air are then calculated for a large E/N range [ 1 104] Td. Finally, the influence of N{4}+ ions on the streamer development was analyzed with a 2D fluid model in the case of dry air at atmospheric pressure for a point-to-plane electrode configuration.

  2. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  3. Long-term biological effects of air ions and D.C. electric fields on Namru mice: Second year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Madin, S. H.

    1985-09-01

    This report describes the second year of long-term continuous exposures of female NAMRU mice to small air ions and D.C. electric fields in the following conditions: ± high ions ((2×105/cm3), ± low ions (2×103/cm3), ± field (2 kV/m) only and ground (ion depleted, no field). Using an isolated anesthesized mouse, whole body ion flux values averaged 1.04±0.63×10-10 A in high ion cages for different positions on the cage floor, with about a hundred-fold reduction for low ion cages. During the second year (sample periods 5 8) of exposure serum chemistry variability increased, due to increased pathology and decreased numbers of animals as our experimental population died off. The fifth sample period yielded results consistent with those seen earlier, but later sample periods had many fewer significant differences between cages than did those of the first year. Nevertheless, MCA statistics for serum glucose for the second year found a pattern remarkably similar to the first, with the low ion cages (LN and LP) having the lowest levels. MCA statistics for both years emphasized this possible “window” effect of low level ionized conditions. Also, a comparison between the combined values for ionized (HN, LN, HP and LP) and ion depleted cages (NF, PF, G1 and G2) showed a highly significant difference (p<10-6) for serum glucose for both years of exposure, with lower glucose values seen for animals in the ionized cages overall. Animals of all conditions also showed a highly significant decrease in serum glucose with age. Comparison of mice in ionized cages vs. the non-ionized cages also resulted in a significant difference (p<.013) for survival characteristics between groups, with ion exposed animals having a shorter lifespan. These statistics argue strongly for significant effects of long-term exposure of NAMRU mice to the ionized environment.

  4. Estimating neutral nanoparticle steady-state size distribution and growth according to measurements of intermediate air ions

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Komsaare, K.; Hõrrak, U.

    2013-09-01

    Continuous measurements of intermediate air ion size distributions were carried out in the small town Tartu, Estonia, from 1 April 2010 through 7 November 2011. The intermediate ions are charged aerosol particles of diameter 1.5-7.5 nm. In this paper we study what information about neutral nanoparticles of atmospheric aerosols can be drawn from the air ion measurements. Rough estimates of the growth rate and the size distribution of neutral nanoparticles were derived for the subset of measurements while the concentration of the intermediate ions was close to the median and remains in the range of 21 ± 2 cm-3. This criterion excludes the specific new particle formation events characterized with high concentration of intermediate ions and includes only most typical quiet periods between the events when the simultaneous growth, depletion and recharging of particles are described with steady-state equations. We estimated the growth rate of nanoparticles to be about 2 nm h-1 while the growth flux or apparent nucleation rate proved to be about 0.5 cm-3 s-1 at 3 nm and about 0.08 cm-3 s-1 at 7 nm. The results suggest that the process of new particle formation is not interrupted during the quiet periods between events of intensive nucleation of atmospheric aerosols.

  5. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy

    NASA Astrophysics Data System (ADS)

    Sánchez-Parcerisa, D.; Gemmel, A.; Jäkel, O.; Parodi, K.; Rietzel, E.

    2012-06-01

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (sw, air), with an uncertainty of 2%. The variation of (sw, air) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (sw, air) with penetration depth was observed. Since a consensus on Iw, air and Iair has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, sw,air(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of Iw and Iair values with Iair/Iw = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of sw,air = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in sw,air(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  6. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, H.E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  7. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  8. Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport

    EPA Science Inventory

    Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...

  9. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  10. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  11. Air segmented amplitude modulated multiplexed flow analysis with software-based phase recognition: determination of phosphate ion.

    PubMed

    Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji

    2014-01-01

    Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.

  12. The effect of positive air ions on reproduction and growth in laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Head, E. L.

    1986-03-01

    The aim of the present investigation was to determine the growth rates, reproductive success and early mortality of laboratory rats maintained at 10,000 positive ions/ml over two generations. These findings were compared with those from animals maintained at ambient ion levels. The present work indicates that positive ions do not have any adverse effects on the reproductive capabilities or the growth of laboratory rats. In contrast it is shown that exposure to elevated levels of positive ions promotes overall growth, particularly in male rats. This action of positive ions increases with each successive generation exposed to the ions. It is suggested that the growth promoting effect of positive ions may be mediated via some modulation of the endocrine system.

  13. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  14. Basic data of ions in He-air mixtures for fluid modeling of low temperature plasma jets

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Hennad, A.; Benhenni, M.; Eichwald, O.; Merbahi, N.

    2012-08-01

    The basic ion data such as interaction potential parameters, elastic and inelastic collision cross sections, transport coefficients (reduced mobility and diffusion coefficients) and reaction coefficients have been analysed and determined for the case of He+, N2+, and O2+ in He-dry air mixtures. The ion transport and reaction coefficients have been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer cross sections have been calculated from a semi-classical JWKB (Jeffreys Wentzel Kramers Brillouin) approximation based on a (6-4) rigid core interaction potential model. The inelastic cross sections have been fitted using the measured reaction coefficients, such as, for instance, the non resonant charge transfer coefficients. The cross section sets involving elastic and inelastic processes were then validated using either the measured reduced mobility whenever available in the literature or the zero-field mobility calculated from Satoh's relation, and potential parameters available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for He+/N2, He+/O2, N2+/He, and O2+/He systems, the ion transport and reaction coefficients were calculated in the pure gases over a wide range of the density reduced electric field E/N. Then, from the present cross section and other literature sets, the ion mobility and the longitudinal and transverse diffusion coefficients were calculated for different concentrations of air in He in the case of He+, N2+, O2+, and also O- ions.

  15. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  16. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  17. New Approach to Create TiO2(B)/Carbon Core/Shell Nanotubes: Ideal Structure for Enhanced Lithium Ion Storage.

    PubMed

    Zhu, Xiaoyi; Yang, Xianfeng; Lv, Chunxiao; Guo, Shaojun; Li, Jianjiang; Zheng, Zhanfeng; Zhu, Huaiyong; Yang, Dongjiang

    2016-07-27

    To achieve uniform carbon coating on TiO2 nanomaterials, high temperature (>500 °C) annealing treatment is a necessity. However, the annealing treatment inevitably leads to the strong phase transformation from TiO2(B) with high lithium ion storage (LIS) capacity to anatase with low LIS one as well as the damage of nanostructures. Herein, we demonstrate a new approach to create TiO2(B)/carbon core/shell nanotubes (C@TBNTs) using a long-chain silane polymethylhydrosiloxane (PMHS) to bind the TBNTs by forming Si-O-Ti bonds. The key feature of this work is that the introduction of PMHS onto TBNTs can afford TBNTs with very high thermal stability at higher than 700 °C and inhibit the phase transformation from TiO2(B) to anatase. Such a high thermal property of PMHS-TBNTs makes them easily coated with highly graphitic carbon shell via CVD process at 700 °C. The as-prepared C@TBNTs deliver outstanding rate capability and electrochemical stability, i.e., reversible capacity above 250 mAh g(-1) at 10 C and a high specific capacity of 479.2 mAh g(-1) after 1000 cycles at 1 C. As far as we know, the LIS performance of our sample is the highest among the previously reported TiO2(B) anode materials. PMID:27383450

  18. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  19. Effects of air ions on the neonatal growth of laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Bellamy, D.; Head, E. L.

    1981-12-01

    The effect of continuous positive and negative ionization on the growth of rats during the pre and post natal period, up to 10 weeks of age was investigated. It was found that continuous exposure to 1.0×104 pos. ions/ml had no detrimental effect on the animals at any stage of their development. In contrast, exposure to 1.0×104 neg. ions/ml, during gestation and the early post natal period, resulted in some adverse effects on growth and development. However, when exposure to this level of negative ions began at the time of weaning, no adverse effects were observed.

  20. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    DOE PAGES

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; Yang, Xiao -Qing; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants aremore » 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.« less

  1. Ion energy and angular distributions onto polymer surfaces delivered by dielectric barrier discharge filaments in air: II. Particles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2011-06-01

    Atmospheric pressure streamers intersecting particles are of interest in the context of plasma aided combustion, where the particle may be a fuel aerosol droplet, or in sterilization of air, where the particle may be a bacterium. The ion energy and angular distributions (IEADs) incident on the particles, small curved dielectric surfaces, then in part determine the propensity for activating chemical reactions or, in the case of bacteria, the plasma's sterilization capability. In this paper, we discuss results from a computational investigation of IEADs on small particles (45 µm radius) produced by atmospheric pressure discharge. Streamers intersecting a particle momentarily generate a large sheath potential as the streamer passes by as the particle charges towards the plasma floating potential. During that time, ions of energies up to 3-10 eV can strike the particle. The permittivity of the particle and the streamer polarity in part determine the character of the IEAD.

  2. Ion Composition of Fog Water and Its Relation to Air Pollutants during Winter Fog Events in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Xie, Yu-Jing; Shi, Chun-E.; Liu, Duan-Yang; Niu, Sheng-Jie; Li, Zi-Hua

    2012-05-01

    Intensive field experiments focused on fog chemistry were carried out in the northern suburb of Nanjing during the winters of 2006 and 2007. Thirty-seven fog water samples were collected in nine fog events. Based on the chemical analysis results of those samples and the simultaneous measurements of air pollution gases and atmospheric aerosols, the chemical characteristics of fog water and their relations with air pollutants during fog evolution were investigated. The results revealed an average total inorganic ionic concentration TIC = 21.18 meq/L, and the top three ion concentrations were those of SO4 2-, NH4 + and Ca2+ (average concentrations 6.99, 5.95, 3.77 meq/L, respectively). However, the average pH value of fog water was 5.85, which is attributable to neutralization by basic ions (NH4 + and Ca2+). The average TIC value of fog water measured in advection-radiation fog was around 2.2 times that in radiation fog, and the most abundant cation was NH4 + in advection-radiation fog and Ca2+ in radiation fog. In dense fog episodes, the concentration variations of primary inorganic pollution gases showed a "V"-shaped pattern, while those of volatile organic compounds (VOCs) displayed a "Λ"-shaped pattern. The dense fog acted as both the source and sink of atmospheric aerosol particles; fog processes enhanced particle formation, leading to the phenomenon that the aerosol concentration after fog dissipation was higher than that before the fog, and at the same time, mass concentration of PM10 reached the lowest value in the late stage of extremely dense fog episodes because of the progressive accumulated effect of wet deposition of large fog droplets. Both air pollution gases and aerosols loading controlled the ion compositions of fog water. The Ca2+ in fog water originated from airborne particles, while SO4 2- and NH4 + were from both heterogeneous production and soluble particulate species.

  3. Treatment effect of the method of Tai Chi exercise in combination with inhalation of air negative oxygen ions on hyperlipidemia

    PubMed Central

    Ma, Ming; Song, Qing-Hua; Xu, Rong-Mei; Zhang, Quan-Hai; Shen, Guo-Qing; Guo, Yan-Hua; Wang, Yi

    2014-01-01

    Objective: To observe the improvement effect of the treatment method of Tai Chi exercise in combination with inhalation of the air negative oxygen ions on the blood lipid indicator of the patient suffering from the hyperlipidemia. Methods: 56 patients, who are diagnosed with hyperlipidemia, are the study objects and divided into an observation group and a control group by the random number method. Each group consists of 28 patients. The patients in the control group do Tai Chi exercise for about 60 min once a day; the patients in the observation group, in addition to Tai Chi exercise, are treated by inhalation of the air negative oxygen ions. Before the treatment and after 6 months’ treatment, respectively test and compare body fat content, blood lipid, blood rheology and psychological adaptation as well as other indicators for these two groups of patients. Results: In comparison with the ordinary materials of the patients in two groups before the treatment, it shows no significant difference, P>0.05; after they are respectively treated for 6 months, it is found that the testing indicators of the patients in two groups are improved to some extent, but those of the observation group are better. Compared with the improvement effect of the control group, the difference has statistical significance, P<0.05. Conclusion: Tai Chi Exercise can improve the blood lipid indicator of the patient suffering from hyperlipidemia to some extent, however, the treatment method, in combination with inhalation of air negative oxygen ion, can obtain better effect than that of single Tai Chi exercise. Tip: the environment of the exercise plays an important intervention role in the treatment effect. PMID:25232426

  4. Failure to produce taste-aversion learning in rats exposed to static electric fields and air ions

    SciTech Connect

    Creim, J.A.; Lovely, R.H.; Weigel, R.J.; Forsythe, W.C.; Anderson, L.E.

    1995-12-01

    Taste-aversion (TA) learning was measured to determine whether exposure to high-voltage direct current (HVdc) static electric fields can produce TA learning in male Long Evans rats. Fifty-six rats were randomly distributed into four groups of 14 rats each. All rats were placed on a 20 min/day drinking schedule for 12 consecutive days prior to receiving five conditioning trials. During the conditioning trials, access to 0.1% sodium saccharin-flavored water was given for 20 min, followed 30 min later by one of four treatments. Two groups of 14 rats each were individually exposed to static electric fields and air ions, one group to +75 kV/m (+2 {times} 10{sup 5} air ions/cm{sup 3}) and the other group to {minus}75 kV/m ({minus}2 {times} 10{sup 5} air ions/cm{sup 3}). Two other groups of 14 rats each served as sham-exposed controls, with the following variation in one of the sham-exposed groups: this group was subdivided into two subsets of seven rats each, so that a positive control group could be included to validate the experimental design. The positive control group (n = 7) was injected with cyclophosphamide 25 mg/kg, i.p., 30 min after access to saccharin-flavored water on conditioning days, whereas the other subset of seven rats was similarly injected with an equivalent volume of saline. Access to saccharin-flavored water on conditioning days was followed by the treatments described above and was alternated daily with water recovery sessions in which the rats received access to water for 20 min in the home cage without further treatment. Following the last water-recovery session, a 20 min, two-bottle preference test (between water and saccharin-flavored water) was administered to each group. The positive control group did show TA learning, thus validating the experimental protocol.

  5. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm. PMID:22946180

  6. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  7. Comparison of Experimental and Calculated Ion Mobilities of Small Molecules in Air

    PubMed Central

    2016-01-01

    Ion mobility spectrometry is a well-known technique for analyzing gases. Examples are military applications, but also safety related applications, for example, for protection of employees in industries working with hazardous gases. In the last 15 years, this technique has been further developed as a tool for structural analysis, for example, in pharmaceutical applications. In particular, the collision cross section, which is related to the mobility, is of interest here. With help of theoretic principles, it is possible to develop molecular models that can be verified by the comparison of their calculated cross sections with experimental data. In this paper, it is analyzed how well the ion trajectory method is suitable to reproduce the measured ion mobility of small organic molecules such as the water clusters forming the positively charged reactant ions, simple aromatic substances, and n-alkanes. PMID:27298751

  8. Diurnal variation in the concentration of air ions of different mobility classes in a rural area

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Salm, Jaan; Tammet, Hannes

    2003-10-01

    Analyzed data consist of 8900 hourly average mobility distributions measured in the mobility range of 0.00041-3.2 cm2 V-1 s-1 (diameter range 0.36-79 nm) at Tahkuse Observatory, Estonia, in 1993-1994. The average diurnal variation in the concentration of cluster ions is typical for continental stations: the maximum in the early morning hours and the minimum in the afternoon. This is explained by variations in radon concentration. The diurnal variation for big cluster ions (0.5-1.3 cm2 V-1 s-1) differs from that for small cluster ions (1.3-3.14 cm2 V-1 s-1). The size distribution of intermediate and light large ions in the range of 1.6-22 nm is strongly affected by nucleation bursts of nanometer particles. On the burst days, the maximum concentration of intermediate ions (1.6-7.4 nm) is about the noontime and that of light large ions (7.4-22 nm) about 2 hours later. The concentration of heavy large ions (charged Aitken particles of diameters of 22-79 nm) is enhanced in the afternoon and this is explained by the bursts of nanometer particles and the subsequent growth of particles by condensation and coagulation. If the burst days are excluded, then in the warm season the concentration of Aitken particles increases during night. In the cold season, the diurnal variation is different and all the classes of aerosol ions (2.1-79 nm) show similar variation with the minimum at 0600 LT and the maximum in the afternoon; exceptions are the rare nucleation burst days.

  9. Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression.

    PubMed

    Maziejuk, M; Szczurek, A; Maciejewska, M; Pietrucha, T; Szyposzyńska, M

    2016-05-15

    Benzene, toluene and xylene (BTX compounds) are chemicals of greatest concern due to their impact on humans and the environment. In many cases, quantitative information about each of these compounds is required. Continuous, fast-response analysis, performed on site would be desired for this purpose. Several methods have been developed to detect and quantify these compounds in this way. Methods vary considerably in sensitivity, accuracy, ease of use and cost-effectiveness. The aim of this work is to show that differential ion mobility spectrometry (DMS) may be applied for determining concentration of BTX compounds in humid air. We demonstrate, this goal is achievable by applying multivariate analysis of the measurement data using partial least squares (PLS) regression. The approach was tested at low concentrations of these compounds in the range of 5-20 ppm and for air humidity in a range 0-12 g/kg. These conditions correspond to the foreseeable application of the developed approach in occupational health and safety measurements. The average concentration assessment error was about 1 ppm for each: benzene, toluene and xylene. We also successfully determined water vapor content in air. The error achieved was 0.2 g/kg. The obtained results are very promising regarding further development of DMS technique as well as its application.

  10. Impacts of anthropogenic emissions and cold air pools on urban to montane gradients of snowpack ion concentrations in the Wasatch Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.

    2014-12-01

    Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means

  11. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  12. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    SciTech Connect

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  13. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003

    NASA Astrophysics Data System (ADS)

    Aas, Wenche; Shao, Min; Jin, Lei; Larssen, Thorjørn; Zhao, Dawei; Xiang, Renjun; Zhang, Jinhong; Xiao, Jinsong; Duan, Lei

    Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO 2 ranging from 0.5 to above 40 μg S m -3. The main components in the airborne particles are (NH 4) 2SO 4 and CaSO 4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l -1 at the most rural site (LGS) to about 200 μeq l -1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l -1, while the total nitrogen concentration is between 30 and 150 μeq l -1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.

  14. Air Force/Ion Physics hardened lithium doped solar cell development

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A.; Bartels, F.; Carnes, C.; Ho, J.; Smith, D.

    1971-01-01

    Introduction of lithium by ion implantation eliminates reproducibility and surface problem deficiencies of other introduction techniques. Implantation has been demonstrated to make possible a degree of control over the cell lithium content which has not previously been available. Front barrier development remains to be completed. Successful development of the barrier will make available the freedom to select optimum lithium concentration throughout the cell, including in the vicinity of the junction.

  15. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  16. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  17. Creating Tribes.

    ERIC Educational Resources Information Center

    Robyn, Elisa

    2000-01-01

    Suggests the use of the "tribal" metaphor to foster team building and collaborative learning in college classes. Offers examples of how linking students in the classroom in tribes builds identification and interdependence through such activities as creating a group myth and participating in membership rituals. The tribal metaphor has also led to…

  18. Creating Poetry.

    ERIC Educational Resources Information Center

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  19. Creating Community.

    ERIC Educational Resources Information Center

    Ruane, Patricia; And Others

    1994-01-01

    Brookline (Massachusetts) Public Schools has created a telecommunications network that encourages creative thinking, risk taking, thoughtful practice. Interested parties are advised to identify leadership team; rethink resources; identify potentially successful conference groups; learn to make deals; provide training and ongoing support; expect…

  20. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  1. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    SciTech Connect

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; Yang, Xiao -Qing; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  2. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-01

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  3. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. PMID:26889929

  4. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation.

  5. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  6. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  7. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  8. Examination of Ion Beam Acceleration in A High Power-Low Pressure and Gas Flow Rates Argon Plasma Created in the MadHeX Helicon Source

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Devinney, Michael; Scharer, John

    2012-10-01

    The modified MadHeX experimental system consists of a Pyrex tube connected to a stainless steel chamber with an axial magnetic nozzle field, variable up to 1 kG at the source region that has been upgraded to minimize neutral reflux and reduce neutral concentrations in the chamber. A half-turn double-helix antenna is used to excite helicon waves in the source. An ion beam of energy, E = 160 eV at 500 W RF power, has been observed in a low flowing argon plasma formed in the expanding region with a 340 G magnetic field. The role of plasma positive ``self-bias'' and the effects of boundary conditions are discussed. The measured density decrease factor of 18 at 100 W RF power across the expansion region yields a higher ion acceleration and agrees with a conservation-of-flux calculation. The effect of lower flow rates and pressures, higher RF powers and magnetic field strength dependence on the ion beam acceleration, plasma potential, electron density and temperature are further explored. The axial ion velocity distribution function and temperatures at higher powers are observed by argon 668 nm laser induced fluorescence with density measurements by interferometry. The electron energy distribution and its possible non-Maxwellian tail are examined using optical emission spectroscopy (ADAS and Vlcek models).

  9. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  10. Further study of the intrinsic safety of internally shorted lithium and lithium-ion cells within methane-air

    PubMed Central

    Dubaniewicz, Thomas H.; DuCarme, Joseph P.

    2015-01-01

    National Institute for Occupational Safety and Health (NIOSH) researchers continue to study the potential for lithium and lithium-ion battery thermal runaway from an internal short circuit in equipment for use in underground coal mines. Researchers conducted cell crush tests using a plastic wedge within a 20-L explosion-containment chamber filled with 6.5% CH4-air to simulate the mining hazard. The present work extends earlier findings to include a study of LiFePO4 cells crushed while under charge, prismatic form factor LiCoO2 cells, primary spiral-wound constructed LiMnO2 cells, and crush speed influence on thermal runaway susceptibility. The plastic wedge crush was a more severe test than the flat plate crush with a prismatic format cell. Test results indicate that prismatic Saft MP 174565 LiCoO2 and primary spiral-wound Saft FRIWO M52EX LiMnO2 cells pose a CH4-air ignition hazard from internal short circuit. Under specified test conditions, A123 systems ANR26650M1A LiFePO4 cylindrical cells produced no chamber ignitions while under a charge of up to 5 A. Common spiral-wound cell separators are too thin to meet intrinsic safety standards provisions for distance through solid insulation, suggesting that a hard internal short circuit within these cells should be considered for intrinsic safety evaluation purposes, even as a non-countable fault. Observed flames from a LiMnO2 spiral-wound cell after a chamber ignition within an inert atmosphere indicate a sustained exothermic reaction within the cell. The influence of crush speed on ignitions under specified test conditions was not statistically significant. PMID:26139958

  11. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis. PMID:25783787

  12. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-09-01

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appears to be classic electrospray ionization spectra; however, the `softness' of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. In this work, a series of benzylpyridinium salts were employed as thermometer ions to compare internal energy distributions between electrospray ionization and the UV laser ablation/liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. These data, along with results from the analysis the biological molecules bradykinin and angiotensin III indicated that the ions or their fragments formed directly by UV laser ablation that survive the liquid capture/electrospray ionization process were likely to be an extremely small component of the total ion signal observed. Instead, the preponderate neutral molecules, clusters, and particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream, then electrosprayed, were the principal source of the ion signal observed. Thus, the electrospray ionization process used controls the overall `softness' of this technique.

  13. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.

    PubMed

    Wondimu, Taddese; Wang, Rui; Ross, Brian

    2014-09-01

    The discovery that hydrogen sulphide (H2S) acts as a gasotransmitter when present at very low concentrations (sub-parts per billion (ppbv)) has resulted in the need to quickly quantify trace amounts of the gas in complex biological samples. Selected ion flow tube mass spectrometry (SIFT-MS) is capable of real-time quantification of H2S but many SIFT-MS instruments lack sufficient sensitivity for this application. In this study we investigate the utility of combining thermal desorption with SIFT-MS for quantifying H2S in the 0.1-1 ppbv concentration range. Human orally or nasally derived breath, and background ambient air, were collected in sampling bags and dried by passing through CaCl2 and H2S pre-concentrated using a sorbent trap optimised for the capture of this gas. The absorbed H2S was then thermally desorbed and quantified by SIFT-MS. H2S concentrations in ambient air, nasal breath and oral breath collected from 10 healthy volunteers were 0.12  ±  0.02 (mean ± SD), 0.40  ±  0.11 and 3.1  ±  2.5 ppbv respectively, and in the oral cavity H2S, quantified by SIFT-MS without pre-concentration, was present at 13.5  ±  8.6 ppbv. The oral cavity H2S correlates well with oral breath H2S but not with nasal breath H2S, suggesting that oral breath H2S derives mainly from the oral cavity but nasal breath is likely pulmonary in origin. The successful quantification of such low concentrations of H2S in nasal air using a rapid analytical procedure paves the way for the straightforward analysis of H2S in breath and may assist in elucidating the role that H2S plays in biological systems.

  14. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.

    PubMed

    Park, Chul Woo; Park, Ji-Woon; Lee, Sung Hwa; Hwang, Jungho

    2014-02-15

    In this study, we introduce a methodology for disrupting cell membranes with air ions coupled with ATP bioluminescence detection for real-time monitoring of bioaerosol concentrations. A carbon fiber ionizer was used to extract ATP from bacterial cells for generating ATP bioluminescence. Our methodology was tested using Staphylococcus epidermidis and Escherichia coli, which were aerosolized with an atomizer, and then indoor bioaerosols were also used for testing the methodology. Bioaerosol concentrations were estimated without culturing which requires several days for colony formation. Correlation equations were obtained for results acquired using our methodology (Relative Luminescent Unit (RLU)/m(3)) and a culture-based (Colony Forming Unit (CFU)/m(3)) method; CFU/m(3)=1.8 × measured RLU/m(3) for S. epidermidis and E. coli, and CFU/m(3)=1.1 × measured RLU/m(3) for indoor bioaerosols under the experimental conditions. Our methodology is an affordable solution for rapidly monitoring bioaerosols due to rapid detection time (cell-lysis time: 3 min; bioluminescence detection time: <1 min) and easy operation.

  15. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.

    PubMed

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2015-09-10

    We investigated the solvation of carboxylate ions from formate to hexanoate, in droplets of 50 to 1000 water molecules and neat water, by computations using standard molecular dynamics and sophisticated polarizable models. The carboxylate ions from methanoate to hexanoate show strong propensity for the air/water interface in small droplets. Only the ions larger than propanoate retain propensity for the interface in larger droplets, where their enthalpic stabilization by ion/water dispersion is reduced there by 3 kcal mol(-1) per CH2 group. This is compensated by entropy effects over +3.3 cal mol(-1) K(-1) per CH2 group. On the surface, the anionic headgroups are strongly oriented toward the aqueous core, while the hydrophobic alkyl chains are repelled into air and lose their structure-making effects. These results reproduce the structure-making effects of alkyl groups in solution, and suggest that the hydrocarbon chains of ionic headgroups and alkyl substituents solvate independently. Extrapolation to bulk solution using standard extrapolation schemes yields absolute carboxylate solvation energies. The results for formate and acetate yield a proton solvation enthalpy of about 270 kcal mol(-1), close to the experiment-based value. The largest carboxylate ions yield a value smaller by about 10 kcal mol(-1), which requires studies in much larger droplets. PMID:26287943

  16. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    SciTech Connect

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  17. Creating locally-resolved mobile-source emissions inputs for air quality modeling in support of an exposure study in Detroit, Michigan, USA.

    PubMed

    Snyder, Michelle; Arunachalam, Saravanan; Isakov, Vlad; Talgo, Kevin; Naess, Brian; Valencia, Alejandro; Omary, Mohammad; Davis, Neil; Cook, Rich; Hanna, Adel

    2014-12-09

    This work describes a methodology for modeling the impact of traffic-generated air pollutants in an urban area. This methodology presented here utilizes road network geometry, traffic volume, temporal allocation factors, fleet mixes, and emission factors to provide critical modeling inputs. These inputs, assembled from a variety of sources, are combined with meteorological inputs to generate link-based emissions for use in dispersion modeling to estimate pollutant concentration levels due to traffic. A case study implementing this methodology for a large health study is presented, including a sensitivity analysis of the modeling results reinforcing the importance of model inputs and identify those having greater relative impact, such as fleet mix. In addition, an example use of local measurements of fleet activity to supplement model inputs is described, and its impacts to the model outputs are discussed. We conclude that with detailed model inputs supported by local traffic measurements and meteorology, it is possible to capture the spatial and temporal patterns needed to accurately estimate exposure from traffic-related pollutants.

  18. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    PubMed

    Wang, Shu-Yang; Jiang, Bo-Ling; Zhou, Xiang; Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  19. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    PubMed

    Wang, Shu-Yang; Jiang, Bo-Ling; Zhou, Xiang; Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  20. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei

    PubMed Central

    Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme. PMID:26656155

  1. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective.

    PubMed

    Baer, Marcel D; Kuo, I-Feng W; Tobias, Douglas J; Mundy, Christopher J

    2014-07-17

    The propensities of the water self-ions, H3O(+) and OH(-), for the air-water interface have implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O(+) and/or OH(-) prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs interfacial behavior of H3O(+) and OH(-) that employs forces derived from density functional theory with a generalized gradient approximation exchange-correlation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O(+) as a function of the position of the ion in the vicinity of an air-water interface. The PMF suggests that H3O(+) has equal propensity for the interface and the bulk. We compare the PMF for H3O(+) to our previously computed PMF for OH(-) adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs in the bulk are connected with interfacial propensity. We find that the solvation shell of H3O(+) is only slightly dependent on its position in the water slab, while OH(-) partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions.

  2. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  3. Drift and reactions of positive tetratomic ions in dry, atmospheric air: Their effects on the dynamics of primary and secondary streamers

    NASA Astrophysics Data System (ADS)

    Bekstein, A.; Yousfi, M.; Benhenni, M.; Ducasse, O.; Eichwald, O.

    2010-05-01

    The ion swarm data, namely, the reduced mobility, diffusion, and reaction rates of the positive tetratomic ions O4+ and N2O2+ in N2 and O2 have been determined from a Monte Carlo simulation using calculated and fitted elastic and inelastic cross sections. The elastic momentum transfer cross sections have been determined from a semiclassical Jeffreys-Wentzell-Kramers-Brilouin (JWKB) approximation based on a rigid core potential model well adapted for polyatomic ions. The inelastic cross sections have been approximated from considerations based on the N4+/O2 and N4+/N2 systems. The validated cross section sets in pure N2 and O2 have been used to determine the O4+ and N2O2+ swarm data in dry air over a large E/N range up to 1000 Td. However, due to the lack of experimental ion transport coefficients necessary for a more rigorous cross section validation, the present data, validated only at low E/N, should be regarded as a first approximation, susceptible to improvements as soon as measurements of ion transport coefficients become available in the literature. Then, the present data are used in a two-dimensional discharge dynamics fluid model for the simulation of the primary and secondary streamers for the case of a positive point-to-plane corona discharge in dry air. Relevant characteristics such as discharge current, charged particle densities, space charge electric field and the variation in active species like N and O radicals (very useful in many nonthermal plasma applications) are analyzed and discussed with and without the consideration of three positive tetratomic ions (N4+, O4+, and N2O2+). More particularly, the non-negligible effect of O4+, in the dynamics of the primary and secondary streamers during the discharge propagation and relaxation stages is highlighted with an emphasis on the role of the related kinetic reactions occurring between the different charged particles.

  4. Characterization and antimicrobial efficacy against E. coli of a helium/air plasma at atmospheric pressure created in a plastic package

    NASA Astrophysics Data System (ADS)

    Connolly, J.; Valdramidis, V. P.; Byrne, E.; Karatzas, K. A.; Cullen, P. J.; Keener, K. M.; Mosnier, J. P.

    2013-01-01

    A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current-voltage (I-V) and charge-voltage (Q-V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ⩽ Pd ⩽ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1- systems of N2 and N_2^+ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m-3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic

  5. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods

    PubMed Central

    Dubaniewicz, Thomas H.; DuCarme, Joseph P.

    2016-01-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH4)-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO4) cell model was tolerant to crush-induced internal short circuits within CH4-air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH4-air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl2) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure. PMID:27695201

  6. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods

    PubMed Central

    Dubaniewicz, Thomas H.; DuCarme, Joseph P.

    2016-01-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH4)-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO4) cell model was tolerant to crush-induced internal short circuits within CH4-air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH4-air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl2) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  7. Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface

    PubMed Central

    2013-01-01

    Background Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm2 respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. Results Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-α and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-α and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. Conclusions With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag

  8. A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements

    NASA Astrophysics Data System (ADS)

    Reyes-Marambio, Jorge; Moser, Francisco; Gana, Felipe; Severino, Bernardo; Calderón-Muñoz, Williams R.; Palma-Behnke, Rodrigo; Estevez, Pablo A.; Orchard, Marcos; Cortés, Marcelo

    2016-02-01

    This paper presents a experimentally-validated fractal time thermal model to describe the discharge and cooling down processes of air-cooled cylindrical Lithium-ion cells. Three cases were studied, a spatially isolated single cell under natural convection and two spatial configurations of modules with forced air cooling: staggered and aligned arrays with 30 and 25 cells respectively. Surface temperature measurements for discharge processes were obtained in a single cell at 1 C, 2 C and 3 C discharge rates, and in the two arrays at 1 C discharge rate. In the modules, surface temperature measurements were obtained for selected cells at specific inlet cooling air speeds. The fractal time energy equation captures the anomalous temperature relaxation and describes the cell surface temperature using a stretched exponential model. Stretched exponential temperature models of cell surface temperature show a better agreement with experimental measurements than pure exponential temperature models. Cells closer to the horizontal side walls have a better heat dissipation than the cells along the centerline of the module. The high prediction capabilities of the fractal time energy equation are useful in new design approaches of thermal control strategies of modules and packs, and to develop more efficient signal-correction algorithms in multipoint temperature measurement technologies in Li-ion batteries.

  9. Air Cleaning Technologies

    PubMed Central

    2005-01-01

    water molecules and form cluster ions which are attracted to airborne particles. The cluster ion surrounds the airborne particle, and the positive and negative ions react to form hydroxyls. These hydroxyls steal the airborne particle’s hydrogen atom, which creates a hole in the particle’s outer protein membrane, thereby rendering it inactive. Because influenza is primarily acquired by large droplets and direct and indirect contact with an infectious person, any in-room air cleaner will have little benefit in controlling and preventing its spread. Therefore, there is no role for the Plasmacluster ion air purifier or any other in-room air cleaner in the control of the spread of influenza. Accordingly, for purposes of this review, the Medical Advisory Secretariat presents no further analysis of the Plasmacluster. Review Strategy The objective of the systematic review was to determine the effectiveness of in-room air cleaners with built in UVGI lights and HEPA filtration compared with those using HEPA filtration only. The Medical Advisory Secretariat searched the databases of MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, INAHATA (International Network of Agencies for Health Technology Assessment), Biosis Previews, Bacteriology Abstracts, Web of Science, Dissertation Abstracts, and NIOSHTIC 2. A meta-analysis was conducted if adequate data was available from 2 or more studies and where statistical and clinical heterogeneity among studies was not an issue. Otherwise, a qualitative review was completed. The GRADE system was used to summarize the quality of the body of evidence comprised of 1 or more studies. Summary of Findings There were no existing health technology assessments on air cleaning technology located during the literature review. The literature search yielded 59 citations of which none were retained. One study was retrieved from a reference list of a guidance document from the United States Centers for Disease Control and Prevention, which

  10. Real-time quantification of traces of biogenic volatile selenium compounds in humid air by selected ion flow tube mass spectrometry.

    PubMed

    Sovová, Kristýna; Shestivska, Violetta; Španěl, Patrik

    2012-06-01

    Biological volatilization of selenium, Se, in a contaminated area is an economical and environmentally friendly approach to phytoremediation techniques, but analytical methods for monitoring and studying volatile compounds released in the process of phytovolatilization are currently limited in their performance. Thus, a new method for real time quantification of trace amounts of the vapors of hydrogen selenide (H(2)Se), methylselenol (CH(3)SeH), dimethylselenide ((CH(3))(2)Se), and dimethyldiselenide ((CH(3))(2)Se(2)) present in ambient air adjacent to living plants has been developed. This involves the characterization of the mechanism and kinetics of the reaction of H(3)O(+), NO(+), and O(2)(+•) reagent ions with molecules of these compounds and then use of the rate constants so obtained to determine their absolute concentrations in air by selected ion flow tube mass spectrometry, SIFT-MS. The results of experiments demonstrating this method on emissions from maize (Zea mays) seedlings cultivated in Se rich medium are also presented.

  11. Preliminary observation of self-reduction of Eu ions in α-Ca3(PO4)2 phosphors prepared in air condition

    NASA Astrophysics Data System (ADS)

    Tong, Chao; Zhu, Yangguang; Xu, Chuanyan; Li, Yadong

    2016-11-01

    A series of Eu doped α-Ca3(PO4)2 phosphors were synthesized by a high-temperature solid-state reaction in air atmosphere. The crystal structures, photoluminescence properties of the phosphors were systematically studied. The emission spectra showed a broad emission band centered at 492 nm attributed to the typical 4f65d1→4f7 transition of Eu2+ions, and several sharp peaks from 560 to 750 nm attributed to the 5D0→7FJ(J=0,1,2,3,4) transition of Eu3+ions. The results, combined with the X-ray photoelectron spectroscopy measurements, demonstrate self-reduction of Eu3+to Eu2+occurred in α-Ca3(PO4)2 matrix for the first time. This suggested that the Eu2+ions in α-Ca3(PO4)2could serve as a spectroscopic probe to detect the content of α-Ca3(PO4)2in phase transition process.

  12. Measuring Air-Ionizer Output

    NASA Technical Reports Server (NTRS)

    Lonborg, J. O.

    1985-01-01

    Test apparatus checks ion content of airstream from commercial air ionizer. Apparatus ensures ion output is sufficient to neutralize static charges in electronic assembly areas and concentrations of positive and negative ions are balanced.

  13. Towards a unified picture of the water self-ions at the air-water interface: a density functional theory perspective

    SciTech Connect

    Baer, Marcel D.; Kuo, I-F W.; Tobias, Douglas J.; Mundy, Christopher J.

    2014-07-17

    The propensities of the water self ions, H3O+ and OH- , for the air-water interface has implications for interfacial acid-base chemistry. Despite numerous experimental and computational studies, no consensus has been reached on the question of whether or not H3O+ and/or OH- prefer to be at the water surface or in the bulk. Here we report a molecular dynamics simulation study of the bulk vs. interfacial behavior of H3O+ and OH- that employs forces derived from density functional theory with a generalized gradient approximation exchangecorrelation functional (specifically, BLYP) and empirical dispersion corrections. We computed the potential of mean force (PMF) for H3O+ as a function of the position of the ion in a 215-molecule water slab. The PMF is flat, suggesting that H3O+ has equal propensity for the air-water interface and the bulk. We compare the PMF for H3O+ to our previously computed PMF for OH- adsorption, which contains a shallow minimum at the interface, and we explore how differences in solvation of each ion at the interface vs. the bulk are connected with interfacial propensity. We find that the solvation shell of H3O+ is only slightly dependent on its position in the water slab, while OH- partially desolvates as it approaches the interface, and we examine how this difference in solvation behavior is manifested in the electronic structure and chemistry of the two ions. DJT was supported by National Science Foundation grant CHE-0909227. CJM was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. The potential of mean force required resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC05-00OR22725. The remaining simulations

  14. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  15. Ion Organization and Reversed Electric Field at Air/aqueous Interfaces Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Huang, Zishuai; Jubb, Aaron M.; Allen, Heather C.

    2012-06-01

    Sum frequency generation (SFG) is a second order optical spectroscopy that probes regions of non centrosymmetry, interfaces, and allows for the understanding of molecular organization at air/aqueous interfaces. An overview of our work in this area is presented with emphasis on phase-sensitive SFG (PS-SFG) spectroscopy. PS-SFG is a variant of SFG and is used in our laboratory to investigate the average direction of the transition dipole of interfacial water molecules. The orientation of water at air/aqueous inorganic salts interfaces of CaCl2, NaCl, Na2SO4, (NH4)2SO4, and Na2CO3 is inferred from the direct measurement of the transition dipole moment. We find that charge separation at the air/water interface is most obvious for the aqueous ammonium sulfate solution where the local electric field has a greater magnitude at this interface relative to the other salt solutions. The magnitude of the electric field in the surface extending to the subsurface regions decreases in the order: (NH4)2SO4 > Na2SO4 > Na2CO3 ≥ CaCl2 > NaCl; the electric field is opposite in direction for the sulfates and carbonate relative to the chloride salts.

  16. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  17. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  18. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water

    NASA Astrophysics Data System (ADS)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 (LATP), has been examined in distilled water, and aqueous solutions of LiNO 3, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO 3 and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li 3- xPO 4- yN y/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li 3- xPO 4- yN y (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 °C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water.

  19. Molecular dynamics shows that ion pairing and counterion anchoring control the properties of triflate micelles: a comparison with triflate at the air/water interface.

    PubMed

    Lima, Filipe S; Chaimovich, Hernan; Cuccovia, Iolanda M; Horinek, Dominik

    2014-02-11

    Micellar properties of dodecyltrimethylammonium triflate (DTA-triflate, DTATf) are very different from those of DTA-bromide (DTAB). DTATf aggregates show high aggregation numbers (Nagg), low degree of counterion dissociation (α), disk-like shape, high packing, ordering, and low hydration. These micellar properties and the low surface tension of NaTf aqueous solutions point to a high affinity of Tf(-) to the micellar and air/water interfaces. Although the micellar properties of DTATf are well defined, the source of the Tf(-) effect upon the DTA aggregates is unclear. Molecular dynamics (MD) simulations of Tf(-) (and Br(-)) at the air/water interface and as counterion of a DTA aggregate were performed to clarify the nature of Tf(-) preferences for these interfaces. The effect of NaTf or NaBr on surface tension calculated from MD simulations agreed with the reported experimental values. From the MD simulations a high affinity of Tf(-) toward the interface, which occurred in a specific orientation, was calculated. The micellar properties calculated from the MD simulations for DTATf and DTAB were consistent with experimental data: in MD simulations, the DTATf aggregate was more ordered, packed, and dehydrated than the DTAB aggregate. The Tf(-)/alkyltrimethylammonium interaction energies, calculated from the MD simulations, suggested ion pair formation at the micellar interface, stabilized by the preferential orientation of the adsorbed Tf(-) at the micellar interface.

  20. Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air-Water Interface.

    PubMed

    Doughty, Benjamin; Yin, Panchao; Ma, Ying-Zhong

    2016-08-16

    The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. Here, we report on the equilibrium properties of two common SEPs adsorbed to the air-water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air-water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. The influence of intermolecular interactions on the surface adsorption energies is discussed. PMID:27452922

  1. ERD, 15N external beam for NRRA in air, HIRBS: ion beam analysis developments on the HVEC EN-1 Tandem

    NASA Astrophysics Data System (ADS)

    Schiettekatte, F.; Chicoine, M.; Forster, J. S.; Geiger, J. S.; Gujrathi, S.; Kolarova, R.; Paradis, A.; Roorda, S.; Wei, P.

    2004-06-01

    In the last year, EN-1, the first HVEC Tandem accelerator, has gone through a major upgrade in which the injector, charging system and tubes were replaced. In addition, the ion beam analysis facilities have been upgraded and expanded. The gas-counter ERD set-up, previously installed on the former TASCC accelerator at Chalk River, is now operating with a new data-acquisition system. This system also interfaces with the surface barrier detector and TOF based ERD facilities (both of which were developed at the University of Montréal). Gas-counter and ERD-TOF are compared in terms of sensitivity, pileup, depth and mass resolution, and efficiency in the case of hydrogen detection. The 15N NRRA technique has been extended to include an external beam capability. This allows, for example, in situ profiling of hydrogen in metallic hydrides exposed to different partial pressures of hydrogen.

  2. Some air electricity phenomena caused by waterfalls: Correlative study of the spectra

    NASA Astrophysics Data System (ADS)

    Luts, Aare; Parts, Tiia-Ene; Laakso, Lauri; Hirsikko, Anne; Grönholm, Tiia; Kulmala, Markku

    2009-02-01

    According to our previous measurements, waterfalls permanently modify air ion spectra. In this paper we performed a correlative study of these results and proposed some pathways which can produce the observed waterfall ions. The small ion composition near waterfalls should be different from that further away due to gaseous OH - core (water shell) clusters. We assumed that the combination of factors (autoionization, fluctuating charge rearrangement, surface protrusions, collisions, Coulomb explosion) serves as the main source of observed intermediate ions, and an extra source for large ions. Evaporation of droplets produces nearly equal numbers of positive and negative intermediate and large ions. Waterfall-produced intermediate ions can attach to the waterfall-produced larger particles, which creates an additional link between the waterfall intermediate and large ions.

  3. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  4. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  5. The Pulse Line Ion Accelerator Concept

    SciTech Connect

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  6. Characterization of Binary Ag-Cu Ion Mixtures in Zeolites: Their Reduction Products and Stability to Air Oxidation

    SciTech Connect

    Fiddy, Steven; Petranovskii, Vitalii; Ogden, Steve; Iznaga, Inocente Rodriguez

    2007-02-02

    A series of Ag+-Cu2+ binary mixtures with different Ag/Cu ratios were supported on mordenite with different Si/Al ratios and were subsequently reduced under hydrogen in the temperature range 323K - 473K. Ag and Cu K-edge X-ray Absorption Spectroscopy (XAS) was conducted on these systems in-situ to monitor the reduction species formed and the kinetics of their reduction. In-situ XANES clearly demonstrates that the formation of silver particles is severely impeded by the addition of copper and that the copper is converted from Cu(II) to Cu(I) during reduction and completely reverts back to Cu(II) during cooling. There are no indications at any stage of the formation of bimetallic Ag-Cu clusters. Interestingly, the Ag/Cu ratio appears to have no influence of the reduction kinetics and reduction products formed with only the highest Si/Al ratio (MR = 128) investigated during this study having an influence on the reduction and stability to air oxidation.

  7. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  8. Measuring the Effect of Ion-Induced Drift-Gas Polarization on the Electrical Mobilities of Multiply-Charged Ionic Liquid Nanodrops in Air

    NASA Astrophysics Data System (ADS)

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI+] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z = Z SM, mod ( d m + d g , z, m), where d m = (6 m/ πρ)1/3 is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7 %) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ɛ * , this effect is accurately described by a simple correction factor of the form Z/ Z SM, mod = δ(1 - βɛ *), where kTɛ * is the potential energy due to the ion-induced dipole ( polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance ( d m + d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m / δ ≈ 1.42 ± 0.03.

  9. Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air.

    PubMed

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI(+)] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z  =  Z SM,mod (d m   +  d g , z, m), where d m   =  (6m/πρ)(1/3) is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7%) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ε (*) , this effect is accurately described by a simple correction factor of the form Z/Z SM,mod   =  δ(1  -  βε (*)), where kTε (*) is the potential energy due to the ion-induced dipole (polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance (d m   +  d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m /δ ≈ 1.42  ± 0.03.

  10. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  11. Low-pressure gas chromatography-ion trap mass spectrometry for the fast determination of polycyclic aromatic hydrocarbons in air samples.

    PubMed

    Ravindra, Khaiwal; Godoi, Ana F L; Bencs, László; Van Grieken, René

    2006-05-12

    A low-pressure gas chromatography-ion trap mass spectrometry (LPGC-ITMS) method was investigated to shorten the analysis time for 18 US Environmental Protection Agency priority listed polycyclic aromatic hydrocarbons (PAHs). Their elution was optimised with a short, wide-bore column coupled to a deactivated capillary at the inlet end and with a long, conventional column to compare their analytical performance. The analytical figures of merit under optimal LPGC-ITMS conditions were determined with respect to chromatographic separation, S/N ratio, limit of detection and precision. The peak width at half height of 1.5s matched the ITMS duty cycle. Up to 16 PAHs in the molecular weight (MW) range of 128-278 Da could be separated in a very short time, i.e. less than 13 min using LPGC-ITMS, whereas with conventional GC-MS, it took approximately 40 min. However, LPGC-ITMS has a limited loss of separation power compared to that of conventional GC-MS due to the occurrence of three critical pairs for high-MW PAHs. For a practical evaluation, the LPGC-ITMS approach was applied to the determination of PAHs in gas and aerosol phase samples collected in the ambient air of Hasselt, Belgium.

  12. Refractive index profiles in YCa 4O(BO 3) 3 and Nd:YCa 4O(BO 3) 3 waveguides created by MeV He ions

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Ming; Hu, Hui; Chen, Feng; Lu, Fei; Shi, Bo-Rong; Shen, Ding-Yu; Liu, Yao-Gang; Wang, Ji-Yang; Lu, Qing-Ming

    2002-05-01

    YCa 4O(BO 3) 3 (YCOB) is one of the rare-earth calcium oxyborate family of crystals. The crystal has good potential to be used for self-frequency doubling due to its excellent combination of nonlinear and laser properties. We have used MeV He + ions to make waveguides in YCOB and Nd:YCOB (NdYCOB) crystals. The ion implantation was carried out with 2.8 MeV He + ions at room temperature. The fluences have varied from 1.5×10 16 to 5.5×10 16 ions/cm 2. The model 2010 prism coupler was used to measure the modes in YCOB and NdYCOB waveguides formed by MeV He + ion implantation. The refractive index profiles are fitted based on the reflectivity calculation method. We have used TRIM'98 simulation to get the range and damage profiles by MeV He + ions in YCOB. Especially the refractive index change as a function of fluence is discussed.

  13. Online volatile organic compound measurements using a newly developed proton-transfer ion-trap mass spectrometry instrument during New England Air Quality Study--Intercontinental Transport and Chemical Transformation 2004: performance, intercomparison, and compound identification.

    PubMed

    Warneke, Carsten; Kato, Shuji; De Gouw, Joost A; Goldan, Paul D; Kuster, William C; Shao, Min; Lovejoy, Edward R; Fall, Ray; Fehsenfeld, Fred C

    2005-07-15

    We have used a newly developed proton-transfer ion-trap mass spectrometry (PIT-MS) instrument for online trace gas analysis of volatile organic compounds (VOCs) during the 2004 New England Air Quality Study-Intercontinental Transport and Chemical Transformation study. The PIT-MS instrument uses proton-transfer reactions with H3O+ ions to ionize VOCs, similarto a PTR-MS (proton-transfer reaction mass spectrometry) instrument but uses an ion trap mass spectrometer to analyze the product ions. The advantages of an ion trap are the improved identification of VOCs and a near 100% duty cycle. During the experiment, the PIT-MS instrument had a detection limit between 0.05 and 0.3 pbbv (S/N = 3 (signal-to-noise ratio)) for 2-min integration time for most tested VOCs. PIT-MS was used for ambient air measurements onboard a research ship and agreed well with a gas chromatography mass spectrometer). The comparison included oxygenated VOCs, aromatic compounds, and others such as isoprene, monoterpenes, acetonitrile, and dimethyl sulfide. Automated collision-induced dissociation measurements were used to determine the contributions of acetone and propanal to the measured signal at 59 amu; both species are detected at this mass and are thus indistinguishable in conventional PTR-MS.

  14. Creating a Classroom Library.

    ERIC Educational Resources Information Center

    Hepler, Susan; And Others

    1992-01-01

    Presents ideas for creating classroom libraries, noting how to set up a library (create a space, build and organize the collection, and set rules), where to find books at bargain prices (e.g., garage sales, libraries, book clubs, and grants), basic books to include, and information on authors and illustrators. (SM)

  15. Cell volume regulation in the perfused liver of a freshwater air-breathing cat fish Clarias batrachus under aniso-osmotic conditions: roles of inorganic ions and taurine.

    PubMed

    Goswami, Carina; Saha, Nirmalendu

    2006-12-01

    The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures,respectively, which gradually decreased/increased near to the control level due to release/uptake of water within a period of 25-30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 +/- 0.54 micromol/g liver) due to activation of Ba(2+)- and quinidine-sensitive K(+) channel, and to a lesser extent due to enhanced efflux of Cl(-) (4.35+/- 0.25 micromol/g liver) and Na+ (3.68+/- 0.37 micromol/g liver). Conversely, upon hypertonic exposure, there was amiloride-and ouabain-sensitive uptake of K+ (9.78+/- 0.65 micromol/g liver), and also Cl(-) (3.72 +/- 0.25 micromol/g liver).The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine,an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 +/- 0.38 micromol/g liver) and uptake (6.38 +/- 0.45 micromol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4' -di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures,thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier

  16. 9. COPY OF PHOTOGRAPHIC EXHIBIT BOARD CREATED 19481949 SHOWING CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. COPY OF PHOTOGRAPHIC EXHIBIT BOARD CREATED 1948-1949 SHOWING CONSTRUCTION OF ARCH HANGAR. BOARD LOCATED AT AIR FORCE BASE CONVERSION AGENCY, LORING AIR FORCE BASE, MAINE. - Loring Air Force Base, Arch Hangar, East of Arizona Road near southern end of runway, Limestone, Aroostook County, ME

  17. Creating Ideal Facilities.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2002-01-01

    Reviews ways that schools can provide effective indoor learning environments by paying attention to the following areas: daylighting, acoustics, space allocation, technology implementation, ergonomics, maintenance, indoor air quality, safety, restrooms, and roofing. (GR)

  18. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  19. Creating physics stars

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2013-07-01

    Korea has begun an ambitious 5bn plan to create 50 new institutes dedicated to fundamental research. Michael Banks meets physicist Se-Jung Oh, president of the Institute for Basic Science, to find out more.

  20. Photocatalytic Solutions Create Self-Cleaning Surfaces

    NASA Technical Reports Server (NTRS)

    2013-01-01

    A Stennis Space Center researcher investigating the effectiveness of photocatalytic materials for keeping the Center's buildings free of grime turned to a solution created by PURETi Inc. of New York City. Testing proved successful, and NASA and the company now share a Dual Use Technology partnership. PURETi's coatings keep surfaces clean and purify surrounding air, eliminating pollution, odors, and microbes.

  1. Structure and Composition of Air-Plane Soots and Surrogates Analyzed by Raman Spectroscopy and Laser/Ions Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ortega, Ismael; Chazallon, Bertrand; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier; Salm, François; Delhaye, David; Gaffié, Daniel; Yon, Jérôme

    2015-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. An aircraft exhaust plume contains species emitted by the engines, species formed in the plume from the emitted species and atmospheric species that become entrained into the plume. The majority of emitted species (gases and soot particles) are produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Emissions of soot particles by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied since many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. Most likely one of the reasons behind these discrepancies resides in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g. with respect to fuel or combustion techniques. In this work, we use Raman microscopy (266, 514 and 785 nm excitation) and ablation techniques (SIMS, Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particles produced from air-plane at different engine regimes simulating a landing and taking-off (LTO) cycle. First, the spectral parameters of the first-order Raman band of various soot samples, collected from three different sources in the frame of the MERMOSE project (http://mermose.onera.fr/): PowerJet SaM-146 turbofan (four engine regimes), CAST generator (propane fuel, four different global equivalence ratios), and Kerosene laboratory flame

  2. Collision cross sections and swarm coefficients of water vapour ion clusters (H2O) n H+ with n = 1, 2 and 3 in N2, O2 and air

    NASA Astrophysics Data System (ADS)

    Bekstein, A.; Benhenni, M.; Yousfi, M.

    2011-01-01

    The ion swarm transport coefficients such as reduced mobility, diffusion coefficients and reaction rates of three water vapour ion clusters (H2O) n H+ (with n = 1, 2 and 3) in N2 and O2 have been determined from a Monte Carlo simulation using calculated and measured elastic and inelastic collision cross sections. The elastic momentum transfer cross sections have been determined from a semi-classical JWKB approximation based on a rigid core interaction potential model. The inelastic cross sections have been deduced from the measured ones in the case of similar ion cluster. Then, the cross sections sets are fitted using either the measured reduced mobility at low electric field in the case of (H2O) n H+ in N2 or the zero-field mobility calculated from the Satoh's relation and the measured ones in N2. From the sets of elastic and inelastic collision cross sections thus obtained in pure N2 and O2, the ion transport and reaction coefficients for (H2O) n H+ are then calculated in dry air and also extended over a wide range of reduced electric field in N2 and O2. These ion data are very useful for modelling and simulation of non-equilibrium electrical discharges more particularly in humid gases at atmospheric pressure.

  3. Creating a Classroom Newspaper.

    ERIC Educational Resources Information Center

    Buss, Kathleen, Ed.; McClain-Ruelle, Leslie, Ed.

    Based on the premise that students can learn a great deal by reading and writing a newspaper, this book was created by preservice instructors to teach upper elementary students (grades 3-5) newspaper concepts, journalism, and how to write newspaper articles. It shows how to use newspaper concepts to help students integrate knowledge from multiple…

  4. Creating a Logo Environment.

    ERIC Educational Resources Information Center

    Riordon, Tim

    1982-01-01

    Discusses creation of computer classroom environment by implementing Logo, a computer program language designed to develop knowledge of programing, mathematics, and problem solving. Five questions are examined concerning Logo environment, attributes, elements absent in Logo environment, reasons for creating environment, and how to begin. Six…

  5. Creating an Effective Newsletter

    ERIC Educational Resources Information Center

    Shackelford, Ray; Griffis, Kurt

    2006-01-01

    Newsletters are an important resource or form of media. They offer a cost-effective way to keep people informed, as well as to promote events and programs. Production of a newsletter makes an excellent project, relevant to real-world communication, for technology students. This article presents an activity on how to create a short newsletter. The…

  6. Creating an Interactive PDF

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2008-01-01

    There are many ways to begin a PDF document using Adobe Acrobat. The easiest and most popular way is to create the document in another application (such as Microsoft Word) and then use the Adobe Acrobat software to convert it to a PDF. In this article, the author describes how he used Acrobat's many tools in his project--an interactive…

  7. Creating dedicated bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  8. Looking, Writing, Creating.

    ERIC Educational Resources Information Center

    Katzive, Bonnie

    1997-01-01

    Describes how a middle school language arts teacher makes analyzing and creating visual art a partner to reading and writing in her classroom. Describes a project on art and Vietnam which shows how background information can add to and influence interpretation. Describes a unit on Greek mythology and Greek vases which leads to a related visual…

  9. Creating Dialogue by Storytelling

    ERIC Educational Resources Information Center

    Passila, Anne; Oikarinen, Tuija; Kallio, Anne

    2013-01-01

    Purpose: The objective of this paper is to develop practice and theory from Augusto Boal's dialogue technique (Image Theatre) for organisational use. The paper aims to examine how the members in an organisation create dialogue together by using a dramaturgical storytelling framework where the dialogue emerges from storytelling facilitated by…

  10. Creating a Market.

    ERIC Educational Resources Information Center

    Kazimirski, J.; And Others

    The second in a series of programmed books, "Creating a Market" is published by the International Labour Office as a manual for persons studying marketing. This manual was designed to meet the needs of the labor organization's technical cooperation programs and is primarily concerned with consumer goods industries. Using a fill-in-the-blanks and…

  11. Creating Pupils' Internet Magazine

    ERIC Educational Resources Information Center

    Bognar, Branko; Šimic, Vesna

    2014-01-01

    This article presents an action research, which aimed to improve pupils' literary creativity and enable them to use computers connected to the internet. The study was conducted in a small district village school in Croatia. Creating a pupils' internet magazine appeared to be an excellent way for achieving the educational aims of almost all…

  12. Creating an Interactive Globe.

    ERIC Educational Resources Information Center

    Martin, Kurt D.

    1989-01-01

    Describes a hands-on geography activity that is designed to teach longitude and latitude to fifth-grade students. Children create a scale model of the earth from a 300 gram weather balloon. This activity incorporates geography, mathematics, science, art, and homework. Provides information for obtaining materials. (KO)

  13. Creating Photo Illustrations.

    ERIC Educational Resources Information Center

    Wilson, Bradley

    2003-01-01

    Explains the uses of photo illustrations. Notes that the key to developing a successful photo illustration is collaborative planning. Outlines the following guidelines for photo illustrations: never set up a photograph to mimic reality; create only abstractions with photo illustrations; clearly label photo illustrations; and never play photo…

  14. Creating Quality Media Materials.

    ERIC Educational Resources Information Center

    Hortin, John A.; Bailey, Gerald D.

    1982-01-01

    Innovation, imagination, and student creativity are key ingredients in creating quality media materials for the small school. Student-produced media materials, slides without a camera, personalized slide programs and copy work, self-made task cards, self-made overhead transparencies, graphic materials, and utilization of the mass media are some of…

  15. Create a Critter Collector.

    ERIC Educational Resources Information Center

    Hinchey, Elizabeth K.; Nestlerode, Janet A.

    2001-01-01

    Presents methods for creating appropriate ways of collecting live specimens to use for firsthand observation in the classroom. Suggests ecological questions for students to address using these devices. This project is ideal for schools that have access to piers or bridges on a coastal body of water. (NB)

  16. Creating Historical Drama.

    ERIC Educational Resources Information Center

    Cassler, Robert

    1990-01-01

    Describes creating for the National Archives Public Education Department a historical drama, "Second in the Realm," based on the story of the Magna Carta. Demonstrates the effectiveness of historical drama as a teaching tool. Explains the difficulties of writing such dramas and provides guidelines for overcoming these problems. (NL)

  17. Creating Special Events

    ERIC Educational Resources Information Center

    deLisle, Lee

    2009-01-01

    "Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…

  18. Create Your State

    ERIC Educational Resources Information Center

    Dunham, Kris; Melvin, Samantha

    2011-01-01

    Students are often encouraged to work together with their classmates, sometimes with other classes, occasionally with kids at other schools, but rarely with kids across the country. In this article the authors describe the Create Your State project, a collaborative nationwide project inspired by the Texas Chair Project wherein the artist, Damien…

  19. Creating a Classroom Makerspace

    ERIC Educational Resources Information Center

    Rivas, Luz

    2014-01-01

    What is a makerspace? Makerspaces are community-operated physical spaces where people (makers) create do-it-yourself projects together. These membership spaces serve as community labs where people learn together and collaborate on projects. Makerspaces often have tools and equipment like 3-D printers, laser cutters, and soldering irons.…

  20. How Banks Create Money.

    ERIC Educational Resources Information Center

    Beale, Lyndi

    This teaching module explains how the U.S. banking system uses excess reserves to create money in the form of new deposits for borrowers. The module is part of a computer-animated series of four-to-five-minute modules illustrating standard concepts in high school economics. Although the module is designed to accompany the video program, it may be…

  1. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  2. Alpha characterization inside pipes using ion-transport technology

    SciTech Connect

    Rojas, S.P.; Rawool-Sullivan, M.W.; Williams, K.G.; Vaccarella, J.A.

    1995-03-01

    Many DOE facilities have several miles of waste pipe systems that are internally contaminated with various and often undetermined radio nuclides. Unfortunately, currently acceptable alpha detection technologies are inefficient, time consuming, and do not address the problems presented by small diameter or curved pipes. In general, the problem of detecting alpha contamination on the inside surface of pipes is complicated by the fact that alphas do not penetrate the pipe walls. Unlike their conventional counterparts, alpha detectors based on ion transport technology sense alpha particles by collecting the ions created in ambient air as the particle loses its kinetic energy. The ions inside the pipe are transported by a fan-generated air current to an electrode inside the detector, which is attached to one end of the pipe. The collected charge at the electrode is proportional to the number of ions created inside the pipe, which in turn is proportional to the number of alphas emitted. Typically, monitoring for alpha contamination inside pipes or ductwork involves disrupting the operation to access as much surface area as possible for standard alpha monitoring. The detector based on ion transport technology effectively minimizes such disruption and in many circumstances will allow for in situ monitoring of a system that might otherwise not be practically accessible to standard methods.

  3. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  4. Creating esthetic composite restorations.

    PubMed

    Grin, D

    2000-05-01

    The purpose of this article is to describe a fabrication technique to assist dental technicians creating esthetic indirect composite restorations. After the teeth have been prepared and the models completed, the technician can begin the fabrication process. Translucent dentin is selected to reduce opacity and enhance the blend with the remaining dentition. High chroma modifiers can then be placed into the fossa area to replicate dentin seen in natural dentition. Different incisal materials can then be layered into the build-up to regulate the value of the restoration. Special effects such as hypocalcification are placed internally to mimic naturally occurring esthetics. Realistic anatomy is created using a small-tipped instrument directly into the final layer of uncured enamel material. Fissure characterization is placed in the restoration to match existing dentition. Fit and margins are verified on separate dies to minimize discrepancies. Path of insertion and proximal contacts are established on a solid model to minimize chairside adjustments.

  5. Creating Geoscience Leaders

    NASA Astrophysics Data System (ADS)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  6. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  7. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  8. Creating healthy camp experiences.

    PubMed

    Walton, Edward A; Tothy, Alison S

    2011-04-01

    The American Academy of Pediatrics has created recommendations for health appraisal and preparation of young people before participation in day or resident camps and to guide health and safety practices for children at camp. These recommendations are intended for parents, primary health care providers, and camp administration and health center staff. Although camps have diverse environments, there are general guidelines that apply to all situations and specific recommendations that are appropriate under special conditions. This policy statement has been reviewed and is supported by the American Camp Association. PMID:21444589

  9. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.

    PubMed

    Wood, Chris M; Pelster, Bernd; Giacomin, Marina; Sadauskas-Henrique, Helen; Almeida-Val, Vera Maria F; Val, Adalberto Luis

    2016-05-01

    The evolutionary transition from water-breathing to air-breathing involved not only a change in function of the organs of respiratory gas exchange and N-waste excretion, but also in the organs of ion uptake from the environment. A combination of in vivo and in vitro techniques was used to look at the relative importance of the gills versus the gut in Na(+), Cl(-), and K(+) balance in two closely related erythrinid species: a facultative air-breather, the jeju (Hoplerythrinus unitaeniatus) and an obligate water-breather, the traira (Hoplias malabaricus). The jeju has a well-vascularized physostomous swimbladder, while that in the traira is poorly vascularized, but the gills are much larger. Both species are native to the Amazon and are common in the ion-poor, acidic blackwaters of the Rio Negro. Under fasting conditions, the traira was able to maintain positive net Na(+) and Cl(-) balance in this water, and only slightly negative net K(+) balance. However, the jeju was in negative net balance for all three ions and had lower plasma Na(+) and Cl(-) concentrations, despite exhibiting higher branchial Na(+), K(+)ATPase and v-type H(+)ATPase activities. In the intestine, activities of these same enzymes were also higher in the jeju, and in vitro measurements of net area-specific rates of Na(+), Cl(-), and K(+) absorption, as well as the overall intestinal absorption capacities for these three ions, were far greater than in the traira. When acutely exposed to disturbances in water O2 levels (severe hypoxia ~15% or hyperoxia ~420% saturation), gill ionoregulation was greatly perturbed in the traira but less affected in the jeju, which could "escape" the stressor by voluntarily air-breathing. We suggest that a shift of ionoregulatory capacity from the gills to the gut may have occurred in the evolutionary transition to air-breathing in jeju, and in consequence branchial ionoregulation, while less powerful, is also less impacted by variations in water O2 levels. PMID

  10. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  11. Creating sustainable performance.

    PubMed

    Spreitzer, Gretchen; Porath, Christine

    2012-01-01

    What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way. PMID:22299508

  12. Creating corporate advantage.

    PubMed

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum.

  13. Creating corporate advantage.

    PubMed

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum. PMID:10179655

  14. Entanglement Created by Dissipation

    SciTech Connect

    Alharbi, Abdullah F.; Ficek, Zbigniew

    2011-10-27

    A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.

  15. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  16. Creating With Carbon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A subsidiary of SI Diamond Technology, Inc., Applied Nanotech, of Austin, Texas, is creating a buzz among various technology firms and venture capital groups interested in the company s progressive research on carbon-related field emission devices, including carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of human hair. Since their discovery in 1991, carbon nanotubes have gained considerable attention due to their unique physical properties. For example, a single perfect carbon nanotube can range from 10 to 100 times stronger than steel, per unit weight. Recent studies also indicate that the nanotubes may be the best heat-conducting material in existence. These properties, combined with the ease of growing thin films or nanotubes by a variety of deposition techniques, make the carbon-based material one of the most desirable for cold field emission cathodes.

  17. Creating a TQM culture.

    PubMed

    Lynn, G; Curto, C

    1992-11-01

    Creating a culture and environment for quality improvement is hard work that takes time and commitment. It is often frustrating and painful. For an organization to be successful in this transformation, leadership is not just important, it is vital. The leaders in TQM have new roles to play, roles that go against the grain of many of the forces that led to management success. The tasks of the leaders in a TQM organization emphasize building teamwork and removing barriers that prevent the organization from meeting customer needs. When Jamie Haughton, CEO of Corning, was asked where in his job he found the time to commit to TQM, he replied, "Continuous quality improvement is my job; it is the most important thing I do ... Quality is the primary responsibility of the leader."

  18. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  19. Creating the living brand.

    PubMed

    Bendapudi, Neeli; Bendapudi, Venkat

    2005-05-01

    It's easy to conclude from the literature and the lore that top-notch customer service is the province of a few luxury companies and that any retailer outside that rarefied atmosphere is condemned to offer mediocre service at best. But even companies that position themselves for the mass market can provide outstanding customer-employee interactions and profit from them, if they train employees to reflect the brand's core values. The authors studied the convenience store industry in depth and focused on two that have developed a devoted following: QuikTrip (QT) and Wawa. Turnover rates at QT and Wawa are 14% and 22% respectively, much lower than the typical rate in retail. The authors found six principles that both firms embrace to create a strong culture of customer service. Know what you're looking for: A focus on candidates' intrinsic traits allows the companies to hire people who will naturally bring the right qualities to the job. Make the most of talent: In mass-market retail, talent is generally viewed as a commodity, but that outlook becomes a self-fulfilling prophesy. Create pride in the brand: Service quality depends directly on employees' attachment to the brand. Build community: Wawa and QT have made concerted efforts to build customer loyalty through a sense of community. Share the business context: Employees need a clear understanding of how their company operates and how it defines success. Satisfy the soul: To win an employee's passionate engagement, a company must meet his or her needs for security, esteem, and justice. PMID:15929408

  20. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI.

  1. Creating Heliophysics Concept Maps

    NASA Astrophysics Data System (ADS)

    Ali, N. A.; Peticolas, L. M.; Paglierani, R.; Mendez, B. J.

    2011-12-01

    The Center for Science Education at University of California Berkeley's Space Sciences Laboratory is creating concept maps for Heliophysics and would like to get input from scientists. The purpose of this effort is to identify key concepts related to Heliophysics and map their progression to show how students' understanding of Heliophysics might develop from Kindergarten through higher education. These maps are meant to tie into the AAAS Project 2061 Benchmarks for Scientific Literacy and National Science Education Standards. It is hoped that the results of this effort will be useful for curriculum designers developing Heliophysics-related curriculum materials and classroom teachers using Heliophysics materials. The need for concept maps was identified as a result of product analysis undertaken by the NASA Heliophysics Forum Team. The NASA Science Education and Public Outreach Forums have as two of their goals to improve the characterization of the contents of the Science Mission Directorate and Public Outreach (SMD E/PO) portfolio (Objective 2.1) and assist SMD in addressing gaps in the portfolio of SMD E/PO products and project activities (Objective 2.2). An important part of this effort is receiving feedback from solar scientists regarding the inclusion of key concepts and their progression in the maps. This session will introduce the draft concept maps and elicit feedback from scientists.

  2. Creating alternatives in science

    PubMed Central

    2009-01-01

    Traditional scientist training at the PhD level does not prepare students to be competitive in biotechnology or other non-academic science careers. Some universities have developed biotechnology-relevant doctoral programmes, but most have not. Forming a life science career club makes a statement to university administrators that it is time to rework the curriculum to include biotechnology-relevant training. A career club can supplement traditional PhD training by introducing students to available career choices, help them develop a personal network and teach the business skills that they will need to be competitive in science outside of academia. This paper is an instructional guide designed to help students create a science career club at their own university. These suggestions are based on the experience gained in establishing such a club for the Graduate School at the University of Colorado Denver. We describe the activities that can be offered, the job descriptions for the offices required and potential challenges. With determination, a creative spirit, and the guidance of this paper, students should be able to greatly increase awareness of science career options, and begin building the skills necessary to become competitive in non-academic science. PMID:20161069

  3. Creating Sample Plans

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  4. Monitoring Air Pollution In and Around the Premises of Industrial Parks Using Two Types of Electronic Nose and Gas Chromatography-Ion Trap Mass Spectrometry

    SciTech Connect

    Liu, Jen Yu; Ling, Yong Chien, Sr.

    2004-03-31

    Two types of electronic nose and GC-MS were used to monitor air pollution in the premises of seven industrial parks. Real-time analysis of air at the sites was performed using portable electronic noses. Air samples were analyzed from the up and down stream direction along the wind flow to investigate the effect or distribution of the pollutants on the surrounding environment. The advantage of multisensors in spatially resolved sensing for direct multicomponent analysis was explored to minimize tedious sample preparation procedure. Electronic nose could give characteristic odor fingerprints, which were correlated with the pollutants analyzed using GC-MS providing detailed diagnostic information such as the presence of hydrocarbons, halocarbons, phenols, nitrogenous benzenes, sulfur compounds, lipid-derived compounds, polysiloxanes, etc. Subsequent principal component analysis helped in identifying the source of pollutants. The applicability of the electronic nose was demonstrated confirming it to be a simple and rapid screening method for identifying the pollutant source.

  5. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates.

    PubMed

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-05-27

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as "air vitamin". In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation.

  6. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates

    PubMed Central

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-01-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as “air vitamin”. In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation. PMID:27229763

  7. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates.

    PubMed

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-01-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as "air vitamin". In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation. PMID:27229763

  8. Negative Oxygen Ions Production by Superamphiphobic and Antibacterial TiO2/Cu2O Composite Film Anchored on Wooden Substrates

    NASA Astrophysics Data System (ADS)

    Gao, Likun; Qiu, Zhe; Gan, Wentao; Zhan, Xianxu; Li, Jian; Qiang, Tiangang

    2016-05-01

    According to statistics, early in the 20th century, the proportion of positive and negative air ions on the earth is 1 : 1.2. However, after more than one century, the equilibrium state of the proportion had an obvious change, which the proportion of positive and negative air ions became 1.2 : 1, leading to a surrounding of positive air ions in human living environment. Therefore, it is urgent to adopt effective methods to improve the proportion of negative oxygen ions, which are known as “air vitamin”. In this study, negative oxygen ions production by the TiO2/Cu2O-treated wood under UV irradiation was first reported. Anatase TiO2 particles with Cu2O particles were doped on wooden substrates through a two-step method and further modification is employed to create remarkable superamphiphobic surface. The effect of Cu2O particles dopant on the negative oxygen ions production of the TiO2-treated wood was investigated. The results showed that the production of negative oxygen ions was drastically improved by doping with Cu2O particles under UV irradiation. The wood modified with TiO2/Cu2O composite film after hydrophobization is imparted with superamphiphobicity, antibacterial actions against Escherichia coli, and negative oxygen ions production under UV irradiation.

  9. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  10. Creating a Toilet Training Plan

    MedlinePlus

    ... Size Email Print Share Creating a Toilet Training Plan Page Content Article Body These are the tools ... will need to create your own toilet-training plan and implement it at the best time for ...

  11. Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode.

    PubMed

    Mu, Linqin; Xu, Shuyin; Li, Yunming; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Huang, Xuejie

    2015-11-18

    A prototype rechargeable sodium-ion battery using an O3-Na0.90[Cu0.22 Fe0.30 Mn0.48]O2 cathode and a hard carbon anode is demonstrated to show an energy density of 210 W h kg(-1) , a round-trip energy efficiency of 90%, a high rate capability (up to 6C rate), and excellent cycling stability. PMID:26436288

  12. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  13. Released air during vapor and air cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Kozubková, Milada

    2016-06-01

    Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.

  14. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  15. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  16. Creating and probing coherent atomic states

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J. |; Frey, M.T.; Dunning, F.B.

    1997-06-01

    The authors present a brief review of recent experimental and theoretical time resolved studies of the evolution of atomic wavepackets. In particular, wavepackets comprising a superposition of very-high-lying Rydberg states which are created either using a short half-cycle pulse (HCP) or by rapid application of a DC field. The properties of the wavepackets are probed using a second HCP that is applied following a variable time delay and ionizes a fraction of the atoms, much like a passing-by ion in atomic collisions.

  17. Using Ambient Ion Beams to Write Nanostructured Patterns for Surface Enhanced Raman Spectroscopy

    SciTech Connect

    Li, Anyin; Baird, Zane; Bag, Soumabha; Sarkar, Depanjan; Prabhath, Anupama; Pradeep, Thalappil; Cooks, Robert G.

    2014-11-10

    Electrolytic spray deposition was used to pattern surfaces with 2D metallic nanostructures. Spots that contain silver nanoparticles (AgNP) were created by landing solvated silver ions at desired locations using electrically floated masks to focus the metal ions to an area as little as 20 mm in diameter. The AgNPs formed are unprotected and their aggregates can be used for surface-enhanced Raman spectroscopy (SERS). The morphology and SERS activity of the NP structures were controlled by the surface coverage of landed silver ions. The NP structures created could be used as substrates onto which SERS samples were deposited or prepared directly on top of predeposited samples of interest. The evenly distributed hot spots in the micron-sized aggregates had an average SERS enhancement factor of 108. The surfaces showed SERS activity when using lasers of different wavelengths (532, 633, and 785 nm) and were stable in air.

  18. Overview of The Pulse Line Ion Accelerator

    SciTech Connect

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-06-29

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  19. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  20. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  1. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  2. Background: What the States Created

    ERIC Educational Resources Information Center

    Cox, James C.

    2009-01-01

    Prior to 2003, virtual universities were being created at a rate that would question the usual perception that higher education rarely changed, or changed (if at all) at a glacial speed. No comprehensive study of what was actually being created had been done; nor had anyone tapped the experiences of the developers in the states to see what was…

  3. An Air of Concern.

    ERIC Educational Resources Information Center

    Singer, Terry E.; Shonkwiler, Tonja; Birr, David

    1998-01-01

    Examines how indoor air quality (IAQ) problems can create difficulties for a school both administratively, and legally. Discusses how to identify the IAQ symptoms and the Occupational Safety and Health Administration's industry standards for IAQ, as well as tips for reducing liability risk. (GR)

  4. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  5. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  6. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  7. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  8. Photonic crystal waveguide created by selective infiltration

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, A.; Domachuk, P.; Grillet, C.; Monat, C.; Mägi, E. C.; Li, E.; Eggleton, B. J.

    2012-06-01

    The marriage of photonics and microfluidics ("optofluidics") uses the inherent mobility of fluids to reversibly tune photonic structures beyond traditional fabrication methods by infiltrating voids in said structures. Photonic crystals (PhCs) strongly control light on the wavelength scale and are well suited to optofluidic tuning because their periodic airhole microstructure is a natural candidate for housing liquids. The infiltration of a single row of holes in the PhC matrix modifies the effective refractive index allowing optical modes to be guided by the PhC bandgap. In this work we present the first experimental demonstration of a reconfigurable single mode W1 photonic crystal defect waveguide created by selective liquid infiltration. We modified a hexagonal silicon planar photonic crystal membrane by selectively filling a single row of air holes with ~300nm resolution, using high refractive index ionic liquid. The modification creates optical confinement in the infiltrated region and allows propagation of a single optical waveguide mode. We describe the challenges arising from the infiltration process and the liquid/solid surface interaction in the photonic crystal. We include a detailed comparison between analytic and numerical modeling and experimental results, and introduce a new approach to create an offset photonic crystal cavity by varying the nature of the selective infiltration process.

  9. Experimental study of particle formation by ion-ion recombination.

    PubMed

    Nagato, Kenkichi; Nakauchi, Masataka

    2014-10-28

    Particle formation by ion-ion recombination has been studied using an ion-ion recombination drift tube (IIR-DT). IIR-DT uses two DC corona ionizers to produce positive and negative ions at the ends of the drift tube. The ions of different polarity move in opposite directions along the electric field in the drift tube. We observed significant particle formation using ions generated in purified air containing H2O, SO2, and NH3. Particle formation was suppressed when no drift field was applied. We also observed few particles when we used a single discharge (positive or negative only). These results clearly show that particle formation observed in the IIR-DT was caused by nucleation by ion-ion recombination. Positive and negative ion species produced by corona ionizers were investigated using an atmospheric pressure ionization mass spectrometer. The ions involved in the particle formation were suggested to include H3O(+)(H2O)n and NH4(+)(H2O)n for positive ions and sulfur-based ions such as SO5(-), SO5(-)NO2, and HSO4(-) for negative ions. PMID:25362301

  10. Field-Domain Ion Spectrometry

    NASA Technical Reports Server (NTRS)

    Bowers, W. D.; Chuan, R. L.

    1992-01-01

    Field-domain ion spectrometry (FDIS) is variant of established technique known as ion-mobility spectrometry. Operates at atmospheric pressure and only requires small pump to draw air sample into instrument. Strength of retarding electric field varied to distinguish among ions of different mobilities. New concept offers potential for development of small, (hand-held), low-power, portable devices detecting airborne chemical substances in real-time at concentrations at parts-per-billion level.

  11. Creating and Exploring Simple Models

    ERIC Educational Resources Information Center

    Hubbard, Miles J.

    2007-01-01

    Students manipulate data algebraically, and statistically to create models applied to a falling ball. They also borrow tools from arithmetic progressions to examine the relationship between the velocity and the distance the ball falls. (Contains 2 tables and 5 figures.)

  12. Creating and Nurturing Strong Teams.

    ERIC Educational Resources Information Center

    Martin, Kaye M.

    1999-01-01

    Discusses ways to create and sustain strong teaching teams, including matching curriculum goals, complementary professional strengths, and exercise of autonomy. Elaborates the administrator's role in nurturing and supporting teamwork. (JPB)

  13. Small SRS photon field profile dosimetry performed using a PinPoint air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and polymer gel dosimetry. Analysis and intercomparison.

    PubMed

    Pappas, E; Maris, T G; Zacharopoulou, F; Papadakis, A; Manolopoulos, S; Green, S; Wojnecki, C

    2008-10-01

    Small photon fields are increasingly used in modern radiotherapy and especially in IMRT and SRS/SRT treatments. The uncertainties related to small field profile measurements can introduce significant systematic errors to the overall treatment process. These measurements are challenging mainly due to the absence of charged particle equilibrium conditions, detector size and composition effects, and positioning problems. In this work four different dosimetric methods have been used to measure the profiles of three small 6 MV circular fields having diameters of 7.5, 15.0, and 30.0 mm: a small sensitive volume air ion chamber, a diamond detector, a novel silicon-diode array (DOSI), and vinyl-pyrrolidone based polymer gel dosimeter. The results of this work support the validity of previous findings, suggesting that (a) air ion chambers are not suitable for small field dosimetry since they result in penumbra broadening and require significant corrections due to severe charged particle transport alterations; (b) diamond detectors provide high resolution and rather accurate small field profile measurements, as long as positioning problems can be addressed and the necessary dose rate corrections are correctly applied; and (c) the novel silicon-diode array (DOSI) used in this study seems to be adequate for small field profile measurements overcoming positioning problems. Polymer gel data were assumed as reference data to which the other measurement data were compared both qualitatively and quantitatively using the gamma-index concept. Polymer gels are both phantom and dosimeter, hence there are no beam perturbation effects. In addition, polymer gels are tissue equivalent and can provide high-spatial density and high-spatial resolution measurements without positioning problems, which makes them useful for small field dosimetry measurements. This work emphasizes the need to perform beam profile measurements of small fields (for acceptance, commissioning, treatment planning

  14. Method and Apparatus for Creating a Topography at a Surface

    DOEpatents

    Adams, David P.; Sinclair, Michael B.; Mayer, Thomas M.; Vasile, Michael J.; Sweatt, William C.

    2008-11-11

    Methods and apparatus whereby an optical interferometer is utilized to monitor and provide feedback control to an integrated energetic particle column, to create desired topographies, including the depth, shape and/or roughness of features, at a surface of a specimen. Energetic particle columns can direct energetic species including, ions, photons and/or neutral particles to a surface to create features having in-plane dimensions on the order of 1 micron, and a height or depth on the order of 1 nanometer. Energetic processes can include subtractive processes such as sputtering, ablation, focused ion beam milling and, additive processes, such as energetic beam induced chemical vapor deposition. The integration of interferometric methods with processing by energetic species offers the ability to create desired topographies at surfaces, including planar and curved shapes.

  15. How to Create Social Media Guidelines for Your School

    ERIC Educational Resources Information Center

    Anderson, Steven

    2012-01-01

    Social media is fast becoming as ubiquitous as the air we breathe. In recent months, many schools and districts around the country have taken steps to create social media policies and guidelines for their students and staff. In the author's work with several districts to draft these documents, he has seen many approaches that work well, and some…

  16. Air Ground Integration Study

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal

    2002-01-01

    A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.

  17. Traffic air quality index.

    PubMed

    Bagieński, Zbigniew

    2015-02-01

    Vehicle emissions are responsible for a considerable share of urban air pollution concentrations. The traffic air quality index (TAQI) is proposed as a useful tool for evaluating air quality near roadways. The TAQI associates air quality with the equivalent emission from traffic sources and with street structure (roadway structure) as anthropogenic factors. The paper presents a method of determining the TAQI and defines the degrees of harmfulness of emitted pollution. It proposes a classification specifying a potential threat to human health based on the TAQI value and shows an example of calculating the TAQI value for real urban streets. It also considers the role that car traffic plays in creating a local UHI. PMID:25461063

  18. Air Entraining Flows

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2001-11-01

    Air entraining flows are frequently encountered in Nature (e.g. breaking waves, waterfalls, rain over water bodies) and in technological applications (gas-liquid chemical reactors, water treatment, aquaculture, and others). Superficially, one may distinguish between transient events, such as a breaking wave, and steady situations, e.g. a falling jet. However, when viscosity is not important, the process of air entrainment turns out to be the consequence of local transient events even in steady flows. For example, surface disturbances convected by a nominally steady jet impact the receiving liquid, create a deep depression, which collapses entraining an air pocket. (In practice this basic mechanism is complicated by the presence of waves, vortical flows, and other factors.) This talk will describe several examples of air-entraining flows illustrating the fluid mechanic principles involved with high-speed movies and numerical computations.

  19. Creating Spaces for Literacy, Creating Spaces for Learning

    ERIC Educational Resources Information Center

    Howard, Christy

    2016-01-01

    This study represents the practices of a middle school social studies teacher as she focuses on integrating questioning, reading, and writing in her content area. This teacher uses literacy strategies to engage students in practices of reading multiple texts and writing to showcase learning. She creates opportunities for students to make…

  20. Halide Ion Enhancement of Nitrate Ion Photolysis

    NASA Astrophysics Data System (ADS)

    Richards, N. K.; Wingen, L. M.; Callahan, K. M.; Tobias, D. J.; Finlayson-Pitts, B. J.

    2009-12-01

    Nitrate ion photochemistry is an important source of NOx in the polar regions. It is uncertain whether coexisting ions such as halides play a role in nitrate photochemistry. The effect of halides on NO3 photolysis was investigated using photolysis experiments in 230 L Teflon chambers that contain deliquesced aerosols of NaBr:NaNO3, KBr:KNO3 and ternary mixtures of NaCl:NaBr:NaNO3. Gas phase NO2 and gaseous halogen products were measured as a function of photolysis time using long path FTIR, NOx chemiluminescence and API-MS (atmospheric pressure ionization mass spectrometry). Experiments were conducted with NO3- held at a constant 0.5 M and with the amount of total halide concentration varying from 0.25 M to 4 M. Studies on NaBr:NaNO3 mixtures suggest that as the bromide ion to nitrate ion ratio increases, there is an enhancement in the rate of production of NO2 in the nitrate-bromide mixtures over that formed in the photolysis of NaNO3. Molecular dynamic (MD) simulations provide molecular level insight into the ions near the air-water interface in the aqueous halide-nitrate mixtures. These studies suggest that the presence of sodium halides at the air-water interface may encourage some nitrate ions to approach the top layers of water, allowing for more efficient escape of photoproducts than is seen in the absence of halides. Experiments on mixtures of KBr:KNO3 are being conducted to determine potential cation effects. In addition, ternary mixtures of NaCl:NaBr:NaNO3 are being examined to determine the effects of mixtures of halides on production of NO2 and gaseous halogen products. The implications of this photochemistry for tropospheric chemistry will be discussed.

  1. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    PubMed

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  2. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  3. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  4. Climate change - creating watershed resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is likely to intensify the circulation of water, which will shift spatial and temporal availability of snowmelt and runoff. In addition, drought and floods are likely to be more frequent, severe and widespread. Higher air temperatures will lead to higher ocean temperatures, elevating ...

  5. Create a Polarized Light Show.

    ERIC Educational Resources Information Center

    Conrad, William H.

    1992-01-01

    Presents a lesson that introduces students to polarized light using a problem-solving approach. After illustrating the concept using a slinky and poster board with a vertical slot, students solve the problem of creating a polarized light show using Polya's problem-solving methods. (MDH)

  6. Creating Space for Children's Literature

    ERIC Educational Resources Information Center

    Serafini, Frank

    2011-01-01

    As teachers struggle to balance the needs of their students with the requirements of commercial reading materials, educators need to consider how teachers will create space for children's literature in today's classrooms. In this article, 10 practical recommendations for incorporating children's literature in the reading instructional framework…

  7. Creating Time for Equity Together

    ERIC Educational Resources Information Center

    Renée, Michelle

    2015-01-01

    Iin urban communities across the nation, a broad range of partners have committed to reinventing educational time together to ensure equitable access to rich learning opportunities for all young people. Across the nation, education partners are using their creativity, commitment, and unique resources to create new school and system designs that…

  8. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  9. Creating an Innovative Learning Organization

    ERIC Educational Resources Information Center

    Salisbury, Mark

    2010-01-01

    This article describes how to create an innovative learning (iLearning) organization. It begins by discussing the life cycle of knowledge in an organization, followed by a description of the theoretical foundation for iLearning. Next, the article presents an example of iLearning, followed by a description of the distributed nature of work, the…

  10. Creating Highlander Wherever You Are

    ERIC Educational Resources Information Center

    Williams, Susan; Mullett, Cathy

    2016-01-01

    Highlander Research and Education Center serves as a catalyst for grassroots organizing and movement building. This article focuses on an interview with education coordinator Susan Williams who has worked at Highlander for 26 years. We discuss how others can and do create powerful popular education experiences anywhere, whether they have a…

  11. Creating Presentations on ICT Classes

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2010-01-01

    The article focuses on the creation of presentations on ICT classes. The first part highlights the most important steps when creating a presentation. The main idea is, that the computer presentation shouldn't consist only from the technological part, i.e. the editing of the presentation in a computer program. There are many steps before and after…

  12. Creating a Global Perspective Campus

    ERIC Educational Resources Information Center

    Braskamp, Larry A.

    2011-01-01

    The author has written this Guidebook to assist users interested in creating a campus that will be more global in its mission, programs, and people. His approach is to focus on the views and contributions of the people who are engaged in higher education. Thus it has a "person" emphasis rather than a structural or policy point of view. The author…

  13. Can Children Really Create Knowledge?

    ERIC Educational Resources Information Center

    Bereiter, Carl; Scardamalia, Marlene

    2010-01-01

    Can children genuinely create new knowledge, as opposed to merely carrying out activities that resemble those of mature scientists and innovators? The answer is yes, provided the comparison is not to works of genius but to standards that prevail in ordinary research communities. One important product of knowledge creation is concepts and tools…

  14. Creating Adult Basic Education Programs.

    ERIC Educational Resources Information Center

    Harris, Dolores M.

    Adult basic education programs must teach the "social living skills" disadvantaged adults need, as well as basic literacy skills. In creating an ABE program, one must first assess the needs of the target population--through surveys, group meetings, an advisory council of members of the target population, demographic studies, and consideration of…

  15. Indoor Air vs. Indoor Construction: A New Beginning.

    ERIC Educational Resources Information Center

    Manicone, Santo

    2000-01-01

    Identifies the steps that can be taken to lessen the impact of indoor air pollution created from indoor renovation projects, including project management tips to help contractors avoid creating unnecessary air pollution. Final comments address air pollution control when installing new furniture, smoking restrictions, occupant relations, and the…

  16. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  17. Humidity affects relative ion abundance in direct analysis in real time mass spectrometry of hexamethylene triperoxide diamine.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2014-12-16

    Unstable explosive hexamethylene triperoxide diamine (HMTD) is dangerous in quantity and benefits from the minimal sampling handling associated with atmospheric pressure chemical ionization for mass spectral analysis. Seasonal variation observed in HMTD mass spectra suggested a humidity dependence. Therefore, direct analysis in real time (DART) ionization mass spectra were acquired at a range of humidity values. An enclosure was designed to fit around the ion source and mass spectrometer inlet at atmospheric pressure. The enclosure was supplied with controlled amounts of humidified air from a test atmosphere generator to create programmable conditions for ambient analysis. The relative abundance and fragmentation of analyte ions were observed to change reliably with changing humidity values and, to a lesser degree, temperature. Humidity at such plasma-based ion sources should be regulated to avoid ∼90% shifts in relative ion abundance and provide stability and reproducibility of HMTD analysis.

  18. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  19. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  20. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  1. Air-gap heterostructures

    SciTech Connect

    Heyn, Ch.; Schmidt, M.; Schwaiger, S.; Stemmann, A.; Mendach, S.; Hansen, W.

    2011-01-17

    We demonstrate the fabrication of thin GaAs layers which quasi hover above the underlying GaAs substrate. The hovering layers have a perfect epitaxial relationship to the substrate crystal lattice and are connected to the substrate surface only by lattice matched nanopillars of low density. These air-gap heterostructures are created by combining in situ molecular beam epitaxy compatible self-assembled droplet-etching and ex situ selective wet-chemical etching.

  2. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  3. Creating a climate for excellence.

    PubMed

    Lancaster, J

    1985-01-01

    Some people are motivated to achieve in a manner consistent with the goals of their organization while others pursue individual goals. The attitudes people hold determine their behavior. Therefore, the manager is charged with creating an environment that fosters employee commitment to organizational goals. To create a climate for achievement, managers must recognize that all employees want recognition. Employees perform more effectively when they understand the goals of the organization, know what is expected of them, and are part of a system that includes feedback and reinforcement. Generally, people perform more effectively in an environment with minimal threat and punishment; individual responsibility should be encouraged, rewards based on results, and a climate of trust and open communication should prevail.

  4. Managing resilience by creating purpose.

    PubMed

    Spake, Michael; Thompson, Elaine C

    2013-01-01

    Rapid, disruptive change is today's normal. It comes in all forms and frequencies. To cope and survive, healthcare executives need to build a culture of agility and resilience at all levels and across all domains of the hospital or health system. Lakeland Regional Health Systems Inc. has been transforming its culture in order to manage resilience by creating purpose. To adapt and sustain itself, Lakeland Regional has launched a transformation from a culture characterized by a collection of single values to one whose core is caring relationships through human interaction; human experience; and community values, beliefs, and attitudes. With a clear purpose of caring for ourselves, caring for our patients and families, caring for each other, and caring for our community, Lakeland Regional is creating resilience by building a purpose that sets the stage for a resilient culture defined by purpose; passion; and a healthy work, spiritual, and life balance.

  5. Creating youth leaders: community supports.

    PubMed

    Davidson, Adina; Schwartz, Sarah E O; Noam, Gil G

    2008-01-01

    In order to maximize the effectiveness of prevention and intervention efforts with youth and address the needs of the whole student, it is necessary to work not only directly with youth, but also to partner with other key adults in a young person's life: parents and guardians, teachers, after-school staff, and clinicians. Inherent in RALLY's philosophy is a dual strategy of working intensively with students and teachers in the school while creating partnerships that bring students' families and a network of community agencies into the school as well. These partnerships bring important resources to school communities and create richer opportunities for young people and their families. Furthermore, a key to working effectively with youth lies in providing them not only with services that match their needs and interests, but also opportunities for participation and empowerment. Such opportunities can result in significant individual change in the students involved in these opportunities as well as broader community.

  6. Creating a Mobile Library Website

    ERIC Educational Resources Information Center

    Cutshall, Tom C.; Blake, Lindsay; Bandy, Sandra L.

    2011-01-01

    The overwhelming results were iPhones and Android devices. Since the library wasn't equipped technologically to develop an in-house application platform and because we wanted the content to work across all mobile platforms, we decided to focus on creating a mobile web-based platform. From the NLM page of mobile sites we chose the basic PubMed/…

  7. Is the signal from the mesophyll to the guard cells a vapour-phase ion?

    PubMed

    Mott, Keith A; Berg, David G; Hunt, Sean M; Peak, David

    2014-05-01

    Previous studies have suggested that the red light and CO2 responses of stomata are caused by a signal from the mesophyll to the guard cells. Experiments were conducted to test the idea that this signal is a vapour-phase ion. Stomata in isolated epidermes of Tradescantia pallida were found to respond to air ions created by an electrode that was positioned under the epidermes. Anthocyanins in the epidermes of this species were observed to change colour in response to these air ions, and this change in colour was attributed to changes in pH. A similar change in lower epidermal colour was observed in intact leaves upon illumination and with changes in CO2 concentration. Based on the change in epidermal colour, the pH of the epidermis was estimated to be approximately 7.0 in darkness and 6.5 in the light. Stomata in isolated epidermes responded to pH when suspended over (but not in contact with) solutions of different pH. We speculate that stomatal responses to CO2 and light are caused by vapour-phase ions, possibly hydronium ions that change the pH of the epidermis.

  8. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface.

    PubMed

    Tse, Ying-Lung Steve; Chen, Chen; Lindberg, Gerrick E; Kumar, Revati; Voth, Gregory A

    2015-10-01

    Significant effort has been undertaken to better understand the molecular details governing the propensity of ions for the air-water interface. Facilitated by computationally efficient reactive molecular dynamics simulations, new and statistically conclusive molecular-scale results on the affinity of the hydrated excess proton and hydroxide anion for the air-water interface are presented. These simulations capture the dynamic bond breaking and formation processes (charge defect delocalization) that are important for correctly describing the solvation and transport of these complex species. The excess proton is found to be attracted to the interface, which is correlated with a favorable enthalpic contribution and consistent with reducing the disruption in the hydrogen bond network caused by the ion complex. However, a recent refinement of the underlying reactive potential energy function for the hydrated excess proton shows the interfacial attraction to be weaker, albeit nonzero, a result that is consistent with the experimental surface tension measurements. The influence of a weak hydrogen bond donated from water to the protonated oxygen, recently found to play an important role in excess hydrated proton transport in bulk water, is seen to also be important for this study. In contrast, the hydroxide ion is found to be repelled from the air-water interface. This repulsion is characterized by a reduction of the energetically favorable ion-water interactions, which creates an enthalpic penalty as the ion approaches the interface. Finally, we find that the fluctuation in the coordination number around water sheds new light on the observed entropic trends for both ions. PMID:26366480

  9. Khalil Amine on Lithium-air Batteries

    SciTech Connect

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. Khalil Amine on Lithium-air Batteries

    ScienceCinema

    Khalil Amine

    2016-07-12

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  11. Michael Thackeray on Lithium-air Batteries

    ScienceCinema

    Thackeray, Michael

    2016-07-12

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  13. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  14. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  15. Active Experiments on Artificial Air Ionization to Check the Physical Mechanism of Air Electrification by Radon in Seismically Active Area

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Pokhmelnykh, L. A.; Domingues, M.; Bisiacchi, G.

    2005-05-01

    The air ionization in troposphere leads to formation of the large charged clusters of the aerosol size due to water molecules attachment to the new formed ions. This process have several consequences leading to the changes of the air conductivity, formation of large scale space charges and large scale electric field, changes of the air temperature and relative humidity. All these effects were observed experimentally within the interval of two weeks before the strong earthquakes such as Colima earthquake in Mexico (M7.8) on 22 of January 2003 or Parkfield earthquake in USA (M6) on 28 of September 2004. In the case of earthquakes the atmosphere electricity modification is ascribed to the radon ionization and the effects are calculated within the frame of the seismo-ionosphere coupling model. But there are very few systematic sources of the radon monitoring, so the real check of the model is better possible within the frame of the controlled active experiment. Such experiments of the artificial ionization were conducted in Mexico using the large wire antennas producing the air ionization by applying the large electric potential (~ 40 kV) to the elevated circular thin wire of ~ 100 m diameter. It was demonstrated that such impact on the atmosphere can create the effects of the meteorological scale producing the artificial clouds (and rains), and even modify the large scale atmospheric formations as typhoons. Results of the theoretical estimations and active experiments will be demonstrated.

  16. Building communities that create health.

    PubMed Central

    Wilcox, R; Knapp, A

    2000-01-01

    Typically, public health policy, program design, and resource allocation are based on issue-specific, targeted interventions directed at specific populations or sub-populations. The authors argue that this approach fails to meet the goal of public health-to improve health for all--and that the key to health improvement is to create a social context in which healthy choices are the norm. The authors present as case studies two Pennsylvania cities that used multisectoral approaches to achieve community health improvements. Images p141-a PMID:10968745

  17. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  18. The Role of Mobile Surface Ions in Nanomaterial Formation

    NASA Astrophysics Data System (ADS)

    Kendall, T. A.; Martin, S. T.

    2007-12-01

    Biogenic and abiotic nanomaterial formation alters the electrical layout of mineral surfaces. Complex dielectric and surface diffusional regimes that affect water sorption, metal co-precipitation, and possibly cell attachment are created. Polarization force microscopy measurements reveal the importance of mobile, surface associated ions in nanomaterial formation, particularly in subaerial conditions. Mass and charge transport between nanostructures can occur via two-dimensional diffusion of surface ions within mono- to multi-layer water. Further, nanostructure stability depends on epitaxy with the underlying substrate. On calcite under humid air, we observe the formation of a 1 to 1.5 nm thick, hydrated calcium carbonate film. This nanophase, which is typically protein- stabilized as an intermediate within biomineralization schema, is instead stabilized by the calcite 104 surface. Moreover, nanostructure dissolution on rhodochrosite is initiated by the accumulation of hydrated, edge- associated ions, most likely representing partially mobilized, positively-charged film material. We connect these molecular-level observations to large-scale, biogeophysical measurements that hold promise of remotely sensing bacteria in the subsurface (e.g., induced polarization (IP)). Here, mobile surface ion diffusion at the cell- mineral interface and biogenic nanomaterial formation are identified as key contributors to the poorly understood IP signature of bacteria in porous media.

  19. Segregation of salt ions at amorphous solid and liquid surfaces

    SciTech Connect

    Hofft, Oliver; Kahnert, Uwe; Bahr, S.; Kempter, Volker; Jungwirth, Pavel; Dang, Liem X.

    2007-08-01

    Traditionally, the surfaces of aqueous electrolytes are described as inactive and practically devoid of ions [1, 2]. Indeed, this has turned out to be true for non - polarizable ions, as alkali cations and small anions, as fluoride as well. However, due to polarization interactions singly charged anions, with the heavy halides as particular examples, exhibit a propensity for the water / air (vacuum) interface. This was first suggested in order to rationalize the occurrence of chemical reactions on aqueous interfaces, sea - salt particles, ocean surfaces etc. This initiated MD calculations using polarizable potentials. They suggest that highly polarisable anions can indeed be preferentially adsorbed at the outermost liquid layer. In this description, the ions are polarized by the anisotropy of the interface, creating an induced dipole that is stronger than in the bulk. The interaction between the polarized ions and the surrounding water molecules compensates for the reduced solvation available at the surface. This has triggered a number of laboratory studies, applying mainly non - linear optical probes. Battelle operates Pacific Northwest National Laboratory for the US Department of Energy.

  20. Creating Cross-disciplinary Courses

    PubMed Central

    Reynolds, Elaine R.

    2012-01-01

    Because of its focus on the biological underpinnings of action and behavior, neuroscience intersects with many fields of human endeavor. Some of these cross-disciplinary intersections have been long standing, while others, such as neurotheology or neuroeconomics, are more recently formed fields. Many undergraduate institutions have sought to include cross-disciplinary courses in their curriculum because this style of pedagogy is often seen as applicable to real world problems. However, it can be difficult for faculty with specialized training within their discipline to expand beyond their own fields to offer cross-disciplinary courses. I have been creating a series of multi- or cross-disciplinary courses and have found some strategies that have helped me successfully teach these classes. I will discuss general strategies and tools in developing these types of courses including: 1) creating mixed experience classrooms of students and contributing faculty 2) finding the right tools that will allow you to teach to a mixed population without prerequisites 3) examining the topic using multiple disciplinary perspectives 4) feeding off student experience and interest 5) assessing the impact of these courses on student outcomes and your neuroscience program. This last tool in particular is important in establishing the validity of this type of teaching for neuroscience students and the general student population. PMID:23494491

  1. Characterization of Ion Dynamics in Structures for Lossless Ion Manipulations

    SciTech Connect

    Tolmachev, Aleksey V.; Webb, Ian K.; Ibrahim, Yehia M.; Garimella, Venkata BS; Zhang, Xinyu; Anderson, Gordon A.; Smith, Richard D.

    2014-08-23

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radio frequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radio frequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards, and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be ‘soft’ in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling ion mobility separations.

  2. Characterization of ion dynamics in structures for lossless ion manipulations.

    PubMed

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations. PMID:25152178

  3. Orthogonal ion injection apparatus and process

    SciTech Connect

    Kurulugama, Ruwan T; Belov, Mikhail E

    2014-04-15

    An orthogonal ion injection apparatus and process are described in which ions are directly injected into an ion guide orthogonal to the ion guide axis through an inlet opening located on a side of the ion guide. The end of the heated capillary is placed inside the ion guide such that the ions are directly injected into DC and RF fields inside the ion guide, which efficiently confines ions inside the ion guide. Liquid droplets created by the ionization source that are carried through the capillary into the ion guide are removed from the ion guide by a strong directional gas flow through an inlet opening on the opposite side of the ion guide. Strong DC and RF fields divert ions into the ion guide. In-guide orthogonal injection yields a noise level that is a factor of 1.5 to 2 lower than conventional inline injection known in the art. Signal intensities for low m/z ions are greater compared to convention inline injection under the same processing conditions.

  4. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  5. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  6. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  7. Creating Maps of Forbush Decreases

    NASA Astrophysics Data System (ADS)

    Santiago, A.; Lara, A.; Niembro, T.

    2013-05-01

    The flux of galactic cosmic rays (GCR) to the inner Heliosphere and in particular to the Earth surroundings, is modulated by the solar activity. In a time scale of hours the GCR flux may diminish abruptly, reach a minimum value and then follow a slow recovery phase lasting one or two days.The so called Forbush Decreases (FD) are caused by large scale structures of plasma and magnetic field traveling at high speed i. e. interplanetary coronal mass ejections (ICMEs). Using the new observational capability of imaging the interplanetary space (e.g. Stereo spacecraft) and assuming a direct relationship between density and magnetic field inside ICMEs, in this work we create maps of ICMEs, as GCR sinks seen by an observer at the Earth surface. The objective is to survey the observational necessities of new cosmic ray detectors in order to perform such maps.

  8. Creating genetic resistance to HIV.

    PubMed

    Burnett, John C; Zaia, John A; Rossi, John J

    2012-10-01

    HIV/AIDS remains a chronic and incurable disease, in spite of the notable successes of combination antiretroviral therapy. Gene therapy offers the prospect of creating genetic resistance to HIV that supplants the need for antiviral drugs. In sight of this goal, a variety of anti-HIV genes have reached clinical testing, including gene-editing enzymes, protein-based inhibitors, and RNA-based therapeutics. Combinations of therapeutic genes against viral and host targets are designed to improve the overall antiviral potency and reduce the likelihood of viral resistance. In cell-based therapies, therapeutic genes are expressed in gene modified T lymphocytes or in hematopoietic stem cells that generate an HIV-resistant immune system. Such strategies must promote the selective proliferation of the transplanted cells and the prolonged expression of therapeutic genes. This review focuses on the current advances and limitations in genetic therapies against HIV, including the status of several recent and ongoing clinical studies.

  9. Intermediate ions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas

    2014-01-01

    Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.

  10. Ion mobility spectrometers and methods for ion mobility spectrometry

    SciTech Connect

    Dahl, David A; Scott, Jill R; Appelhans, Anthony D; McJunkin, Timothy R; Olson, John E

    2009-04-14

    An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

  11. Creating engaging experiences for rehabilitation.

    PubMed

    McClusky, John F

    2008-01-01

    The traditional model of rehabilitation center design based on usability and function falls short of addressing the aspirations of those who use them. To better serve the motivational needs of both patients and therapists, we need to reconsider the gymnasium-inspired designs of current rehabilitation centers. Designers Patricia Moore and David Guynes have drawn inspiration from the everyday to create more engaging rehabilitation experiences with their Easy Street, Independence Square, Rehab 1-2-3, Our Town, and WorkSyms rehabilitation environments. Their designs simulate real-life situations to motivate patients by helping them connect their therapy to the life in which they aspire to return. Utilizing an empathic research process, Moore and Guynes build a deeper understanding of both patients' and therapists' values and apply that understanding to designs that are more directly connected to patients' aspirational goals while still meeting their functional rehabilitation needs. This same research-based design approach is utilized in all of their design work that has included, most recently, the design of the Phoenix Valley Transit Authority's Metro Light Rail Train. The train and stations have won awards for accessibility and will begin public operation in late 2008.

  12. Creating a winning organizational culture.

    PubMed

    Campbell, Robert James

    2009-01-01

    This article explores the idea of how to create a winning organizational culture. By definition, a winning organizational culture is one that is able to make current innovations stick, while continuously changing based on the demands of the marketplace. More importantly, the article explores the notion that a winning organizational culture can have a profound impact on the conscious of the workforce, helping each individual to become a better, more productive person, who provides important services and products to the community. To form a basis toward defining the structure of what a winning organization culture looks like, 4 experts were asked 12 questions related to the development of an organizational culture. Three of the experts have worked intimately within the health care industry, while a fourth has been charged with turning around an organization that has had a losing culture for 17 years. The article provides insight into the role that values, norms, goals, leadership style, familiarity, and hiring practices play in developing a winning organizational culture. The article also emphasizes the important role that leaders perform in developing an organizational culture.

  13. Laser Created Relativistic Positron Jets

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  14. Creating experimental color harmony map

    NASA Astrophysics Data System (ADS)

    Chamaret, Christel; Urban, Fabrice; Lepinel, Josselin

    2014-02-01

    Starting in the 17th century with Newton, color harmony is a topic that did not reach a consensus on definition, representation or modeling so far. Previous work highlighted specific characteristics for color harmony on com- bination of color doublets or triplets by means of a human rating on a harmony scale. However, there were no investigation involving complex stimuli or pointing out how harmony is spatially located within a picture. The modeling of such concept as well as a reliable ground-truth would be of high value for the community, since the applications are wide and concern several communities: from psychology to computer graphics. We propose a protocol for creating color harmony maps from a controlled experiment. Through an eye-tracking protocol, we focus on the identification of disharmonious colors in pictures. The experiment was composed of a free viewing pass in order to let the observer be familiar with the content before a second pass where we asked "to search for the most disharmonious areas in the picture". Twenty-seven observers participated to the experiments that was composed of a total of 30 different stimuli. The high inter-observer agreement as well as a cross-validation confirm the validity of the proposed ground-truth.

  15. Creating a urine black hole

    NASA Astrophysics Data System (ADS)

    Hurd, Randy; Pan, Zhao; Meritt, Andrew; Belden, Jesse; Truscott, Tadd

    2015-11-01

    Since the mid-nineteenth century, both enlisted and fashion-conscious owners of khaki trousers have been plagued by undesired speckle patterns resulting from splash-back while urinating. In recent years, industrial designers and hygiene-driven entrepreneurs have sought to limit this splashing by creating urinal inserts, with the effectiveness of their inventions varying drastically. From this large assortment of inserts, designs consisting of macroscopic pillar arrays seem to be the most effective splash suppressers. Interestingly this design partially mimics the geometry of the water capturing moss Syntrichia caninervis, which exhibits a notable ability to suppress splash and quickly absorb water from impacting rain droplets. With this natural splash suppressor in mind, we search for the ideal urine black hole by performing experiments of simulated urine streams (water droplet streams) impacting macroscopic pillar arrays with varying parameters including pillar height and spacing, draining and material properties. We propose improved urinal insert designs based on our experimental data in hopes of reducing potential embarrassment inherent in wearing khakis.

  16. Creating healthy and just bioregions.

    PubMed

    Pezzoli, Keith; Leiter, Robert Allen

    2016-03-01

    Dramatic changes taking place locally, regionally, globally, demand that we rethink strategies to improve public health, especially in disadvantaged communities where the cumulative impacts of toxicant exposure and other environmental and social stressors are most damaging. The emergent field of Sustainability Science, including a new bioregionalism for the 21st Century, is giving rise to promising place-based (territorially rooted) approaches. Embedded in this bioregional approach is an integrated planning framework (IPF) that enables people to map and develop plans and strategies that cut across various scales (e.g. from regional to citywide to neighborhood scale) and various topical areas (e.g. urban land use planning, water resource planning, food systems planning and "green infrastructure" planning) with the specific intent of reducing the impacts of toxicants to public health and the natural environment. This paper describes a case of bioregionally inspired integrated planning in San Diego, California (USA). The paper highlights food-water-energy linkages and the importance of "rooted" community-university partnerships and knowledge-action collaboratives in creating healthy and just bioregions.

  17. Ion clearing in an ERL

    NASA Astrophysics Data System (ADS)

    Hoffstaetter, Georg H.; Liepe, Matthias

    2006-02-01

    The rest-gas in the beam-pipe of a particle accelerator is readily ionized by effects like collisions, synchrotron radiation and field emission. Positive ions are attracted to electron beams and create a nonlinear potential in the vicinity of the beam which can lead to beam halo, particle loss, optical errors or transverse and longitudinal instabilities. In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, these ion effects have to be avoided. Here we investigate three measures of avoiding ion accumulation: (a) A long gap between linac bunch trains that allows ions to drift out of the beam region, a measure regularly applied in linacs; (b) a short ion clearing gap in the beam that leads to a time varying beam potential and produces large excited oscillations of ions around the electron beam, a measure regularly applied in storage rings; (c) Clearing electrodes that create a sufficient voltage to draw ions out of the beam potential, a measure used for DC electron beams and for antiproton beams. For the parameters of the X-ray ERL planned at Cornell University we show that method (a) cannot be applied, method (b) is technically cumbersome, and (c) should be most easily applicable.

  18. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1995-12-31

    An ion source which generates ions having high atomic purity incorporates a solenoidal magnetic field to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  19. Solenoid and monocusp ion source

    DOEpatents

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  20. Solenoid and monocusp ion source

    DOEpatents

    Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  1. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  2. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  3. Quantum Information Processing with Trapped Ions

    NASA Astrophysics Data System (ADS)

    Roos, Christian

    Trapped ions constitute a well-isolated small quantum system that offers low decoherence rates and excellent opportunities for quantum control and measurement by laser-induced manipulation of the ions. These properties make trapped ions an attractive system for experimental investigations of quantum information processing. In the following, the basics of storing, manipulating and measuring quantum information encoded in a string of trapped ions will be discussed. Based on these techniques, entanglement can be created and simple quantum protocols like quantum teleportation be realized. This chapter concludes with a discussion of the use of entangling laser-ion interactions for quantum simulations and quantum logic spectroscopy.

  4. Urban air

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Air pollution and the risk of potential health effects are not sufficiently convincing reasons for people to stop driving their cars, according to a study by the Population Reference Bureau (PRB) released on November 18.While sufficient levels of suspended particulate matter, carbon monoxide, and lead can present health concerns, the study found that many people surveyed for the study were not convinced of the clear linkage between air pollution and health.

  5. Characterization of ions at Alpine waterfalls

    NASA Astrophysics Data System (ADS)

    Kolarž, P.; Gaisberger, M.; Madl, P.; Hofmann, W.; Ritter, M.; Hartl, A.

    2012-04-01

    During a three-year field campaign of measuring waterfall generated ions, we monitored five different waterfalls in the Austrian Alps. Most measurements were performed at the Krimml waterfall (Salzburg, Austria), which is the biggest waterfall in Europe, and the Gartl waterfall (Mölltal, Austria). We characterized spatial, time and size distributions of waterfall-generated ions under the influence of surrounding topography. The smallest ions with boundary diameters of 0.9, 1.5 and 2 nm, were measured with a cylindrical air ion detector (CDI-06), while ion sizes from 5.5 to 350 nm were measured using a modified Grimm SMPS aerosol spectrometer. High negative ion concentration gradients are detected in the vicinity of the waterfalls, whereas the increase of positive ions was only moderate. Ions in the nano range were the most abundant at 2 nm, and at 120 nm in the sub-micrometer range.

  6. Safeguarding indoor air quality

    SciTech Connect

    Sexton, K.; Wesolowski, J.J.

    1985-01-01

    California has created and implemented the first state program devoted exclusively to the investigation of nonindustrial indoor air quality. The program is responsible for promoting and conducting research on the determining factors of healthful indoor environments and is structured to obtain information about emission sources, ventilation effects, indoor concentrations, human activity patterns, exposures, health risks, control measures and public policy options. Data are gathered by a variety of methods, including research conducted by staff members, review of the available scientific literature, participation in technical meetings, contractual agreements with outside agencies, cooperative research projects with other groups and consultation with experts. 23 references, 1 figure, 1 table.

  7. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  8. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  9. Creating A Light Curve Using Gathered Data

    NASA Astrophysics Data System (ADS)

    Wiggs, Joseph; Stolarz, S. A.; DePorto, R. W.; Shake, W. J.; Piper, M.; Linder, T. R.; Holmes, R.; Conwell, J.

    2012-01-01

    Our group of students with the support of educators and astronomers carried out a program to do astrometric and photometric analysis on the asteroid 2000 SO1 with the objective of obtaining a more in depth analysis of this asteroid and publishing light curve data describing the period of the asteroid. We chose our target asteroid using the minor planet center database, choosing an object that would have an acceptable Right Ascension, Declination, magnitude, and air mass for the ARO (Astronomical Research Observatory)-30 inch telescope operated by the SKYNET program. Our journey began with using Astrometrica for the IASC/WISE Program to identify and find new asteroids in the sky and add data to the Minor Planet Center Database. We then used MPO (Minor Planet Observatory) Canopus to form a light curve and conduct a fourier analysis on an example asteroid to familiarize ourselves with the program and used the program again to conduct fourier analysis on asteroid 2000 SO1. The educational goal in mind was to (a) learn the process of collecting and analyzing data using Astrometrica, MPO Canopus, the Minor Planet Center, and SKYNET and (b) create a poster to display the steps used in the process of surveying taken images and the production of a light curve. We collected 300 images a night, while discarding all the corrupted images, until we had enough data to accurately represent the object.Our work was successful due to resources from; Eastern Illinois University's Physics Department, the Astronomical Research Observatory, the University of Chicago's Yerkes Observatory, the SKYNET network, NASA's IASC/WISE (International Astronomical Search Collaboration/ Wide-Field Infrared Survey Explorer), NITARP (NASA/IPAC Teacher Archive Research Program) and Lincoln-Way North High School.

  10. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R G

    2005-10-14

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8}/cm{sup 2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nm < SEM hole diameter < {approx}100 nm), the energy deposition calculated for the incident ion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  11. Extending ion-track lithography to the low-energy ion regime

    SciTech Connect

    Musket, R.G.

    2006-06-01

    Ion tracking and ion-track lithography have been performed almost exclusively using ions with energies near or above the maximum in electronic stopping, which occurs at {approx}1 MeV/amu. In this paper, ion-track lithography using ions with energies well below this maximum is discussed. The results of etching ion tracks created in polycarbonate films by ions with energies just above the anticipated threshold for creating etchable latent tracks with cylindrical geometry have been examined. Low-energy neon and argon ions with 18-60 keV/amu and fluences of {approx}10{sup 8} cm{sup -2} were used to examine the limits for producing useful, etchable tracks in polycarbonate films. By concentrating on the early stages of etching (i.e., {approx}20 nmion was correlated with the creation of etchable tracks. The experimental results are discussed with regard to the energy losses of the ions in the polycarbonate films and to the formation of continuous latent tracks through the entire thickness of the films. The probability distributions for large-angle scattering events were calculated to assess their importance as a function of ion energy. All these results have significant implications with respect to the threshold for formation of etchable tracks and to the use of low-energy ions for lithographic applications of ion tracking.

  12. Simulation Based on Ion Propulsion Rocket System with Using Negative ion - Negative Ion Pair Techniques

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    2016-07-01

    Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of Thrust range is 1N with low electric power and high efficiency. A Negative ion-Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 349 kJ/mol or 3.6 ev/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The mechanisms of attachment involve the formation of intermediate states. In that reason for , the highly repulsive force created between the same negative ions. The distance between same negative ions is important for the evaluate of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of propellant is achieved by the ratio of total mass of the propellant (Kg) needed for operation to time period(s). Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense Magnetic field and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with estimated

  13. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  14. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  15. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  16. Free radicals created by plasmas cause autohesive bonding in polymers

    SciTech Connect

    Awaja, Firas; McKenzie, David R.; Zhang Shengnan; James, Natalie

    2011-05-23

    We find that plasma immersion ion implantation of polymer surfaces enhances their autohesive bond strength when pressed together by more than a factor of five. Both polymerising (CH{sub 4}/O{sub 2}) and nonpolymerising (Ar) plasmas are effective. There is currently no satisfactory theory for predicting this remarkable phenomenon. We propose that free radicals created by the plasma treatment process diffuse to the interface and cause covalent bonds to form. This theory predicts the dependence of bond strength on plasma bias voltage, treatment time, and autohesive process conditions.

  17. Energetic ions in ITER plasmas

    NASA Astrophysics Data System (ADS)

    Pinches, S. D.; Chapman, I. T.; Lauber, Ph. W.; Oliver, H. J. C.; Sharapov, S. E.; Shinohara, K.; Tani, K.

    2015-02-01

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma ( r / a > 0.5 ) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  18. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  19. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  20. Reactant ion chemistry for detection of TNT, RDX, and PETN using an ion mobility spectrometer

    SciTech Connect

    Klassen, S.E.; Rodacy, P.; Silva, R.

    1997-09-01

    This report describes the responses of three energetic materials (TNT, RDX, and PETN) to varying reactant ion chemistries and IMS cell temperatures. The following reactant ion chemistries were evaluated; air-dry; air-wet; methylene chloride-dry; methylene chloride-wet; methylene bromide-dry; nitrogen dioxide-wet; sulfur dioxide-wet. The temperature was varied between 160 - 220{degrees}C.

  1. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  2. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  3. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  4. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  5. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  6. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  7. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  8. Hydrated interfacial ions and electrons.

    PubMed

    Abel, Bernd

    2013-01-01

    Charged particles such as hydrated ions and transient hydrated electrons, the simplest anionic reducing agents in water, and the special hydronium and hydroxide ions at water interfaces play an important role in many fields of science, such as atmospheric chemistry, radiation chemistry, and biology, as well as biochemistry. This article focuses on these species near hydrophobic interfaces of water, such as the air or vacuum interface of water or water protein/membrane interfaces. Ions at interfaces as well as solvated electrons have been reviewed frequently during the past decade. Although all species have been known for some time with seemingly familiar features, recently the picture in all cases became increasingly diffuse rather than clearer. The current account gives a critical state-of-the art overview of what is known and what remains to be understood and investigated about hydrated interfacial ions and electrons.

  9. Characterization of ions at Alpine waterfalls

    NASA Astrophysics Data System (ADS)

    Kolarž, P.; Gaisberger, M.; Madl, P.; Hofmann, W.; Ritter, M.; Hartl, A.

    2011-09-01

    During a three-year field campaign of measuring waterfall generated ions, we monitored five different waterfalls in the Austrian Alps. Most measurements were performed at the Krimml waterfall (Salzburg), which is the biggest and most visited one in Europe and the Gartl waterfall (Mölltal, Carinthia). Smallest ion sizes (0.9-2 nm) were measured with a cylindrical air ion detector (CDI-06) while ion sizes from 5.5 to 350 nm were measured using a modified Grimm SMPS aerosol spectrometer. Measurements showed high negative ion gradients nearby waterfalls whereas positive ions showed only a moderate increase. The most abundant sizes of nano-sized and sub-micrometer ions measured were at 2 nm and of the larger and heavier ones at 120 nm.

  10. Groundwater treatment with zero air emissions

    SciTech Connect

    Cheuvront, D.A. ); Giggy, C.L.; Loven, C.G. ); Swett, G.H. )

    1990-08-01

    Air emissions from the treatment of volatile organic compound (VOC) - contaminated groundwater are a growing problem in the US. Historically, air stripping has been used to remove VOCs from contaminated groundwater. Air stripping technology is a cross media treatment technique, i.e., it solves a groundwater problem by transferring contamination to the atmosphere. In response to the air pollution problem created by air stripping, the public, air quality regulatory agencies, the federal government and private industry are exerting pressure to eliminate and/or reduce air emissions from the clean-up of contaminated groundwater. These forces make it desirable to consider alternative and innovative technologies for the treatment of groundwater contaminated with VOCs.

  11. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  12. Evolution of injected air stream in granular bed

    NASA Astrophysics Data System (ADS)

    Maiti, Ritwik; Das, Gargi; Das, Prasanta

    2015-11-01

    An air stream injected through an orifice into a granular bed creates intriguing but aesthetically exotic patterns. The interaction of air with an aggregate of cohesionless granules presents evolution of patterns from stationary bubble to meandering filament and finally to a floating canopy with the increase of air velocity.

  13. Studies on the Effects of Gaseous Ions on Plant Growth

    PubMed Central

    Krueger, Albert P.; Beckett, J. C.; Andriese, Paul C.; Kotaka, Sadao

    1962-01-01

    Air pollutants seriously interfere with the maintenance of unipolar ionized atmospheres required in experimenting with the biological effects of gaseous ions. The construction and operation of an air purification unit designed to reduce air pollution to tolerable levels are described; it has functioned satisfactorily in conducting experiments with plants and animals. PMID:14459882

  14. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  15. A subnanosecond pulsed ion source for micrometer focused ion beams.

    PubMed

    Höhr, C; Fischer, D; Moshammer, R; Dorn, A; Ullrich, J

    2008-05-01

    A new, compact design of an ion source delivers nanosecond pulsed ion beams with low emittance, which can be focused to micrometer size. By using a high-power, 25 fs laser pulse focused into a gas region of 10(-6) mbar, ions at very low temperatures are produced in the small laser focal volume of 5 mum diameter by 20 mum length through multiphoton ionization. These ions are created in a cold environment, not in a hot plasma, and, since the ionization process itself does not significantly heat them, have as a result essentially room temperature. The generated ion pulse, up to several thousand ions per pulse, is extracted from the source volume with ion optical elements that have been carefully designed by simulation calculations. Externally triggered, its subnanosecond duration and even smaller time jitter allow it to be superimposed with other pulsed particle or laser beams. It therefore can be combined with any type of collision experiment where the size and the time structure of the projectile beam crucially affect the achievable experimental resolution.

  16. Air quality in the home

    SciTech Connect

    Whitaker, R.

    1982-03-01

    The average person breathes indoor air 75% or more of the day. Yet existing regulations are based solely on outdoor concentrations. Indoor levels of many contaminants are typically higher than outdoors, and common household items such as gas stoves, paint, cigarettes, bath towels, fireplaces, cleaning chemicals, even glued furniture joints and the walls themselves, can produce significant amounts of regulated substances. Efforts are now under way to create a total-exposure air-quality model that will improve epidemiologic studies of human health. 4 figures.

  17. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  18. MS/MS Automated Selected Ion Chromatograms

    2005-12-12

    This program can be used to read a LC-MS/MS data file from either a Finnigan ion trap mass spectrometer (.Raw file) or an Agilent Ion Trap mass spectrometer (.MGF and .CDF files) and create a selected ion chromatogram (SIC) for each of the parent ion masses chosen for fragmentation. The largest peak in each SIC is also identified, with reported statistics including peak elution time, height, area, and signal to noise ratio. It creates severalmore » output files, including a base peak intensity (BPI) chromatogram for the survey scan, a BPI for the fragmentation scans, an XML file containing the SIC data for each parent ion, and a "flat file" (ready for import into a database) containing summaries of the SIC data statistics.« less

  19. Electrical properties of air in the Carlsbad Caverns

    SciTech Connect

    Wilkening, M.; Romero, V.

    1980-01-01

    Radon 222 and its daughter product concentrations in the Carlsbad Caverns are higher than in outdoor air by a factor of several hundred. The effects of the radiation from these substances on the electrical properties of air in the cave have been studied. The rate of ion-pair production, the ion density, and the electrical conductivity are much higher in the Cave than in outdoor air. The mobility of the ions is less than outdoors due to the high humidity and low condensation nuclei concentration. A small net space charge produces a barely detectable electric field of the order of one percent of the earth's fair weather field.

  20. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  1. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-01

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  2. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-01

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air. PMID:24926965

  3. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  4. Sampling of ions at atmospheric pressure: ion transmission and ion energy studied by simulation and experiment

    NASA Astrophysics Data System (ADS)

    Große-Kreul, Simon; Hübner, Simon; Benedikt, Jan; von Keudell, Achim

    2016-04-01

    Mass spectrometry of ions from atmospheric pressure plasmas is a challenging diagnostic method that has been applied to a large variety of cold plasma sources in the past. However, absolute densities can usually not be obtained, moreover, the process of sampling of ions and neutrals from such a plasma inherently influences the measured composition. These issues are studied in this contribution by a combination of experimental and numerical methods. Different numerical domains are sequentially coupled to calculate the ion transmission from the source to the mass analyzer. It is found that the energy of the sampled ions created by a radio-frequency microplasma operated in a He-N2 mixture at atmospheric pressure is of the order of 0.1 eV and that it depends linearly on the ion mass in good agreement with the expectation for seeded particles accelerated in a supersonic expansion. Moreover, the measured ion energy distribution from an afterglow of an atmospheric pressure plasma can be reproduced on basis of the particle trajectories in the sampling system. Eventually, an estimation of the absolute flux of ions to the detector is deduced.

  5. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  6. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  7. Learning by Doing: Creating Engaging Online Learning

    ERIC Educational Resources Information Center

    Romero, Liz; Glass, Maria

    2015-01-01

    The purpose of this article is to describe the implementation of a Learning-by-Doing Instructional model to create an innovative language course. The authors describe the structure of the course, the instructional strategies implemented, and the Learning Management System tools used to create an engaging learning experience.

  8. Using Technology to Create Safer Schools.

    ERIC Educational Resources Information Center

    Townley, Arthur J.; Martinez, Kenneth

    1995-01-01

    Although classes to create student self-esteem and antigang programs are gaining in popularity, most school districts have not used available technology to help create safer campuses. Increased availability of telephones and two-way radios would enhance school security, along with incorporation of newer technologies such as computers, digitized…

  9. Learning Course Content by Creating a Wiki

    ERIC Educational Resources Information Center

    Matthew, Kathryn I.; Felvegi, Emese

    2009-01-01

    In this article, students' perceptions of the benefits and the challenges of creating a wiki for a language arts methods class are explored through their online reflections and interview transcripts. The students' own words describe their experiences about learning course content while collaborating to create a course wiki. Reflecting on the…

  10. Creating Civil Societies: The University's Role.

    ERIC Educational Resources Information Center

    Daxner, Michael

    2003-01-01

    The president emeritus of Carl von Ossietzky University in Germany describes a research project examining the university's role in creating a democratic citizenship, prompted by the European Union's need to create societies in which citizens can participate actively in determining their own future. (EV)

  11. Creating Safe Spaces for Music Learning

    ERIC Educational Resources Information Center

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  12. "reCreate Jackson": a turnaround tale.

    PubMed

    O'Quinn, Marvin; Mulqueen, Kimberly Comer

    2007-07-01

    Jackson Health System's "reCreate Jackson" project had six key goals: Improve revenue. Optimize care delivery. Establish a lean infrastructure and support expense. Create effective management. Achieve a balance in clinical delivery and academic missions. Ensure appropriate supply and service expense.

  13. Create a Positive Environment | Smokefree.gov

    Cancer.gov

    Family, friends, coworkers, and others who you interact with can affect how you feel about yourself. This includes how you feel about your body. One of the keys to creating a more positive body image is to create a more positive environment for yourself by focusing on:

  14. Process to create simulated lunar agglutinate particles

    NASA Technical Reports Server (NTRS)

    Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)

    2011-01-01

    A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.

  15. Energy cost of creating quantum coherence

    NASA Astrophysics Data System (ADS)

    Misra, Avijit; Singh, Uttam; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2016-05-01

    We consider physical situations where the resource theories of coherence and thermodynamics play competing roles. In particular, we study the creation of quantum coherence using unitary operations with limited thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of the unitary process. We also find the maximal achievable coherence under the constraint on the available energy. Additionally, we compare the maximal coherence and the maximal total correlation that can be created under unitary transformations with the same available energy at our disposal. We find that when maximal coherence is created with limited energy, the total correlation created in the process is upper bounded by the maximal coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the maximal coherence and maximal total correlation simultaneously with a limited energy cost.

  16. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  17. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  18. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  19. Air cell

    NASA Astrophysics Data System (ADS)

    Okamura, Okiyoshi; Wakasa, Masayuki; Tamanoi, Yoshihito

    1991-04-01

    The present invention relates to an air cell. This air cell provides a compact light-weight power source for model aircraft permitting them to fly for an extended period so that they may be used for such practical purposes as crop dusting, surveying, and photographing. The cell is comprised of a current collector so disposed between a magnesium, zinc, or aluminum alloy cathode and a petroleum graphite anode that it is in contact with the anode. The anode is formed by adding polytetrafluoroethylene dispersion liquid in a mixture of active carbon and graphite powder, pouring the mixture into a mold and heating it to form the anode. It is fabricated by a plurality of anode sections and is formed with at least one hole so that it can provide a cell which is compact in size and light in weight yet is capable of generating a high output. The anode, the cathode, and a separator are wetted by an electrolytic liquid. The electrolyte is continuously supplied through the life of the cell.

  20. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode

    NASA Astrophysics Data System (ADS)

    Moralev, I.; Boytsov, S.; Kazansky, P.; Bityurin, V.

    2014-05-01

    Three-dimensional structure of the gas-dynamic disturbances, created by surface dielectric barrier discharge in a constricted (saturated) mode, was analyzed simultaneously with the discharge morphology. Discharge was created in the still air under normal conditions. Flow visualization was performed by shadowgraphy and stereo-PIV technique. The wall-normal jets with the origins located in between the positions of the constricted filaments are found. Velocity magnitude in the wall-normal direction is comparable with the tangential component. Flow structure is similar to the one created by the serpentine actuator.

  1. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  2. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  3. Directed transfer of microwave radiation in sliding-mode plasma waveguides produced by ultraviolet laser in atmospheric air.

    PubMed

    Zvorykin, Vladimir D; Ionin, Andrei A; Levchenko, Alexei O; Seleznev, Leonid V; Sinitsyn, Dmitrii V; Smetanin, Igor' V; Ustinovskii, Nikolai N; Shutov, Alexei V

    2014-11-01

    Experiments have been performed at hybrid Ti:sapphire/KrF laser facility GARPUN-MTW to develop a novel technique to create a hollow-core sliding-mode plasma-filament waveguide for directed transfer of microwave radiation. Efficient multiphoton air ionization was produced by a train of picosecond 1-TW UV pulses at 248 nm wavelength, or by amplitude-modulated 100 ns pulse combining a short-pulse train with a free-running 1-GW pulse, which detached electrons off O2- ions. Multiple filamentation of UV laser radiation in air was observed, and filamentation theory based on resonance-enhanced ionization was developed to explain the experimental results.

  4. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; et al

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  5. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.

  6. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.

    PubMed

    Hamid, Ahmed M; Ibrahim, Yehia M; Garimella, Sandilya V B; Webb, Ian K; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Smith, Richard D

    2015-11-17

    We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations. PMID:26510005

  7. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    PubMed

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located. PMID:27476698

  8. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    PubMed

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located.

  9. Taking medicine at home - create a routine

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000613.htm Taking medicine at home - create a routine To use the ... teeth. Find Ways to Help You Remember Your Medicines You can: Set the alarm on your clock, ...

  10. Creating an Interactive Videodisc on Mapping.

    ERIC Educational Resources Information Center

    Andrews, Sona Karentz; Grozik, John

    1994-01-01

    Provides an overview of the University of Wisconsin-Milwaukee's Interactive Multimedia Cartography Project to create an interactive videodisc that would illustrate the topic of mapping and provide access to examples of cartography from the American Geographical Society Collection. (JLB)

  11. ISO 55000: Creating an asset management system.

    PubMed

    Bradley, Chris; Main, Kevin

    2015-02-01

    In the October 2014 issue of HEJ, Keith Hamer, group vice-president, Asset Management & Engineering at Sodexo, and marketing director at Asset Wisdom, Kevin Main, argued that the new ISO 55000 standards present facilities managers with an opportunity to create 'a joined-up, whole lifecycle approach' to managing and delivering value from assets. In this article, Kevin Main and Chris Bradley, who runs various asset management projects, examine the process of creating an asset management system.

  12. Creating Math Videos: Comparing Platforms and Software

    ERIC Educational Resources Information Center

    Abbasian, Reza O.; Sieben, John T.

    2016-01-01

    In this paper we present a short tutorial on creating mini-videos using two platforms--PCs and tablets such as iPads--and software packages that work with these devices. Specifically, we describe the step-by-step process of creating and editing videos using a Wacom Intuos pen-tablet plus Camtasia software on a PC platform and using the software…

  13. Creating a VAPEPS database: A VAPEPS tutorial

    NASA Technical Reports Server (NTRS)

    Graves, George

    1989-01-01

    A procedural method is outlined for creating a Vibroacoustic Payload Environment Prediction System (VAPEPS) Database. The method of presentation employs flowcharts of sequential VAPEPS Commands used to create a VAPEPS Database. The commands are accompanied by explanatory text to the right of the command in order to minimize the need for repetitive reference to the VAPEPS user's manual. The method is demonstrated by examples of varying complexity. It is assumed that the reader has acquired a basic knowledge of the VAPEPS software program.

  14. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  15. A Strontium87 Ion Interferometer

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Archibald, James L., II; Jackson, Jarom; Anderson, Dean; Hermansen, Michael; Cunningham, Mark; Durfee, Dallin S.

    2011-05-01

    We describe a matter-wave interferometer based on Sr87+. The ions are generated from a laser-cooled strontium beam that is photo-ionized using a two-photon transition to an auto- ionizing state in the continuum. The ionization occurs between two electrodes, allowing us to accelerate the ions to any desired energy from a few meV to 20 keV. Each ion's quantum wave is split and recombined using stimulated Raman transitions between the hyperfine ground states of Sr87+. The two required optical frequencies for this transition are created by frequency-shifting a master laser in opposite directions by half of the 5 GHz ground-state hyperfine splitting. We can then determine the interferometer phase from the fluorescence of one of the ground states. We will discuss the theory of operation, experimental methods, and potential applications of the device. NSF, NIST

  16. Ion production rate in a boreal forest based on ion, particle and radiation measurements

    NASA Astrophysics Data System (ADS)

    Laakso, L.; Petäjä, T.; Lehtinen, K. E. J.; Kulmala, M.; Paatero, J.; Hõrrak, U.; Tammet, H.; Joutsensaari, J.

    2004-07-01

    In this study the ion production rates in a boreal forest are studied based on two different methods: 1) cluster ion and particle concentration measurements, 2) external radiation and radon concentration measurements. Both methods produce reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distribution measurements was 2.6 cm-3s-1 and based on external radiation and radon measurements 4.5 cm-3s-1. The first method based on ion and particle measurements gave lower values for the ion production rates especially during the day. A possible reason for this is that particle measurements started only from 3 nm, so the sink of small ions during the nucleation events was underestimated. Another reason is that the possible fogs, which caused an extra sink of small ions are not taken into account in the calculations. It may also be possible that the hygroscopic growth factors of aerosol particles were underestimated. A fourth possible reason for the discrepancy is the nucleation mechanism itself. If the ions were somehow present in the nucleation process, there could have been an additional ion sink during the nucleation days. On the other hand, not all the radiation energy is converted to ions and the possible effect of alpha recoil is also omitted.

  17. Ion production rate in a boreal forest based on ion, particle and radiation measurements

    NASA Astrophysics Data System (ADS)

    Laakso, L.; Petäjä, T.; Lehtinen, K. E. J.; Kulmala, M.; Paatero, J.; Hõrrak, U.; Tammet, H.; Joutsensaari, J.

    2004-09-01

    In this study the ion production rates in a boreal forest were studied based on two different methods: 1) cluster ion and particle concentration measurements, 2) external radiation and radon concentration measurements. Both methods produced reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distribution measurements was 2.6 ion pairs cm-3s-1, and based on external radiation and radon measurements, 4.5 ion pairs cm-3s-1. The first method based on ion and particle measurements gave lower values for the ion production rates especially during the day. A possible reason for this is that particle measurements started only from 3nm, so the sink of small ions during the nucleation events was underestimated. It may also be possible that the hygroscopic growth factors of aerosol particles were underestimated. Another reason for the discrepancy is the nucleation mechanism itself. If the ions are somehow present in the nucleation process, there could have been an additional ion sink during the nucleation days.

  18. Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Bennett, Aaron; Troxel, Daylin; Blaser, Kelvin J.; Harper, Stuart; Durfee, Dallin S.

    2010-03-01

    We report on the progress of an ion interferometer based on a laser-cooled ^87Sr^+ beam which will be split and recombined using stimulated Raman transitions. This device will be used to implement an extremely precise electromagnetic field sensor. Design considerations and instrumentation development will be discussed. Possible practical and fundamental applications, including deviations from Coulomb's inverse-square law and the search for a possible photon rest mass, will be discussed.

  19. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  20. Focused ion beams in biology.

    PubMed

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  1. Ion mobility studies of electronically excited States of atomic transition metal cations: development of an ion mobility source for guided ion beam experiments.

    PubMed

    Iceman, Christopher; Rue, Chad; Moision, Robert M; Chatterjee, Barun K; Armentrout, P B

    2007-07-01

    The design of an ion mobility source developed to couple to a guided ion beam tandem mass spectrometer is presented. In these exploratory studies, metal ions are created continuously by electron ionization of the volatile hexacarbonyls of the three group 6 transition metals. These ions are focused into a linear hexapole ion trap, which collects the ions and then creates high intensity pulses of ions, avoiding excessive ion losses resulting from the low duty cycle of pulsed operation. The ion pulses are injected into a six-ring drift cell filled with helium where ions having different electronic configurations can separate because they have different ion mobilities. Such separation is observed for chromium ions and compares favorably with the pioneering work of Kemper and Bowers (J. Phys. Chem.1991, 95, 5134). The results are then extended to Mo(+) and W(+), which also show efficient configuration separation. The source conditions needed for high intensities and good configuration separation are discussed in detail and suggestions for further improvements are also provided.

  2. Metal-air cell with performance enhancing additive

    SciTech Connect

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  3. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  4. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  5. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema

    Chamberlain, Jeff

    2016-07-12

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  6. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  7. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions. PMID:26358093

  8. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions.

  9. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect

    Ma, T. Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T.; Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Gericke, D. O.; Gregori, G.; White, T. G.; Neumayer, P.; Vorberger, J.; and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  10. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  11. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  12. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  13. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  14. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  15. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV

    NASA Astrophysics Data System (ADS)

    Bailey, M.; Shipley, D. R.; Manning, J. W.

    2015-02-01

    Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.

  16. Prevention of cathode damage from positive ion bombardment

    NASA Technical Reports Server (NTRS)

    Bennett, W. H.

    1972-01-01

    Mixed alkaline earth oxide compounds deposited into hole at cathode surface center prevent ion back bombardment damage to cathode by reducing oxide layer and by creating metallic diffusion along sides of hole for enhanced electron emission.

  17. Microtopography enhances nitrogen cycling and removal in created mitigation wetlands

    USGS Publications Warehouse

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Natural wetlands often have a heterogeneous soil surface topography, or microtopography (MT), that creates microsites of variable hydrology, vegetation, and soil biogeochemistry. Created mitigation wetlands are designed to mimic natural wetlands in structure and function, and recent mitigation projects have incorporated MT as one way to attain this goal. Microtopography may influence nitrogen (N) cycling in wetlands by providing adjacent areas of aerobic and anaerobic conditions and by increasing carbon storage, which together facilitate N cycling and removal. This study investigated three created wetlands in the Virginia Piedmont that incorporated disking-induced MT during construction. One site had paired disked and undisked plots, allowing an evaluation of the effects of this design feature on N flux rates. Microtopography was measured using conventional survey equipment along a 1-m circular transect and was described using two indices: tortuosity (T), describing soil surface roughness and relief, and limiting elevation difference (LD), describing soil surface relief. Ammonification, nitrification, and net N mineralization were determined with in situ incubation of modified ion-exchange resin cores and denitrification potential was determined using denitrification enzyme assay (DEA). Results demonstrated that disked plots had significantly greater LD than undisked plots one year after construction. Autogenic sources of MT (e.g. tussock-forming vegetation) in concert with variable hydrology and sedimentation maintained and in some cases enhanced MT in study wetlands. Tortuosity and LD values remained the same in one wetland when compared over a two-year period, suggesting a dynamic equilibrium of MT-forming and -eroding processes at play. Microtopography values also increased when comparing the original induced MT of a one-year old wetland with MT of older created wetlands (five and eight years old) with disking-induced MT, indicating that MT can increase by

  18. Pigeons home faster through polluted air

    PubMed Central

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect. PMID:26728113

  19. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  20. Pigeons home faster through polluted air

    NASA Astrophysics Data System (ADS)

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect.

  1. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  2. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  3. Creating library tutorials for nursing students.

    PubMed

    Schroeder, Heidi

    2010-04-01

    This article describes one librarian's experiences with creating, promoting, and assessing online library tutorials. Tutorials were designed to provide on-demand and accessible library instruction to nursing students at Michigan State University. Topics for tutorials were chosen based on the librarian's liaison experiences and suggestions from nursing faculty. The tutorials were created using Camtasia and required the application of several tools and techniques. Tutorials were promoted through Web pages, the ANGEL course management system, blog posts, librarian interactions, e-mails, and more. In order to assess the tutorials' perceived effectiveness, feedback was gathered using a short survey. Future plans for the nursing tutorials project are also discussed.

  4. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  5. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  6. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  7. Ion parking during ion/ion reactions in electrodynamic ion traps.

    PubMed

    McLuckey, Scott A; Reid, Gavin E; Wells, J Mitchell

    2002-01-15

    Under appropriate ion density conditions, it is possible to selectively inhibit rates of ion/ion reactions in a quadrupole ion trap via the application of oscillatory voltages to one or more electrodes of the ion trap. The phenomenon is demonstrated using dipolar resonance excitation applied to the end-cap electrodes of a three-dimensional quadrupole ion trap. The application of a resonance excitation voltage tuned to inhibit the ion/ion reaction rate of a specific range of ion mass-to-charge ratios is referred to as "ion parking". The bases for rate inhibition are (i) an increase in the relative velocity of the ion/ion reaction pair, which reduces the cross section for ion/ion capture and, at least in some cases, (ii) reduction in the time of physical overlap of positively charged and negatively charged ion clouds. The efficiency and specificity of the ion parking experiment is highly dependent upon ion densities, trapping conditions, ion charge states, and resonance excitation conditions. The ion parking experiment is illustrated herein along with applications to the concentration of ions originally present over a range of charge states into a selected charge state and in the selection of a particular ion from a set of ions derived from a simple protein mixture.

  8. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  9. Creating Opportunities: Tennessee's Southeast Regional Skills Center.

    ERIC Educational Resources Information Center

    Baldwin, Fred D.

    2002-01-01

    Rural Marion County (Tennessee), the town of Kimball, the Appalachian Regional Commission, and a local community college founded a regional skills center. The center offers a 2-year associate of science degree and classes in GED preparation, parenting, drug abuse prevention, cosmetology, and air conditioning and refrigeration. It has expanded…

  10. Creating a Garden for the Senses

    ERIC Educational Resources Information Center

    Potter, Cindy

    2010-01-01

    Almost everyone enjoys a walk through a garden, bending to sniff a flower, enjoying a fresh air breeze, listening to water bubbling from a fountain, and watching sunlight dapple through trees and plants. At Allegheny Valley School (AVS), the emphasis on multisensory environments (MSE) for individuals with intellectual and developmental…

  11. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  12. Creating a Sustainable American Higher Education System

    ERIC Educational Resources Information Center

    Mellow, Gail O.

    2008-01-01

    College presidents need to get a handle on the actual dimension of higher education today. They must locate themselves firmly in the context of a world that is radically different from the one that created the current systems of American colleges and universities. Without a more honest depiction, and absent an ability to accurately define,…

  13. Creating Innovative Student Projects with App Smashing

    ERIC Educational Resources Information Center

    Young, Donna

    2014-01-01

    The potential for using various apps to improve student learning is tremendous. Yet, despite the iPad's possibilities, apps are often limited in their functionality. No one has created that magical, one-size-fits-all app that accomplishes all of the tasks that you had in mind. Luckily, there is an answer to this common problem: app smashing.…

  14. Does Double Loop Learning Create Reliable Knowledge?

    ERIC Educational Resources Information Center

    Blackman, Deborah; Connelly, James; Henderson, Steven

    2004-01-01

    This paper addresses doubts concerning the reliability of knowledge being created by double loop learning processes. Popper's ontological worlds are used to explore the philosophical basis of the way that individual experiences are turned into organisational knowledge, and such knowledge is used to generate organisational learning. The paper…

  15. Creating High Functioning Schools: Practice and Research.

    ERIC Educational Resources Information Center

    Cano, Yvonne, Ed.; Wood, Fred H., Ed.; Simmons, Jan C., Ed.

    This book contains 17 papers, chosen from those presented within the last 2 years at the annual National Conference on Creating the Quality School, hosted by the Center for the Study of Small/Rural Schools at the University of Oklahoma. The papers are grouped into three sections: leadership for school improvement; classroom practices for school…

  16. Leadership: creating a cuiture of caring.

    PubMed

    DePaola, Dominick P

    2004-01-01

    Leadership is characterized in terms of accomplishing mutual goals for the organization, its employees, and its community through vision and creating a community of caring. The examples of Herb Kelleher of Southwest Airlines, Walt Disney, and Dean Arthur A. Dugoni of the University of the Pacific are used to illustrate how this style of leadership plays out in specific accomplishments.

  17. Multimedia Madness: Creating with a Purpose

    ERIC Educational Resources Information Center

    Bodley, Barb; Bremer, Janet

    2004-01-01

    High school students working in a project-driven environment create "projects with a purpose" that give younger students technology-based activities to help them practice skills in reading, math, spelling and science. An elective semester-long course using the Macromedia suite of programs with the objective of learning the software skills of…

  18. Creating the "History through Deaf Eyes" Documentary

    ERIC Educational Resources Information Center

    Hott, Lawrence

    2007-01-01

    In this article, the author outlines how a documentary film about the history of deafness in the United States, inspired by the exhibition "History through Deaf Eyes," is going to be created. "History through Deaf Eyes" will have a dual focus. Part of its subject is deafness from the inside: the personal experiences of deaf people (and hearing…

  19. Dynamic Dyads: Sharing and Creating Knowledge

    ERIC Educational Resources Information Center

    Paul, Sophie T.; Wang, Jia

    2007-01-01

    In today's competitive market, it is essential to maximize employees' efficiency through job structure and knowledge exchange. This phenomenological study explores the lived experience of sharing and creating knowledge in teams of two. Data was collected through in-depth interviews with four dyadic teams. Data analysis revealed four major themes…

  20. Creating Learning Communities in the Classroom

    ERIC Educational Resources Information Center

    Saville, Bryan K.; Lawrence, Natalie Kerr; Jakobsen, Krisztina V.

    2012-01-01

    There are many ways to construct classroom-based learning communities. Nevertheless, the emphasis is always on cooperative learning. In this article, the authors focus on three teaching methods--interteaching, team-based learning, and cooperative learning in large, lecture-based courses--that they have used successfully to create classroom-based…

  1. Creating 21st Century Learning Environments

    ERIC Educational Resources Information Center

    Stuebing, Susan

    2004-01-01

    The seminar on "Creating 21st Century Learning Environments" was organized by the United Kingdom's Department for Education and Skills (DfES) and the OECD Program on Educational Building (PEB). The seminar was posed as a networked learning experience with professionals from throughout the world presenting their accomplishments and findings.…

  2. Green Energy Technologies Create Green Jobs

    SciTech Connect

    2009-10-01

    The U.S. Department of Energy (DOE) is developing advanced energy technologies that can help address climate change and reduce U.S. dependence on oil. As these new technologies are launched into commercial use, they create new jobs for American workers.

  3. Creating Inclusive Schools for All Students

    ERIC Educational Resources Information Center

    Causton-Theoharis, Julie; Theoharis, George

    2008-01-01

    In this article, a former principal at Falk Elementary School in Madison, Wisconsin, describes his school's shift as it sought to create an inclusive school for all students and establish an authentic sense of belonging. Nationwide, schools and districts from Concord, New Hampshire, to Whittier, California, and from Cambridge, Massachusetts, to…

  4. Creating Change through Politics: Two Viewpoints

    ERIC Educational Resources Information Center

    Frawley, Thomas A.; Janosz, David A., Jr.

    2007-01-01

    This article presents two viewpoints on creating change through politics. Frawley argues that every teacher can be an agent for change at the local level by first changing the way they think about the profession and embracing the concept that they need to take part in the conversation. Change will happen when technology teachers take greater…

  5. System and method for creating expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M. (Inventor); Luczak, Edward C. (Inventor)

    1998-01-01

    A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code.

  6. Games and Students: Creating Innovative Professionals

    ERIC Educational Resources Information Center

    Davis, Jason Stratton

    2011-01-01

    To create professionals for the future, who will be innovative and internationally competitive, we need to change the learning environment. The current traditional delivery systems of education do not develop the necessary interpersonal, analytical and creative skills to deal with the new knowledge economy. Baer (2005), in calling for a new model…

  7. Creating New Identities in Design Education

    ERIC Educational Resources Information Center

    Mendoza, Hannah Rose; Bernasconi, Claudia; MacDonald, Nora M.

    2007-01-01

    An international education opportunity has been created for design students at West Virginia University. This experience is unique because it takes an interdisciplinary approach to design that exposes students to the idea of a larger design methodology common to design professions. Students take core courses with students from a variety of design…

  8. The Magic Moment: Creating Color Harmony

    ERIC Educational Resources Information Center

    Bartges, Dan

    2009-01-01

    If there is a truly magic moment in art class, it must be when a student--of any age--attains a working knowledge of color's core principles. At that point, she or he becomes able to consistently create color harmony in any painting, regardless of the subject matter. From then on, that student gains greater confidence, can paint better pictures…

  9. Creating Competence: Perspectives and Practices in Organizations.

    ERIC Educational Resources Information Center

    Mulder, Martin

    Creating competence has become a major issue in organizations. Various authors contend that competency management has the potential of integrating organizational strategy, human-resource instruments, and human-resource development; that competency development can lead to performance improvement; and that it can help Human Resource Development…

  10. Creating 21st Century Learning Environments

    ERIC Educational Resources Information Center

    Li, Phan P.; Locke, John; Nair, Prakash; Bunting, Andrew

    2005-01-01

    What is involved in creating learning environments for the 21st century? How can school facilities serve as tools for teaching and meet the needs of students in the future? What components are required to design effective schools, and how does architecture relate to the purposes of schooling? These are some of the questions addressed at the…

  11. Creating a National Skills Corporation. Policy Report.

    ERIC Educational Resources Information Center

    Atkinson, Rob

    To address the skills shortages stemming from the transition to a more technological and skills-intensive economy, Congress established a program whereby funds from H-1B visa fees would provide seed funds for private companies, labor, and government to join together in creating training alliances focused on skills in short supply. Unfortunately,…

  12. Creating Critical Viewers: A Personal Reflection

    ERIC Educational Resources Information Center

    Cherow-O'Leary, Renee

    2014-01-01

    This essay is a personal reflection on the implementation of "Creating Critical Viewers," a national media literacy program sponsored by the National Academy of Television Arts and Sciences (NATAS), an industry association, in 1995. The television industry's decision to develop a media literacy curriculum in the 1990s was a powerful…

  13. Creating a Total Object of Art.

    ERIC Educational Resources Information Center

    Klie, Evelyn Busch

    2003-01-01

    Discusses a workshop that accompanied the author's exhibit, "A Sense of Place: Paintings by Evelyn Busch Klie." Explains that students created a watercolor painting and a clay frame or base with details in it. Includes a list of art materials and learning objectives. (CMK)

  14. An Integrated System for Creating Educational Software.

    ERIC Educational Resources Information Center

    Horowitz, Ellis

    1988-01-01

    Describes the development of ScriptWriter, a computer program designed at the University of Southern California to help create software for computer assisted instruction. Topics discussed include the graphics editor; text editor; font editor; a programming language called IQ; its use with interactive video and speech; and current applications.…

  15. Razzle Dazzle: Creating Interactive Library Spaces

    ERIC Educational Resources Information Center

    Combes, Barbara

    2010-01-01

    Creating an interactive and engaging school library environment for your school community is an important prerequisite to establishing a creditable identity with teaching staff, which in turn, leads to opportunities to develop collaborative curriculum programs. The library and its personnel must be perceived as a hub for learning and part of the…

  16. Engineering Encounters: Creating a Prosthetic Hand

    ERIC Educational Resources Information Center

    Cook, Kristin Leigh; Bush, Sarah B.; Cox, Richard

    2015-01-01

    The power of 3D printing technology has grown exponentially in just the past few years--people around the world are using 3D printers to prepare food, create tailored clothing, build cars and homes, and advance the medical field in ways that never seemed possible. In classrooms across the nation, 3D printers have become increasingly common because…

  17. Leadership: creating a cuiture of caring.

    PubMed

    DePaola, Dominick P

    2004-01-01

    Leadership is characterized in terms of accomplishing mutual goals for the organization, its employees, and its community through vision and creating a community of caring. The examples of Herb Kelleher of Southwest Airlines, Walt Disney, and Dean Arthur A. Dugoni of the University of the Pacific are used to illustrate how this style of leadership plays out in specific accomplishments. PMID:15948494

  18. Web Pages Created Via SCID Process.

    ERIC Educational Resources Information Center

    Stammen, Ronald M.

    This paper describes the use of a management process, Systematic Curriculum and Instructional Development (SCID), for developing online multimedia modules. The project, "Collaboratively Creating Multimedia Modules for Teachers and Professors," was funded by the USWEST Foundation. The curriculum development process involved teams of experts in…

  19. Congress Creates Super Federal Library Agency

    ERIC Educational Resources Information Center

    Steere, Paul J.

    2010-01-01

    In a rare show of bipartisanship, the Senate passed the controversial Federal Library Agency Act (FLAA) on a nearly unanimous voice vote, sending it to President Obama for his expected signature. The House had passed it in February with a two-thirds majority. The FLAA creates a new mandate by combining federal library functions scattered…

  20. Creating Teams Increases Extension Educator Productivity

    ERIC Educational Resources Information Center

    Chalker-Scott, Linda; Daniels, Catherine H.; Martini, Nicole

    2016-01-01

    The Garden Team at Washington State University is a transdisciplinary group of faculty, staff, and students with expertise in applied plant and soil sciences and an interest in Extension education. The team's primary mission is to create current, relevant, and peer-reviewed materials as Extension publications for home gardeners. The average yearly…