Science.gov

Sample records for air ions generated

  1. Trial of a negative ion generator device in remediating problems related to indoor air quality

    SciTech Connect

    Daniell, W.; Camp, J.; Horstman, S. )

    1991-06-01

    It has been suggested that supplementation of indoor air with negative ions can improve air quality. This study examined the effects of a negative ion-generator device on air contaminants and symptom reporting in two office buildings. Separate sets of functional and nonfunctional negative ion generators were monitored using a double blind, crossover design involving two 5-week exposure periods. There were no detectable direct or residual effects of negative ion generator use on air ion levels, airborn particulates, carbon dioxide levels, or symptom reporting. Symptom reporting declined at both sites initially and appeared to be consistent with placebo effect. Job dissatisfaction was an apparent contributor to symptom reporting, with a magnitude comparable to presumed effects of air quality. Further testing of such devices is needed before they should be considered for office air quality problems.

  2. Air Purification Effect of Positively and Negatively Charged Ions Generated by Discharge Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Nishikawa, Kazuo; Nojima, Hideo

    2001-08-01

    In this paper, the air purification effect of positively and negatively charged ions generated by discharge plasma at atmospheric pressure is reported. We have developed a novel ion generation device which consists of a cylindrical glass tube and attached inner and outer mesh electrodes. With the application of AC voltage between the electrodes, positively charged ions and negatively charged ions have been generated at atmospheric pressure. The ion densities of 3.0× 104--7.0× 104 counts/cm3 have been obtained with the AC voltage of 1.8-2.3 kV (effective value). We have examined the air purification properties of this device. By the operation of this device, the initial oxygen nitride (NO) density of 10 ppm in 1 m3 (in cigarette smoke) was decreased to 1 ppm after 30 min. The number of suspended germs in air has been significantly reduced by the use of this type of ion generation device.

  3. The effect of an ion generator on indoor air quality in a residential room.

    PubMed

    Waring, M S; Siegel, J A

    2011-08-01

    Ion generators charge particles with a corona prior to their removal on collector plates or indoor surfaces and also emit ozone, which can react with terpenes to yield secondary organic aerosol, carbonyls, carboxylic acids, and free radicals. This study characterized the indoor air quality implications of operating an ion generator in a 27 m(3) residential room, with four different test room configurations. Two room configurations had carpet overlaying the original flooring of stained/sealed concrete, and for one configuration with and without carpet, a plug-in air freshener was used as a terpene source. Measurements included airborne sampling of particulate matter (0.015-20 μm), terpenes and C(1) -C(4) and C(6) -C(10) aldehydes, ozone concentrations, and air exchange rates. When the heating, ventilating, and air-conditioning system was not operating (room air exchange rate = ∼0.5/h), the use of the ion generator in the presence of the air freshener led to a net increase in ultrafine particles (<0.1 μm). Also, increased concentrations of ozone were observed regardless of air freshener presence, as well as increases in formaldehyde and nonanal, albeit within measurement uncertainty in some cases. Thus, it may be prudent to limit ion generator use indoors until evidence of safety can be ascertained. Portable ion generators are intended to clean the air of particles, but they may emit ozone as a byproduct of their operation, which has the potential to degrade indoor air quality. This study showed that under certain conditions in a residential room, the use of a portable ion generator can increase concentrations of ozone and, to a lesser degree, potentially aldehydes. Also, if operated in the presence of a plug-in air freshener that emits terpenes, its use can increase concentrations of secondary organic aerosol in the ultrafine size range. © 2010 John Wiley & Sons A/S.

  4. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  5. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  6. [Bipolar ionisation of indoor air through ion generators mountable into inflow ventilation and conditioning].

    PubMed

    Dudarev, A A; Spichkin, G L; Denisikhina, D M; Burtsev, S I

    2010-01-01

    Experimental studies and digital modelling of artificial indoor air ionisation through bipolar ionisers mountable into inflow ventilation and conditioning proved possible creation of continuous even bipolar ion background in indoor air, similar to the natural one.

  7. A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep.

    PubMed

    Wakamura, Tomoko; Sato, Maki; Sato, Akihiro; Dohi, Takahiro; Ozaki, Kazuto; Asou, Norio; Hagata, Shigeru; Tokura, Hiromi

    2004-01-01

    This study was conducted to examine whether negative air ions generated from pajamas would influence the rectal temperature and the immune system during night sleep. Nine females (aged 18-23 years) served as participants. They slept during the night in their homes, wearing the pajamas with generation of negative air ions (1260 ions/cm3) and with normal standard (520 ions/cm3). The sequence of wearing the pajamas was: first, standard pajamas; second, pajamas with negative air ions; and third, standard pajamas again, each being worn for three consecutive days. Rectal temperature in the pajamas with negative air ions tended to fall more significantly during the night-time (p = 0.068). Salivary IgA tended to be higher on waking when wearing pajamas with negative air ions (p = 0.094) and its effect continued even after standard pajamas were worn again during last three days. These results suggest that the rectal temperature could possibly be more reduced and the elevation of salivary IgA more marked if the pajamas with negative air ions are worn during nocturnal sleep.

  8. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  9. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  10. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  11. ION PULSE GENERATION

    DOEpatents

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  12. Air ions and aerosol science

    SciTech Connect

    Tammet, H.

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4{endash}1.8 nm. {copyright} {ital 1996 American Institute of Physics.}

  13. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  14. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  15. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  16. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  17. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  18. Wave generation by contaminant ions

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Investigations dealing with the generation of waves by contaminant ions are reported. The studies included the properties of the velocity distribution function of such ions. It was found that it takes about one ion-cyclotron period for the distribution function to transform from a beam to a ring distribution. A linear instability analysis was performed to examine the possibility of wave excitation by an ion beam streaming perpendicular to the ambient magnetic field in an ionospheric type of plasma. A simulation code was developed to study the nonlinear behavior of the waves excited by beam and ring types of ion distributions. The code treats both electrons and ions as particles kinetically to also factor in the possible involvement of lower-hybrid waves.

  19. The action of air ions on bacteria

    PubMed Central

    Krueger, A. P.; Smith, R. F.; Go, Ing Gan

    1957-01-01

    Techniques have been devised for studying quantitatively the effects of air ions on microorganisms suspended in small drops. In smog-contaminated atmospheres moderate concentrations of positive and negative air ions exerted a protective effect on staphylococci by delaying the drop in pH customarily observed and by diminishing the rate of evaporation. In clean air higher concentrations of positive and negative air ions accelerated the rate of death of staphylococci apparently by direct action on the cells and by increasing the rate of evaporation. Air ion action in these experiments did not involve cell agglutination or direct radiation from the radioactive isotopes employed. PMID:13475697

  20. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  1. Ultrafine particle removal and generation by portable air cleaners

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  2. Negative air ion effects on human performance and physiological condition.

    PubMed

    Buckalew, L W; Rizzuto, A P

    1984-08-01

    Beneficial effects of exposure to negative air ions have been suggested, to include improved performance, mood, attention, and physiological condition. Existing support is clouded by methodological problems of control and standardization in treatment and equipment. This study investigated effects of negative ions produced by a commercially marketed air purification device on grip magnitude, coding, motor dexterity, reaction time, tracking, pulse, blood pressure, and temperature. Two groups of 12 males were exposed to 6 continuous h of either negative or "normal" ion environments under a double blind condition. Repeated measures (0,3,6 h) on each variable were obtained. MANOVA applied to change scores revealed no differences between groups, and 0 vs. 3 and 0 vs. 6-h group differences showed no significant alteration in any measure. Negative ions generated by an air purification device were concluded to produce no general or specific alteration of cognitive or psychomotor performance or physiological condition.

  3. Ion Engine With Solid-Electrolyte Ion Generator

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1984-01-01

    Working fluid utilized efficiently. Working fluid positive ions conducted through solid electrolyte to outside, then accelerated in external electric field. While in solid-electrolyte material, ions do not recombine with electrons: transported to surface with high ionization efficiency. Provides new way to generate beam of ions for implantation in semiconductors or other applications.

  4. Ion Engine With Solid-Electrolyte Ion Generator

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1984-01-01

    Working fluid utilized efficiently. Working fluid positive ions conducted through solid electrolyte to outside, then accelerated in external electric field. While in solid-electrolyte material, ions do not recombine with electrons: transported to surface with high ionization efficiency. Provides new way to generate beam of ions for implantation in semiconductors or other applications.

  5. Negative air ions as a source of superoxide

    NASA Astrophysics Data System (ADS)

    Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

    1992-06-01

    The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/—} and the superoxide anion O{2/—}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

  6. Research report on the physiological effects of air ions and their significance as environmental factors

    NASA Technical Reports Server (NTRS)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  7. Pesticide Registration: Clarification for Ion Generating Equipment

    EPA Pesticide Factsheets

    EPA issued a Federal Register Notice that clarifies the Agency's position on the distinction between devices and pesticides with regard to ion-generating equipment and explains why such equipment will now be regulated as a pesticide.

  8. Air To Air Helicopter Fire Control Equations and Software Generation.

    DTIC Science & Technology

    1979-11-01

    FORM I. REPORT NUMBER 12. GOVT ACCE NO S.SCIP1INTIS CATALOG NUMBER Air To Air Helicop~ter Fire Control 1I t 31Au Equations and Software Generation oN.m...differentiator in order to model the way that they are added in the track loop before the capacitor coupled tachometer feedback. AIRSIM Data Representative output

  9. Use of a duoplasmatron ion source for negative ion generation

    NASA Astrophysics Data System (ADS)

    Pillatsch, L.; Wirtz, T.; Migeon, H.-N.; Scherrer, H.

    2011-05-01

    The use of electronegative species as primary ions considerably enhances the emission of positive secondary ions in SIMS. Considering furthermore that negative primary ions can be required due to instrumental configurations (e.g. the Cameca NanoSIMS 50 requires an opposite polarity of the primary and secondary ions), O - ion bombardment is employed in SIMS analysis. These O - ions are typically created in a duoplasmatron source, which suffers however from its low brightness and which is thus not suited for high resolution imaging applications. The development of new (electro)negative ion sources is thus necessary to optimize the analysis of electropositive elements in terms of lateral resolution and sensitivity. In this paper, we present the performance of a duoplasmatron ion source generating F -, Cl -, Br - and I - ion beams. In particular, we experimentally determine on a dedicated test bench the brightness of the source in the F -, Cl -, Br - and I - modes as a function of the gas pressure, the magnetic field strength and the arc current in the source. The obtained results are compared to the performances of the duoplasmatron in the standard O - mode. In this context, a five times higher brightness was found for F - (200 A/cm 2 sr) compared to the standard O - (42 A/cm 2 sr).

  10. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  11. Small Scale Air Driven Generator

    DTIC Science & Technology

    2016-12-01

    current (DC). The electricity generated was then stored in a 16-volt supercapacitor. While testing the system, it was discovered that more shaft power... current (DC). The electricity generated was then stored in a 16- volt supercapacitor. While testing the system, it was discovered that more shaft power...system, testing was then shifted to actually charging the supercapacitor. A high current breaker switch was installed to be able to electrically

  12. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  13. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  14. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  15. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  16. 4th Generation ECR Ion Sources

    SciTech Connect

    Lyneis, Claude M.; Leitner, D.; Todd, D.S.; Sabbi, G.; Prestemon, S.; Caspi, S.; Ferracin, P.

    2008-12-01

    The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.

  17. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  18. Antifungal Properties of Electrically Generated Metallic Ions

    PubMed Central

    Berger, T. J.; Spadaro, J. A.; Bierman, Richard; Chapin, S. E.; Becker, R. O.

    1976-01-01

    A qualitative and quantitative investigation was undertaken to study the susceptibility of unicellular eucaryotic organisms (yeasts) to metallic cations generated by low levels of direct current. Results were characteristic of effects obtained previously using clinical and standard bacteria test organisms. The present study demonstrated that anodic silver (Ag+) at low direct currents had inhibitory and fungicidal properties. Broth dilution susceptibility tests were made on several species of Candida and one species of Torulopsis. Growth in all isolates was inhibited by concentrations of electrically generated silver ions between 0.5 and 4.7 μg/ml, and silver exhibited fungicidal properties at concentrations as low as 1.9 μg/ml. The inhibitory and fungicidal concentrations of electrically generated silver ions are lower than those reported for other silver compounds. Images PMID:1034467

  19. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults.

    PubMed

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-11-10

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm³ vs. 1038/cm³) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations.

  20. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults

    PubMed Central

    Wallner, Peter; Kundi, Michael; Panny, Michael; Tappler, Peter; Hutter, Hans-Peter

    2015-01-01

    Since the beginning of the 20th century there has been a scientific debate about the potential effects of air ions on biological tissues, wellbeing and health. Effects on the cardiovascular and respiratory system as well as on mental health have been described. In recent years, there has been a renewed interest in this topic. In an experimental indoor setting we conducted a double-blind cross-over trial to determine if higher levels of air ions, generated by a special wall paint, affect cognitive performance, wellbeing, lung function, and cardiovascular function. Twenty healthy non-smoking volunteers (10 female, 10 male) participated in the study. Levels of air ions, volatile organic compounds and indoor climate factors were determined by standardized measurement procedures. Air ions affected the autonomous nervous system (in terms of an increase of sympathetic activity accompanied by a small decrease of vagal efferent activity): In the test room with higher levels of air ions (2194/cm3 vs. 1038/cm3) a significantly higher low to high frequency ratio of the electrocardiography (ECG) beat-to-beat interval spectrogram was found. Furthermore, six of nine subtests of a cognitive performance test were solved better, three of them statistically significant (verbal factor, reasoning, and perceptual speed), in the room with higher ion concentration. There was no influence of air ions on lung function and on wellbeing. Our results indicate slightly activating and cognitive performance enhancing effects of a short-term exposure to higher indoor air ion concentrations. PMID:26569277

  1. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  2. Self-propelled ion gel at air-water interface.

    PubMed

    Furukawa, Kazuaki; Teshima, Tetsuhiko; Ueno, Yuko

    2017-08-24

    We report on a self-propelled gel using ionic liquid as a new type of self-propellant that generates a powerful and durable motion at an air-water interface. The gel is composed of 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-co-HFP)). A long rectangular ion gel piece placed on the interface shows rapid rotation motion with maximum frequency close to 10 Hz, corresponding to the velocity over 300 mms(-1) at an outmost end of the piece. The rotation continues for ca. 10(2) s, followed by a reciprocating motion (<~10(3) s) and a nonlinear motion in long-time observations (>~10(3) s). The behaviours can be explained by the model considering elution of EMIM-TFSI to the air-water interface, rapid dissolution into water, and slow diffusion in an inhomogeneous polymer gel network. Because the self-propellants are promptly removed from the interface by dissolution, durable self-propelled motions are observed also at limited interface areas close in size to the gel pieces. A variety of motions are induced in such systems where the degree of freedom in motion is limited. As the ion gel possesses formability and processability, it is also advantageous for practical applications. We demonstrate that the gel does work as an engine.

  3. [Effect of negative air ions on respiratory organs and blood].

    PubMed

    Sirota, T V; Safronova, V G; Amelina, A G; Mal'tseva, V N; Avkhacheeva, N V; Sofin, A D; Ianin, V A; Mubarakshina, E K; Romanova, L K; Novoselov, V I

    2008-01-01

    The effect of negatively charged ions on respiratory organs and blood of rats has been studied. It was shown that the inhaling of negative air ions (NAI) for 60 min with a concentration of NAI at the place of location of animals 320-350 000 ions/cm2 activated the secretion of goblet cells without damaging the mucosa of the trachea and changed the spectrum of proteins of bronchopulmonary lavage. It was also found that the spontaneous production of reactive oxygen species (ROS) by cells of nonfractionated blood after the exposure to NAI increased in both males and females; the intensity of ROS generation induced by opsonized zymosan increased only in females. Different sensitivity of the antioxidant enzymes superoxide dismutase and glutathione reductase of blood to NAI in females and males was revealed. These results enable one to consider the effect of NAI as priming and a weak activation of the respiratory organs through the direct action on the mucosa of the primary target organs of the respiratory tract and then on the blood.

  4. Next-Generation Ion Propulsion Being Developed

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Soulas, George C.; Foster, John E.; Haag, Thomas W.; Pinero, Luis R.; Rawlin, Vincent K.; Doehne, S. Michelle

    2001-01-01

    The NASA Glenn Research Center ion-propulsion program addresses the need for high specific-impulse systems and technology across a broad range of mission applications and power levels. One activity is the development of the next-generation ion-propulsion system as a follow-on to the successful Deep Space 1 system. The system is envisioned to incorporate a lightweight ion engine that can operate over 1 to 10 kW, with a 550-kg propellant throughput capacity. The engine concept under development has a 40-cm beam diameter, twice the effective area of the Deep Space 1 engine. It incorporates mechanical features and operating conditions to maximize the design heritage established by the Deep Space 1 engine, while incorporating new technology where warranted to extend the power and throughput capability. Prototype versions of the engine have been fabricated and are under test at NASA, with an engineering model version in manufacturing. Preliminary performance data for the prototype engine have been documented over 1.1- to 7.3-kW input power. At 7.3 kW, the engine efficiency is 0.68, at 3615-sec specific impulse. Critical component temperatures, including those of the discharge cathode assembly and magnets, have been documented and are within established limits, with significant margins relative to the Deep Space 1 engine. The 1- to 10-kW ion thruster approach described here was found to provide the needed power and performance improvement to enable important NASA missions. The Integrated In-Space Transportation Planning (IISTP) studies compared many potential technologies for various NASA, Government, and commercial missions. These studies indicated that a high-power ion propulsion system is the most important technology for development because of its outstanding performance versus perceived development and recurring costs for interplanetary solar electric propulsion missions. One of the best applications of a highpower electric propulsion system was as an integral part

  5. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  6. Air ions and respiratory function outcomes: a comprehensive review

    PubMed Central

    2013-01-01

    Background From a mechanistic or physical perspective there is no basis to suspect that electric charges on clusters of air molecules (air ions) would have beneficial or deleterious effects on respiratory function. Yet, there is a large lay and scientific literature spanning 80 years that asserts exposure to air ions affects the respiratory system and has other biological effects. Aims This review evaluates the scientific evidence in published human experimental studies regarding the effects of exposure to air ions on respiratory performance and symptoms. Methods We identified 23 studies (published 1933–1993) that met our inclusion criteria. Relevant data pertaining to study population characteristics, study design, experimental methods, statistical techniques, and study results were assessed. Where relevant, random effects meta-analysis models were utilized to quantify similar exposure and outcome groupings. Results The included studies examined the therapeutic benefits of exposure to negative air ions on respiratory outcomes, such as ventilatory function and asthmatic symptoms. Study specific sample sizes ranged between 7 and 23, and studies varied considerably by subject characteristics (e.g., infants with asthma, adults with emphysema), experimental method, outcomes measured (e.g., subjective symptoms, sensitivity, clinical pulmonary function), analytical design, and statistical reporting. Conclusions Despite numerous experimental and analytical differences across studies, the literature does not clearly support a beneficial role in exposure to negative air ions and respiratory function or asthmatic symptom alleviation. Further, collectively, the human experimental studies do not indicate a significant detrimental effect of exposure to positive air ions on respiratory measures. Exposure to negative or positive air ions does not appear to play an appreciable role in respiratory function. PMID:24016271

  7. Intense Pulsed Ion Beams: Their Generation and Applications.

    DTIC Science & Technology

    1980-10-03

    on the acceleration of ions within vacuum diode-like sources. The ions originate in a plasma which is produced on the surface of the ,inode and are... flashover discharges on the anode surfaces . Ions extracted from these plasmas are accelerated toward both the cathode and the virtual cathode. ThC ions... pulse generator. For most of these experiments , the ratio of the extracted proton current I to the total current I i.e., the proton generation effici,ncyp

  8. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  9. Ion trap mass spectrometry of externally generated ions

    SciTech Connect

    McLuckey, S.A.; Van Berkel, G.J.; Georinger, D.E. ); Glish, G.L.

    1994-07-01

    This discussion provides background for consideration of the merits of ion trap MS in conjunction with an external ion source relative to a scanning beam-type form of mass analysis. Emphasis has been placed primarily on efficiency. However, a variety of other factors can be major considerations, depending upon the application. For example, the ion trap has clear advantages over most other forms of MS in terms of size, weight, and pumping requirements. These advantages make the ion trap attractive for field applications, particularly because the performance characteristics of the ion trap need not be compromised in a compact system. One of the most significant advantages is the high efficiency obtainable with tandem MS experiments by using collisional activation via resonance excitation. Under favorable conditions, the conversion of 100% of the parent ions to product ions can be achieved, although 10-50% conversions are more typical. The analogous conversion in most beam-type tendem MS experiments is typically 1-3 orders of magnitude lower; thus, significant reductions in detection limits by use of the ion trap can be anticipated in analyses requiring two or more stages of MS. 61 refs., 3 figs.

  10. Measuring Light Air Ions in a Speleotherapeutic Cave

    NASA Astrophysics Data System (ADS)

    Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-02-01

    The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

  11. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  12. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device.

    PubMed

    Baird, Zane; Wei, Pu; Cooks, R Graham

    2015-02-07

    A method is presented in which ions are generated and manipulated in the ambient environment using polymeric electrodes produced with a consumer-grade 3D printer. The ability to focus, separate, react, and detect ions in the ambient environment is demonstrated and the data agree well with simulated ion behaviour.

  13. Vertical hydraulic generators experience with dynamic air gap monitoring

    SciTech Connect

    Pollock, G.B.; Lyles, J.F )

    1992-12-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit.

  14. Next Generation Air Measurement Technologies Fact Sheet

    EPA Pesticide Factsheets

    EPA is advancing lower cost and portable air measurement technology to enhance monitoring capabilities for complying with the National Ambient Air Quality Standards. The technology is providing mobile and stationary real-time measurement capabilities.

  15. Inverted battery design as ion generator for interfacing with biosystems.

    PubMed

    Wang, Chengwei; Fu, Kun Kelvin; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-07-24

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an 'electron battery' configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications.

  16. Inverted battery design as ion generator for interfacing with biosystems

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-07-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an `electron battery' configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications.

  17. Ge laser-generated plasma for ion implantation

    NASA Astrophysics Data System (ADS)

    Giuffrida, L.; Torrisi, L.; Czarnecka, A.; Wołowski, J.; Quarta, Ge; Calcagnile, L.; Lorusso, A.; Nassisi, V.

    Laser-generated plasma obtained by Ge ablation in vacuum was investigated with the aim to implant energetic Ge ions in light substrates (C, Si, SiO2). Different intensities of laser sources were employed for these experiments: Nd:Yag of Catania-LNS; Nd:Yag of Warsaw-IPPL; excimer laser of Lecce-INFN; iodine laser of Prague-PALS. Different experimental setups were used to generate multiple ion stream emissions, multiple ion energetic distributions, high implantation doses, thin film deposition and post-acceleration effects. `On line' measurements of ion energy were obtained with ion collectors and ion energy analyzer in time-of-flight configuration. `Off line' measurement of Ge implants were obtained with 2.25 MeV helium beam in Rutherford backscattering spectrometry. Results indicated that ion implants show typical deep profiles only for substrates placed along the normal to the target surface at which the ion energy is maximum.

  18. Potato slab dehydration by air ions from corona discharge

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Barthakur, N. N.

    1991-06-01

    Space charge (air ions) produced by single corona electrodes was used to enhance drying rates from fresh slabs of potato. The drying path was traced by a beta-ray gauge which provided both sensitivity and reproducibility to the measurements of drying time. The rate of evaporation was increased 2.2 to 3.0 times when subjected to fluxes of 3.02×1012 positive ions alone or in combination with 7.31×1012 negative air ions/cm2 per s compared to that from an air-drying control slab. Electric wind caused by an ionic drag force seems to be the principal driving force for the observed enhancement in drying rates.

  19. Generation of pulsed ion beams by an inductive storage pulsed power generator

    NASA Astrophysics Data System (ADS)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  20. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-04-01

    Air ion concentrations influence new particle formation and consequently the global aerosol an cloud condensation nuclei loads. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity Paris, France (Megapoli project). We measured air ion number size distributions (0.8-42 nm) and fine particle number concentrations (> 6 nm) in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm) and large (7-20 nm). The media concentrations of small and large ions were 670 and 680 cm-3 respectively (sum of positive an negative polarities) whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 the days, being most frequent in spring and late summer (April, May, July and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3-7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number, intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the

  1. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+6 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  2. Ions Generated on or Near Satellite Surfaces

    DTIC Science & Technology

    1988-06-01

    Tascione, T.F., Introduction to the Space Environment. Orbit Book Co., Malabar, FL, 1988, pp.33-57 7. Balsiger , H.,"Composition of Hot Ions (0.1-16keV/e...Research, Vl, 289, 1981 8. Balsiger , H., P. Eberhardt, J. Geiss, and D. Young, "Magnetic Storm Injection of 0.9 to 16 keV/e Solar and Terrestrial Ions into

  3. Generation of intense negative ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Aladzhadzhyan, Samuel H. (Inventor)

    1987-01-01

    An electron gun is used with a mirror electrostatic field to produce zero or near zero velocity electrons by forming a turning point in their trajectories. A gas capable of attaching zero or near zero velocity is introduced at this turning point, and negative ions are produced by the attachment or dissociative attachment process. Operation may be continuous or pulsed. Ions thus formed are extracted by a simple lens system and suitable biasing of grids.

  4. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    PubMed Central

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-01-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene. PMID:28262710

  5. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.

    PubMed

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene

    2017-03-06

    The distribution of potassium (K(+)) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K(+) ions prefer to minimize the number of nearest neighbour K(+) ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K(+) distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  6. Graphene Visualizes the Ion Distribution on Air-Cleaved Mica

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H.; Zandvliet, Harold J. W.; Poelsema, Bene

    2017-03-01

    The distribution of potassium (K+) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K+ ions prefer to minimize the number of nearest neighbour K+ ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K+ distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.

  7. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  8. A New Generation of Air Structures.

    ERIC Educational Resources Information Center

    Bird, Walter W.

    Air structures have developed through a number of significant stages: military applications, conventional standard air structures (the "bubbles"), exhibition structures, and permanent building applications. With no other type of structure is it possible to obtain clear, widespan coverage of almost unlimited areas, additional ceiling clearance for…

  9. Results of the first air ion spectrometer calibration and intercomparison workshop

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Sipilä, M.; Manninen, H. E.; Vanhanen, J.; Lehtipalo, K.; Gagné, S.; Neitola, K.; Mirme, A.; Mirme, S.; Tamm, E.; Uin, J.; Komsaare, K.; Attoui, M.; Kulmala, M.

    2008-09-01

    The air ion spectrometer (AIS) measures mobility and size distributions of atmospheric ions. The neutral air ion spectrometer (NAIS) can additionally measure neutral particles. The number of the (N)AIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial steps of new particle formation. There is no standard method applicable for calibrating the ion spectrometers in the sub-3 nm ion range. However, recent development of high resolution DMAs has enabled the size separation of small ions with good mobility resolution. For the first time, the ion spectrometers were intercompared and calibrated in a workshop, held in January February 2008 in Helsinki, Finland. The overall goal was to experimentally determine the (N)AIS transfer functions. Monomobile mobility standards, 241-Am charger ions and silver particles were generated and used as calibration aerosols. High resolution DMAs were used to size-separate the smaller (1 10 nm) ions, while at bigger diameters (4 40 nm) the size was selected with a HAUKE-type DMA. Differences between the (N)AISs were small. Positive ion mobilities were detected by (N)AISs with better accuracy than negative, nonetheless, both were somewhat overestimated. The completely monomobile mobility standards were measured with the best accuracy. The (N)AIS concentrations were compared with an aerosol electrometer (AE) and a condensation particle counter (CPC). At sizes below 1.5 nm (positive) and 3 nm (negative) the ion spectrometers detected higher concentrations while at bigger sizes they showed similar concentrations as the reference instruments. The total particle concentrations measured by NAISs were ±50% of the reference CPC concentration at 4 40 nm sizes. The lowest cut-off size of the NAIS in neutral particle measurements was determined to be between 1.5 and 3 nm, depending on the measurement conditions and the polarity.

  10. UCAV - The Next Generation Air-Superiority Fighter?

    DTIC Science & Technology

    2002-06-01

    number. 1. REPORT DATE 00 JUN 2002 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE UCAV - The Next Generation Air-Superiority...next- generation air-superiority fighter is entering development. Unmanned aircraft must be considered as an alternative to manned aircraft for this

  11. Next-Generation Ion Thruster Design Tool

    NASA Technical Reports Server (NTRS)

    Stolz, Peter

    2015-01-01

    Computational tools that accurately predict the performance of electric propulsion devices are highly desirable and beneficial to NASA and the broader electric propulsion community. The current state of the art in electric propulsion modeling relies heavily on empirical data and numerous computational "knobs." In Phase I of this project, Tech-X Corporation developed the most detailed ion engine discharge chamber model that currently exists. This kinetic model simulates all particles in the discharge chamber along with a physically correct simulation of the electric fields. In addition, kinetic erosion models are included for modeling the ion-impingement effects on thruster component erosion. In Phase II, Tech-X developed a user-friendly computer program for NASA and other governmental and industry customers. Tech-X has implemented a number of advanced numerical routines to bring the computational time down to a commercially acceptable level. NASA now has a highly sophisticated, user-friendly ion engine discharge chamber modeling tool.

  12. Generation of three-mode nonclassical vibrational states of ions

    SciTech Connect

    Nguyen Ba An; Truong Minh Duc

    2002-12-01

    We propose using eight lasers with appropriate orientations and conditions to generate stable trio coherent states of an ion in a three-dimensional isotropic trap. Seven lasers whose orientations are important should be detuned to the third lower sideband of the ion vibrational motion. The eighth laser whose direction is not important should be in resonance with the ionic transition.

  13. Generation of cluster states in ion-trap systems

    SciTech Connect

    Zheng Shibiao

    2006-06-15

    We propose two schemes for the generation of four-qubit cluster states in ion-trap systems. The first scheme is based on resonant sideband excitation, while the second scheme does not use the vibrational mode as the memory. The schemes can be realized with presently available ion-trap techniques.

  14. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  15. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  16. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  17. Design of a fifth generation air superiority fighter

    NASA Astrophysics Data System (ADS)

    Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus

    2016-07-01

    Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.

  18. A Public Health Approach to Evaluating the Significance of Air Ions

    DTIC Science & Technology

    1997-05-22

    were to govern the activities and functions of many different aspects of the organism. 17 Air Ion Composition and Terminology In order to fully...of air ions, the latter significantly favoring positive ions. 128,142,143 An association between the arrival of these winds and an increase in motor ...exposure to positive air ions.89𔄃 5 These positive ion-induced mucosal changes included congestion, erythema, and markedly reduced ciliary function . The

  19. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  20. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  1. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  2. Negative ion-driven associated particle neutron generator

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2016-01-01

    An associated particle neutron generator is described that employs a negative ion source to produce high neutron flux from a small source size. Negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). The neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to ~108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  3. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  4. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  5. OZONE GENERATORS IN INDOOR AIR SETTINGS

    EPA Science Inventory

    The report gives information on home/office ozone generators. It discusses their current uses as amelioratives for environmental tobacco smoke, biocontaminants, volatile organic compounds, and odors and details the advantages and disadvantages of each. Ozone appears to work well ...

  6. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  7. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  8. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  9. BMEWS Radar Beam Generation and Projection Clear Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMEWS Radar Beam Generation and Projection - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. Highbay Generator Room, looking northwest Beale Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Highbay Generator Room, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  12. 14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator steam-turbine unit; beyond is air compressor of Chicago Pneumatic Tool Company, 1920, engineered by Earl E. Know Company, Erie, Pennsylvania. - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA

  13. AIR POLLUTION: Emissions from Older Electricity Generating Units

    DTIC Science & Technology

    2002-06-01

    Protection Agency (EPA), under the Clean Air Act , regulates emissions of sulfur dioxide and nitrogen oxides from a variety of sources including...electricity generating units that burn fossil fuels, other industrial sources, and automobiles. EPA does not regulate carbon dioxide. Under the Clean Air Act , EPA

  14. Inverted battery design as ion generator for interfacing with biosystems

    PubMed Central

    Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing

    2017-01-01

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174

  15. Inverted battery design as ion generator for interfacing with biosystems

    DOE PAGES

    Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...

    2017-07-24

    In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less

  16. The Next-Generation Expeditionary Air Force

    DTIC Science & Technology

    2012-02-01

    Journal, which was selected as the journal’s second-best article for 2010 and was published in the Spanish, Portuguese , and Chinese editions of ASPJ...literature review and personal interviews provided the core research methodology for this study. A literature review identi- fied current AEF policy and...comments: Thank you for your assistance. C u t al o n g d o tt ed li n e Place Stamp Here AFRI/DE Dean, Air Force Research Institute 155 N

  17. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  18. Improvements in ion reflux: An electrodialytic eluent generation and suppression device for ion chromatography

    USDA-ARS?s Scientific Manuscript database

    This work describes a membrane based electrodialytic ion reflux device (IRD), which uses water as the pumped phase and integrates isocratic and gradient eluent generation and suppression. The current design incorporates several ion exchange membranes to create discrete chambers for suppression and e...

  19. Strategies for generating peptide radical cations via ion/ion reactions.

    PubMed

    Gilbert, Joshua D; Fisher, Christine M; Bu, Jiexun; Prentice, Boone M; Redwine, James G; McLuckey, Scott A

    2015-02-01

    Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  1. Features of ion generation using Nd-glass laser

    SciTech Connect

    Kondrashev, S.; Kanesue, T.; Okamura, M.; Sakakibara, K.

    2006-11-15

    Charge state and energy distributions of ions generated by a 3 J/30 ns Nd-glass laser were measured at a distance of 3.7 m from the target for seven different elements of the Periodic Table and for two different laser power densities (of the order of 10{sup 11} and 10{sup 12} W/cm{sup 2}). Two groups of elements were found: highly charged ions with ionization potentials in the range of 500-1000 eV were registered for all elements between {sup 12}C and {sup 56}Fe; at the same time, ions with about-one-order-less ionization potentials were registered for elements between {sup 74}Ge and {sup 181}Ta. The most probable reason for such a big difference is the recombination losses of ions during laser-produced plasma expansion into vacuum. Verification of recombination losses in the case of {sup 181}Ta target has shown no losses at distances longer than 32.5 cm from the target, so recombination processes should take place at shorter distances. Current densities, pulse durations, energy ranges, and numbers of ions with different charge states were found for all elements by normalizing charge state distributions to total ion currents. Two different ion groups exist for all elements and laser power densities used in experiments: the faster group has a very weak dependence of energy on ion charge state, and the energies of the slower group are proportional to the charge states with high accuracy.

  2. Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometer.

    PubMed

    Hollerbach, Adam; Baird, Zane; Cooks, R Graham

    2017-05-02

    The performance of a small, plastic drift tube ion mobility spectrometer (DT-IMS) is described. The IMS was manufactured using three-dimensional (3D) printing techniques and operates in the open air at ambient pressure, temperature, and humidity. The IMS housing and electrodes were printed from nonconductive polylactic acid (PLA, housing) and conductive polyethylene terephthalate glycol-modified polymer containing multiwalled carbon nanotubes (PETG-CNT, electrodes). Ring electrodes consisting of both an inner disk and an outer ring were used to prevent neutral transmission while maximizing ion transmission. As a stand-alone instrument, the 3D printed IMS is shown to achieve resolving powers of between 24 and 50 in positive ion mode using tetraalkylammonium bromide salts (TAA), benzylamines (mono-, di-, and tri-), and illicit drugs (MA, MDEA, and haloperidol). Resolving powers of between 29 and 42 were achieved in negative ion mode using sodium alkyl sulfates (C8, C12, C16, and C18). Reduced ion mobilities of TAA cations (C2-C8) were calculated at 14% relative humidity in air to be 1.36, 1.18, 1.03, 0.90, 0.80, 0.73, and 0.67, respectively. The effect of humidity on reduced ion mobilities of TAA cations is discussed. 3D printing is shown to be a quick and cost-effective way to produce small IMS instruments that can compete in performance with conventionally manufactured IMS instruments that also operate in the open air. An important difference between this IMS and other instruments is the absence of a counter gas flow.

  3. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  4. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  5. Generating High-Brightness Ion Beams for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Cuneo, M. E.

    1997-11-01

    The generation of high current density ion beams with applied-B ion diodes showed promise in the late-1980's as an efficient, rep-rate, focusable driver for inertial confinement fusion. These devices use several Tesla insulating magnetic fields to restrict electron motion across anode-cathode gaps of order 1-2 cm, while accelerating ions to generate ≈ 1 kA/cm^2, 5 - 15 MeV beams. These beams have been used to heat hohlraums to about 65 eV. However, meeting the ICF driver requirements for low-divergence and high-brightness lithium ion beams has been more technically challenging than initially thought. Experimental and theoretical work over the last 5 years shows that high-brightness beams meeting the requirements for inertial confinement fusion are possible. The production of these beams requires the simultaneous integration of at least four conditions: 1) rigorous vacuum cleaning techniques for control of undesired anode, cathode, ion source and limiter plasma formation from electrode contaminants to control impurity ions and impedance collapse; 2) carefully tailored insulating magnetic field geometry for uniform beam generation; 3) high magnetic fields (V_crit/V > 2) and other techniques to control the electron sheath and the onset of a high divergence electromagnetic instability that couples strongly to the ion beam; and 4) an active, pre-formed, uniform lithium plasma for low source divergence which is compatible with the above electron-sheath control techniques. These four conditions have never been simultaneously present in any lithium beam experiment, but simulations and experimental tests of individual conditions have been done. The integration of these conditions is a goal of the present ion beam generation program at Sandia. This talk will focus on the vacuum cleaning techniques for ion diodes and pulsed power devices in general, including experimental results obtained on the SABRE and PBFA-II accelerators over the last 3 years. The current status of

  6. Plasma Generation in High-Current Ion Sources

    NASA Astrophysics Data System (ADS)

    Filuk, A. B.; Cuneo, M. E.; Mehlhorn, T. A.; Pointon, T. D.; Vesey, R. A.; Welch, D.

    1996-10-01

    We are using kA/cm^2 ion sources to generate intense pulsed ion beams for driving Inertial Confinement Fusion targets. These sources are the anode of an ion diode that uses several-Tesla magnetic fields to restrict electron flow across the diode while permitting ion acceleration. Our 2 cm diode anode-cathode gaps have 10 MV applied in order to accelerate Li ions from 100-1000 cm^2 anode areas. During the 50 ns beam pulse, we observe a transition in beam content from Li ions to H,C,O impurity ions. As well, a significant fraction of the total diode current is in electrons leaking across the magnetic insulation to the anode. The several-GW/cm^2 leakage flux of MeV electrons deposits large amounts of energy into the anode surface, releasing physi- and chemi-sorbed impurities in the modest 10-5-10-6 Torr diode vacuum. These desorbed impurity neutrals can expand and rapidly ionize within about 200 μm of the anode during the beam pulse. We are modeling this process in a multi-dimensional hybrid fluid/PIC code and making spectroscopic measurements to quantify these mechanisms.

  7. Results of the first air ion spectrometer calibration and intercomparison workshop

    NASA Astrophysics Data System (ADS)

    Asmi, E.; Sipilä, M.; Manninen, H. E.; Vanhanen, J.; Lehtipalo, K.; Gagné, S.; Neitola, K.; Mirme, A.; Mirme, S.; Tamm, E.; Uin, J.; Komsaare, K.; Attoui, M.; Kulmala, M.

    2009-01-01

    The Air Ion Spectrometer (AIS) measures mobility and size distributions of atmospheric ions. The Neutral cluster and Air Ion Spectrometer (NAIS) can additionally measure neutral particles. The number of the (N)AIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial steps of new particle formation. There is no standard method applicable for calibrating the ion spectrometers in the sub-3 nm ion range. However, recent development of high resolution DMAs has enabled the size separation of small ions with good mobility resolution. For the first time, the ion spectrometers were intercompared and calibrated in a workshop, held in January-February 2008 in Helsinki, Finland. The overall goal was to experimentally determine the (N)AIS transfer functions. Monomobile mobility standards, 241-Am charger ions and silver particles were generated and used as calibration aerosols. High resolution DMAs were used to size-separate the smaller (1-10 nm) ions, while at bigger diameters (4-40 nm) the size was selected with a HAUKE-type DMA. Negative ion mobilities were detected by (N)AISs with slightly better accuracy than positive, nonetheless, both were somewhat overestimated. A linear fit of slope of one to the whole dataset of mobilities suggested that (N)AISs measured the negative mobilities 1.36±0.16 times larger compared with the reference instruments. Similarly, positive mobilities were measured 1.39±0.15 times larger compared with the reference instruments. The completely monomobile mobility standards were measured with the best accuracy. The (N)AIS concentrations were compared with an aerosol electrometer (AE) and a condensation particle counter (CPC). At sizes below 1.5 nm (positive) and 3 nm (negative) the ion spectrometers detected higher concentrations while at bigger sizes they showed similar concentrations as the reference instruments. The total particle concentrations measured by

  8. Fourth generation electron cyclotron resonance ion sources (invited)

    SciTech Connect

    Lyneis, Claude M.; Leitner, D.; Todd, D. S.; Sabbi, G.; Prestemon, S.; Caspi, S.; Ferracin, P.

    2008-02-15

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B{sub ECR} will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb{sub 3}Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development.

  9. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  10. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649

  11. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    PubMed

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.

  12. High average power second harmonic generation in air

    SciTech Connect

    Beresna, Martynas; Kazansky, Peter G.; Svirko, Yuri; Barkauskas, Martynas; Danielius, Romas

    2009-09-21

    We demonstrate second harmonic vortex generation in atmospheric pressure air using tightly focused femtosecond laser beam. The circularly polarized ring-shaped beam of the second harmonic is generated in the air by fundamental beam of the same circular polarization, while the linear polarized beam produces two-lobe beam at the second harmonic frequency. The achieved normalized conversion efficiency and average second harmonic power are two orders of magnitude higher compared to those previously reported and can be increased up to 20 times by external gas flow. We demonstrate that the frequency doubling originates from the gradient of photoexcited free electrons created by pondermotive force.

  13. Ion reflection by shock waves and pulse generation by cross-field ion beams

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2017-02-01

    Comparisons are made of two different particle simulations: one for the study of plasma-based accelerators (Gueroult & Fisch, Phys. Plasmas, vol. 23, 2016, 032113) and the other for the study of shock formation in the interstellar medium (Yamauchi & Ohsawa, Phys. Plasmas, vol. 14, 2007, 053110). In the former, shock waves used for plasma density control create ion beams by reflection. In the latter, a fast and dense beam of exploding ions penetrates a surrounding plasma. In both simulations, magnetic bumps are generated from the motion of ion beams perpendicular to a magnetic field. Despite the apparent differences of their purposes, configurations and spatial scales, the two simulations show strong similarities in the generation processes and effects of the bumps, suggesting that these are not rare plasma phenomena. The bump created by the exploding ions develops into backward and forward magnetosonic pulses.

  14. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  15. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    NASA Astrophysics Data System (ADS)

    Banks, James C.; Walla, Lisa A.; Walsh, David S.; Doyle, Barney L.

    2009-03-01

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT2) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT2 Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He++ beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within ±2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  16. Generation of high pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi

    2013-02-01

    We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Third harmonic generation in air ambient and laser ablated carbon plasma

    SciTech Connect

    Singh, Ravi Pratap Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablated plume play a vital role in the observed third harmonic signals.

  18. Generation of Vibrational Entangled Coherent States of Two Trapped Ions

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hua; Jiang, Yun-Kun; Yang, Zhen-Biao; Ye, Sai-Yun

    2005-10-01

    We propose a scheme for the generation of entangled coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are simultaneously illuminated by a single standing-wave laser tuned to the carrier. The scheme allows the production of an entangled coherent states with a considerably high speed as long as a laser field of sufficiently high intensity is available. The project supported by National Natural Science Foundation of China under Grant No. 10225421 and the Funds from Fuzhou University

  19. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  20. Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators.

    PubMed

    Chen, Yongjing; Srinivasan, Kannan; Dasgupta, Purnendu K

    2012-01-03

    The use of buffer solutions is immensely important in a great variety of disciplines. The generation of continuous pH gradients in flow systems plays an important role in the chromatographic separation of proteins, high-throughput pK(a) determinations, etc. We demonstrate here that electrodialytic membrane suppressors used in ion chromatography can be used to generate buffers. The generated pH, computed from first principles, agrees well with measured values. We demonstrate the generation of phosphate and citrate buffers using a cation-exchange membrane (CEM) -based anion suppressor and Tris and ethylenediamine buffers using an anion-exchange membrane (AEM) -based cation suppressor. Using a mixture of phosphate, citrate, and borate as the buffering ions and using a CEM suppressor, we demonstrate the generation of a highly reproducible (avg RSD 0.20%, n = 3), temporally linear (pH 3.0-11.9, r(2) > 0.9996), electrically controlled pH gradient. With butylamine and a large concentration (0.5 M) of added NaCl, we demonstrate a similar linear pH gradient of large range with a near-constant ionic strength. We believe that this approach will be of value for the generation of eluents in the separation of proteins and other biomolecules and in online process titrations.

  1. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  2. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    NASA Astrophysics Data System (ADS)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-05-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states.

  3. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages.

    PubMed

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A

    2017-05-11

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. Graphical Abstract ᅟ.

  4. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  5. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  6. Generation of hyperentangled states between remote noninteracting atomic ions

    SciTech Connect

    Hu Baolin; Zhan Youbang

    2010-11-15

    We propose a scheme of generating four-qubit hyperentangled states between a pair of remote noninteracting atomic ions with a {Lambda} configuration that are confined in Paul traps. These hyperentangled states, different from the normal entangled states that are entangled in a single degree of freedom, are entangled in both spin and motion degrees of freedom. In our proposal, the entanglement is first generated in spin degrees of freedom using linear optics and then transferred to the motion degree of freedom using a sequence of laser pluses, including the stimulated Raman carrier transitions and sideband transitions. The proposal is completed with regenerating entanglement in spin degrees of freedom using linear optics.

  7. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  8. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  9. Toward the Next Generation of Air Quality Monitoring Indicators

    NASA Technical Reports Server (NTRS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc

    2013-01-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  10. Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism.

    PubMed

    Iwama, H

    2004-08-01

    To elucidate a potential mechanism by which negative air ions improve aerobic metabolism, changes in venous blood lactate levels, pH, erythrocyte deformability, and plasma superoxide dismutase activity and ceruloplasmin levels were examined during a 1-h exposure to negative air ions created by water shearing or corona discharge in nine adult healthy volunteers. The blood lactate level decreased from 1.3 +/- 0.3 to 1.0 +/- 0.2 mmol/l, pH increased from 7.388 +/- 0.025 to 7.417 +/- 0.036, and erythrocyte deformability improved from 37.0 +/- 2.2 to 35.1 +/- 3.0 s, expressed as the mean +/- s.d., when exposed to negative air ions created by water shearing, but did not change when exposed to negative air ions created by corona discharge. Other variables did not change in either exposure. The results obtained suggest that negative air ions created by water shearing improve aerobic metabolism by improving erythrocyte deformability. The paper shows that negative air ions created by water shearing method improve aerobic metabolism only during a 1-h exposure, which may be caused by improvement of erythrocyte deformability, but negative air ions created by corona discharge have no effects. A potential mechanism is that negative air ions enter the circulating blood via the lungs and electrons of these ions are delivered to the plasma protein. Why negative air ions created by corona discharge have no effects is considered that water binding does not exist so that the lifetime of these ions is markedly short, by which the ions cannot reach the alveoli of the lungs sufficiently.

  11. Secondary Electron Generation by Low Energy Ion Beams

    SciTech Connect

    Joy, David Charles; Lin, Yinghong; Meyer III, Harry M; Demers, Hendrix; Newbury, Dale

    2006-01-01

    Low energy ion beams are being increasingly viewed as an alternative to, or even as areplacement for, low voltage SEMs. The beam interaction volumes in both cases are comparable in their size and their proximity to the sample surface, and both can produce high quality secondary electron images. However, although a cursory comparison of ion generated SE (iSE) and electron generated SE (eSE) images of the same area of a sample shows micrographs that can look very similar this is misleading because the nature of the iSE and eSE images are quite distinct. More experimental data and additional analysis of the beam interactions is therefore required if images are to be properly nterpreted.The yield de of eSE, rises rapidly with incident beam energy E reaching a maximum value which is typically in the range 1.5-2 and occurs at an energy of a few hundred eV before then falling away as about 1/E.. In the case of ion beam irradiation the kinetic production of iSE commences at a particle velocity of about 107cm/sec 30eV for He, (3keV for Ar) producing a yield di of iSE which rises almost linearly with the accelerating voltage and reaches typical values of 1.5 - 2.5 for energies of the order of 20- 30kV. Thus while at low energies the eSE and iSE yields are comparable in magnitude, at higher energies the iSE yield is an order of magnitude or more larger. The iSE yield will eventually each a maximum value and then begin to fall when once the interaction volume lies mostly below the escape depth of the SE. Both eSE and iSE yields also display a marked - although apparently chaotic - dependence on the atomic number of the target (Z2) and, in the ion case, on the atomic number of the ion (Z1) itself. In the electron case the minima in the SE yield versus Z2 plot correspond to shell filling but there is presently insufficient evidence to confirm if the same is true for the ion SE case. Because the stopping powers of ion and electrons, and hence their range in a given material, are

  12. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1975-01-01

    The use of high voltage solar arrays greatly reduces or eliminates power processing requirements in space electric propulsion systems. This use also requires substantial areas of solar array to be at high positive potential relative to space and most of the spacecraft. The charge exchange plasma conducts electrons from the ion beam to such positive surfaces, and thereby electrically load the high voltage solar array. To evaluate this problem, the charge-exchange plasma generated by an ion beam was investigated experimentally. Based upon the experimental data, a simple model was derived for the charge-exchange plasma. This model is conservative in the sense that both the electron/ion density and the electron current density should be equal to, or less than, the preducted value for all directions in the hemisphere upstream of the ion beam direction. Increasing the distance between a positive potential surface (such as a high voltage solar array) and the thruster is the simplest way to control interactions. Both densities and currents vary as the inverse square of this distance.

  13. Tsunami wave generation, propagation and inundation from by asteroid-generated air bursts

    NASA Astrophysics Data System (ADS)

    Weiss, Robert; Berger, Marsha; LeVeque, Randall

    2017-04-01

    We discuss tsunami propagation and runup for asteroid-generated air bursts. We present simulations for a range of conditions using the GeoClaw and Basilisk codes and compare simulations with Nonlinear Shallow Water Equations and Serre-Green-Naghdi equations. Examples include asteroids that explode with 250 MT of kinetic energy, and use bathymetry from the U.S. coastline as well as an idealized bathymetry for a parameter study. The latter is based on a radially symmetric bathymetry to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated.

  14. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    SciTech Connect

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  15. Overdense plasma generation in a compact ion source

    NASA Astrophysics Data System (ADS)

    Castro, G.; Mascali, D.; Gammino, S.; Torrisi, G.; Romano, F. P.; Celona, L.; Altana, C.; Caliri, C.; Gambino, N.; Lanaia, D.; Miracoli, R.; Neri, L.; Sorbello, G.

    2017-05-01

    Electron cyclotron resonance ion sources (ECRIS) are widely used plasma based machines for the production of intense ion beams in science and industry. The performance of modern devices is limited by the presence of the density cut-off, above which electromagnetic (EM) waves sustaining the plasma are reflected. We hereby discuss the systematic data analysis of electrostatic wave generation in an ECR prototype operating at 3.75 GHz-0.1 THz. In particular, electron Bernstein waves (EBW) have been excited. EBW have already been generated in large-scale plasma devices for thermonuclear fusion purposes. In ion sources where L c ˜ λ RF (L c being the plasma chamber size and λ RF the pumping wave wavelength) the EM field assumes a modal behaviour; thus both plasma and EM field self-organize so that no optical-like wave launching is possible (i.e. the cavity effect dominates on the optical path). The collected data, however, supported by 3D full-wave simulations, actually demonstrate that a Budden-type X-B conversion scenario can be established above some critical RF power thresholds, operating in an off-ECR regime. The generation and absorption of the EBW has been demonstrated by the presence of three peculiar signatures: along with the establishment of an overdense plasma, generation of supra-thermal electrons and modification (non-linear broadening) of the EM spectrum measured within the plasma have been observed. At the threshold establishing such a heating regime, the collected data provide evidence for a fast rotation of the electron fluid.

  16. Design and construction of cage environments for air ion and electric field research

    NASA Astrophysics Data System (ADS)

    Yost, M. G.; Kellogg, E. W.

    1987-06-01

    This report describes the design and construction of cage environments suitable for chronic exposures of large groups of mice to air ions and electric fields. These environments provide defined and reproducible ion densities, ion flux, DC electric fields, sound levels, air temperature and air quality. When used during a 2 year study, these cage environments served as a durable and reliable continuous exposure system. Three environmental chambers (cubicles) housed a total of 12 cages and provided control of air temperature, air purity and lighting. Exposure cages had grounded metal exterior walls, a plexiglass door and interior walls lined with formica. An internal isolated field plate supplemented with guard wires, energized with ca 1000 VDC, created about a 2 kV/m electric field at the grounded cage floor. Air ions resulted from the beta emission of sealed tritium foils mounted on the field plate. Cages provided high ion (1.3×105 ions/cc), low ion (1.6×103 ions/cc) and field only (ion depleted < 50 ions/cc) conditions for both polarities with similar electric fields in ionized and field only cages. Detailed mapping of the floor level ion flux using 100 cm2 flat probes gave average fluxes of 880 fA cm-2 in high ion cages and 10 fA cm-2 in low ion cages. Whole body currents measured using live anesthethized mice in high ion cages averaged 104±63 pA. Both ion flux and whole body currents remained constant over time, indicating no charge accumulation on body fur or cage wall surfaces in this exposure system.

  17. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  18. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  19. Electrostatic precipitator apparatus having an improved ion generating means

    SciTech Connect

    Fitch, R.A.; Roe, J.T.

    1982-12-21

    A system is disclosed for removing particles from a gaseous medium and comprises an upstream precipitating stage followed by a downstream precipitating stage having one or more electrically charged shells with corona discharge apparatuses therein which produce ions at predictable, generally uniformly spaced locations. The shells have flat sides and openings at the upstream and downstream ends so as to permit a portion of the gaseous medium to flow through the interior of the shell and flat sides which act as collecting means. The flat sides of the shells are generally parallel to collecting side plates for providing a uniform electric field between the shells and collecting plates, the sides of the shells having openings to permit the passage of ions generated in the interior of the shell.

  20. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  1. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC.

    PubMed

    Gupta, D; Bolte, N; Gota, H; Hayashi, R; Kiyashko, V; Marsili, P; Morehouse, M; Primavera, S; Roche, T; Wessel, F

    2010-10-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  2. Demand response, behind-the-meter generation and air quality.

    PubMed

    Zhang, Xiyue; Zhang, K Max

    2015-02-03

    We investigated the implications of behind-the-meter (BTM) generation participating in demand response (DR) programs. Specifically, we evaluated the impacts of NOx emissions from BTM generators enrolled in the New York Independent System Operator (NYISO)'s reliability-based DR programs. Through analyzing the DR program enrollment data, DR event records, ozone air quality monitoring data, and emission characteristics of the generators, we found that the emissions from BTM generators very likely contribute to exceedingly high ozone concentrations in the Northeast Corridor region, and very likely account for a substantial fraction of total NOx emissions from electricity generation. In addition, a companion study showed that the emissions from BTM generators could also form near-source particulate matter (PM) hotspots. The important policy implications are that the absence of up-to-date regulations on BTM generators may offset the current efforts to reduce the emissions from peaking power plants, and that there is a need to quantify the environmental impacts of DR programs in designing sound policies related to demand-side resources. Furthermore, we proposed the concept of "Green" DR resources, referring to those that not only provide power systems reliability services, but also have verifiable environmental benefits or minimal negative environmental impacts. We argue that Green DR resources that are able to maintain resource adequacy and reduce emissions at the same time are key to achieving the cobenefits of power system reliability and protecting public health during periods with peak electricity demand.

  3. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  4. Air spark-like plasma source for antimicrobial NOx generation

    NASA Astrophysics Data System (ADS)

    Pavlovich, M. J.; Ono, T.; Galleher, C.; Curtis, B.; Clark, D. S.; Machala, Z.; Graves, D. B.

    2014-12-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NOx at an initial rate of about 1.5  ×  1016 NOx molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NOx in 10 min. Around 90% of the NOx is in the form of NO2 after several minutes of operation in the confined volume, suggesting that NO2 is the dominant antimicrobial component. The strong antimicrobial action of the NOx mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NOx mixture. Some possible applications of plasma generation of NOx (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature.

  5. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications.

  6. Fast fall-time ion beam in neutron generators

    SciTech Connect

    Ji, Q.; Kwan, J.; Regis, M.; Wu, Y.; Wilde, S.B.; Wallig, J.

    2008-08-10

    Ion beam with a fast fall time is useful in building neutron generators for the application of detecting hidden, gamma-shielded SNM using differential die-away (DDA) technique. Typically a fall time of less than 1 {micro}s can't be achieved by just turning off the power to the ion source due to the slow decay of plasma density (partly determined by the fall time of the RF power in the circuit). In this paper, we discuss the method of using an array of mini-apertures (instead of one large aperture beam) such that gating the beamlets can be done with low voltage and a small gap. This geometry minimizes the problem of voltage breakdown as well as reducing the time of flight to produce fast gating. We have designed and fabricated an array of 16 apertures (4 x 4) for a beam extraction experiment. Using a gating voltage of 1400 V and a gap distance of 1 mm, the fall time of extracted ion beam pulses is less than 1 {micro}s at various beam energies ranging between 400 eV to 800 eV. Usually merging an array of beamlets suffers the loss of beam brightness, i.e., emittance growth, but that is not an important issue for neutron source applications.

  7. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  8. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  9. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    NASA Astrophysics Data System (ADS)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    HYDJET++ is a Monte Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin and Snigirev, EPJC 45 (2006) 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte Carlo simulation procedure, C++ code FAST MC (Amelin et al., PRC 74 (2006) 064901; PRC 77 (2008) 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC. Program summaryProgram title: HYDJET++, version 2 Catalogue identifier: AECR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 100 387 No. of bytes in distributed program, including test data, etc.: 797 019 Distribution format: tar.gz Programming language: C++ (however there is a Fortran-written part which is included in the generator structure as a separate directory) Computer: Hardware independent (both C++ and Fortran compilers and ROOT environment [1] ( http://root.cern.ch/) should be installed

  10. Growth and certain chemical constituents of tobacco plants exposed to air ions

    NASA Astrophysics Data System (ADS)

    Barthakur, N. N.; Arnold, N. P.

    1988-06-01

    Controlled experiments were performed in Faraday cages on the effects of positive and negative air ions on flue-cured tobacco plants. Continuous exposures for 15 days to air ions showed no significant differences in any plant growth characteristic between the treated and control plants. Standard errors in the measurement of the growth parameters for ion exposed plants were, however, consistently higher than those of control plants. Spatial variation in concentration gradients of air ions produced by corona discharge might have contributed to masking of the relatively small effects of air ions on biological organisms observed in previous experiments in this laboratory. No significant difference was observed between the experimental and control plants in nicotine, total alkaloid, and reducing sugar contents. Total nitrogen content was slightly higher for treated than control plants.

  11. Microscale air quality impacts of distributed power generation facilities.

    PubMed

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  12. Design studies for the next generation electron ion colliders

    NASA Astrophysics Data System (ADS)

    Sayed, Hisham Kamal; Bogacz, S. A.; Krafft, G.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3-11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large β function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  13. CAMECA IMS 1300-HR3: The New Generation Ion Microprobe

    NASA Astrophysics Data System (ADS)

    Peres, P.; Choi, S. Y.; Renaud, L.; Saliot, P.; Larson, D. J.

    2016-12-01

    The success of secondary ion mass spectrometry (SIMS) in Geo- and Cosmo-chemistry relies on its performance in terms of: 1) very high sensitivity (mandatory for high precision measurements or to achieve low detection limits); 2) a broad mass range of elemental and isotopic species, from low mass (H) to high mass (U and above); 3) in-situ analysis of any solid flat polished surface; and 4) high spatial resolution from tens of microns down to sub-micron scale. The IMS 1300-HR3 (High Reproducibility, High spatial Resolution, High mass Resolution) is the latest generation of CAMECA's large geometry magnetic sector SIMS (or ion microprobe), successor to the internationally recognized IMS 1280-HR. The 1300-HR3delivers unmatched analytical performance for a wide range of applications (stable isotopes, geochronology, trace elements, nuclear safeguards and environmental studies…) due to: • High brightness RF-plasma oxygen ion source with enhanced beam density and current stability, dramatically improving spatial resolution, data reproducibility, and throughput • Automated sample loading system with motorized sample height (Z) adjustment, significantly increasing analysis precision, ease-of-use, and productivity • UV-light microscope for enhanced optical image resolution, together with dedicated software for easy sample navigation (developed by University of Wisconsin, USA) • Low noise 1012Ω resistor Faraday cup preamplifier boards for measuring low signal intensities In addition, improvements in electronics and software have been integrated into the new instrument. In order to meet a growing demand from geochronologists, CAMECA also introduces the KLEORA, which is a fully optimized ion microprobe for advanced mineral dating derived from the IMS 1300-HR3. Instrumental developments as well as data obtained for stable isotope and U-Pb dating applications will be presented in detail.

  14. Design studies for the next generation electron ion colliders

    SciTech Connect

    Sayed, Hisham Kamal; Bogacz, Slawomir A.; Krafft, Geoffrey A.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3–11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large β function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  15. Initial results from the operation of two argon ion generators in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Pollock, C. J.; Arnoldy, R. L.; Scales, W. A.

    1987-01-01

    Two argon ion generators have been lofted by sounding rockets in order to investigate ion beam dynamics and beam effects on the ionosphere, and auroral electrodynamics during rocket passage over auroral arcs. The ion generators were on a subpayload that was separated from the main payload early in the flight. The main payload conducted the diagnostic measurements during ion beam operations. Evidence of heating of the ionosphere around the subpayload during each ion beam emission is noted.

  16. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  17. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  18. Air-borne sound generated by sea waves.

    PubMed

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  19. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    NASA Astrophysics Data System (ADS)

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C. M.; Collins, D.; Dwinell, R. D.

    2005-03-01

    The VIA-301 Heatwave™ gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end [1]. This VIA-301 Heatwave™ gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave™ may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power, the

  20. The 28 GHZ, 10 KW, CW Gyrotron Generator for the VENUS ECR Ion Source at LBNL

    SciTech Connect

    Marks, M.; Evans, S.; Jory, H.; Holstein, D.; Rizzo, R.; Beck, P.; Cisto, B.; Leitner, D.; Lyneis, C.M.; Collins, D.; Dwinell, R.D.

    2005-03-15

    The VIA-301 Heatwave{sup TM} gyrotron generator was specifically designed to meet the requirements of the Venus ECR Ion Source at the Lawrence Berkeley National Laboratory (LBNL). VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end].This VIA-301 Heatwave{sup TM} gyrotron system provides 100 watts to 10 kW continuous wave (CW) RF output at 28 GHz. The RF output level is smoothly controllable throughout this entire range. The power can be set and maintained to within 10 watts at the higher power end of the power range and to within 30 watts at the lower power end of the power range. A dual directional coupler, analog conditioning circuitry, and a 12-bit analog input to the embedded controller are used to provide a power measurement accurate to within 2%. The embedded controller completes a feedback loop using an external command set point for desired power output. Typical control-loop-time is on the order of 500 mS. Hard-wired interlocks are provided for personnel safety and for protection of the generator system. In addition, there are software controlled interlocks for protection of the generator from high ambient temperature, high water temperature, and other conditions that would affect the performance of the generator or reduce the lifetime of the gyrotron. Cooling of the gyrotron and power supply is achieved using both water and forced circulation of ambient air. Water-cooling provides about 80% of the cooling requirement. Input power to the generator from the prime power line is less than 60 kW at full power. The Heatwave{sup TM} may be operated locally via its front panel or remotely via either RS-232 and/or Ethernet connections. Through the RS-232 the forward power, the reflected power

  1. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  2. Ozone Generation in Air during Electron Beam Processing

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.; Galloway, Richard A.

    Ozone, the triatomic form of oxygen, can be generated by exposing normal diatomic oxygen gas to energetic electrons, X-rays, nuclear gamma rays, short-wavelength ultraviolet radiation (UV) and electrical discharges. Ozone is toxic to all forms of life, and governmental regulations have been established to protect people from excessive exposures to this gas. The human threshold limit values (TLV) vary from 60 to 100 parts per billion (ppb) in air, depending on the agency or country involved. Much higher concentrations can be produced inside industrial electron beam (EB) facilities, so methods for ozone removal must be provided. Equations for calculating the ozone yield vs absorbed energy, the production rate vs absorbed power, and the concentration in the air of an EB facility are presented in this paper. Since the production rate and concentration are proportional to the EB power dissipated in air, they are dependent on the design and application of the irradiation facility. Examples of these calculations are given for a typical EB process to cross-link insulated electrical wire or plastic tubing. The electron energy and beam power are assumed to be 1.5 MeV and 75 kW.

  3. Hot-air turbulence generator for multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Keskin, Onur; Jolissaint, Laurent; Bradley, Colin; Dost, Sadik; Sharf, Inna

    2003-12-01

    In this article, a simple low-cost, statistically repeatable, hot air optical turbulence generator based on the mixing of two air flows with different temperatures is described. Characterization results show that it is possible to create any turbulence strength up to CN2Δh ≍ 6 x 10-10 m1/3, allowing Fried's parameter as small as r0 ≍ 1.7 mm for one crossing through the turbulator or r0 ≍ 1.1 mm for two crossings. Outer scale of (L0 ≍ 133 +/- 60 mm) is found to be compatible to the turbulator chamber size (170 mm), and inner scale (l0 ≍ 7.6 mm +/- 3.8 mm) compatible with usual values measured by other authors for the free atmosphere. Power spectrum analysis of the centroid of the focused image shows a perfect and accurate agreement with Kolmogorov's theory, allowing to conclude that this device can be used with confidence to emulate good and easily controllable turbulence. In particular, this turbulator will be used with the MCAO test bench developed at the University of Victoria. By allowing two passes of the optical beam through the turbulator, without overlapping, two independent turbulent layers, set at equivalent altitudes of 5 and 15 km above the telescope entrance pupil, will be generated.

  4. Next Generation H{sup -} Ion Sources for the SNS

    SciTech Connect

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Pennisi, T.; Santana, M.; Tarvainen, O.

    2009-03-12

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to {approx}100 mA(60 Hz, 1 ms) have been observed and sustained currents >60 mA(60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of {approx}40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  5. Next Generation H- Ion Sources for the SNS

    SciTech Connect

    Welton, Robert F; Carmichael, Justin R; Carr, Jr, Jerry; Crisp, Danny W; Goulding, Richard Howell; Han, Baoxi; Pennisi, Terry R; Murray Jr, S N; Stockli, Martin P; Tarvainen, Olli A; Santana, Manuel

    2009-01-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H{sup -} ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H{sup -} ion source based on an AlN ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to {approx}100 mA (60Hz, 1ms) have been observed and sustained currents >60 mA (60Hz, 1ms) have been demonstrated on the test stand. Accelerated beam currents of {approx}40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H{sup -} beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  6. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  7. Next Generation H- Ion Sources for the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.

    2009-03-01

    The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.

  8. Modelling of advanced three-ion ICRF heating and fast ion generation scheme for tokamaks and stellarators

    NASA Astrophysics Data System (ADS)

    Faustin, J. M.; Graves, J. P.; Cooper, W. A.; Lanthaler, S.; Villard, L.; Pfefferlé, D.; Geiger, J.; Kazakov, Ye O.; Van Eester, D.

    2017-08-01

    Absorption of ion-cyclotron range of frequencies waves at the fundamental resonance is an efficient source of plasma heating and fast ion generation in tokamaks and stellarators. This heating method is planned to be exploited as a fast ion source in the Wendelstein 7-X stellarator. The work presented here assesses the possibility of using the newly developed three-ion species scheme (Kazakov et al (2015) Nucl. Fusion 55 032001) in tokamak and stellarator plasmas, which could offer the capability of generating more energetic ions than the traditional minority heating scheme with moderate input power. Using the SCENIC code, it is found that fast ions in the MeV range of energy can be produced in JET-like plasmas. The RF-induced particle pinch is seen to strongly impact the fast ion pressure profile in particular. Our results show that in typical high-density W7-X plasmas, the three-ion species scheme generates more energetic ions than the more traditional minority heating scheme, which makes three-ion scenario promising for fast-ion confinement studies in W7-X.

  9. Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.

    PubMed

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-06-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.

  10. Evaluating and Mapping of Spatial Air Ion Quality Patterns in a Residential Garden Using a Geostatistic Method

    PubMed Central

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-01-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body’s physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects. PMID:21776231

  11. Generation of ions in a pulsed ion source with an interface based on a polymer track membrane

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Khidirov, S. G.; Buido, E. A.

    2016-10-01

    The time-of-flight spectra of ions generated during the extraction of negative ions from the KI solution in water-glycerin mixture by high-strength electric field pulses are studied using a source with an interface based on a polymer track membrane. It has been shown that the ions formed in secondary processes of bombardment of the membrane surface make a considerable contribution to the observed spectra. It has been found that the peaks of negative hydrogen ions have the highest intensity in the spectrum, indicating effective emission of these ions during the bombardment of polyethylene terephthalate by secondary ions with an energy of about 6 keV. The main trends in the modification of the membrane interface to reduce the fraction of secondary ions in the ion beam have been outlined.

  12. The effects of negative air ions on various physiological functions during work in a hot environment

    NASA Astrophysics Data System (ADS)

    Inbar, O.; Rotstein, A.; Dlin, R.; Dotan, R.; Sulman, F. G.

    1982-06-01

    The effects of negative air-ions on human physical performance has been investigated. Twenty-one healthy males, 20 25 years old (X=23.6±2.6) were exposed to two 180-min rest and exercise sessions two weeks apart. The subjects were randomly assigned into either an experimental group (n=12) or to a control group (n=9). The experimental group performed the first session in neutral air conditions and the second one in air containing 1.36 to 1.90×105 negative air ions and 1.40 to 1.66×102 positive air ions/ml. The control group performed both sessions under neutral air conditions. All sessions were held at Ta=40±1‡C and 25±5% RH. Each session included one hour of resting under the respective ionization conditions, followed by 3 30-min cycle ergometer work bouts, separated by 7-min rest periods. The mechanical work-load during the bicycle exercise was 1.64±0.6 W/kg BW. The experimental group showed a significant reduction with negative air-ions in heart rate (HR), in rectal temperature, and in the rating of perceived exertion (RPE), all when compared with their own neutral session. The control group showed no significant changes between the first and the second exposure. Although not statistically significant, being exposed to negative air-ions seems also to reduce total sweat rate and minute ventilation (VE), and to increase O2 pulse. It is suggested that under the conditions of this study negative air ions can improve various cardiovascular and thermoregulatory functions as well as subjective feelings during physical effort. It is felt that such positive influences may be augmented by increasing the exposure time to negative ionized air and/or prolonging the stressful conditions.

  13. Positive and negative ions by air purifier have no effects on embryo-fetal development in rats.

    PubMed

    Yamamoto, Dai; Wako, Kiyoshi; Sato, Yukari; Fujishiro, Mayumi; Matsuura, Ikuo; Ohnishi, Yasuyuki

    2014-06-01

    Air purifiers, which release positive and negative ions generated by an electric discharge into the air, have been widely used in common households. In this study, the developmental toxicity potential of the ionized air containing positive and negative ions was evaluated in SD rats [Crl:CD(SD)] following whole-body inhalation to obtain preliminary information for the definitive study. Two groups of 10 pregnant female rats were exposed to the ionized air at concentrations of 0 and 7,000,000 ions/cm(3) for 6 hr per day from Days 6 to 19 of gestation. All dams underwent a cesarean section on Day 20 of gestation and their fetuses were examined externally, viscerally, and skeletally for morphological changes. The ionized air had no effects on dams in terms of clinical signs, body weight, food consumption, gravid uterine weights, corrected body weight by gravid uterine weight, or necropsy findings. In addition, there were no effects on the maintenance of pregnancy, including abortion or premature delivery. No exposure-related changes were detected in the number of corpora lutea, implantations, dead embryos, or live fetuses, implantation loss, live fetal weights, sex ratio, or placental weight or features. Fetal examination revealed no external, visceral, or skeletal anomalies or variations caused by the ionized air, nor were there any changes in degree of ossification. Although this study did not fully adhere to the current guidelines because of a smaller number of animals per group, it was suggested that the ionized air has no maternal toxicity or embryo-fetal toxicity in rats.

  14. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  15. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  16. Long-term biological effects of air ions and D.C. electric fields on Namru mice: First year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Krueger, A. P.

    1985-09-01

    This report describes for the first time the effects of long-term continuous exposures of animals to small air ions and D.C. electric fields. In this study we exposed 200 female NAMRU mice (25/cage) to the following conditions: ± high ions (2×105/cm3), ± low ions (2×103/cm3), ± field only and ground (ion depleted, no field). Specially designed cages provided a defined D.C. field of about 2 kV/meter in ionized environments, with somewhat lower values in the field only cages. Detailed mapping of ion flux originating from a tritium foil generating system (multiple sources in an overhead plate) indicated a well defined, but heterogenous pattern with eight peak areas. Using a 100 cm2 probe, ion flux values ranged from 10-12 10-14 A/cm2, with an average flux of 8.7±6.8×10-13 A/cm2 in high negative ion cages, with good reproducibility between cages. Measurements of serum glucose, cholesterol, and urea nitrogen (samples taken every three months) showed a number of small but consistent and statistically significant differences between animals maintained in different environments during the first year of exposure. Serum globulin and whole blood serotonin, however, did not show any significant environmental effects. Interestingly, pairwise comparisons between high negative and low negative ion conditions, or between high positive and low positive ion conditions, or between the two ground conditions, revealed no significant differences between cages. This argues for a similarity of environmental responses for the mice maintained in each of the compared conditions. The results of a multiple classification analysis for the entire first year showed a preponderence of effects for the ionized cages, although other conditions also had highly significant differences as compared to the grand mean value. While this study has shown effects of only small magnitude (compared to normal physiological variations) in the female NAMRU mice studied here, the significance of these results

  17. Multiband supercontinuum generation in an air-core revolver fibre

    NASA Astrophysics Data System (ADS)

    Yatsenko, Yu P.; Pleteneva, E. N.; Okhrimchuk, A. G.; Gladyshev, A. V.; Kosolapov, A. F.; Kolyadin, A. N.; Bufetov, I. A.

    2017-06-01

    Multiband supercontinuum generation in an air-core revolver fibre having a large number of transmission bands in a wide spectral range has been studied experimentally and theoretically for the first time. The fibre fabricated by us possesses unique dispersion and guidance characteristics for radiation transfer from one band to another despite the high losses at the band boundaries. In our experiments, launching 205-fs laser pulses of 110 μJ energy at 1028 nm into the fibre we have obtained a supercontinuum spanning the spectral range from 415 to 1593 nm, with 11 transmission bands. Numerical simulation suggests that, in the case of singlemode propagation of pulses with such energy in the fibre, the supercontinuum may span 14 transmission bands and have a spectral width above three octaves, with a long-wavelength edge at 4200 nm.

  18. Portable photocatalytic air cleaners: efficiencies and by-product generation.

    PubMed

    Gunschera, Jan; Markewitz, Doreen; Bansen, Birger; Salthammer, Tunga; Ding, Hui

    2016-04-01

    Portable photocatalytic air cleaners were investigated in 24 and 48 m(3) emission test chambers with regard to efficiency and by-product generation. For this purpose, formaldehyde, decane, 1,2-dichlorobenzene, toluene, α-pinene and heptanal were doped at sub-ppm concentration levels into the chambers individually and in mixtures. By way of specified test protocols, efficiencies could be distinguished but were strongly dependant on the choice of test compounds, especially on whether single or multi compound dosing was used, and on long-term effects. Initial clean air delivery rates (CADRs) up to 137 m(3)/h were measured. Typical by-products were found in significant concentrations. The main ones were formaldehyde up to 50 ppb (62 μg/m(3)) and acetone up to 80 ppb (190 μg/m(3)). Other aldehydes were also found, but at smaller levels. The detection of chloroacetone, a strong irritating compound, at concentrations up to 15 ppb (57 μg/m(3)) strengthens the importance of such investigations especially in cases were chloro-organic compounds are involved.

  19. Transport line for beam generated by ITEP Bernas ion source

    SciTech Connect

    Petrenko, S.V.; Kropachev, G.N.; Kuibeda, R.P.; Kulevoy, T.V.; Pershin, V.I.; Masunov, E.S.; Polozov, S.M.; Hershcovitch, A.; Johnson, B.M.; Poole, H.J.

    2006-03-15

    A joint research and development program is underway to investigate beam transport systems for intense steady-state ion sources for ion implanters. Two energy extremes of MeV and hundreds of eV are investigated using a modified Bernas ion source with an indirectly heated cathode. Results are presented for simulations of electrostatic systems performed to investigate the transportation of ion beams over a wide mass range: boron to decaborane.

  20. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    PubMed Central

    2010-01-01

    Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop

  1. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    DOEpatents

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  2. Generating Breathable Air Through Dissociation of N2O

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Frankie, Brian

    2006-01-01

    A nitrous oxide-based oxygen-supply system (NOBOSS) is an apparatus in which a breathable mixture comprising 2/3 volume parts of N2 and 1/3 volume part of O2 is generated through dissociation of N2O. The NOBOSS concept can be adapted to a variety of applications in which there are requirements for relatively compact, lightweight systems to supply breathable air. These could include air-supply systems for firefighters, divers, astronauts, and workers who must be protected against biological and chemical hazards. A NOBOSS stands in contrast to compressed-gas and cryogenic air-supply systems. Compressed-gas systems necessarily include massive tanks that can hold only relatively small amounts of gases. Alternatively, gases can be stored compactly in greater quantities and at low pressures when they are liquefied, but then cryogenic equipment is needed to maintain them in liquid form. Overcoming the disadvantages of both compressed-gas and cryogenic systems, the NOBOSS exploits the fact that N2O can be stored in liquid form at room temperature and moderate pressure. The mass of N2O that can be stored in a tank of a given mass is about 20 times the mass of compressed air that can be stored in a tank of equal mass. In a NOBOSS, N2O is exothermically dissociated to N2 and O2 in a main catalytic reactor. In order to ensure the dissociation of N2O to the maximum possible extent, the temperature of the reactor must be kept above 400 C. At the same time, to minimize concentrations of nitrogen oxides (which are toxic), it is necessary to keep the reactor temperature at or below 540 C. To keep the temperature within the required range throughout the reactor and, in particular, to prevent the formation of hot spots that would be generated by local concentrations of the exothermic dissociation reaction, the N2O is introduced into the reactor through an injector tube that features carefully spaced holes to distribute the input flow of N2O widely throughout the reactor. A NOBOSS

  3. [The investigation of air ion and particulates condition in Tianzhu Mountain].

    PubMed

    Xiu, Y L

    1990-05-01

    In order to monitor the distribution of atmospheric air ion and particulates in Tianzhu Mountain region, two observation points were established in Tianzhu Mountain in April, 1989. The results showed that the average concentration of air anode ion was 680/cm3, cathode ion 650/cm3. the range of single electrode coefficient is comfortable feeling, air quality index is 0.71 up to standard B grade (clean air), Total average concentration of suspended particulates was 0.242 mg/m3, average concentration of inhalation particulates was 0.168 mg/m3. Seventy percent particulates had diameters less than 10 microns, and thirty percent greater than 10 microns in total suspended particulates.

  4. A carbon-air battery for high power generation.

    PubMed

    Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping

    2015-03-16

    We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.

  5. Laboratory air bubble generation of various size distributions

    SciTech Connect

    Puleo, Jack A.; Johnson, Rex V.; Kooney, Tim N.

    2004-11-01

    Air bubble size in aqueous environments is an important factor governing natural processes ranging from fluid/atmosphere gas transfer to noise production. Bubbles are also known to affect various scientific instruments. In this study we investigate the production capability of eight inexpensive bubble generators using optical imaging techniques. Specific emphasis is directed towards determining bubble size and distribution for a given device, flow conditions, and type of water used (fresh vs salt). In almost all cases tested here, bubbles produced in salt water were more numerous, and smaller than for the same bubbler and conditions in fresh water. For porous media, the finer the pore size, the smaller the bubble produced with some variation depending on thickness of material containing the pore and water type. While no single generator tested was capable of spanning all the bubble sizes observed (100 to 6000 microns), the data contained herein will enable proper choice of bubbler or combinations thereof for future studies depending on the size and distribution of bubbles required.

  6. The Influence of Iron on Ammonium Ion Generation from Nitrate Ion in Liquid Phase

    NASA Astrophysics Data System (ADS)

    Youhei, Kinoshita; Naoki, Okumura; Kazunori, Takashima; Shinji, Katsura; Akira, Mizuno

    2005-02-01

    Flue gas cleaning in discharge plasma process has been studied intensively and we have tried to remove the NOx and SO2 using the wet-type plasma reactor. In this system, NO is oxidized to NO2 and absorbed as NO3-, and SO2 is absorbed as SO32- and oxidized in the liquid to SO42-. But the concentration of NO3- was saturated and the absorption of NOx and SO2 was inhibited. Then, the reduction of NO3- in the liquid is required. We examined the reductive reaction of NO3- to NH4+ using discharge above the liquid surface then the pH value of the liquid was changed to alkaline slightly. When the Fe plate was used as a ground electrode in the liquid, NH4+ was generated. Then, the relation between the generation of NH4+ and Fe ions (Fe2+ and Fe3+) was studied. When Fe2+ was presented in the liquid, NH4+ was generated and Fe2+ was oxidized to Fe3+. Fe2+ is required to generate NH4+ from NO3-. When NH4+ was generated from NO3-, both the calculated pH value from NH4+ concentration and the measured pH value indicated a similar value. From these results, the discharge above the liquid surface was effective to convert NO3- to NH4+ and the reductive reaction leads to more absorption of NO3-. These results showed that the wet-type plasma reactor is effective for NOx and SO2 removal system.

  7. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    NASA Astrophysics Data System (ADS)

    Naganuma, Tamaki; Traversa, Enrico

    2014-05-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments.Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs

  8. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    NASA Astrophysics Data System (ADS)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  9. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  10. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  11. An Entropic Mechanism of Generating Selective Ion Binding in Macromolecules

    PubMed Central

    Thomas, Michael; Jayatilaka, Dylan; Corry, Ben

    2013-01-01

    Several mechanisms have been proposed to explain how ion channels and transporters distinguish between similar ions, a process crucial for maintaining proper cell function. Of these, three can be broadly classed as mechanisms involving specific positional constraints on the ion coordinating ligands which arise through: a “rigid cavity”, a ‘strained cavity’ and ‘reduced ligand fluctuations’. Each operates in subtly different ways yet can produce markedly different influences on ion selectivity. Here we expand upon preliminary investigations into the reduced ligand fluctuation mechanism of ion selectivity by simulating how a series of model systems respond to a decrease in ligand thermal fluctuations while simultaneously maintaining optimal ion-ligand binding distances. Simple abstract-ligand models, as well as simple models based upon the ion binding sites in two amino acid transporters, show that limiting ligand fluctuations can create ion selectivity between Li+, Na+ and K+ even when there is no strain associated with the molecular framework accommodating the different ions. Reducing the fluctuations in the position of the coordinating ligands contributes to selectivity toward the smaller of two ions as a consequence of entropic differences. PMID:23468604

  12. Metal-air cell with ion exchange material

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  13. The effect of positive air ions on reproduction and growth in laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Head, E. L.

    1986-03-01

    The aim of the present investigation was to determine the growth rates, reproductive success and early mortality of laboratory rats maintained at 10,000 positive ions/ml over two generations. These findings were compared with those from animals maintained at ambient ion levels. The present work indicates that positive ions do not have any adverse effects on the reproductive capabilities or the growth of laboratory rats. In contrast it is shown that exposure to elevated levels of positive ions promotes overall growth, particularly in male rats. This action of positive ions increases with each successive generation exposed to the ions. It is suggested that the growth promoting effect of positive ions may be mediated via some modulation of the endocrine system.

  14. Continuum Generation of the Third-Harmonic Pulse Generated by an Intense Femtosecond IR Laser Pulse in Air

    DTIC Science & Technology

    2003-06-06

    c.m. bowden3 Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air 1 Time Domain Corporation...picosecond high-peak-power laser pulses are propagated in air. The supercontinuum generated during the filamentation process has been used for time ...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  15. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  16. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  17. Carbon nanowires generated by ion irradiation of hydrocarbon ices

    NASA Astrophysics Data System (ADS)

    Puglisi, O.; Compagnini, G.; D'Urso, L.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.

    2014-05-01

    In this paper we present the formation of carbon nanowires (polyynes and polycumulenes) in the solid state by ion irradiation of frozen hydrocarbons (C6H6 and C2H2). Irradiations have been performed using H+ ions in the 100's keV energy regime using fluences up to 5 × 1014 ions/cm2. Beyond the intrinsic significance of these results in the field of material science, this work has been motivated by the fact that ion beam irradiation of hydrocarbon ices is one of the most important process thought to happen in several extraterrestrial environments where many spectroscopic features of polyyne molecules have been identified.

  18. Vorticity generation by shock propagation through bubbles in air

    NASA Astrophysics Data System (ADS)

    Picone, J. M.; Boris, J. P.

    1986-11-01

    We use numerical solutions of the fluid equations for conservation of mass, momentum, and energy to study the interaction of a planar shock with a local, discrete inhomogeneity in the ambient medium. We study the effects of both geometry and distortion of the local sound speed by considering the nonuniformity to be a cylindrical of spherical bubble which has either a higher or lower density than the ambient gas. The Mach number of the shock is 1.2, the ambient gas is air, and the pressure is 1 atmosphere. The passage of the shock through a bubble generates vorticity at the boundary of the bubble. This vorticity produces a jet of ambient gas through the bubble, and as a consequence, the vorticity rolls up into a vortex filament pair (cylindrical bubble) or a vortex ring (spherical bubble). We discuss the theoretical treatment of this nonlinear interaction of the vorticity with itself and the relationship of our work to other theories. We relate our results to recent experiments of Haas and Sturtevant, in which helium and freon bubbles were used to simulate the local departures from ambient density.

  19. Air-coupled generation and detection of ultrasound in concrete

    NASA Astrophysics Data System (ADS)

    Schempp, Fabian; Kim, Jin-Yeon; Jacobs, Laurence J.

    2014-02-01

    It is well known that liquid coupling agents used to couple an ultrasonic transducer to a solid specimen cause a number of problems including inconsistency in results and slowness of the inspection. Especially when the specimen surface is rough such as those in-field concrete structures, the long surface preparation time that it takes to polish every single point of inspection makes it impractical to apply the traditional contact methods to the inspection of these structures. To address this issue, a fully noncontact air-coupled measurement setup in mid and high ultrasonic frequencies (50-150 kHz) is presented. The setup generates and detects bulk and Rayleigh surface waves in this frequency range with a sufficiently high signal-to-noise ratio (SNR), which enables performing a fast scan with a small number of signal averages. Using this setup, ultrasonic velocity and attenuation in a concrete specimen are measured. Also the possibility to detect discontinuities such as steel reinforcement bars or cracks in a concrete sample is explored.

  20. Visualization of air and metal inhomogeneities in phantoms irradiated by carbon ion beams using prompt secondary ions.

    PubMed

    Gaa, T; Reinhart, M; Hartmann, B; Jakubek, J; Soukup, P; Jäkel, O; Martišíková, M

    2017-06-01

    Non-invasive methods for monitoring of the therapeutic ion beam extension in the patient are desired in order to handle deteriorations of the dose distribution related to changes of the patient geometry. In carbon ion radiotherapy, secondary light ions represent one of potential sources of information about the dose distribution in the irradiated target. The capability to detect range-changing inhomogeneities inside of an otherwise homogeneous phantom, based on single track measurements, is addressed in this paper. Air and stainless steel inhomogeneities, with PMMA equivalent thickness of 10mm and 4.8mm respectively, were inserted into a PMMA-phantom at different positions in depth. Irradiations of the phantom with therapeutic carbon ion pencil beams were performed at the Heidelberg Ion Beam Therapy Center. Tracks of single secondary ions escaping the phantom under irradiation were detected with a pixelized semiconductor detector Timepix. The statistical relevance of the found differences between the track distributions with and without inhomogeneities was evaluated. Measured shifts of the distal edge and changes in the fragmentation probability make the presence of inhomogeneities inserted into the traversed medium detectable for both, 10mm air cavities and 1mm thick stainless steel. Moreover, the method was shown to be sensitive also on their position in the observed body, even when localized behind the Bragg-peak. The presented results demonstrate experimentally, that the method using distributions of single secondary ion tracks is sensitive to the changes of homogeneity of the traversed material for the studied geometries of the target. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Spectra of secondary electrons generated in water by energetic ions

    SciTech Connect

    Scifoni, Emanuele; Solov'yov, Andrey V.; Surdutovich, Eugene

    2010-02-15

    The energy distributions of secondary electrons produced by energetic carbon ions (in the energy range used, e.g., in hadron therapy), incident on liquid water, are discussed. For low-energy ions, a parametrization of the singly differential ionization cross sections is introduced, based on tuning the position of the Bragg peak. The resulting parametrization allows a fast calculation of the energy spectra of secondary electrons at different depths along the ion's trajectory, especially near the Bragg peak. At the same time, this parametrization provides penetration depths for a broad range of initial-ion energies within the therapeutically accepted error. For high-energy ions, the energy distribution is obtained with a use of the dielectric-response function approach. Different models are compared and discussed.

  2. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  3. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  4. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  5. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces.

    PubMed

    Tobias, Douglas J; Stern, Abraham C; Baer, Marcel D; Levin, Yan; Mundy, Christopher J

    2013-01-01

    Chemistry occurring at or near the surface of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces.

  6. Modeling heat dominated electric breakdown in air, with adaptivity to electron or ion time scales

    NASA Astrophysics Data System (ADS)

    Agnihotri, A.; Hundsdorfer, W.; Ebert, U.

    2017-09-01

    We model heat dominated electrical breakdown in air in a short planar gap. We couple the discharge dynamics in fluid approximation with the hydrodynamic motion of the air heated by the discharge. To be computationally efficient, we derive a reduced model on the ion time scale, and we switch between the full model on the electron time scale and the reduced model. We observe an ion pulse reaching the cathode, releasing electrons by secondary emission, and these electrons create another ion pulse. These cycles of ion pulses might lead to electrical breakdown. This breakdown is driven by Ohmic heating, thermal shocks and induced pressure waves, rather than by the streamer mechanism of local field enhancement at the streamer tip.

  7. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  8. Spectra of secondary electrons generated in water by energetic ions

    NASA Astrophysics Data System (ADS)

    Scifoni, Emanuele; Surdutovich, Eugene; Solov'Yov, Andrey V.

    2010-02-01

    The energy distributions of secondary electrons produced by energetic carbon ions (in the energy range used, e.g., in hadron therapy), incident on liquid water, are discussed. For low-energy ions, a parametrization of the singly differential ionization cross sections is introduced, based on tuning the position of the Bragg peak. The resulting parametrization allows a fast calculation of the energy spectra of secondary electrons at different depths along the ion’s trajectory, especially near the Bragg peak. At the same time, this parametrization provides penetration depths for a broad range of initial-ion energies within the therapeutically accepted error. For high-energy ions, the energy distribution is obtained with a use of the dielectric-response function approach. Different models are compared and discussed.

  9. Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas

    SciTech Connect

    Chen Min; Sheng Zhengming; Dong Quanli; He Minqing; Li Yutong; Bari, Muhammad Abbas; Zhang Jie

    2007-05-15

    Collisionless electrostatic shock (CES) generation and subsequent ion acceleration in laser plasma interaction are studied numerically by particle-in-cell simulations. Usually a CES is composed of a high ion density spike surrounded by a bipolar electric field. Ions in front of it can be either submerged or reflected by the shock front. The submerged ions experience few oscillations before becoming part of the shock itself, while the reflected ions are accelerated to twice the shock speed. The effects of the target thickness, density, ion mass, preplasma conditions, as well as the laser intensity on the shock generation are examined. Simulations show that such shocks can be formed in a wide range of laser and target conditions. The characteristic of the shock propagation through a plane interface between two targets with different properties is also investigated. These results are useful for future experimental studies of shock generation and acceleration.

  10. A study on the generation mechanisms of the lunar originating ions

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Saito, Y.; Uemura, K.; Nishino, M. N.; Yokota, S.; Tsunakawa, H.

    2013-12-01

    The Moon is known to have very thin atmosphere called Surface Bounded Exosphere (SBE), which consists of heavy neutral atoms and ions. Although the generation / transportation processes of the ions originating from the Moon have long been discussed, they have not been sufficiently understood yet. At present, it is supposed that ions are generated by multiple processes including ionization of neutral exosphere by solar wind, processes at the lunar surface such as photon-stimulated / thermal desorption, photon / charged-particle / chemical sputtering, and meteoric impact. The generated ions are accelerated by surface potential / convection electric field in the solar wind, and then released to space. We intend to estimate the amount of ions generated by photon-stimulated desorption (PSD) and ions generated by solar wind sputtering quantitatively, using data obtained by ion energy mass spectrometer MAP-PACE IMA on Kaguya, which made detailed observation at nearly 100km altitude. By using IMA, it is possible to know species and directions of the incident ions originating from the Moon. The Moon has no global intrinsic magnetic field but some localized magnetic fields called 'magnetic anomalies'. Previous studies revealed that solar wind ions were reflected to some extent and the detection of scattered solar wind ions at the lunar surface decreased above magnetic anomalies. These phenomena imply a possibility that the solar wind ions cannot reach the lunar surface in magnetic anomalies, which may result in the absence of the solar wind sputtering. On the other hand, there is another possibility that the scattered ions are trapped by magnetic anomalies though there exists the solar wind sputtering. We analyzed IMA data obtained above magnetic anomalies in order to know whether solar wind sputtering generated ions in magnetic anomalies or not. We found that it was quite unlikely that solar wind sputtering occurred in the magnetic anomalies. It was also revealed that the

  11. Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-07-15

    A multiple-staged ion acceleration mechanism in the interaction of a circularly polarized laser pulse with a solid target is studied by one-dimensional particle-in-cell simulation. The ions are accelerated from rest to several MeV monoenergetically at the front surface of the target. After all the plasma ions are accelerated, the acceleration process is repeated on the resulting monoenergetic ions. Under suitable conditions multiple repetitions can be realized and a high-energy quasi-monoenergetic ion beam can be obtained.

  12. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  13. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  14. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    SciTech Connect

    Zhu, X. P.; Zhang, Z. C.; Lei, M. K.; Pushkarev, A. I.

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  15. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  16. Gas-phase separations of protein and peptide ion fragments generated by collision-induced dissociation in an ion trap.

    PubMed

    Badman, Ethan R; Myung, S; Clemmer, David E

    2002-10-01

    Ion mobility/time-of-flight mass spectrometry techniques have been used to examine distributions of fragment ions generated by collision-induced dissociation (CID) in a quadrupole ion trap. The mobility-based separation step prior to mass-to-charge (m/z) analysis reduces spectral congestion and provides information that complements m/z-based assignments of peaks. The approach is demonstrated by examining fragmentation patterns of insulin chain B (a 30-residue peptide), and ubiquitin (a protein containing 76 amino acids). Some fragments of ubiquitin show evidence for multiple stable conformations.

  17. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  18. Generation of quasi-monoenergetic carbon ions accelerated parallel to the plane of a sandwich target

    SciTech Connect

    Wang, J. W.; Murakami, M.; Weng, S. M.; Xu, H.; Ju, J. J.; Luan, S. X.; Yu, W.

    2014-12-15

    A new ion acceleration scheme, namely, target parallel Coulomb acceleration, is proposed in which a carbon plate sandwiched between gold layers is irradiated with intense linearly polarized laser pulses. The high electrostatic field generated by the gold ions efficiently accelerates the embedded carbon ions parallel to the plane of the target. The ion beam is found to be collimated by the concave-shaped Coulomb potential. As a result, a quasi-monoenergetic and collimated C{sup 6+}-ion beam with an energy exceeding 10 MeV/nucleon is produced at a laser intensity of 5 × 10{sup 19} W/cm{sup 2}.

  19. Effect of plasma temperature on electrostatic shock generation and ion acceleration by laser

    SciTech Connect

    Zhang Xiaomei; Shen Baifei; Yu, M. Y.; Li Xuemei; Jin Zhangying; Wang Fengchao; Wen Meng

    2007-11-15

    The effect of plasma temperature on electrostatic shock generated by a circularly polarized laser pulse in overdense plasma is studied by particle-in-cell simulation. Ion reflection and transmission in the collisionless electrostatic shock (CES) are investigated analytically. As the initial ion temperature is varied, a distinct transition from the laser-driven piston scenario with all ions being reflected to the CES scenario with partial ion reflection is found. The results show that at low but finite temperatures the ions are much more accelerated than if they were cold.

  20. Enhancement of the deposition of ultrafine secondary organic aerosols by the negative air ion and the effect of relative humidity.

    PubMed

    Yu, Kuo-Pin

    2012-11-01

    Deposition is an important process for the removal of aerosol particles. Negative air ion (NAI) generators can charge the ultrafine airborne particles and enhance their deposition rate. However, many NAI generators may also emit ozone and increase the concentration of particles in the presence of biogenic volatile organic compounds owing to the secondary organic aerosol (SOA) production. To validate the effectiveness of NAI generator the authors investigated the enhancement effect of an NAI generator on the deposition of the ultrafine SOAs generated from the ozonolysis of d-limonene in a test chamber under controlled ventilation rate and relative humidity (RH). The experimental results demonstrated that compared with other effects, including the gravity, particle eddy diffusion, and the Brownian diffusion, the effect of NAIs is the most dominate one on the deposition of SOA particles onto the wall surface in the near-wall region (<1 cm away from the wall). According to these experiments, the tested NAI generator could efficiently enhance the deposition rate by an enhancement factor ranging from 8.17 +/- 0.38 to 25.3 +/- 1.1, with a low ozone production rate. This NAI generator had better performance on the deposition of the SOAs with smaller particle sizes and it performed even better under higher RH. The enhancement effect of the NAI generator was related to its high NAI production and electric field strength.

  1. Foam Generation and Air Entrainment Near a Free Surface

    DTIC Science & Technology

    1987-09-30

    plunging jets and by the action of turbulent eddies in water flowing over spillways has been discussed by several authors. Data for the entrained air flow...r = mean jet radius. 1 They determined the size of the region in the liquid which was affected by air entrainment and mea- sured the...Spilling Breaker," J. Fluid Mech., Vol. 63, 1. E.J. McKeogh and D.A. Ervine, 1981, " Air Entrainment Rate and Diffusion Pattern of Plunging Liquid

  2. Use of ozone generating devices to improve indoor air quality.

    PubMed

    Boeniger, M F

    1995-06-01

    Room ozonization has been in widespread use to "freshen" indoor air for more than 100 years. This use is sometimes promoted with the claim that ozone can oxidize airborne gases, and even particulates, to simple carbon dioxide and water vapor. Aside from whether ozone can improve indoor air quality, the potentially deleterious consequences to public health of overexposure to ozone are of concern. The literature on both allegations is reviewed. It indicates that ozone is not a practical and effective means of improving indoor air quality, especially in light of its potentially serious risk to health.

  3. State-selective generation of molecular ions via Rydberg states

    NASA Astrophysics Data System (ADS)

    Grimes, David; Zhou, Yan; Barnum, Timothy; Coy, Stephen; Kay, Jeffrey; Field, Robert

    2014-05-01

    Autoionizing Rydberg states of molecules in the range n = 30-50 have the potential to enable the production of single quantum state selected ensembles of molecular ions, which have uses from spectroscopy to high precision measurements of fundamental constants. Multichannel Quantum Defect Theory (MQDT) fully describes the Rydberg states of molecules and the dynamics of autoionization. We have used our full MQDT description of CaF to determine optimal autoionizing resonances for producing a variety of selected rotation-vibration states of the ion. Progress towards experimental demonstrations in BaF will also be discussed. This work was supported by the NSF and an NDSEG Fellowship

  4. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  5. Aspheric Generation On Glass By Ion Beam Milling

    NASA Astrophysics Data System (ADS)

    Eisenberg, Naftali P.; Carouby, R.; Broder, Jack

    1989-07-01

    Due to the progress of the diamond turning technique, the use of aspheric elements in optical systems is increasing. However, there are materials, like glass, which are not compatible with this technique especially when the shape of the aspheric element is not a simple conic. Using ion beam milling through a mask which modulates spatially the amount of ions impinging on the surface to be shaped, a piano-convex glass lens has been transformed into an aspheric element with a conical front surface. This technique is valuable for any material used either in the visible or in the IR spectrum.

  6. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  7. Observation of ions and particles near busy roads using a neutral cluster and air ion spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Jayaratne, E. R.; Ling, X.; Morawska, L.

    2014-02-01

    Motor vehicles emit large quantities of ions in the form of both charged particles and molecular cluster ions. While, the health effects of inhalation of charged particles is largely unexplored, the concentrations near busy roads and the distance to which these particles and ions are carried have important implications for the exposure of the large percentage of the population that lives close to such roadways. We measured ion concentrations using a neutral cluster and air ion spectrometer (NAIS) near seven busy roads carrying on the average approximately 7000 vehicles h-1 including about 15% heavy duty diesel vehicles. In this study, charged particle concentrations were measured as a function of downwind distance from the road for the first time. We show that, at a moderate wind speed of 2.0 m s-1, mean charged particle concentrations at the kerb were of the order of 2 × 104 cm-3 and, more importantly, decreased as d-0.6 where d is the distance from the road. While cluster ions were rapidly depleted by attachment to particles and were not carried to more than about 20 m from the road, elevated concentrations of charged particle were detected up to at least 400 m from the road. Most of the charge on the downwind side was carried on the larger particles, with no excess charge on particles smaller than about 10 nm. At 30 nm, particles carried more than double the charge they would normally carry in equilibrium. There are very few measurements of ions near road traffic and this is the first study of the spatial dispersion of charged particles from a road.

  8. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  9. An Inexpensive Autosampler to Maximize Throughput for an Ion Source that Samples Surfaces in Open Air

    EPA Science Inventory

    An autosampler was built to pull cotton swab heads mounted into a 3-foot long, square Al rod in ambient air through the He ionizing beam of a Direct Analysis in Real Time (DART) ion source interfaced to an orthogonal acceleration, time-of-flight mass spectrometer. The cost of th...

  10. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro.

  11. The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.

    2010-02-15

    VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source.

  12. What is in my air? Feds facilitating citizen science in the EPA Next Generation Air Monitoring Program

    NASA Astrophysics Data System (ADS)

    French, R. A.; Preuss, P.

    2013-12-01

    Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve

  13. Study of SEUs generated by high energy ions

    SciTech Connect

    Dreute, J.; Roecher, H.; Heinrich, W. ); Harboe-Soerensen, R.; Adams, L. ); Schardt, D. )

    1994-06-01

    Using 1 GeV/nucleon ions SEUs have been studied in two types of CMOS-SRAMs with respect to tilt angle and tilt direction. Tracks of upset bits, which have been observed under large tilt angles, were used to determine the charge collection depth in these devices.

  14. Toward the next generation of air quality monitoring indicators

    NASA Astrophysics Data System (ADS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; de Sherbinin, Alex; Levy, Marc

    2013-12-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the “next generation” of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered - particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) - because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policy-relevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  15. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    NASA Astrophysics Data System (ADS)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  16. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  17. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    SciTech Connect

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  18. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  19. Acoustic generation of underwater cavities-Comparing modeled and measured acoustic signals generated by seismic air gun arrays.

    PubMed

    Khodabandeloo, Babak; Landrø, Martin; Hanssen, Alfred

    2017-04-01

    Underwater vapor cavities can be generated by acoustic stimulation. When the acoustic signals from several air guns are reflected from the sea surface, the pressure drop at some locations is sufficient for cavity growth and subsequent collapse. In this paper the generation of multiple water vapor cavities and their collapses are numerically modeled and the results are validated by comparing with field data from a seismic air gun array test. In a first modeling attempt where cavity interaction is neglected, a correspondence between measured and modeled data is found. Then, this correspondence is improved by assuming that the acoustic signal generated by the other cavities changes the hydrostatic pressure surrounding each cavity. This modeling can be used to estimate the amount and strength of high frequency signals generated by typical marine air gun arrays, given that a calibration step is performed prior to the modeling.

  20. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    SciTech Connect

    Colas, Dorian F.; Ferret, Antoine; Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-11-15

    A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focused on improving the topography of the electric field to (1) separate the ionization and acceleration zones in space, and (2) guide the trajectory of charged particles as parallel to the median axis as possible. In the proposed wire-cylinder-plate setup, a dc corona discharge is generated in the space between a wire and two cylinders. The ions produced by the corona then drift past the cylinders and into a channel between two plates, where they undergo acceleration. To maximize the ionic wind it is found that the geometric configuration must be as compact as possible and that the voltage applied must be right below breakdown. Experimentally, the optimized wire-plate reference setup provides a maximum flow velocity of 8 m s{sup -1}, a flow rate per unit electrode length of 0.034 m{sup 2} s{sup -1}, and a thrust per unit electrode length of 0.24 N m{sup -1}. The wire-cylinder-plate configuration provides a maximum flow velocity of 10 m s{sup -1}, a flow rate per unit electrode length of 0.041 m{sup 2} s{sup -1}, and a thrust per unit electrode length of 0.35 N m{sup -1}. This 46% increase in thrust is obtained by increasing the electric power per unit electrode length by only 16% (from 175 to 210 W m{sup -1}), which confirms the gain in efficiency obtained with the decoupled system. In comparison with a simple wire-wire corona configuration, the wire-cylinder-plate configuration increases the ionic wind velocity by up to a factor of 3, and the thrust by an order of magnitude.

  1. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  2. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy

    NASA Astrophysics Data System (ADS)

    Zschornack, G.; Ritter, E.; Schmidt, M.; Schwan, A.

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C4 + and C6 + ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C6 +/H+_2 ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 109 protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  3. Electron beam ion sources for use in second generation synchrotrons for medical particle therapy.

    PubMed

    Zschornack, G; Ritter, E; Schmidt, M; Schwan, A

    2014-02-01

    Cyclotrons and first generation synchrotrons are the commonly applied accelerators in medical particle therapy nowadays. Next generation accelerators such as Rapid Cycling Medical Synchrotrons (RCMS), direct drive accelerators, or dielectric wall accelerators have the potential to improve the existing accelerator techniques in this field. Innovative accelerator concepts for medical particle therapy can benefit from ion sources which meet their special requirements. In the present paper we report on measurements with a superconducting Electron Beam Ion Source, the Dresden EBIS-SC, under the aspect of application in combination with RCMS as a well proven technology. The measurements indicate that this ion source can offer significant advantages for medical particle therapy. We show that a superconducting EBIS can deliver ion pulses of medically relevant ions such as protons, C(4 +) and C(6 +) ions with intensities and frequencies required for RCMS [S. Peggs and T. Satogata, "A survey of Hadron therapy accelerator technology," in Proceedings of PAC07, BNL-79826- 2008-CP, Albuquerque, New Mexico, USA, 2007; A. Garonna, U. Amaldi et al., "Cyclinac medical accelerators using pulsed C(6 +)/H2(+) ion sources," in Proceedings of EBIST 2010, Stockholm, Sweden, July 2010]. Ion extraction spectra as well as individual ion pulses have been measured. For example, we report on the generation of proton pulses with up to 3 × 10(9) protons per pulse and with frequencies of up to 1000 Hz at electron beam currents of 600 mA.

  4. Ion Beam Generation from an Electrolyte Solution Containing Polyatomic Cations and Anions for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kouji; Saito, Naoaki; Nonaka, Hidehiko; Suzuki, Atsushi; Nakanaga, Taisuke; Fujimoto, Toshiyuki; Kurokawa, Akira; Ichimura, Shingo; Tomita, Mitsuhiro

    2009-12-01

    A solution-type ion beam source was fabricated to utilize polyatomic anions as well as polyatomic cations that are stable in solutions. The ion source consists of an electrospray section at atmospheric pressure and a vacuum section with a differential pumping system. To demonstrate the beam generation of cations or anions, ethanol solution containing a room-temperature molten salt (i.e., an ionic liquid) was tested. The ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, consists of a polyatomic cation, [C8H20ON]+, and a polyatomic anion, [C2F6NO4S2]-. Ions produced at atmospheric pressure were passed through an aperture into a vacuum chamber and then transported to a target. The effects of the aperture dimensions were investigated in the range from 50 to 200 µm in diameter and 0.25 to 1 mm in thickness. The ratio of current passing through the aperture into the vacuum chamber to the total electrosprayed current was on the order of 10-3 to 10-5. The ratio increased with increasing aperture diameter. A reduction in the aperture thickness also improved the ratio. Beam current increased with applied voltage in both positive-ion and negative-ion modes. It was demonstrated that stable negative-ion beams as well as positive-ion beams on the order of pA were produced.

  5. Effect of vehicle type on the performance of second generation air bags for child occupants.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars - those children exposed to second-generation air bags were half as likely to sustain a serious injury - and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs.

  6. Effect of Vehicle type on the Performance of Second Generation Air Bags for Child Occupants

    PubMed Central

    Arbogast, Kristy B.; Durbin, Dennis R.; Kallan, Michael J.; Winston, Flaura K.

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars – those children exposed to second-generation air bags were half as likely to sustain a serious injury – and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs. PMID:12941218

  7. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  8. Dithionite/air direct ion liquid fuel cell

    NASA Astrophysics Data System (ADS)

    Noack, Jens; Tübke, Jens; Pinkwart, Karsten

    2015-07-01

    The feasibility of an alkaline S2O42-/air-fuel cell was evaluated at room temperature, using a cell with an anion exchange membrane and a platinum oxygen reduction reaction catalyst. The tests performed were open circuit voltage analysis, linear sweep voltammetry, discharge analysis and electrochemical impedance spectroscopy (EIS) with registration of anode half-cell potential. With 0.85 M Na2S2O4 in 2 M KOH, the cell achieved a maximum power density of 2 mW cm-2, and the open circuit cell voltage was about 0.9 V. In a potentiostatic discharging at 0.2 V cell voltage, an energy efficiency of 12.3% was achieved at an energy density of 8.6 Wh L-1. The low power density was mainly due to the low reaction kinetics of dithionite oxidation at graphite electrodes. The low energy efficiency was mainly caused by a low cathode potential, which probably resulted from mixed potential formation and the low anode kinetics.

  9. Enantiospecific bromonium ion generation and intramolecular capture: a model system for asymmetric bromonium ion-induced polyene cyclisations.

    PubMed

    Braddock, D Christopher; Marklew, Jared S; Thomas, Alexander J F

    2011-08-28

    Scalemic bromonium ions generated enantiospecifically by the action of catalytic triflic acid on scalemic regioisomeric bromohydrin derivatives are trapped intramolecularly, enantiospecifically and regioselectively to give bicyclic brominated carbocycles in excellent yield and high enantiomeric excess. This enantiospecific pathway is not significantly perturbed by the addition of a trisubstituted alkene.

  10. The effect of negative air ionization on the growth of four generations of laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Bellamy, D.; Head, E. L.

    1984-06-01

    Initial work indicated an inhibition of pre-weaning growth in the first generation of rats born and raised at high negative ion levels. This effect, however, was not carried through to the successive generations. Negative ionization had little apparent effect on post-weaning growth throughout the four generations studied.

  11. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  12. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  13. Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region

    NASA Technical Reports Server (NTRS)

    Kozyra, J. U.; Cravens, T. E.; Nagy, A. F.; Fontheim, E. G.; Ong, R. S. B.

    1984-01-01

    An expression for electromagnetic ion cyclotron convective growth rates is derived. The derivation of the dispersion relation and convective growth rates in the presence of a multicomponent energetic and cold plasma is presented. The effects that multiple heavy ions in the ring current and cold plasma produce in the growth and propagation characteristics of ion cyclotron waves are explored. Results of growth rate calculations using parameters consistent with conditions in the plasmapause region during the early recovery phase of geomagnetic storms are presented and compared with ground-based and satellite observations of waves in this region. The geophysical implications of the results are discussed.

  14. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given.

  15. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  16. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  17. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Dunn-Rankin, Derek (Inventor); Rickard, Matthew J. A. (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  18. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  19. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  20. Toward the next generation of air quality monitoring: Particulate Matter

    NASA Astrophysics Data System (ADS)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  1. Third-harmonic-generation of a diode laser for quantum control of beryllium ions

    NASA Astrophysics Data System (ADS)

    Carollo, Ryan A.; Lane, David A.; Kleiner, Edward K.; Kyaw, Phyo Aung; Teng, Chu C.; Ou, Celia Y.; Qiao, Shenglan; Hanneke, David

    2017-04-01

    We generate coherent ultraviolet radiation at 313 nm as the third harmonic of an external-cavity diode laser. We use this radiation for laser cooling of trapped beryllium atomic ions and sympathetic cooling of co-trapped beryllium-hydride molecular ions. An LBO crystal in an enhancement cavity generates the second harmonic, and a BBO crystal in a doubly resonant enhancement cavity mixes this second harmonic with the fundamental to produce the third harmonic. Each enhancement cavity is preceded by a tapered amplifier to increase the fundamental light. The 36-mW output power of this all-semiconductor-gain system will enable quantum control of the beryllium ions' motion.

  2. Third-harmonic-generation of a diode laser for quantum control of beryllium ions.

    PubMed

    Carollo, Ryan A; Lane, David A; Kleiner, Edward K; Kyaw, Phyo Aung; Teng, Chu C; Ou, Celia Y; Qiao, Shenglan; Hanneke, David

    2017-04-03

    We generate coherent ultraviolet radiation at 313 nm as the third harmonic of an external-cavity diode laser. We use this radiation for laser cooling of trapped beryllium atomic ions and sympathetic cooling of co-trapped beryllium-hydride molecular ions. An LBO crystal in an enhancement cavity generates the second harmonic, and a BBO crystal in a doubly resonant enhancement cavity mixes this second harmonic with the fundamental to produce the third harmonic. Each enhancement cavity is preceded by a tapered amplifier to increase the fundamental light. The 36-mW output power of this all-semiconductor-gain system will enable quantum control of the beryllium ions' motion.

  3. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    SciTech Connect

    Arantchouk, L. Larour, J.; Point, G.; Brelet, Y.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-10

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  4. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  5. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  7. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source

    SciTech Connect

    Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa; Dang, Jeong-Jeung; Hwang, Y. S.

    2014-02-15

    In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducing the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.

  8. Generation and reactivity of yttrium-carbon cluster ions

    SciTech Connect

    Kan, S.Z.; Lee, S.A.; Freiser, B.S.

    1995-12-31

    In 1992, Castleman and coworkers reported the production of the ionic transition metal-carbon clusters, M{sub 8}C{sub 12}{sup +} (M=Ti,V, Zr and Hf). Like the observations of pure carbon clusters such as C{sub 60} and C{sub 70}, these metal-carbon clusters were observed as {open_quotes}magic{close_quotes} peaks in the mass spectra obtained from a supersonic expansion ion source. These intense peaks are indicative of the high stability of these clusters which are proposed to have symmetrical, cagelike structures with the geometry of a pentagonal dodecahedron. M{sub 8}C{sub 12}{sup +} species are thus termed metallo-carbohedrenes, or met-cars for short. Like fullerenes, met-cars are of both fundamental interest and hold promise as a new class of important materials and, hence, have become the focus of both theoretical and experimental investigations. Along with these species, metal-carbon clusters of other stoichiometries such as Ti{sub 8}C{sub 11}{sup +}, Ti{sub 8}C{sub 13}{sup +}, Ti{sub 7}C{sub 12}, V{sub 14}C{sub 13}{sup +}, V{sub 14}C{sub 12}{sup +}, and Nb{sub 4}C{sub 4}{sup +} have also been examined. Here, the authors report on the yttrium-carb system in which a broad range of metal-carbon cluster ions are observed.

  9. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  10. Ions at the air-water interface: an end to a hundred-year-old mystery?

    PubMed

    Levin, Yan; dos Santos, Alexandre P; Diehl, Alexandre

    2009-12-18

    Availability of highly reactive halogen ions at the surface of aerosols has tremendous implications for the atmospheric chemistry. Yet neither simulations, experiments, nor existing theories are able to provide a fully consistent description of the electrolyte-air interface. In this Letter a new theory is proposed which allows us to explicitly calculate the ionic density profiles, the surface tension, and the electrostatic potential difference across the solution-air interface. Predictions of the theory are compared to experiments and are found to be in excellent agreement. The theory also sheds new light on one of the oldest puzzles of physical chemistry--the Hofmeister effect.

  11. Mechanism for neuronal spike generation by small and large ion channel clusters

    NASA Astrophysics Data System (ADS)

    Zeng, Shangyou; Jung, Peter

    2004-07-01

    Neuronal action potentials are generated by clusters of ion channels between the Hillock and the first segment. If the clusters comprise a large number of sodium and potassium channels, action potentials are generated if the membrane potential exceeds a threshold of about -55mV . Such behavior is well described by an excitable model such as, for example, the Hodgkin-Huxley equations. In this paper we show through stochastic modeling that if the size of the generating ion channel cluster is small, action potentials are generated regardless of whether the membrane potential is below or above the excitation threshold. Action potential generation is then determined by single-channel kinetics. We further show that this switch in generation mechanism manifests itself in peculiar statistical properties of the generated spike trains at small cluster sizes.

  12. Mechanism for neuronal spike generation by small and large ion channel clusters.

    PubMed

    Zeng, Shangyou; Jung, Peter

    2004-07-01

    Neuronal action potentials are generated by clusters of ion channels between the Hillock and the first segment. If the clusters comprise a large number of sodium and potassium channels, action potentials are generated if the membrane potential exceeds a threshold of about -55 mV. Such behavior is well described by an excitable model such as, for example, the Hodgkin-Huxley equations. In this paper we show through stochastic modeling that if the size of the generating ion channel cluster is small, action potentials are generated regardless of whether the membrane potential is below or above the excitation threshold. Action potential generation is then determined by single-channel kinetics. We further show that this switch in generation mechanism manifests itself in peculiar statistical properties of the generated spike trains at small cluster sizes.

  13. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  14. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.

    PubMed

    Prahalad, A K; Soukup, J M; Inmon, J; Willis, R; Ghio, A J; Becker, S; Gallagher, J E

    1999-07-15

    Epidemiologic studies have reported causal relationships between exposures to high concentrations of ambient air particles (AAP) and increased morbidity in individuals with underlying respiratory problems. Polymorphonuclear leukocytes (PMN) are frequently present in the airways of individuals exposed to particles. Upon particulate stimulation the PMN may release reactive oxygen species (ROS), which can result in tissue damage and injury. In this study a wide range of AAP samples from divergent sources (1, natural dust; 2, oil fly ash; 2, coal fly ash; 5, ambient air; and 1, carbon black) were analyzed for elemental content and solubility in relation to their ability to generate ROS. Elemental analyses were carried out in AAP and dH(2)O-washed AAP using energy dispersive x-ray fluorescence (XRF). Percent of sample mass accounted for by XRF-detectable elements was 1.2% (carbon black); 22-29% (natural dust and ambient air particles); 13-22% (oil fly ash particles); 28-49% (coal fly ash particles). The major proportion of elements in most of these particles were aluminosilicates and insoluble iron, except oil-derived fly ash particles in which soluble vanadium and nickel were in highest concentrations, consistent with particle acidity as measured in the supernatants. Human blood-derived monocytes and PMN were exposed to AAP and dH(2)O-washed particles, and generation of ROS was determined using luminol-enhanced chemiluminescence (LCL) assay. All the particles induced chemiluminescence response in the cells, except carbon black. The oxidant response of monocytes induced by AAP (with the exception of oil fly ash particles) was less than the response elicited by PMN. The LCL response of PMN in general increased with all washed particles, with oil fly ash (OFA) and one urban air particle showing statistically significant (p < 0. 05) differences between dH(2)O-washed and unwashed particles. The LCL activity in PMN induced by both particles and dH(2)O-washed particles was

  15. Ion velocities in direct current arc plasma generated from compound cathodes

    SciTech Connect

    Zhirkov, I.; Rosen, J.; Eriksson, A. O.

    2013-12-07

    Arc plasma from Ti-C, Ti-Al, and Ti-Si cathodes was characterized with respect to charge-state-resolved ion energy. The evaluated peak velocities of different ion species in plasma generated from a compound cathode were found to be equal and independent on ion mass. Therefore, measured difference in kinetic energies can be inferred from the difference in ion mass, with no dependence on ion charge state. The latter is consistent with previous work. These findings can be explained by plasma quasineutrality, ion acceleration by pressure gradients, and electron-ion coupling. Increasing the C concentration in Ti-C cathodes resulted in increasing average and peak ion energies for all ion species. This effect can be explained by the “cohesive energy rule,” where material and phases of higher cohesive energy generally result in increasing energies (velocities). This is also consistent with the here obtained peak velocities around 1.37, 1.42, and 1.55 (10{sup 4} m/s) for ions from Ti{sub 0.84}Al{sub 0.16}, Ti{sub 0.90}Si{sub 0.10}, and Ti{sub 0.90}C{sub 0.10} cathodes, respectively.

  16. Injection optimization through generation of flat ion beams

    NASA Astrophysics Data System (ADS)

    Appel, S.; Groening, L.; El Hayek, Y.; Maier, M.; Xiao, C.

    2017-09-01

    An excellent interfacing between injector linac and synchrotron is mandatory to provide ion beams of unprecedented intensities and qualities. One consequence of the single-plane Multi-Turn Injection (MTI) is that the required injection emittance for the injection plane (usually the horizontal one) is very demanding; to the other plane not. Re-partitioning of the injected beam emittances, i.e. round-to-flat transformation would increase the injection efficiency. This benefit effect to the MTI performance of a smaller emittance has been measured as a function of the amount of flatness of the beam. An excellent agreement between simulation and measured injection performance as a function of the injected emittance was achieved thanks to fast adjustment of the beam flatness without changing other beam parameters.

  17. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  18. Absorption generator for solar-powered air-conditioner

    NASA Technical Reports Server (NTRS)

    Lowen, D. J.; Murray, J. G.

    1977-01-01

    Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.

  19. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  20. Development of cooling strategy for an air cooled lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  1. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.

    PubMed

    Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A

    2007-04-01

    Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.

  2. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    PubMed

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-07

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  3. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator.

    PubMed

    Furuhashi, M; Miyamae, T

    1981-03-01

    Of late microbiological air samplers of various types have been developed in monitoring the critical areas in the hospitals and pharmaceutical plants. It has not been clarified, however, that a commercial air sampler is the most suitable for such a purpose. The present studies were conducted to investigate the bacterial collection efficiency of these air samplers. The new experimental apparatus basically consists of a bacterial aerosol generator and an isokinetic sampling steel air duct. Serratia marcescens was used as the test bacteria, and then the bacterial collection efficiency of the three kinds of commercial air samplers (Andersen air sampler, Pin-hole air sampler and M/G air sampler) was examined. It was found that in these experiments these three air samplers had a high bacterial collection efficiency. All except 0.3 to 2.0% of the small bacterial particles (1 to 5 micrometer) were trapped by these tested air samplers. Furthermore, in these three air samplers it was also confirmed that for collecting the hospital airborne bacteria the bacterial collection efficiency was more than 99.9%. The authors' findings showed that these three air samplers were designed according to Ranz and Wong's theoretical and experimental results.

  4. Impact of air pollution on vegetation near the Columbia Generating Station - Wisconsin power plant impact study

    SciTech Connect

    Tibbitts, T.W.; Will-Wolf, S.; Karnowsky, D.F.; Olszyk, D.M.

    1982-06-01

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was undertaken before and after initiation of generating station operations. Controlled environmental exposures were undertaken with separate cultivars of crop species grown in the vicinity of the generating station. Alfalfa, carrots, mint, peas, beans, and trembling aspen were exposed to SO2 and O3 to establish minimum threshold pollutant levels for injury from these pollutants.

  5. Ion mobility spectrometry of hydrazine, monomethylhydrazine, and ammonia in air with 5-nonanone reagent gas

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Salazar, M. R.; Rodriguez, M. R.; Limero, T. F.; Beck, S. W.; Cross, J. H.; Young, R.; James, J. T.

    1993-01-01

    Hydrazine (HZ) and monomethylhydrazine (MMH) in air were monitored continuously using a hand-held ion mobility spectrometer equipped with membrane inlet, 63Ni ion source, acetone reagent gas, and ambient temperature drift tube. Response characteristics included detection limit, 6 ppb; linear range, 10-600 ppb; saturated response, >2 ppm; and stable response after 15-30 min. Ammonia interfered in hydrazines detection through a product ion with the same drift time as that for MMH and HZ. Acetone reagent gas was replaced with 5-nonanone to alter drift times of product ions and separate ammonia from MMH and HZ. Patterns in mobility spectra, ion identifications from mass spectra, and fragmentation cross-sections from collisional-induced dissociations suggest that drift times are governed by ion-cluster equilibria in the drift region of the mobility spectrometer. Practical aspects including calibration, stability, and reproducibility are reported from the use of a hand-held mobility spectrometer on the space shuttle Atlantis during mission STS-37.

  6. Ion mobility spectrometry of hydrazine, monomethylhydrazine, and ammonia in air with 5-nonanone reagent gas

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Salazar, M. R.; Rodriguez, M. R.; Limero, T. F.; Beck, S. W.; Cross, J. H.; Young, R.; James, J. T.

    1993-01-01

    Hydrazine (HZ) and monomethylhydrazine (MMH) in air were monitored continuously using a hand-held ion mobility spectrometer equipped with membrane inlet, 63Ni ion source, acetone reagent gas, and ambient temperature drift tube. Response characteristics included detection limit, 6 ppb; linear range, 10-600 ppb; saturated response, >2 ppm; and stable response after 15-30 min. Ammonia interfered in hydrazines detection through a product ion with the same drift time as that for MMH and HZ. Acetone reagent gas was replaced with 5-nonanone to alter drift times of product ions and separate ammonia from MMH and HZ. Patterns in mobility spectra, ion identifications from mass spectra, and fragmentation cross-sections from collisional-induced dissociations suggest that drift times are governed by ion-cluster equilibria in the drift region of the mobility spectrometer. Practical aspects including calibration, stability, and reproducibility are reported from the use of a hand-held mobility spectrometer on the space shuttle Atlantis during mission STS-37.

  7. Simultaneous Filtered and Unfiltered Light Scattering Measurements in Laser Generated Air Sparks

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher; Miles, Richard

    2013-09-01

    Elastic laser light scattering may be used to measure the thermofluidic properties of gases and plasmas, including but not limited to density, temperature and velocity. Most of this information is contained within the spectra of the scattered radiation. This may be measured directly through dispersion or indirectly, by passing the light through an atomic or molecular vapor filter with known absorption features. In this work, filtered and unfiltered laser light scattering is used to diagnose air sparks generated by a 1064 nm Q-switched laser. The probe laser consists of a second Q-switched Nd:YAG laser frequency doubled to 532 nm. Simultaneous unfiltered and filtered images of the scattering are captured by a Princeton Instruments ICCD camera by using a 50 mm diameter concave re-imaging mirror. The filter consists of a well-characterized molecular Iodine cell. In the shock wave formed by the laser spark, spatially resolved measurements of density, temperature and radial velocity are extracted and compared with theory and models. Measurements in the spark core probe the ion feature of the electron Thomson scattering, from which ne and T can be extracted with the assumption Te =Ti . Partial funding was provided by General Electric Global Research Center: Niskayuna, New York. The first author is also supported by a National Defense Science and Engineering Graduate Fellowship.

  8. Appeal of Air Permit for New Harquahala Generating Company

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  9. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali

    2007-01-01

    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  10. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces

    SciTech Connect

    Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.; Levin, Yan; Mundy, Christopher J.

    2013-04-01

    Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  11. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    SciTech Connect

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-02-15

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation.

  12. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation.

    PubMed

    Zhu, X P; Dong, Z H; Han, X G; Xin, J P; Lei, M K

    2007-02-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation.

  13. Lifetime of anode polymer in magnetically insulated ion diodes for high-intensity pulsed ion beam generation

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Dong, Z. H.; Han, X. G.; Xin, J. P.; Lei, M. K.

    2007-02-01

    Generation of high-intensity pulsed ion beam (HIPIB) has been studied experimentally using polyethylene as the anode polymer in magnetically insulated ion diodes (MIDs) with an external magnetic field. The HIPIB is extracted from the anode plasma produced during the surface discharging process on polyethylene under the electrical and magnetic fields in MIDs, i.e., high-voltage surface breakdown (flashover) with bombardments by electrons. The surface morphology and the microstructure of the anode polymer are characterized using scanning electron microscopy and differential scanning calorimetry, respectively. The surface roughening of the anode polymer results from the explosive release of trapped gases or newly formed gases under the high-voltage discharging, leaving fractured surfaces with bubble formation. The polyethylene in the surface layer degrades into low-molecular-weight polymers such as polyethylene wax and paraffin under the discharging process. Both the surface roughness and the fraction of low molecular polymers apparently increase as the discharging times are prolonged for multipulse HIPIB generation. The changes in the surface morphology and the composition of anode polymer lead to a noticeable decrease in the output of ion beam intensity, i.e., ion current density and diode voltage, accompanied with an increase in instability of the parameters with the prolonged discharge times. The diode voltage (or surface breakdown voltage of polymer) mainly depends on the surface morphology (or roughness) of anode polymers, and the ion current density on the composition of anode polymers, which account for the two stages of anode polymer degradation observed experimentally, i.e., stage I which has a steady decrease of the two parameters and stage II which shows a slow decrease, but with an enhanced fluctuation of the two parameters with increasing pulses of HIPIB generation.

  14. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    PubMed

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  15. Air ions and mood outcomes: a review and meta-analysis

    PubMed Central

    2013-01-01

    Background Psychological effects of air ions have been reported for more than 80 years in the media and scientific literature. This study summarizes a qualitative literature review and quantitative meta-analysis, where applicable, that examines the potential effects of exposure to negative and positive air ions on psychological measures of mood and emotional state. Methods A structured literature review was conducted to identify human experimental studies published through August, 2012. Thirty-three studies (1957–2012) evaluating the effects of air ionization on depression, anxiety, mood states, and subjective feelings of mental well-being in humans were included. Five studies on negative ionization and depression (measured using a structured interview guide) were evaluated by level of exposure intensity (high vs. low) using meta-analysis. Results Consistent ionization effects were not observed for anxiety, mood, relaxation/sleep, and personal comfort. In contrast, meta-analysis results showed that negative ionization, overall, was significantly associated with lower depression ratings, with a stronger association observed at high levels of negative ion exposure (mean summary effect and 95% confidence interval (CI) following high- and low-density exposure: 14.28 (95% CI: 12.93-15.62) and 7.23 (95% CI: 2.62-11.83), respectively). The response to high-density ionization was observed in patients with seasonal or chronic depression, but an effect of low-density ionization was observed only in patients with seasonal depression. However, no relationship between the duration or frequency of ionization treatment on depression ratings was evident. Conclusions No consistent influence of positive or negative air ionization on anxiety, mood, relaxation, sleep, and personal comfort measures was observed. Negative air ionization was associated with lower depression scores particularly at the highest exposure level. Future research is needed to evaluate the biological

  16. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  17. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  18. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  19. Development of compact size penning ion source for compact neutron generator

    SciTech Connect

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-15

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  20. Development of compact size penning ion source for compact neutron generator.

    PubMed

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-01

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  1. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    NASA Astrophysics Data System (ADS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  2. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    SciTech Connect

    Maulois, Melissa; Azaïs, Bruno

    2016-04-15

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N{sub 2} and 20% O{sub 2}) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10{sup 13 }cm{sup −3} is formed a few nanoseconds after the peak of X-ray flash intensity

  3. Influence of ion chamber response on in-air profile measurements in megavoltage photon beams.

    PubMed

    Tonkopi, E; McEwen, M R; Walters, B R B; Kawrakow, I

    2005-09-01

    This article presents an investigation of the influence of the ion chamber response, including buildup caps, on the measurement of in-air off-axis ratio (OAR) profiles in megavoltage photon beams using Monte Carlo simulations with the EGSnrc system. Two new techniques for the calculation of OAR profiles are presented. Results of the Monte Carlo simulations are compared to measurements performed in 6, 10 and 25 MV photon beams produced by an Elekta Precise linac and shown to agree within the experimental and simulation uncertainties. Comparisons with calculated in-air kerma profiles demonstrate that using a plastic mini phantom gives more accurate air-kerma measurements than using high-Z material buildup caps and that the variation of chamber response with distance from the central axis must be taken into account.

  4. Air supply using an ionic wind generator in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsung; Li, Longnan; Park, Byung Ho; Lee, Seung Jun; Kim, Daejoong

    2015-06-01

    A new air supply is demonstrated for a portable polymer electrolyte membrane fuel cell (PEMFC). The air supply is an ionic wind generator (IWG) with a needle-to-cylinder configuration. The IWG supplies air to the portable PEMFC owing to momentum transfer to the air by charged molecules generated by the corona discharge from a high applied potential. There is no difference in the performance of the PEMFC when compressed air and the IWG are used as the air supply. For the varying interelectrode distance, IWG performance is varied and measured in terms of the flow rate and current. At the interelectrode distance of 9.0 mm, the air flow rate is a suitable for the portable PEMFC with low power consumption. When the IWG is used to supply air to the portable PEMFC, it is found that the flow rate per unit power consumed decreases with the applied voltage, the gross power generation monotonously increases with the applied voltage, and the highest net power (268 mW) is obtained at the applied voltage of 8.5 kV. The parasitic power ratio reaches a minimum value of ∼0.06 with the applied IWG voltage of 5.5 kV.

  5. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers.

    PubMed

    Britigan, Nicole; Alshawa, Ahmad; Nizkorodov, Sergey A

    2006-05-01

    Indoor air purifiers are advertised as safe household products for health-conscious individuals, especially for those suffering from allergies and asthma. However, certain air purifiers produce ozone (O3) during operation, either intentionally or as a byproduct of air ionization. This is a serious concern, because O3 is a criteria air pollutant regulated by health-related federal and state standards. Several types of air purifiers were tested for their ability to produce ozone in various indoor environments at 40-50% relative humidity, including office rooms, bathrooms, bedrooms, and cars. O3 levels generated by personal wearable air purifiers were also tested. In many cases, O3 concentrations were well in excess of public and/or industrial safety levels established by U.S. Environmental Protection Agency, California Air Resources Board, and Occupational Safety and Health Administration. Simple kinetic equations were obtained that can predict the steady-state level of O3 in a room from the O3 emission rate of the air purifier and the first-order decay rate of O3 in the room. The additivity of O3 levels generated by independent O3 generators was experimentally demonstrated.

  6. Simulation Study of Toroidal Flow Generation of Minority Ions by Local ICRF Heating

    NASA Astrophysics Data System (ADS)

    Murakami, Sadayoshi; Itoh, Kimitaka; Zheng, Linjin; Van Dam, James W.; Fukuyama, Atsushi

    2015-12-01

    The toroidal flow generation of minority ions by the local ion cyclotron range of frequencies (ICRF) heating is investigated in a tokamak plasma by applying the GNET code, which can solve the drift kinetic equation in the 5-D phase space. An asymmetry of velocity distribution function in the parallel direction is found and two types of toroidal averaged flow of minority ions are observed. One is the sheared flow near the RF power absorption region depending on the sign of k||, and the other is the toroidal flow, which is larger than the previous one, independent of the sign of k||. It is found that the k||-sign-independent toroidal flow is generated by the net toroidal motion of energetic tail ions and that the k||-sign-dependent flow is related to the mechanism proposed by Ohkawa [http://dx.doi.org/10.1063/1.2047629, Phys. Plasmas 12, 094506 (2005)].

  7. Generation of circularly polarized attosecond pulses by intense ultrashort laser pulses from extended asymmetric molecular ions

    SciTech Connect

    Yuan, Kai-Jun; Bandrauk, Andre D.

    2011-08-15

    We present a method for generation of single circularly polarized attosecond pulses in extended asymmetric HHe{sup 2+} molecular ions. By employing an intense ultrashort circularly polarized laser pulse with intensity 4.0x10{sup 14} W/cm{sup 2}, wavelength 400 nm, and duration 10 optical cycles, molecular high-order-harmonic generation (MHOHG) spectra with multiple plateaus exhibit characters of circular polarization. Using a classical laser-induced collision model, double collisions of continuum electrons first with neighboring ions and then second with parent ions are presented at a particular internuclear distance and confirmed from numerical solutions of a time-dependent Schroedinger equation. We analyze the MHOHG spectra with a Gabor time window and find that, due to the asymmetry of HHe{sup 2+}, a single collision trajectory of continuum electrons with ions can produce circularly polarized harmonics, leading to single circularly polarized attosecond pulses for specific internuclear distances.

  8. Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleration mechanism

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.

    1989-01-01

    The 'convection surge' model for ion acceleration, designed by Mauk (1986) to explain the observed ion distributions and the field-aligned character of middle magnetospheric ion distributions during the expansion phase of a substorm, was extended to include the self-consistent generation of magnetic-field-aligned electric fields. Results from the modified model show that the convection surge mechanism leads to the generation of dynamical macroscopic magnetic field-aligned electric fields that begin their strongest developments very near the magnetic equator and then propagate to higher latitudes. Potential drops as high as 1 to 10 kV might be expected, depending on the mass species of the ions and on the electron temperatures. It is speculated that the convection surge mechanism could be a key player in the transient field-aligned electromagnetic processes observed to operate within the middle magnetosphere.

  9. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  10. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS. Copyright (c) 2010 John Wiley & Sons, Ltd.

  11. Field ionization characteristics of an ion source array for neutron generators

    SciTech Connect

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-07

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  12. Generation of waves in the Venus mantle by the ion acoustic beam instability

    NASA Technical Reports Server (NTRS)

    Huba, J. D.

    1993-01-01

    The ion acoustic beam instability is suggested as a mechanism to produce wave turbulence observed in the Venus mantle at frequencies 100 Hz and 730 Hz. The plasma is assumed to consist of a stationary cold O(+) ion plasma and a flowing, shocked solar wind plasma. The O(+) ions appear as a beam relative to the flowing ionosheath plasma which provides the free energy to drive the instability. The plasma is driven unstable by inverse electron Landau damping of an ion acoustic wave associated with the cold ionospheric O(+) ions. The instability can directly generate the observed 100 Hz waves in the Venus mantle as well as the observed 730 Hz waves through the Doppler shift of the frequency caused by the satellite motion.

  13. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    SciTech Connect

    Song, Ying; Bi, Zhenhua; Wang, Xueyang; Qi, Zhihua; Ji, Longfei; Liu, Dongping; Xia, Yang; Li, Bin

    2016-08-15

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniform surface air discharge.

  14. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    SciTech Connect

    Tinakiche, Nouara

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  15. Optimization of ultrafast laser generated low-energy ion beams from silicon targets

    SciTech Connect

    Stoian, R.; Mermillod-Blondin, A.; Bulgakova, N.M.; Rosenfeld, A.; Hertel, I.V.; Spyridaki, M.; Koudoumas, E.; Tzanetakis, P.; Fotakis, C.

    2005-09-19

    We demonstrate the possibility to manipulate the kinetic properties of ion beams generated by ultrafast laser ablation of silicon. The versatility in regulating the sub-keV ion flux is achieved by implementing adaptive control of the temporal shape of incident laser pulses. Tunable characteristics for the charged beams are obtained using excitation synchronized with the phase-transformation dynamics, exploiting transitions to volatile fluid states with minimal energetic expenses.

  16. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  17. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  18. Lonely Skies: Air-to-Air Training for a 5th Generation Fighter Force

    DTIC Science & Technology

    2015-06-01

    degree in Political Science from the United States Air Force Academy, a Master of Business Administration from Oklahoma State University, and a Master of...Department of Defense (DoD), “DoD Modeling and Simulation Master Plan, DoD 5000.59-P” (Washington D.C.: Under Secretary of Defense for Acquisition and...US Army Air Corps developed a strategy that required its bombers to bypass the front lines and drop bombs deep in the heart of the enemy nation

  19. Self-sputtering far above the runaway threshold: an extraordinary metal ion generator

    SciTech Connect

    Andersson, Joakim; Anders, Andre

    2008-12-16

    When self-sputtering is driven far above the runaway threshold voltage, energetic electrons are made available to produce"excess plasma" far from the magnetron target. Ionization balance considerations show that the secondary electrons deliver the necessary energy to the"remote" zone. Thereby, such a system can be an extraordinarily prolific generator of useable metal ions. Contrary to other known sources, the ion current to a substrate can exceed the discharge current. For gasless self-sputtering of copper, the useable ion current scales exponentially with the discharge voltage.

  20. Generation of zonal flows by coupled electrostatic drift and ion-acoustic waves

    NASA Astrophysics Data System (ADS)

    Kaladze, T. D.; Kahlon, L. Z.; Tsamalashvili, L. V.

    2017-07-01

    Generation of sheared zonal flow by low-frequency coupled electrostatic drift and ion-acoustic waves is presented. Primary waves of different (small, intermediate, and large) scales are considered, and the appropriate system of equations consisting of generalized Hasegawa-Mima equation for the electrostatic potential (involving both vector and scalar nonlinearities) and equation of parallel to magnetic field ions motion is obtained. It is shown that along with the mean poloidal flow with strong variation in minor radius mean sheared toroidal flow can also be generated. According to laboratory plasma experiments, main attention to large scale drift-ion-acoustic wave is given. Peculiarities of the Korteweg-de Vries type scalar nonlinearity due to the electrons temperature non-homogeneity in the formation of zonal flow by large-scale turbulence are widely discussed. Namely, it is observed that such type of flows need no generation condition and can be spontaneously excited.

  1. Comparison of Single Event Transients Generated by Short Pulsed X-Rays, Lasers and Heavy Ions

    SciTech Connect

    Cardoza, David; LaLumondiere, Stephen D.; Tockstein, Michael A.; Brewe, Dale L.; Wells, Nathan P.; Koga, Rokutaro; Gaab, K. M.; Lotshaw, William T.; Moss, Steven C.

    2014-12-01

    We report an experimental study of the transients generated by pulsed x-rays, heavy ions, and different laser wavelengths in a Si p-i-n photodiode. We compare the charge collected by all of the excitation methods to determine the equivalent LET for pulsed x-rays relative to heavy ions. Our comparisons show that pulsed x-rays from synchrotron sources can generate a large range of equivalent LET and generate transients similar to those excited by laser pulses and heavy ion strikes. We also look at how the pulse width of the transients changes for the different excitation methods. We show that the charge collected with pulsed x-rays is greater than expected as the x-ray photon energy increases. Combined with their capability of focusing to small spot sizes and of penetrating metallization, pulsed x-rays are a promising new tool for high resolution screening of SEE susceptibility

  2. Conditions for Debris-Background Ion Interactions and Collisionless Shock Wave Generation

    SciTech Connect

    Winske, Dan; Cowee, Misa

    2012-07-10

    We use hybrid simulations and simple theoretical arguments to determine when debris ions streaming relative to background ions in a collisionless, magnetized plasma couple strongly enough to generate a magnetosonic shock wave. We consider three types of configurations: one-dimensional, the two-dimensional extension of the 1-D case, and a more complex 2-D geometry that contains some effects that would be found in a laser-produced, laboratory plasma. We show that the simulation results as well as previous Russian and LLNL results reduce to a simple condition (R{sub m}/{rho}{sub d} = equal mass radius/debris ion gyroradius {ge} 0.7) for the generation of a shock wave. Strong debris interaction with the background is characterized by the formation of a magnetic pulse that steepens and speeds up as it encounters the debris ions deflected by the magnetic field. The pulse further evolves into a shock. As the earlier work has indicated, the process also involves the generation of a transverse electric field perpendicular to the flow and the magnetic field that accelerates the background ions radially outward, which in turn causes the speedup of the pulse. With electric and magnetic field probes, the UCLA laser experiments should be able to detect these signatures of coupling as well as the generation of the shock wave.

  3. Fast ion generation and runaway through magnetic reconnection events in MST

    NASA Astrophysics Data System (ADS)

    Kim, Jungha; Anderson, Jay; Capecchi, William; Bonofiglo, Phillip; Sears, Stephanie

    2016-10-01

    Fokker-Planck and full orbit modeling are used to investigate how global reconnection events in MST plasmas generate an anisotropic fast ion distribution. A multi-step process is hypothesized. First, thermal ions are heated by a perpendicular heating mechanism, possibly a stochastic process that relies on turbulent diffusion and strong radial electric fields, or ion cyclotron damping in the tearing-driven turbulent cascade. Second, a small fraction of the heated ions have sufficient speed to develop substantial guiding center drifts that are relatively immune to stochastic magnetic transport. In the RFP, these fast ion drift orbits are favorable to confinement. Finally, these fast ions are accelerated by a parallel inductive electric field (up to 80 V/m) associated with the abruptly changing magnetic equilibrium. This strong impulsive field does not include any magnetic-fluctuation-based contribution as experienced by thermal particles or electrons, which do not run away like fast ions. CQL3D, a Fokker-Planck solver, and RIO, a full orbit tracing code, are used to model this multi-step process that is responsible for anisotropy in fast ion distribution in MST. Work supported by US DOE. Supported by US DOE.

  4. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    SciTech Connect

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu. Frolova, V. P.; Oks, E. M.

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  5. Positive and negative gas-phase ion chemistry of chlorofluorocarbons in air at atmospheric pressure.

    PubMed

    Bosa, Elisabetta; Paradisi, Cristina; Scorrano, Gianfranco

    2003-01-01

    This paper presents a report on the ionization/dissociation of some representative chlorofluorocarbons (CFCs) induced by corona discharges in air at atmospheric pressure. Both positive and negative ions formed from Freons 1,1,1-trichlorotrifluoroethane (CFC 113a), 1,1,2-trichlorotrifluoroethane (CFC 113), and 1,1,1,2-tetrachlorodifluoroethane (CFC 112a) were analyzed using an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) instrument. Energy-resolved mass spectra were obtained by modulating the kinetic energy of the ions via adjustment of the sampling cone potential (V(cone)). Positive ion spectra of the CFCs (M) at low V(cone) show no signals due to either M(+)* or MH(+) but only those due to species [M - Cl](+) and CX(3)(+) (X = Cl, F), likely formed via C-Cl and C-C bond cleavages following ionization via charge exchange. Charge localization in the products of C-C bond cleavage in M(+)* is driven by the stability of the neutral fragment. At low V(cone) the hydrates [M - Cl](+)(H(2)O) are also observed. In the case of 1,1,2,-trichlorotrifluoroethane, [M - F](+) species also form as a result of ion-molecule reactions. As V(cone) is increased collision-induced dissociation of [M - Cl](+) and [M - F](+), i.e., the perhalogenated cations C(2)X(5)(+) (X = Cl, F), takes place via carbene elimination. In some cases such elimination is preceded or accompanied by rearrangements involving transfer of halogen from one carbon to the other. Evidence is also presented for the occurrence of a condensation reaction of C(2)Cl(3)F(2)(+) with water to form a C(2)Cl(2)F(2)HO(+) species via elimination of HCl. Negative ion spectra are dominated by Cl(-) and its ion-neutral complexes with M and with water. Additional components of the plasma include ion-neutral complexes O(3)(-)(M), the molecular anion M(-) (observed only with 1,1,2-trichlorotrifluoroethane), and an interesting species corresponding to [M - Cl + O](-). The origin and structure of these [M - Cl + O

  6. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  7. Experimental observation of gravity-capillary solitary waves generated by a moving air-suction

    NASA Astrophysics Data System (ADS)

    Park, Beomchan; Cho, Yeunwoo

    2016-11-01

    Gravity-capillary solitary waves are generated by a moving "air-suction" forcing instead of a moving "air-blowing" forcing. The air-suction forcing moves horizontally over the surface of deep water with speeds close to the minimum linear phase speed cmin = 23 cm/s. Three different states are observed according to forcing speed below cmin. At relatively low speeds below cmin, small-amplitude linear circular depressions are observed, and they move steadily ahead of and along with the moving forcing. As the forcing speed increases close to cmin, however, nonlinear 3-D gravity-capillary solitary waves are observed, and they move steadily ahead of and along with the moving forcing. Finally, when the forcing speed is very close to cmin, oblique shedding phenomena of 3-D gravity-capillary solitary waves are observed ahead of the moving forcing. We found that all the linear and nonlinear wave patterns generated by the air-suction forcing correspond to those generated by the air-blowing forcing. The main difference is that 3-D gravity-capillary solitary waves are observed "ahead of" the air-suction forcing, whereas the same waves are observed "behind" the air-blowing forcing. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002441).

  8. Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters.

    PubMed

    Baldisserotto, Bernardo; Copatti, Carlos E; Gomes, Levy C; Chagas, Edsandra C; Brinn, Richard P; Roubach, Rodrigo

    2008-12-01

    Fishes that live in the Amazon environment may be exposed to several kinds of water: black water (BW), acidic black water (pH 3.5) (ABW) and white water (WW), among others. The aim of the present study was to analyze net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different types of water. Fishes were acclimated in well water and later placed in individual chambers containing one type of water for ion flux measurements. After 4 h, the water in the chambers was replaced by a different type of water. The transfer of both species to ABW (independent of previous water exposure) increased net ion loss. Tamoatas transferred from ABW to BW or WW presented a net ion influx, but pirarucus showed only small changes on net ion efflux. These results allow us to conclude that tamoatas and pirarucus present differences in terms of ion regulation but that the general aspects of the ion flux are similar: (1) exposure to ABW led to net ion loss; (2) transfer from BW to WW or vice-versa induced only minor changes on net ion fluxes. These observations demonstrate that any osmoregulatory difficulties encountered by either species during changes between these latter two waters can be easily overcome.

  9. Fe Simulation of Guided Waves in Composite Materials Generated and Detected by Air-Coupled Transducers

    NASA Astrophysics Data System (ADS)

    Hosten, Bernard

    2009-03-01

    The measured characteristics (efficiency and sensitivity) of two air-coupled transducers allow for the prediction of the absolute values of the pressure of the bulk waves generated in air and for the measurement of the pressure of the field radiated in air by guided waves propagating in a structure. With Finite Element software, the pressure field generated by an air-coupled transducer is simulated by introducing a right-hand side member in the Helmholtz equation, which is used for computing the propagation from the transducer to a plate. The simulated source is rotated in order to impose an angle of incidence with respect to the normal of the plate and generate the corresponding guided mode. Inside the plate, the propagation is simulated with the dynamic equations of equilibrium and a complex stiffness tensor to take into account the viscoelastic anisotropy of the material. For modeling the three-dimensional fields of the guided modes propagating in a two-dimensional non-symmetry plane, a 2.5 dimensional model is introduced. The model computes the value of the pressure field radiated in air by the plates for any guided modes and can predict the detectability of the system for a known defect in a structure. A test bed incorporating 2 air-coupled transducers is used to generate and receive various guided modes in a carbon-epoxy plate. The pressure measured by the receiver at various positions is compared to the results of the model to validate it.

  10. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions.

    PubMed

    Zhong, Yueyang; Hyung, Suk-Joon; Ruotolo, Brandon T

    2011-09-07

    High-accuracy, high-resolution ion mobility measurements enable a vast array of important contemporary applications in biological chemistry. With the recent advent of both new, widely available commercial instrumentation and also new calibration datasets tailored for the aforementioned commercial instrumentation, the possibilities for extending such high performance measurements to a diverse set of applications have never been greater. Here, we assess the performance characteristics of a second-generation traveling-wave ion mobility separator, focusing on those figures of merit that lead to making measurements of collision cross-section having both high precision and high accuracy. Through performing a comprehensive survey of instrument parameters and settings, we find instrument conditions for optimized drift time resolution, cross-section resolution, and cross-section accuracy for a range of peptide, protein and multi-protein complex ions. Moreover, the conditions for high accuracy IM results are significantly different from those optimized for separation resolution, indicating that a balance between these two metrics must be attained for traveling wave IM separations of biomolecules. We also assess the effect of ion heating during IM separation on instrument performance.

  11. Impact of air ions of both polarity on evaporation of certain organic and inorganic liquids

    NASA Astrophysics Data System (ADS)

    Barthakur, N. N.; Al-Kanani, T.

    1989-06-01

    Air ions of both polarity, produced by corona electrodes, were used to evaporate to dryness liquid samples of ethyl alcohol (EA), water (W), and carbon tetrachloride (CTC). Drying times were determined with a beta-ray gauge. Ion exposed samples of EA, W, and CTC dried, respectively, 2.3, 3.2, and 5.4 times faster than the corresponding control samples when exposed simultaneously to 0.94×1012 positive and 1.83×1012 negative air ions cm-2s-1 under the same laboratory conditions. Drying by corona discharge could be explained by three different mechanisms. Electric wind caused by the ionic drag is proposed as the principal driving force for the observed enhancement of evaporation. The decrease in free energy of a dielectric in the presence of an electric field compared to its absence may have increased the escaping tendency of the molecules of the treated liquids. The turbulence in the liquids created by the rotational effect on the dielectric molecules by the electric field may also be a factor in further enhancing the mass transfer rates from the samples.

  12. Collection of ethanolamines in air and determination by mobile phase ion chromatography

    SciTech Connect

    Bouyoucos, S.A.; Melcher, R.G.

    1986-03-01

    A method is described for the collection and determination of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) in air. Samples were collected by pulling air through a glass tube containing alumina, cleaned especially to remove interfering inorganic ions. The ethanolamines were desorbed with water and determined by Mobile Phase Ion Chromatography (MPIC). The recovery and total relative precision for MEA, DEA, and TEA - all collected from air at a flow rate of 100 mL/min for 7 hr - was 93.1 +/- 17%, 92.7 +/- 15% and 89.4 +/- 21%, respectively (95% confidence level). The method was validated for all three compounds from approximately the limit of detection (3 x noise) to ten times the limit of detection. Based on a sample size of 42 L, MEA was validated over the range from 0.12 to 3.0 ppm v/v (TLV=3), DEA over the range from 0.25 to 3.3 ppm v/v (TLV=3) and TEA from 0.31 to 3.7 ppm v/v (no TLV assigned). No effect on recovery was observed when sampling at high humidity or on storage of the samples for up to 31 days.

  13. Passivation of uranium towards air corrosion by N 2+ and C + ion implantation

    NASA Astrophysics Data System (ADS)

    Arkush, R.; Mintz, M. H.; Shamir, N.

    2000-10-01

    The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.

  14. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  15. Modeling of a second-generation solar-driven Rankine air conditioner

    NASA Astrophysics Data System (ADS)

    Denius, M. W.; Batton, W. D.

    1984-07-01

    Ten configurations of a second-generation, solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented. The generated data are also presented. Experimental work was done to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  16. Determination of ion mobility in EHD flow zone of plasma generator

    NASA Astrophysics Data System (ADS)

    Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik

    2015-12-01

    Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility

  17. GENERATION OF ELECTRIC CURRENTS IN THE CHROMOSPHERE VIA NEUTRAL-ION DRAG

    SciTech Connect

    Krasnoselskikh, V.; Vekstein, G.; Hudson, H. S.; Bale, S. D.; Abbett, W. P.

    2010-12-01

    We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes fully ionized, and resistive dissipation continues to heat electrons and ions. This heating process is so efficient that it can result in typical temperature increases with altitude as large as 0.1-0.3 eV km{sup -1}. We conclude that this process can play a major role in the heating of the chromosphere and corona.

  18. Characterization of laser-induced air plasmas by third harmonic generation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Cristina; Sun, Zhanliang; Wang, Zhenwei; Rudolph, Wolfgang

    2011-08-01

    Third harmonic generation by a weak femtosecond probe pulse intersecting a pump laser-induced plasma in air is investigated and a general model is developed to describe such signal, applicable to a wide range of focusing and plasma conditions. The effect of the surrounding air on the generated signal is discussed. The third-order nonlinear susceptibility of an air plasma with electron density Ne is determined to be χp(3)=χa(3)+γpNe with γp = 2 ± 1 × 10-49 m5 V-2 and χa(3) being the third-order susceptibility in air. Lateral scans of the probe through the plasma are used to determine electron density profiles and the effect of focusing and phase mismatch is discussed.

  19. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.

    PubMed

    Park, Hee-Jin; Kim, Jee Yeon; Kim, Jaeeun; Lee, Joon-Hee; Hahn, Ji-Sook; Gu, Man Bock; Yoon, Jeyong

    2009-03-01

    Silver ions have been widely used as disinfectants that inhibit bacterial growth by inhibiting the essential enzymatic functions of the microorganism via interaction with the thiol-group of l-cysteine. However, silver-ion-mediated perturbation of the bacterial respiratory chain has raised the possibility of reactive oxygen species (ROS) generation. We used bacterial reporter strains specifically responding to superoxide radicals and found that silver-ion-mediated ROS-generation affected bactericidal activity. Almost half the log reduction in Escherichia coli and Staphylococcus aureus populations (model strains for gram negative and positive bacteria, respectively) caused by silver-ion disinfection was attributed to ROS-mediated bactericidal activity. The major form of ROS generated was the superoxide-radical; H(2)O(2) was not induced. Furthermore, silver ions strongly enhanced paraquat-induced oxidative stress, indicating close correlation and synergism between the conventional and ROS-mediated silver toxicity. Our results suggest that further studies in silver-based disinfection systems should consider the oxygen concentration and ROS reaction.

  20. Studies of Next Generation Air Traffic Control Specialists: Why Be an Air Traffic Controller?

    DTIC Science & Technology

    2011-08-01

    for effective management . Health Care Manager , 19, 65-76. Lancaster, L.C. & Stillman, D. (2002). When generations collide: Who they are, why they...and descriptions of different generations abound in the popular press and the human resources management ( HRM ) trade press. Values, working styles...Agency Code 15. Supplemental Notes Work was accomplished under approved task AM-523 16. Abstract With phrases such as “ Managing

  1. Toward the next generation of air quality monitoring: Mercury

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    understanding the link between the magnitude of mercury emissions and the concentrations found in the fish that we consume. For air quality monitoring, priorities include expanding the existing data collection network and widening the scope of atmospheric mercury measurements (elemental, oxidised, and particulate species as well as mercury in precipitation). Presently, the only accurate indicators of mercury impacts on human and biological health are methylmercury concentrations in biota. However, recent advances in analytical techniques (stable mercury isotopes) and integrated modelling tools are allowing greater understanding of the relationship between atmospheric deposition, concentrations in water, methylation and uptake by biota. This article recommends an expansion of the current atmospheric monitoring network and the establishment of new coordinated measurements of total mercury and methylmercury concentrations in seawater and concurrent concentrations and trends in marine fish.

  2. Impact of cold O+ ions on the generation and evolution of EMIC waves

    NASA Astrophysics Data System (ADS)

    Omidi, N.; Bortnik, J.; Thorne, R.; Chen, L.

    2013-01-01

    We explore the effect of cool O+ ions (~11 eV) on the generation and nonlinear evolution of electromagnetic ion cyclotron (EMIC) waves in the magnetosphere, using hybrid (kinetic ions, fluid electrons) simulations with a dipolar magnetic field. The instability is driven by the temperature anisotropy of the hot (keV), ring current protons whose density is a few percent of the background plasma consisting of cold (eV) protons and O+ ions with concentrations varying between 0 and 30% of the cold protons. The results show that for O+ ion concentration of 7% or less, the properties of the EMIC waves are similar to those in the absence of O+ ions where waves are generated at low latitudes and propagate all the way to the ionospheric boundary. Further increases in O+ density (~15%) result in waves being confined in latitude due to processes explored in this paper. At O+ densities of 30% and higher, the growth of EMIC waves is weak or non-existent due to cyclotron resonant damping by the O+ ions. Comparing the results of the runs with no and 15% O+ ions shows that the propagation properties of the EMIC waves change dramatically in the presence of O+ ions. Specifically, they show that waves are propagating parallel and anti-parallel to the magnetic field in both hemispheres due to reflection at points that move to higher latitudes with time. This in turn results in the nonlinear generation of field aligned electrostatic waves with large perturbations in the density of the cold protons and O+ ions and also local heating of these ions. Examination of the wave properties also shows that EMIC waves are only present in regions of space where the density of the hot protons is larger than 1% of the background level. In other words, the propagation properties of the EMIC waves are controlled by the density of the hot protons. This finding is further confirmed by performing a test hybrid simulation in which hot protons reaching latitude of 22° are removed from the run resulting in

  3. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  4. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    NASA Astrophysics Data System (ADS)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces

  5. Novel methods for improvement of a Penning ion source for neutron generator applications.

    PubMed

    Sy, A; Ji, Q; Persaud, A; Waldmann, O; Schenkel, T

    2012-02-01

    Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.

  6. Anomalous electron heating and energy balance in an ion beam generated plasma

    SciTech Connect

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  7. Ion chemistry for the detection of isoprene and other volatile organic compounds in ambient air

    NASA Astrophysics Data System (ADS)

    Leibrock, Edeltraud; Huey, L. Gregory

    2000-06-01

    A chemical ionization mass spectrometer (CIMS) and a flowing afterglow apparatus were used to study reactions of benzene cations (C6H6+ and (C6H6)2+) with a series of volatile organic compounds (VOCs). Both cations react at the collision rate with compounds of lower ionization potential than benzene, such as isoprene (C5H8), other conjugated dienes, and aromatics. These ions are generally unreactive with substances of higher ionization potential such as alkanes, simple alcohols, simple carbonyls, etc. The results demonstrate that C6H6+ and (C6H6)2+ are excellent reagent ions for the sensitive detection of isoprene in air with a CIMS. However, 2-methyl-3-buten-2-ol (MBO) and C5H8 conjugated dienes were identified as potential interferences to this technique. This indicates that the selectivity of the CIMS isoprene measurement must be tested by intercomparison with well-established methods, e.g. gas chromatography techniques.

  8. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  9. Field Observation of the Green Ocean Amazon. Neutral Cluster Air Ion Spectrometer (NAIS) Final Campaign Summary

    SciTech Connect

    Petaja, T.; Backman, J.; Manninen, H. E.; Wimmer, D.

    2016-03-01

    The neutral cluster and air ion spectrometer (NAIS) was deployed to the T3 site for Intensive Operations Periods 1 and 2 (IOP1 and IOP2). The NAIS is an instrument that measures aerosol particle and ion number size distributions in the mobility diameter range of 0.8 to 42 nm, corresponding to electrical mobility range between 3.2 and 0.0013 cm2 V-1 s-1. New particle formation (NPF) events were detected using the NAIS at the T3 field site during IOP1 and IOP2. Secondary NPF is a globally important source of aerosol number. To fully explain atmospheric NPF and subsequent growth, we need to directly measure the initial steps of the formation processes in different environments, including rain forest. Particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation.

  10. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  11. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  12. Generation 6 Li-Ion Cell Vibration Testing at ABSL Space Products

    NASA Astrophysics Data System (ADS)

    Defer, M.; Borthomieu, Y.; Ligneel, E.; Badet, S.

    2014-08-01

    This paper presents the design of Saft's Generation6 Li-Ion cell, the main challenges in the course of the development, the main BOL characteristics and performances achieved during the development program. Finally, it also describes how this cell fits in Saft's battery range and the benefits of it.

  13. Design, simulation and evaluation of improved air amplifier incorporating an ion funnel for nano-ESI MS.

    PubMed

    Jurcicek, Petr; Liu, Lingpeng; Zou, Helin; An, Zhiqi; Xiao, Hongbin

    2014-01-01

    An improved air amplifier design that takes advantage of the combined effects of aerodynamic and electrodynamic focusing was developed to couple a nanoelectrospray ionisation (nano-ESI) source and the heated mass spectrometer inlet to improve the sensitivity of a mass spectrometer. The new design comprises an electrodynamic ion funnel integrated into the main air pathway of the air amplifier to more effectively focus and transmit gas-phase ions from the nano-ESI source into the heated mass spectrometer inlet. Numerical computational fluid dynamics simulations were carried out using a commercial software package, ANSYS FLUENT, to provide more detailed information about the device's performance. The gas flow field as well as the electric field patterns and the Lagrangian ion motion were conveniently simulated using this single package and custom-written, user-defined functions. Experimental results show a nearly five-fold improvement in reserpine ion intensity with the air amplifier operated at a nitrogen gauge pressure of 40 kPa and no direct current (DC) or radiofrequency (RF) potentials applied to the ion funnel when the distance between the electrospray emitter and sampling inlet tube was 24 mm, as compared to direct sample infusion from the same distance without the air amplifier. More importantly, a nearly three-fold additional gain in ion intensity was measured when both DC and RF potentials were co-applied, resulting in more than a 13-fold overall ion intensity gain which could be attributed to the combined air amplifier aerodynamic and ion funnel electrodynamic focusing effect.

  14. Research progress on ionic plasmas generated in an intense hydrogen negative ion source

    SciTech Connect

    Takeiri, Y. Tsumori, K.; Nagaoka, K.; Kaneko, O.; Ikeda, K.; Nakano, H.; Kisaki, M.; Tokuzawa, T.; Osakabe, M.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.; Sekiguchi, H.; Geng, S.

    2015-04-08

    Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observed at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.

  15. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.

    PubMed

    Hubbard, H F; Coleman, B K; Sarwar, G; Corsi, R L

    2005-12-01

    The use of indoor ozone generators as air purifiers has steadily increased over the past decade. Many ozone generators are marketed to consumers for their ability to eliminate odors and microbial agents and to improve health. In addition to the harmful effects of ozone, recent studies have shown that heterogeneous and homogeneous reactions between ozone and some unsaturated hydrocarbons can be an important source of indoor secondary pollutants, including free radicals, carbonyls, carboxylic acids, and fine particles. Experiments were conducted in one apartment and two detached single-family dwellings in Austin, TX, to assess the effects of an ozone generator on indoor secondary organic aerosol concentrations in actual residential settings. Ozone was generated using a commercial ozone generator marketed as an air purifier, and particle measurements were recorded before, during, and after the release of terpenes from a pine oil-based cleaning product. Particle number concentration, ozone concentration, and air exchange rate were measured during each experiment. Particle number and mass concentrations increased when both terpenes and ozone were present at elevated levels. Experimental results indicate that ozone generators in the presence of terpene sources facilitate the growth of indoor fine particles in residential indoor atmospheres. Human exposure to secondary organic particles can be reduced by minimizing the intentional release of ozone, particularly in the presence of terpene sources. Past studies have shown that ozone-initiated indoor chemistry can lead to elevated concentrations of fine particulate matter, but have generally been completed in controlled laboratory environments and office buildings. We explored the effects of an explicit ozone generator marketed as an air purifier on the formation of secondary organic aerosol mass in actual residential indoor settings. Results indicate significant increases in number and mass concentrations for particles <0

  16. Hybrid simulations of positively and negatively charged pickup ions and cyclotron wave generation at Europa

    DOE PAGES

    Desai, Ravindra T.; Cowee, Misa; Wei, Hanying; ...

    2017-09-19

    In the vicinity of Europa, Galileo observed bursty Alfvén-cyclotron wave power at the gyrofrequencies of a number of species including K+, math formula, Na+, and Cl+, indicating the localised pickup of these species. Additional evidence for the presence of Chlorine was the occurrence of both left-hand (LH) and right-hand (RH) polarised transverse wave power near the Cl+ gyrofrequency, thought to be due to the pickup of both Cl+ and the easily formed Chlorine anion, Cl–. To test this hypothesis we use one-dimensional hybrid (kinetic ion, massless fluid electron) simulations for both positive and negative pickup ions and self-consistently reproduce themore » growth of both LH and RH Alfvén-cyclotron waves in agreement with linear theory. We show how the simultaneous generation of LH and RH waves can result in non-gyrotropic ion distributions and increased wave amplitudes, and how even trace quantities of negative pickup ions are able to generate an observable RH signal. Here, through comparing simulated and observed wave amplitudes, we are able to place the first constraints on the densities of Chlorine pickup ions in localised regions at Europa.« less

  17. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2010-10-11

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  18. Sink or Swim: Ions and Organics at the Ice-Air Interface.

    PubMed

    Hudait, Arpa; Allen, Michael T; Molinero, Valeria

    2017-07-26

    The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.

  19. Harmonic generation and parametric decay in the ion cyclotron frequency range

    SciTech Connect

    Skiff, F.N.; Wong, K.L.; Ono, M.

    1984-06-01

    Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.

  20. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™.

    PubMed

    Fordyce, Sarah L; Mogensen, Helle Smidt; Børsting, Claus; Lagacé, Robert E; Chang, Chien-Wei; Rajagopalan, Narasimhan; Morling, Niels

    2015-01-01

    Second-generation sequencing (SGS) using Roche/454 and Illumina platforms has proved capable of sequencing the majority of the key forensic genetic STR systems. Given that Roche has announced that the 454 platforms will no longer be supported from 2015, focus should now be shifted to competing SGS platforms, such as the MiSeq (Illumina) and the Ion Personal Genome Machine (Ion PGM™; Thermo Fisher). There are currently several challenges faced with amplicon-based SGS STR typing in forensic genetics, including current lengths of amplicons for CE-typing and lack of uniform data analysis between laboratories. Thermo Fisher has designed a human identification (HID) short tandem repeat (STR) 10-plex panel including amelogenin, CSF1PO, D16S539, D3S1358, D5S818, D7S820, D8S1179, TH01, TPOX and vWA, where the primers have been designed specifically for the purpose of SGS and the data analysis is supported by Ion Torrent™ software. Hence, the combination of the STR 10-plex and the Ion PGM™ represents the first fully integrated SGS STR typing solution from PCR to data analysis. In this study, four experiments were performed to evaluate the alpha-version of the STR 10-plex: (1) typing of control samples; (2) analysis of sensitivity; (3) typing of mixtures; and (4) typing of biological crime case samples. Full profiles and concordant results between replicate SGS runs and CE-typing were observed for all control samples. Full profiles were seen with DNA input down to 50 pg, with the exception of a single locus drop-out in one of the 100 pg dilutions. Mixtures were easily deconvoluted down to 20:1, although alleles from the minor contributor had to be identified manually as some signals were not called by the Ion Torrent™ software. Interestingly, full profiles were obtained for all biological samples from real crime and identification cases, in which only partial profiles were obtained with PCR-CE assays. In conclusion, the Ion Torrent™ HID STR 10-plex panel offers an

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  3. Intense ion beam generation, plasma radiation source and plasma opening switch research

    NASA Astrophysics Data System (ADS)

    Hammer, D. A.; Coleman, M. D.; Qi, N.; Similon, P. L.; Sudan, R. N.

    1989-04-01

    This report describes research on intense ion beam diodes, plasma opening switches and dense z-pinch plasma radiators. Laser induced fluorescence spectroscopy has been used to map the electrostatic potential profile in a plasma-prefilled magnetically insulated ion diode. In a simple planar diode, the measured profile is inconsistent with the electrons being confined in a sheath near the cathode by the magnetic field. Rather, the profile implies the presence of electrons throughout the accelerating gap. A theoretical model of the penetration of current and magnetic field into a plasma, and of the current-driven effective collision frequency has been developed. The snowplow action of the rising magnetic field causes a steep rise in the plasma density at the leading edge. The subsequent multistreaming of the ions caused by ion reflection at the current layer could lead to ion heating through collective effects. The two-dimensional electron flow in the plasma cathode vacuum gap is also treated. Dense z-pinch plasma radiation source experiments have been initiated on the LION accelerator using gas puff and fine wire loads. The x-pinch was found to be a more effective way to generate soft x-rays than a single wire pinch or a gas puff implosion. Plasma opening switch experiments being initiated, and plasma anode ion diode development work being terminated are also briefly described.

  4. Direct Depth- and Lateral- Imaging of Nanoscale Magnets Generated by Ion Impact

    PubMed Central

    Röder, Falk; Hlawacek, Gregor; Wintz, Sebastian; Hübner, René; Bischoff, Lothar; Lichte, Hannes; Potzger, Kay; Lindner, Jürgen; Fassbender, Jürgen; Bali, Rantej

    2015-01-01

    Nanomagnets form the building blocks for a variety of spin-transport, spin-wave and data storage devices. In this work we generated nanoscale magnets by exploiting the phenomenon of disorder-induced ferromagnetism; disorder was induced locally on a chemically ordered, initially non-ferromagnetic, Fe60Al40 precursor film using  nm diameter beam of Ne+ ions at 25 keV energy. The beam of energetic ions randomized the atomic arrangement locally, leading to the formation of ferromagnetism in the ion-affected regime. The interaction of a penetrating ion with host atoms is known to be spatially inhomogeneous, raising questions on the magnetic homogeneity of nanostructures caused by ion-induced collision cascades. Direct holographic observations of the flux-lines emergent from the disorder-induced magnetic nanostructures were made in order to measure the depth- and lateral- magnetization variation at ferromagnetic/non-ferromagnetic interfaces. Our results suggest that high-resolution nanomagnets of practically any desired 2-dimensional geometry can be directly written onto selected alloy thin films using a nano-focussed ion-beam stylus, thus enabling the rapid prototyping and testing of novel magnetization configurations for their magneto-coupling and spin-wave properties. PMID:26584789

  5. Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions

    NASA Astrophysics Data System (ADS)

    Wakui, Kentaro; Hayasaka, Kazuhiro; Ido, Tetsuya

    2014-12-01

    Vacuum ultraviolet (VUV) radiation around 159 nm is obtained toward direct excitation of a single trapped ion. An efficient fluoride-based VUV output coupler is employed for intracavity high-harmonic generation of a Ti:S oscillator. Using this coupler, where we measured its reflectance to be about 90 %, an average power reaching 6.4 W is coupled out from a modest fundamental power of 650 mW. When a single comb component out of 1.9 10 teeth is resonant to the atomic transition, 100s of fluorescence photons per second will be detectable under a realistic condition.

  6. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Lou, Xianwen; van Dongen, Joost L J; Meijer, E W

    2010-07-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3) with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)(n)Cs](+), and in the negative ion mode is [(CsI)(n)I](-). In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  7. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    PubMed

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications.

  8. Generation of Superpositions of Two-Mode Coherent States for the Motion of Two Trapped Ions

    NASA Astrophysics Data System (ADS)

    Zheng, Shi-Biao

    2005-12-01

    We propose a method for the generation of superpositions of two-mode coherent states for the center-of-mass and relative vibrational modes of two trapped ions. In the scheme the ions are driven by a single travelling-wave laser field tuned to the carrier. Then a measurement of the internal states collapses the vibrational modes to the entangled coherent state. The project supported by Fok Ying Tung Education Foundation under Grant No. 81008, National Natural Science Foundation of China under Grant Nos. 60008003 and 100225421, and Funds from Fuzhou University

  9. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise

    NASA Astrophysics Data System (ADS)

    Ryushi, T.; Kita, Ichirou; Sakurai, Tomonobu; Yasumatsu, Mikinobu; Isokawa, Masanori; Aihara, Yasutugu; Hama, Kotaro

    This study examined the effects of negative air ion exposure on the human cardiovascular and endocrine systems during rest and during the recovery period following moderate endurance exercise. Ten healthy adult men were studied in the presence (8,000-10,000 cm-3) or absence (200-400 cm-3) of negative air ions (25° C, 50% humidity) after 1 h of exercise. The level of exercise was adjusted to represent a 50-60% load compared with the subjects' maximal oxygen uptake, which was determined using a bicycle ergometer in an unmodified environment (22-23° C, 30-35% humidity, 200-400 negative air ions.cm-3). The diastolic blood pressure (DBP) values during the recovery period were significantly lower in the presence of negative ions than in their absence. The plasma levels of serotonin (5-HT) and dopamine (DA) were significantly lower in the presence of negative ions than in their absence. These results demonstrated that exposure to negative air ions produced a slow recovery of DBP and decreases in the levels of 5-HT and DA in the recovery period after moderate endurance exercise. 5-HT is thought to have contributed to the slow recovery of DBP.

  11. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Go, David B.

    2015-12-01

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ˜30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  12. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    SciTech Connect

    Johnson, Michael J.; Go, David B.

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  13. Next Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer ...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue

  14. Effects of impregnated metal ions on air/CO2-gasification of woody biomass.

    PubMed

    Hurley, Scott; Li, Hanning; Xu, Chunbao Charles

    2010-12-01

    Several impregnated metal ions (Fe (III), Co (II), Ni (II), and Ru (IV)) and a raw iron ore (natural limonite) were examined as catalysts for gasification of pine sawdust in air/CO(2) at 700 and 800 degrees C. The yields of char and tar both increased with increasing CO(2) content in the feed gas. All the impregnated metal ions, in particular Ni (II), Co (II) and Ru (IV), were very effective for promoting biomass gasification in CO(2), leading to greatly reduced yields of tar and char accompanied by significantly enhanced formation of CO and H(2). At 800 degrees C, the impregnation of Fe (III), Ni (II), Co (II) or Ru (IV) led to almost complete conversion of the solid biomass into gas/liquid products, producing an extremely low char yield (<1-4 wt.%), and a very high yield of combustible gas (from 51.7 wt.% for Fe to 84 wt.% for Ru). The tar yield reduced from 32.1 wt.% without catalyst to 19-27 wt.% with the impregnated metal ions.

  15. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  16. 31. DETAIL OF INSIDE OF GENERATOR (1991). WrightPatterson Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. DETAIL OF INSIDE OF GENERATOR (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  17. Formation of Langmuir Monolayers of Titanium Dioxide Nanoparticles at Air/Aqueous Interfaces by the Addition of Ions to the Subphase: Effect of Ion Concentration and Type.

    PubMed

    Iwafuji, Yuya; McNamee, Cathy E

    2015-09-17

    A Langmuir monolayer of bare, hydrophilic TiO2 nanoparticles (diameter = 75 nm) was formed at an air/pH 5.8 aqueous interface by adding salt to the subphase. The effect of the concentration and type of salt in the subphase on the surface pressure-area per particle isotherms was determined. Increasing the concentration of NaCl from 0 to 3.8 M increased the maximum surface pressure (Πmax) and shifted the isotherms to a larger area per particle. The ion type also affected the area at which the close packing commenced and the value of Πmax. The presence of salt in the subphase also stabilized SiO2 nanoparticles, suggesting that the ions in the subphase interacted with the dioxide groups on the particles. The combination of structure making or borderline ions with structure breaking ions (LiCl, MgCl2, NaCl, and CaCl2) appeared to stabilize the particulate monolayers more than the combination of structure breaking ions (KBr and KCl). These results suggested that the particles were stabilized by a hydrogen bond network between the particles or the formation of a salt bridge between the particles. Attractions between particles at the air/aqueous interface caused the particles to aggregate, resulting in the particles becoming more stable at the air/aqueous interface.

  18. Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator

    SciTech Connect

    Waldmann, Ole; Ludewigt, Bernhard

    2011-03-31

    A microwave ion source has been designed and constructed for use with a sealed-tube, high-yield neutron generator. When operated with a tritium-deuterium gas mixture the generator will be capable of producing 5*1011 n/s in non-proliferation applications. Microwave ion sources are well suited for such a device because they can produce high extracted beam currents with a high atomic fraction at low gas pressures of 0.2-0.3 Pa required for sealed tube operation. The magnetic field strength for achieving electron cyclotron resonance (ECR) condition, 87.5 mT at 2.45 GHz microwave frequency, was generated and shaped with permanent magnets surrounding the plasma chamber and a ferromagnetic plasma electrode. This approach resulted in a compact ion source that matches the neutron generator requirements. The needed proton-equivalent extracted beam current density of 40 mA/cm^2 was obtained at moderate microwave power levels of 400 W. Results on magnetic field design, pressure dependency and atomic fraction measured for different wall materials are presented.

  19. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    PubMed

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  20. Ion beam-generated surface ripples: new insight in the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Kumar, Tanuj; Kumar, Ashish; Agarwal, Dinesh Chander; Lalla, Nirnajan Prasad; Kanjilal, Dinakar

    2013-07-01

    A new hydrodynamic mechanism is proposed for the ion beam-induced surface patterning on solid surfaces. Unlike the standard mechanisms based on the ion beam impact-generated erosion and mass redistribution at the free surface (proposed by Bradley-Harper and its extended theories), the new mechanism proposes that the incompressible solid flow in amorphous layer leads to the formation of ripple patterns at the amorphous-crystalline (a/c) interface and hence at the free surface. Ion beam-stimulated solid flow inside the amorphous layer probably controls the wavelength, whereas the amount of material transported and re-deposited at a/c interface control the amplitude of ripples.

  1. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  2. Phase Space Generation for Proton and Carbon Ion Beams for External Users’ Applications at the Heidelberg Ion Therapy Center

    PubMed Central

    Tessonnier, Thomas; Marcelos, Tiago; Mairani, Andrea; Brons, Stephan; Parodi, Katia

    2016-01-01

    In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT), the beamline has been already modeled in the FLUKA Monte Carlo (MC) code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS) files for proton and carbon ion beams, for all energies and foci available at HIT. PSs are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation) at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the MC code FLUKA. The generated PSs were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations, including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles), with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for application to

  3. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  4. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  5. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  6. [Air negative ion concentration in different modes of courtyard forests in southern mountainous areas of Jinan, Shandong Province of East China].

    PubMed

    Wang, Xiao-Lei; Li, Chuan-Rong; Xu, Jing-Wei; Hu, Ding-Meng; Zhao, Zhen-Lei; Zhang, Liu-dong

    2013-02-01

    Taking five typical courtyard forests and a non-forest courtyard in southern mountains areas of Jinan as test objects, a synchronous observation was conducted on the air negative ion concentration and related meteorological factors in March-December, 2010. The air negative ion concentration in the test courtyards showed an obvious seasonal variation, being in the order of summer > autumn > spring > winter. The diurnal variation of the air negative ion concentration presented a double peak curve, with the maximum in 10:00 - 11:00 and 16:00 - 17:00 and the minimum around 12:00. The daily air quality was the best at 10:00 and 16:00, and better in afternoon than in the morning. Summer time and garden sketch mode had the best air quality in a year. The mean annual air negative ion and the coefficient of air ion (CI) of the test courtyards were in the order of garden sketch > economic fruit forest > natural afforested forest > flowers and bonsai > farm tourist > non-forest, with the air negative ion concentration being 813, 745, 695, 688, 649, and 570 ions.cm-3, and the CI being 1.22, 1.11, 0.85, 0.84, 0.83, and 0.69, respectively. It could be concluded that garden sketch was the ideal courtyard forest mode. The air negative ion concentration was significantly positively correlated with air temperature and relative humidity, but irrelevant to light intensity.

  7. Fast ion generation in the cathode plasma jet of a multipicosecond laser-triggered vacuum discharge

    SciTech Connect

    Moorti, A.; Naik, P. A.; Gupta, P. D.

    2010-03-15

    Ion generation in the cathode plasma jet of a moderate-current ({approx}2.3 kA), low-energy ({<=}20 J) vacuum spark discharge triggered by {approx}27 ps, 10 mJ laser pulses is studied using time of flight technique. Fastest ion velocity and velocity corresponding to the peak of the time of flight signals for Al cathode were measured to be {approx}5.25x10{sup 8} cm/s (energy of {approx}143 keV/u) and {approx}8.1x10{sup 7} cm/s (energy of {approx}3.4 keV/u), respectively. Corresponding velocities in the case of ions generated from laser-produced Al plasma (energy of {approx}550 mJ, intensity of {approx}10{sup 14} W/cm{sup 2}) were found to be much smaller, viz., {approx}1.05x10{sup 8} cm/s (energy of {approx}5.75 keV/u) and {approx}2.63x10{sup 7} cm/s (energy of {approx}0.36 keV/u), respectively. Study shows efficient acceleration of ions in a current-carrying cathode plasma jet of a small-energy multipicosecond laser-triggered spark discharge as compared with that in a high-energy multipicosecond laser-produced plasma plume.

  8. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna; Gekelman, Walter; Pribyl, Patrick

    2013-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ~=1012cm-3 , B0 = 1000 G - 1800 G, fpe /fce ~= 1 - 5 , Te ~= 4eV , vte <ion beam is either a Helium beam or Hydrogen beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the 2D perpendicular mode structure will be shown. Progress on a theoretical framework of the wave generation by the ion beam will be presented along with comparisons to the measured wave properties. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  9. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  10. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  11. Selected ion flow tube studies of air plasma cations reacting with alkylbenzenes

    SciTech Connect

    Arnold, S.T.; Dotan, I.; Williams, S.; Viggiano, A.A.; Morris, R.A.

    2000-02-10

    Rate constants and product branching fractions are reported for reactions of the air plasma cations NO{sup +}, O{sub 2}{sup +}, O{sup +}, N{sup +}, and N{sub 2}{sup +} with several alkylbenzenes: toluene, ethylbenzene, n-propylbenzene, and m-xylene. The measurements were made using a selected ion flow tube (SIFT) apparatus at 300 K. All reactions were found to proceed at the collision rate. NO{sup +} reactions yield exclusively nondissociative charge-transfer products. C{sub 7}H{sub 7}{sup +} is the dominant product ion observed in all the O{sup +}, N{sup +}, and N{sub 2}{sup +} reactions. Charge transfer and formation of C{sub 7}H{sub 7}{sup +} are the major product channels in the O{sub 2}{sup +} reactions. Product distributions were converted to crude breakdown diagrams, showing the relative abundance of each product ion as a function of the reactant ion recombination energy. The flow tube results exhibit a shift in the product ion threshold energies, an effect attributed to a kinetic shift resulting from slow fragmentation of the excited charge-transfer complex combined with collisional stabilization of the complex by the He buffer gas. Two isomeric forms of the C{sub 7}H{sub 7}{sup +} product ion are produced in these reactions: the benzyl (Bz{sup +}) and tropylium (Tr{sup +}) cations. The Bz{sup +}/Tr{sup +} isomeric mixture ratio was quantified as a function of energy for all four alkylbenzenes. Changes in the Bz{sup +}/Tr{sup +} mixture suggest that ethylbenzene has a relatively larger reverse activation barrier compared with toluene for forming Tr{sup +} from the charge-transfer complex, while formation of Tr{sup +} from the larger alkylbenzenes probably proceeds via a different mechanism altogether. For m-xylene, the formation of both Bz{sup +} and Tr{sup +} isomers likely proceeds via a different mechanism than for the n-alkylbenzenes.

  12. A Negative-Surface Ionization for Generation of Halogen Radioactive Ion Beams

    SciTech Connect

    Zaim, H.

    2001-04-16

    A simple and efficient negative surface ionization source has been designed, fabricated and initially tested for on-line generation of radioactive ion beams of the halogens (Cl, Br, I, and At) for use in the nuclear-structure and nuclear-astrophysics research programs at the Holifield Radioactive Ion Beam Facility. The source utilizes a solid, spherical geometry LaB{sub 6} surface ionizer for forming highly electronegative atoms and molecules. Despite its widely publicized propensity for being easily poisoned, no evidences of this effect were experienced during testing of the source. Nominal efficiencies of 15% for Br{sup {minus}} beam generation were obtained during off-line evaluation of the source with AlBr3 feed material when account is taken of the fractional dissociation of the molecule. Principles of operation, design features, operational parameter data, initial performance results, and beam quality data (emittance) are presented in this article.

  13. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    PubMed

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  14. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna Kp; Gekelman, Walter; Pribyl, Patrick; Colestock, Patrick

    2012-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ˜10^12 cm-3, B0 = 1000 G - 1800 G, fpe/fce˜1 - 5, Te= 0.25 eV, vtevA). The ion beam is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfv'en velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfv'en wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles.

  15. Generation of atmospheric-pressure homogeneous dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Ma, Chuanlong; Li, Zhiyi; Wang, Tahan; Tian, Jia

    2017-05-01

    To generate an atmospheric-pressure homogeneous dielectric barrier discharge (APHDBD) in air, a line-plane electrode with a floating-voltage electrode, which consists of a high-voltage electrode, floating-voltage electrode, air-gap, barrier dielectric, and metal electrode, is proposed. Studies of the electric field of the line-plane electrode with a floating-voltage electrode show that strong electric field areas beneficial for generating initial discharges are formed near the contact point between the high-voltage electrode and the floating-voltage electrode. These areas can provide sufficient and evenly distributed initial electrons for the air-gap with relatively uniform and low electric fields. Thus, a filamentary discharge in the air-gap can be inhibited. Experiments show that the floating-voltage electrode makes it easy to reduce the initial discharge voltage and improve the uniformity of discharge. When the air-gap is 2-8 mm, the discharge occurs in the APHDBD mode, and when it is 9 mm, it changes from diffuse-like to corona discharge.

  16. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    SciTech Connect

    Yang, Wei Zhou, Qianhong; Dong, Zhiwei

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  17. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  19. Fe Simulation of the Generation of Guided Waves by Air-Coupled Transducers

    NASA Astrophysics Data System (ADS)

    Hosten, Bemard; Biateau, Christine

    2008-02-01

    The measurements of the spatial and frequential ultrasonic fields generated by an air-coupled transducer furnish the value of its efficiency. Then the field in air can be simulated with absolute values of the pressure with commercial FE software. The field generated by the transducer is simulated by introducing a second member in the Helmholtz equation, used for computing the propagation from the transducer to a plate in the air, along a direction that makes an incident angle θ with the normal of the plate. Inside the plate the propagation is simulated with the dynamic equations of equilibrium and a complex stiffness tensor to take into account the viscoelastic anisotropy of the material. The two physics are coupled by introducing the boundary conditions at the interface fluid/solid. The θ angle is adjusted for generating the specified guided modes and for investigating the efficiency of the air-coupled technique. Experimental and numerical results will be given in terms of normal displacements in function of the incidence and the position for a Perspex plate in order to justify the model.

  20. Targeting Cancer Cells with Reactive Oxygen and Nitrogen Species Generated by Atmospheric-Pressure Air Plasma

    PubMed Central

    Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH−, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. PMID:24465942

  1. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  2. Low-Resistance Dual-Purpose Air Filter Releasing Negative Ions and Effectively Capturing PM2.5.

    PubMed

    Zhao, Xinglei; Li, Yuyao; Hua, Ting; Jiang, Pan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-04-05

    The fatal danger of pollution due to particulate matter (PM) calls for both high-efficiency and low-resistance air purification materials, which also provide healthcare. This is however still a challenge. Herein, a low-resistance air filter capable of releasing negative ions (NIs) and efficiently capturing PM2.5 was prepared by electrospinning polyvinylidene fluoride (PVDF) fibers doped with negative ions powder (NIPs). The air-resistance of fibrous membranes decreased from 9.5 to 6 Pa (decrease of 36%) on decreasing the average fiber diameter from 1.16 to 0.41 μm. Moreover, the lower rising rate of air-resistance with reduction in pore size, for fibrous membranes with thinner fiber diameter was verified. In addition, a single PVDF/NIPs fiber was provided with strong surface potentials, due to high fluorine electronegativity, and tested using atomic force microscopy. This strong surface potential resulted in higher releasing amounts of NIs (RANIs). Interestingly, reduction of fiber diameter favored the alleviation of the shielding effects on electric field around fibers and promoted the RANIs from 798 to 1711 ions cc(-1). Moreover, by regulating the doping contents of NIPs, the RANIs increased from 1711 to 2818 ions cc(-1). The resultant fibrous membranes showed low air resistance of 40.5 Pa. Field-tests conducted in Shanghai showed stable PM2.5 purification efficiency of 99.99% at high RANIs, in the event of haze.

  3. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  4. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  5. Influence of Water and Ion Diffusion on Generation and Progress of Bow-tie Tree

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Nakagawa, Wataru; Tsurumaru, Hidekazu

    Bow-tie tree(BTT) generated from contaminant, e.g., metal, carbon, amber(over cured resin) or void is a deterioration factor of XLPE cable. In particular, BTT in contact with inner or outer semi-conductive shield could significantly lower residual AC breakdown voltage of HV power cable. To evaluate influence of water and ion diffusion on generation and progress of BTT, we investigated relationship between water content of XLPE and the generation of BTT by various accelerated aging. The number of BTT in XLPE samples with accelerated aging under open condition, involving evaporation of water in which samples were immersed, was very large compared with closed condition. Furthermore, when samples were intermittently immersed in water, the number of BTT in samples was large compared with samples immersed continuously. In these experiments the generation of BTT seemed to have nothing to do with changes in water content before and after accelerated aging. Therefore, it was suggested that diffusion of ions rather than water in XLPE played an important role in the generation of BTT.

  6. Arc plasma generator of atomic driver for steady-state negative ion source.

    PubMed

    Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  7. Arc plasma generator of atomic driver for steady-state negative ion source

    SciTech Connect

    Ivanov, A. A.; Belchenko, Yu. I.; Davydenko, V. I.; Ivanov, I. A.; Kolmogorov, V. V.; Listopad, A. A. Mishagin, V. V.; Shulzhenko, G. I.; Putvinsky, S. V.; Smirnov, A.

    2014-02-15

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB{sub 6} cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  8. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  9. Development and study of aluminum-air electrochemical generator and its main components

    NASA Astrophysics Data System (ADS)

    Ilyukhina, A. V.; Kleymenov, B. V.; Zhuk, A. Z.

    2017-02-01

    Aluminum-air power sources are receiving increased attention for applications in portable electronic devices, transportation, and energy systems. This study reports on the development of an aluminum-air electrochemical generator (AA ECG) and provides a technical foundation for the selection of its components, i.e., aluminum anode, gas diffusion cathode, and alkaline electrolyte. A prototype 1.5 kW AA ECG with specific energy of 270 Wh kg-1 is built and tested. The results of this study demonstrate the feasibility of AA ECGs as portable reserve and emergency power sources, as well as power sources for electric vehicles.

  10. Fabrication and evaluation of an electrodialytic carbonate eluent generator for ion chromatography.

    PubMed

    Shen, Guobin; Lu, Yifei; Chen, Feifei; Zhang, Feifang; Yang, Bingcheng

    2016-10-01

    An electrodialytic potassium carbonate eluent generator and its associated potassium bicarbonate eluent generator have been fabricated for ion chromatography (IC). The device can withstand high backpressure up to ∼32MPa and no observable leakage under such pressure is found during 2h. In the range of 0-13.7mM, potassium carbonate concentration can be generated linearly with the applied current with a slope that is essentially Faradaic. At least 10mM potassium carbonate can be online changed into 10mM potassium bicarbonate via a potassium bicarbonate eluent generator, which offers an easy way to manipulate the separation selectivity. When coupled with IC system, the device demonstrated good reproducibility indicated by less than 0.52% of the relative standard deviation of the retention times. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  12. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect

    Denius, M.W.; Batton, W.D.

    1984-07-01

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  13. How do air ions reflect variations in ionising radiation in the lower atmosphere in a boreal forest?

    NASA Astrophysics Data System (ADS)

    Chen, Xuemeng; Kerminen, Veli-Matti; Paatero, Jussi; Paasonen, Pauli; Manninen, Hanna E.; Nieminen, Tuomo; Petäjä, Tuukka; Kulmala, Markku

    2016-11-01

    Most of the ion production in the atmosphere is attributed to ionising radiation. In the lower atmosphere, ionising radiation consists mainly of the decay emissions of radon and its progeny, gamma radiation of the terrestrial origin as well as photons and elementary particles of cosmic radiation. These types of radiation produce ion pairs via the ionisation of nitrogen and oxygen as well as trace species in the atmosphere, the rate of which is defined as the ionising capacity. Larger air ions are produced out of the initial charge carriers by processes such as clustering or attachment to pre-existing aerosol particles. This study aimed (1) to identify the key factors responsible for the variability in ionising radiation and in the observed air ion concentrations, (2) to reveal the linkage between them and (3) to provide an in-depth analysis into the effects of ionising radiation on air ion formation, based on measurement data collected during 2003-2006 from a boreal forest site in southern Finland. In general, gamma radiation dominated the ion production in the lower atmosphere. Variations in the ionising capacity came from mixing layer dynamics, soil type and moisture content, meteorological conditions, long-distance transportation, snow cover attenuation and precipitation. Slightly similar diurnal patterns to variations in the ionising capacity were observed in air ion concentrations of the cluster size (0.8-1.7 nm in mobility diameters). However, features observed in the 0.8-1 nm ion concentration were in good connection to variations of the ionising capacity. Further, by carefully constraining perturbing variables, a strong dependency of the cluster ion concentration on the ionising capacity was identified, proving the functionality of ionising radiation in air ion production in the lower atmosphere. This relationship, however, was only clearly observed on new particle formation (NPF) days, possibly indicating that charges after being born underwent different

  14. Effects of negative air ions on oxygen uptake kinetics, recovery and performance in exercise: a randomized, double-blinded study

    NASA Astrophysics Data System (ADS)

    Nimmerichter, Alfred; Holdhaus, Johann; Mehnen, Lars; Vidotto, Claudia; Loidl, Markus; Barker, Alan R.

    2014-09-01

    Limited research has suggested that acute exposure to negatively charged ions may enhance cardio-respiratory function, aerobic metabolism and recovery following exercise. To test the physiological effects of negatively charged air ions, 14 trained males (age: 32 ± 7 years; : 57 ± 7 mL min-1 kg-1) were exposed for 20 min to either a high-concentration of air ions (ION: 220 ± 30 × 103 ions cm-3) or normal room conditions (PLA: 0.1 ± 0.06 × 103 ions cm-3) in an ionization chamber in a double-blinded, randomized order, prior to performing: (1) a bout of severe-intensity cycling exercise for determining the time constant of the phase II response ( τ) and the magnitude of the slow component (SC); and (2) a 30-s Wingate test that was preceded by three 30-s Wingate tests to measure plasma [adrenaline] (ADR), [nor-adrenaline] (N-ADR) and blood [lactate] (BLac) over 20 min during recovery in the ionization chamber. There was no difference between ION and PLA for the phase II τ (32 ± 14 s vs. 32 ± 14 s; P = 0.7) or SC (404 ± 214 mL vs 482 ± 217 mL; P = 0.17). No differences between ION and PLA were observed at any time-point for ADR, N-ADR and BLac as well as on peak and mean power output during the Wingate tests (all P > 0.05). A high-concentration of negatively charged air ions had no effect on aerobic metabolism during severe-intensity exercise or on performance or the recovery of the adrenergic and metabolic responses after repeated-sprint exercise in trained athletes.

  15. Resolution improvement and pattern generator development for the maskless micro-ion-beam reduction lithography system

    NASA Astrophysics Data System (ADS)

    Jiang, Ximan

    have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3delta CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  16. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.

  17. On the generation of polarization-dependent supercontinuum and third harmonic in air

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Edward, Stephen; Dharmadhikari, Jayashree A.; Mathur, Deepak

    2015-05-01

    Filamentation and supercontinuum (SC) generation occur in transparent media during the propagation of intense femtosecond laser pulses. We report experimental results of polarization-dependent SC generation and third harmonic generation (THG) in air using intense 40 fs, 800 nm pulses under varying focusing conditions. We observe that tight focusing enhances the extent of the SC compared to when there is weak external focusing. Moreover, we observe that when the incident beam is linearly polarized the SC yield is more than that obtained using circularly polarized light of the same energy, but this difference reduces as focusing becomes tighter and depolarization begins to take effect. We have also carried out measurement for THG in air under the same conditions as for SC generation. A THG efficiency of 0.5% is measured for linearly polarized light in air. Although conservation of spin angular momentum precludes THG with circularly polarized light, we do observe THG with circularly polarized light in our experiments because of depolarization effects. We show that THG measurements allow in situ measurements of the extent to which incident light is depolarized.

  18. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment.

  19. Particle simulations of ion generation and transport in microelectromechanical systems and microthrusters

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Venkattraman

    Field emission and evaporation are processes of electron and ion generation due to intense electric fields. This work presents a particle-based computational approach using the particle-in-cell/Monte Carlo collisions (PIC/MCC) and the direct simulation Monte Carlo (DSMC) method to study ion generation and transport in microelectromechanical systems (MEMS) and field emission electric propulsion (FEEP) microthrusters. Electrostatically actuated MEMS operate in intense electric fields > 107 V/m thereby resulting in electron emission from the cathode that has important implications on reliability and performance of these devices. The PIC/MCC method is used to develop compact models to provide closure to a mathematical model for the modified Paschen law which bridges breakdown in macroscale gaps with field emission driven breakdown at nano/microscales. The models have the capability to account for the influence of operating parameters including pressure, composition and cathode properties making it suitable for the analysis and design of electrostatic MEMS. This work also deals with the modeling of field emission ion thrusters used for in-space propulsion. Particle simulations are used to study performance parameters such as thrust and plume characteristics by comparison with experiments. While PIC simulations predict thrust values in excellent agreement with measurements, comparisons with measurements of current distribution in the plume indicate that ion-neutral collisions become increasingly important as the current increases. Good agreement for current distribution is obtained if the elastic scattering of ions by background neutrals in the vacuum chamber is included thereby providing a numerical framework for the design and optimization of these thrusters.

  20. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  1. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    NASA Astrophysics Data System (ADS)

    Kočišek, J.; Lengyel, J.; Fárník, M.

    2013-03-01

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C_2H_2)_n^+. At the electron energies ⩾21.5 eV above the CH+CH+ dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH+, n ⩾ 2, are observed. For n ⩽ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H]+ and [(C2H2)nCH - k × H]+. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3 H_3^+ ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6 H_6^+ ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)+ fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar_{n ≥ 2}(C2 H2)_{m≥ 2}^+ at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  2. On the physics of ion ring generation for the stabilization of FRX discharges. Final report

    SciTech Connect

    Fleischmann, H.

    1995-02-01

    As envisioned in the respective proposals, the author`s work over the final periods of this contract centered on experimental and related theoretical investigations of the physics of the generation of ion rings which might be used for a tilt stabilization of FRX rings, with experiments centering around the new MICE equipment constructed during the earlier parts of the work. In particular, the work mainly consisted of the following: (i) investigations concerning the operation of the ion beam driver constructed earlier, especially of the magnetically insulated ion diode and possible improvements of that diode; (ii) theoretical analyses on the propagation and neutralization of the ion beam during its injection into the confinement tank; and (iii) experimental investigations on the physics of ion beam injection and ring formation in the MICE device; in these latter experiments very significant discrepancies of various observed data and those predicted from single-particle orbit calculations were found. Unfortunately, the work could not be completed due to stop in funding, but a semiquantitative analysis of these discrepancies indicated insufficient space charge neutralization of the ion beam in the tank and/or charge-exchange effects in the diode are considered the most likely reasons. In contrast to claims by its authors, a similar discrepancy also was found in the published data of the earlier IREX experiment. The results of their investigations, which together with the design and construction of the equipment provided the basis for two PhD theses, will be briefly described in this report; the full details can be obtained from the two theses.

  3. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: cluster ion polymerization.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C2H2)n(+). At the electron energies ≥21.5 eV above the CH+CH(+) dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH(+), n ≥ 2, are observed. For n ≤ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H](+) and [(C2H2)nCH - k × H](+). The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3H3(+) ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6H6(+) ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)(+) fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Arn≥2(C2H2)m≥2(+) at ≈13.7 eV is discussed in terms of an exciton transfer mechanism.

  4. How can humans, in air, hear sound generated underwater (and can goldfish hear their owners talking)?

    PubMed

    Leighton, T G

    2012-03-01

    The air/water interface at the top of a body of water is often treated from below as a pressure release boundary, which it closely matches. The small discrepancy in that match, however, is enough to enable humans in air to hear sounds generated underwater, which would not be possible across a pressure release boundary. A discussion of this phenomenon, designed for teaching purposes and using no more acoustics than would be contained in a first-year undergraduate syllabus in acoustics, leads to a discussion of whether goldfish can hear their owners speaking. The analysis is then used to illustrate the care needed when comparing sound levels in air and water, a process which continues to lead to erroneous statements in the media and some academic articles. © 2012 Acoustical Society of America

  5. Differential negative air ion effects on learning disabled and normal-achieving children

    NASA Astrophysics Data System (ADS)

    Morton, L. L.; Kershner, J. R.

    1990-03-01

    Forty normal-achieving and 33 learning disabled (LD) children were assigned randomly to either a negative ion or placebo test condition. On a dichotic listening task using consonant-vowel (CV) combinations, both groups showed an ioninduced increase in the normal right ear advantage (REA). However, the mechanisms for this effect were different for each group. The LDs showed the effect at the right ear/left hemisphere (enhancement). The normal achievers showed the effect at the left ear/right hemisphere (inhibition). The results are consistent with an activation-inhibition model of cerebral function and suggest a functional relationship between arousal, interhemispheric activation-inhibition, and learning disabilities. The LDs may have an interhemispheric dysfunction. Both groups showed superior right ear report and the normal achiever showed overall superiority. Normal achievers showed higher consonant intrusion scores, probably due to a greater cognitive capacity. Age was a significant covariate reflecting developmental capacity changes. Negative air ions are seen to be a tool with potential theoretical and remedial applications.

  6. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  7. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation

    PubMed Central

    Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.

    2017-01-01

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772

  8. Device to generate high purity hydroxide solution in-line for ion chromatography.

    PubMed

    Masunaga, Hiroto; Higo, Yuji; Ishii, Mizuo; Maruyama, Noboru; Yamazaki, Shigeo

    2016-05-06

    Herein, we report a new device that generates a high-purity hydroxide solution in line. The device's container has three compartments that are isolated from each other by two cation exchange (CE) membranes. In each end of the container, an electrode is installed. The three compartments are filled with ion exchange resins. A bipolar boundary is a composite boundary comprising anion- and cation-exchangers. This device has two bipolar boundaries, which are used to separate the location of hydroxide solution generation from the location where water is electrolyzed. Therefore, it can produce high-purity hydroxide solutions that are free from gases and anionic impurities. The hydroxide solution is generated on the basis of an electrokinetic phenomenon at the surfaces of ion-exchange resins and membranes in an electric field; NaOH concentration can be controlled at rates from 0.01 to 100mM per 1mL/min by adjusting the electrical current (0-200mA) applied to the device. As the generated solution is used as an eluent for a suppressed anion chromatography, the electrical conductivity of the effluent from the suppressor is as low as that of ultra-pure water. Thus, the noise of the base-line electrical conductivity is improved, and so the detection limit of anions on the sub-ng/mL order can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source

    SciTech Connect

    Prestemon, S,; Trillaud, F.; Caspi, S.; Ferracin, P.; Sabbi, G. L.; Lyneis, C. M.; Leitner, D.; Todd, D. S.; Hafalia, R.

    2008-08-17

    The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECR ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.

  10. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    SciTech Connect

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.; Jhajj, N.; Milchberg, H. M.; Kim, K. Y.

    2016-03-21

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused with a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.

  11. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  12. On the generation of double layers from ion- and electron-acoustic instabilities

    SciTech Connect

    Fu, Xiangrong Cowee, Misa M.; Winske, Dan; Gary, S. Peter

    2016-03-15

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  13. On the generation of double layers from ion- and electron-acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  14. On the generation of double layers from ion- and electron-acoustic instabilities

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...

    2016-03-17

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less

  15. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis.

    PubMed

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2009-09-01

    The photolysis of S(2)O(8)(2-) was studied for the removal of acetic acid in aqueous solution and compared with the H(2)O(2)/UV system. The SO(4)(-) radicals generated from the UV irradiation of S(2)O(8)(2-) ions yield a greater mineralization of acetic acid than the ()OH radicals. Acetic acid is oxidized by SO(4)(-) radicals without significant formation of intermediate by-products. Increasing system pH results in the formation of ()OH radicals from SO(4)(-) radicals. Maximum acetic acid degradation occurred at pH 5. The results suggest that above this pH, competitive reactions with the carbon mineralized inhibit the reaction of the solute with SO(4)(-) and also ()OH radicals. Scavenging effects of two naturally occurring ions were tested; in contrast to HCO(3)(-) ions, the presence of Cl(-) ions enhances the efficiency of the S(2)O(8)(2-)/UV process towards the acetate removal. It is attributed to the formation of the Cl() radical and its great reactivity towards acetate.

  16. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Hailiang; Qiu, Aici; Sun, Jianfeng; He, Xiaoping; Tang, Junping; Wang, Haiyang; Li, Hongyu; Li, Jingya; Ren, Shuqing; Ouyang, Xiaoping; Zhang, Guoguang

    2004-12-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams of FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung x-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  17. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  18. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  19. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam

    SciTech Connect

    Peng Xiaoyu; Toncian, Toma; Jung, Ralph; Willi, Oswald; Li Chun; Li Yutong; Wang Weimin; Wang Shoujun; Liu Feng; Chen Min; Pukhov, Alexander; Sheng Zhengming; Zhang Jie

    2009-03-09

    Terahertz radiation generated by focusing the fundamental laser pulse and its second harmonic into ambient air strongly saturates with increasing pump laser energy. We demonstrate a simple method to control the Gaussian pump laser beam to improve the output of terahertz radiation with an adjustable aperture. With the optimal aperture-limited pump laser beams, the terahertz wave amplitudes can be enhanced by more than eight times depending on the pump laser parameters than those of aperture-free cases.

  20. Evidence for electron-based ion generation in radio-frequency ionization.

    PubMed

    Olaitan, Abayomi D; Zekavat, Behrooz; Solouki, Touradj

    2016-01-01

    Radio-frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi-volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive- and negative-ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4-T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. We show that RF-generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6 F6 ) molecules to generate C6 F6 (●-) . Intensity of observed C6 F6 (●-) species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post-RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) for post-RF FT-ICR MS agreed with the previously reported value (1.60 (±0.30) × 10(-9)  cm(3)  molecule(-1)  s(-1) ) from low-pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF-generated electrons under ultrahigh vacuum conditions.

  1. Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Wang, Haibing

    Decomposition of steam under a chemical driving force at moderate temperatures (˜900°C) offers a convenient and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing oxygen using a mixed ion-electron conducting (MIEC) membrane. In this work, Gd0.2Ce0.8O1.9-deltaGd 0.08Sr0.88Ti0.95Al0.05O3+/-delta MIEC membranes have been explored in which, Gd0.2Ce 0.8O1.9-delta (GDC) functions as a predominantly oxygen ionic conductor, and Gd0.08Sr0.88Ti0.95Al 0.05O3+/-delta (GSTA) functions as a predominantly n-type electronic conductor under the process conditions. During the hydrogen generation process, oxygen transports from the feed side to the permeate side through coupled diffusion of oxygen ions and electrons under an oxygen partial pressure gradient across membranes. This process results in a H2-rich product on the feed side and depleted fuel gases on the permeate side. In this work, membrane architectures comprising self-supported thick membranes and thin membranes supported on porous supports of the same composition have been studied. The effect of membrane thickness on hydrogen generation has been studied by measuring the area-specific hydrogen generation rates at different experimental conditions. Experimental results have shown that the hydrogen generation process for the thick membranes was controlled by the oxygen bulk diffusion through membranes, while the hydrogen generation process for the dense thin membranes was controlled by both the surface exchange reactions and oxygen bulk diffusion process. The area-specific hydrogen generation rates of the supported dense thin membranes were significantly enhanced by applying a porous catalytic layer onto the surface of the membrane. Experimental results showed that the area-specific hydrogen generation rates were higher when the surface catalytic layer was exposed to the feed side rather than the permeate side. A mathematical model for

  2. Photonics aided ultra-wideband W-band signal generation and air space transmission

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun

    2016-02-01

    We achieve several field trial demonstrations of ultra-wideband W-band millimeter-wave (mm-wave) signal generation and its long-distance air space transmission based on some enabling technologies and advanced devices. First, we demonstrated photonics generation and up to 1.7-km wireless delivery of 20-Gb/s polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal at W-band, adopting both optical and antenna polarization multiplexing. Then, we demonstrated photonics generation and up to 300-m wireless delivery of 80-Gb/s PDM-QPSK signal at W-band, adopting both optical and antenna polarization multiplexing as well as multi-band multiplexing. We also demonstrated photonics generation and up to 100-m wireless delivery of 100-Gb/s QPSK signal at W-band, adopting antenna polarization multiplexing.

  3. After Boyle and the Leviathan: the second generation of British air pumps.

    PubMed

    Brundtland, Terje

    2011-01-01

    This paper examines the second generation of British air pumps, covering the period 1700-1750. The air pump originated in the 1650s and 1660s thanks to the work of Otto von Guericke in Magdeburg, Robert Boyle in Oxford and London, and Accademia del Cimento in Florence. While these first models were often seen as unreliable and temperamental, and available to a small group only, the next period saw the air pump transformed into a publicly accessible device for use in public and private demonstrations, in practical applications, as well as in the production of new knowledge. In England, the instrument maker Francis Hauksbee and his followers played a decisive role in this process, which was connected, among other things, to popular medicine, anatomy and health. In this period, pneumatics (the field of air pumps and air-pump practice) reached a state where the pump came to be regarded as an unproblematic tool; and where a vacuum' came to be thought of and handled as an object.

  4. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    generated in air by means of an electron beam is highly efficient. Fast electrons propagating through air result in production of electron- ion pairs...through the mechanism of impact ionization, which requires 33.7 eV per electron- ion pair. The air pressure, concentration of variable species, such as...and polyatomic species. Because our time scales are in the 1 ms to 10 ms range, there is a strong possibility of obtaining real-time absorption

  5. Ultraweak emission of the Eu(III) ions in cathodic generated electrochemiluminescence

    NASA Astrophysics Data System (ADS)

    Staninski, K.; Lis, S.

    2011-08-01

    High voltage cathodic generated electrochemiluminescence (ECL) of selected systems generating weak photon emission was studied. The investigated systems contained europium salts, and co-reactants: H 2O 2 and K 2S 2O 8. During the cathodic pulse polarization of an oxide-covered working aluminum electrode, hot electrons in metal may enter the conduction band of water through the oxide layer/solution interface and turn into hydrated electron after salvation. The ECL intensity and spectra was measured though a suitable cut-off filters, with a photon counting unit attached to a PC computer. On the basis of the analysis of the spectra in particular systems, emitters were identified and simplified scheme of the processes was proposed. The Eu(III)-specific electro generated luminescence is produced via several parallel mechanisms, which usually involve a type of the co-reactant, oxidation state changes of europium ions in aqueous solution and the influence of working electrode surface emission.

  6. The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Shahid Rafique, M.; Yousaf, Daniel; Ahmad, Riaz

    2016-05-01

    The generation, detection and measurement of laser-induced carbon plasma ions and their implantation effects on brass substrate have been investigated. Thomson parabola technique was employed to measure the energy and flux of carbon ions. The magnetic field of strength 80 mT was applied on the graphite plasma plume to provide an appropriate trajectory to the generated ions. The energy of carbon ions is 678 KeV for laser fluence of 5.1 J/cm2 which was kept constant for all exposures. The flux of ions varies from 32 × 1011 to 72 × 1014 ions/cm2 for varying numbers of laser pulses from 3000 to 12,000. In order to explore the ion irradiation effects on brass, four brass substrates were irradiated by carbon ions of different flux. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) are used to analyze the surface morphology and crystallographic structure of ion-implanted brass, respectively. SEM analysis reveals the formation and growth of nano-/micro-sized cavities, pores and pits for the various ion flux for varying numbers of laser pulses from 3000 to 12,000. By increasing ion flux by increasing the number of pulses up to 9000 shots, the dendritic structures initiate to grow along with cavities and pores. At the maximum ion flux for 12,000 shots, the unequiaxed dendritic structures become distinct and the distance between the dendrites is decreased, whereas cavities, pores and pits are completely finished. The XRD analysis reveals that a new phase of ZnC (0012) is formed in the brass substrate after ion implantation. Universal tensile testing machine and Vickers microhardness tester are used to explore the yield stress, ultimate tensile strength and microhardness of ion-implanted brass substrate. The mechanical properties monotonically increase by increasing the ion flux. Variations in mechanical properties are correlated with surface and structural modifications of brass.

  7. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  8. Rare earth ions block the ion pores generated by the class II fusion proteins of alphaviruses and allow analysis of the biological functions of these pores.

    PubMed

    Koschinski, Andreas; Wengler, Gerd; Wengler, Gisela; Repp, Holger

    2005-12-01

    Recently, class II fusion proteins have been identified on the surface of alpha- and flaviviruses. These proteins have two functions besides membrane fusion: they generate an isometric lattice on the viral surface and they form ion-permeable pores at low pH. An attempt was made to identify inhibitors for the ion pores generated by the fusion proteins of the alphaviruses Semliki Forest virus and Sindbis virus. These pores can be detected and analysed in three situations: (i) in the target membrane during virus entry, by performing patch-clamp measurements of membrane currents; (ii) in the virus particle, by studying the entry of propidium iodide; and (iii) in the plasma membrane of infected cells, by Fura-2 fluorescence imaging of Ca2+ entry into infected cells. It is shown here that, at a concentration of 0.1 mM, rare earth ions block the ion permeability of alphavirus ion pores in all three situations. Even at a concentration of 0.5 mM, these ions do not block formation of the viral fusion pore, as they do not inhibit entry or multiplication of alphaviruses. The data indicate that ions flow through the ion pores into the virus particle in the endosome and from the endosome into the cytoplasm after fusion of the viral envelope with the endosomal membrane. These ion flows, however, are not necessary for productive infection. The possibility that the ability of class II fusion proteins to form ion-permeable pores reflects their origin from protein toxins that form ion-permeable pores, and that entry via class II fusion proteins may resemble the entry of non-enveloped viruses, is discussed.

  9. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.

    PubMed

    Park, Chul Woo; Park, Ji-Woon; Lee, Sung Hwa; Hwang, Jungho

    2014-02-15

    In this study, we introduce a methodology for disrupting cell membranes with air ions coupled with ATP bioluminescence detection for real-time monitoring of bioaerosol concentrations. A carbon fiber ionizer was used to extract ATP from bacterial cells for generating ATP bioluminescence. Our methodology was tested using Staphylococcus epidermidis and Escherichia coli, which were aerosolized with an atomizer, and then indoor bioaerosols were also used for testing the methodology. Bioaerosol concentrations were estimated without culturing which requires several days for colony formation. Correlation equations were obtained for results acquired using our methodology (Relative Luminescent Unit (RLU)/m(3)) and a culture-based (Colony Forming Unit (CFU)/m(3)) method; CFU/m(3)=1.8 × measured RLU/m(3) for S. epidermidis and E. coli, and CFU/m(3)=1.1 × measured RLU/m(3) for indoor bioaerosols under the experimental conditions. Our methodology is an affordable solution for rapidly monitoring bioaerosols due to rapid detection time (cell-lysis time: 3 min; bioluminescence detection time: <1 min) and easy operation.

  10. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-01-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  11. Two-photon physics and the coming generation of heavy ion colliders

    SciTech Connect

    Rhoades-Brown, M.J.

    1992-07-01

    The possibilities for two-photon physics at the coming generation of heavy ion colliders is discussed. Particular attention is given to both e{sup +}, e{sup {minus}} production and resonance production of the Higgs particle. For e{sup +},e{sup {minus}} production the inadequacy of traditional perturbation theory is outlined, and through of the introduction of approximations valid for heavy ions it is shown how to sum a class of non-perturbative diagrams. The role of the nuclear form factor in suppressing the cross section for the heaviest resonances is also discussed. It is shown how this latter point affects the two-photon cross sections for W{sup +},W{sup {minus}} and Higgs production at RHIC, LHC and SSC energies.

  12. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  13. Collisionless shocks driven by 800 nm laser pulses generate high-energy carbon ions

    SciTech Connect

    Zhang, H.; Shen, B. F. Wang, W. P.; Xu, Y.; Liu, Y. Q.; Liang, X. Y.; Leng, Y. X.; Li, R. X. Xu, Z. Z.; Yan, X. Q.; Chen, J. E.

    2015-01-15

    We present experimental studies on ion acceleration from diamond-like carbon (DLC) foils irradiated by 800 nm, linearly polarized laser pulses with peak intensity of 1.7 × 10{sup 19 }W/cm{sup 2} to 3.5 × 10{sup 19 }W/cm{sup 2} at oblique incidence. Diamond-like carbon foils are heated by the prepulse of a high-contrast laser pulse and expand to form plasmas of near-critical density caused by thermal effect before the arrival of the main pulse. It is demonstrated that carbon ions are accelerated by a collisionless shock wave in slightly overdense plasma excited by forward-moving hot electrons generated by the main pulse.

  14. Ion-Scale Secondary Flux Ropes Generated by Magnetopause Reconnection as Resolved by MMS

    NASA Technical Reports Server (NTRS)

    Eastwood, J. P.; Phan, T. D.; Cassak, P. A.; Gershman, D. J.; Haggerty, C.; Malakit, K.; Shay, M. A.; Mistry, R.; Oieroset, M.; Russell, C. T.; hide

    2016-01-01

    New Magnetospheric Multiscale (MMS) observations of small-scale (approx. 7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 1O km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (approx. 22 kWb).The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. lntercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  15. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Phan, T. D.; Cassak, P. A.; Gershman, D. J.; Haggerty, C.; Malakit, K.; Shay, M. A.; Mistry, R.; Øieroset, M.; Russell, C. T.; Slavin, J. A.; Argall, M. R.; Avanov, L. A.; Burch, J. L.; Chen, L. J.; Dorelli, J. C.; Ergun, R. E.; Giles, B. L.; Khotyaintsev, Y.; Lavraud, B.; Lindqvist, P. A.; Moore, T. E.; Nakamura, R.; Paterson, W.; Pollock, C.; Strangeway, R. J.; Torbert, R. B.; Wang, S.

    2016-05-01

    New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  16. Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS.

    PubMed

    Eastwood, J P; Phan, T D; Cassak, P A; Gershman, D J; Haggerty, C; Malakit, K; Shay, M A; Mistry, R; Øieroset, M; Russell, C T; Slavin, J A; Argall, M R; Avanov, L A; Burch, J L; Chen, L J; Dorelli, J C; Ergun, R E; Giles, B L; Khotyaintsev, Y; Lavraud, B; Lindqvist, P A; Moore, T E; Nakamura, R; Paterson, W; Pollock, C; Strangeway, R J; Torbert, R B; Wang, S

    2016-05-28

    New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

  17. Association of first- and second-generation air bags with front occupant death in car crashes: a matched cohort study.

    PubMed

    Olson, Carin M; Cummings, Peter; Rivara, Frederick P

    2006-07-15

    First-generation air bags entail a decreased risk of death for most front seat occupants in car crashes but an increased risk for children. Second-generation air bags were developed to reduce the risks for children, despite the possibility of decreasing protection for others. Using a matched cohort design, the authors estimated risk ratios for death for use of each generation of air bag versus no air bag, adjusted for seat position, restraint use, sex, age, and all vehicle and crash characteristics, among 128,208 automobile occupants involved in fatal crashes on US roadways during 1990-2002. The authors then compared adjusted risk ratios (aRRs) between the two generations of air bags. Among front seat occupants, the aRR for death with a first-generation air bag was 0.90 (95% confidence interval (CI): 0.86, 0.94); the aRR with a second-generation air bag was 0.89 (95% CI: 0.79, 1.00) (p = 0.83 for comparison of aRRs). Among children under age 6 years, the aRR with a first-generation air bag was 1.66 (95% CI: 1.20, 2.30), while the aRR with a second-generation air bag was 1.10 (95% CI: 0.63, 1.93) (p = 0.20 for comparison of aRRs). The differences in aRRs between first- and second-generation air bags among other subgroups were small and not statistically significant.

  18. Versatile ion S5XL sequencer for targeted next generation sequencing of solid tumors in a clinical laboratory.

    PubMed

    Mehrotra, Meenakshi; Duose, Dzifa Yawa; Singh, Rajesh R; Barkoh, Bedia A; Manekia, Jawad; Harmon, Michael A; Patel, Keyur P; Routbort, Mark J; Medeiros, L Jeffrey; Wistuba, Ignacio I; Luthra, Rajyalakshmi

    2017-01-01

    Next generation sequencing based tumor tissue genotyping involves complex workflow and a relatively longer turnaround time. Semiconductor based next generation platforms varied from low throughput Ion PGM to high throughput Ion Proton and Ion S5XL sequencer. In this study, we compared Ion PGM and Ion Proton, with a new Ion S5XL NGS system for workflow scalability, analytical sensitivity and specificity, turnaround time and sequencing performance in a clinical laboratory. Eighteen solid tumor samples positive for various mutations as detected previously by Ion PGM and Ion Proton were selected for study. Libraries were prepared using DNA (range10-40ng) from micro-dissected formalin-fixed, paraffin-embedded (FFPE) specimens using the Ion Ampliseq Library Kit 2.0 for comprehensive cancer (CCP), oncomine comprehensive cancer (OCP) and cancer hotspot panel v2 (CHPv2) panel as per manufacturer's instructions. The CHPv2 were sequenced using Ion PGM whereas CCP and OCP were sequenced using Ion Proton respectively. All the three libraries were further sequenced individually (S540) or multiplexed (S530) using Ion S5XL. For S5XL, Ion chef was used to automate template preparation, enrichment of ion spheres and chip loading. Data analysis was performed using Torrent Suite 4.6 software on board S5XL and Ion Reporter. A limit of detection and reproducibility studies was performed using serially diluted DLD1 cell line. A total of 241 variant calls (235 single nucleotide variants and 6 indels) expected in the studied cohort were successfully detected by S5XL with 100% and 97% concordance with Ion PGM and Proton, respectively. Sequencing run time was reduced from 4.5 to 2.5 hours with output range of 3-5 GB (S530) and 8-9.3Gb (S540). Data analysis time for the Ion S5XL is faster 1 h (S520), 2.5 h (S530) and 5 h (S540) chip, respectively as compared to the Ion PGM (3.5-5 h) and Ion Proton (8h). A limit detection of 5% allelic frequency was established along with high inter

  19. A High Efficiency, Kinetic-Ejection Negative Ion Source for RIB Generation

    SciTech Connect

    Alton, G.D.; Liu, Y.; Murray, S.N.; Williams, C.

    1998-10-05

    Chemically active radioactive species, diffused from RIB target materials, often arrive at the ionization chamber of the source in a variety of molecular forms. Because of the low probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecules with conventional hot-cathode electron-impact ion sources, the species of interest are often distributed in several mass channels in the form of molecular side-band beams and consequently, their intensities are diluted. The sputter negative ion beam generation technique offers an efficient means for simultaneously dissociating and ionizing highly electronegative atomic species present in molecular carriers. We have incorporated these principles in the design and fabrication of a kinetic ejection negative ion source and evaluated its potential for generating {sup 17,18}F{sup {minus}} beams for the Holifield Radioactive Ion Beam Facility astrophysics research program. The source utilizes Cs{sup +} beams to bombard condensable fluorine compounds that emanate from a target material, such as Al{sub 2}O{sub 3}, and are transported to the cooled inner surface of a conical-geometry cathode where they are adsorbed. The energetic Cs{sup +} beams efficiently dissociate these molecules and sputter their constituents. Since the work functions of cesiated surfaces are low, highly electronegative species such as fluorine are efficiently ionized in the sputter-injection process. Measured efficiencies for ionizing atomic fluorine, dissociated from condensable compounds that are formed by reactions of SF{sub 6} with fibrous Al{sub 2}O{sub 3} material, exceed 6.5%. In this report, we describe the mechanical design features and principles of operation, and present emittance, F{sup {minus}} yield and ionization efficiency data derived from off-line, experimental evaluation of the source.

  20. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans

    PubMed Central

    2016-01-01

    The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion. PMID:27249799

  1. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  2. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    SciTech Connect

    Dorf, M. A.; Zorin, V. G.; Sidorov, A. V.; Bokhanov, A. F.; Izotov, I. V.; Razin, S. V.; Skalyga, V. A.

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  3. Effect of air gap variation on the performance of single stator single rotor axial flux permanent magnet generator

    NASA Astrophysics Data System (ADS)

    Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut

    2017-02-01

    The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.

  4. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.

    PubMed

    Huang, R; Agranovski, I; Pyankov, O; Grinshpun, S

    2008-04-01

    Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in

  5. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  6. Time-of-flight secondary ion mass spectroscopy with bismuth primary ions of clean and air-exposed surfaces of tellurium.

    PubMed

    Trzyna, Malgorzata; Berchenko, Nicolas; Rading, Derk; Cebulski, Jozef

    2014-01-01

    The regularity of Bi(+), Bi(3+) and Bi(3++) primary ions in the time- of-flight secondary ion mass spectroscopy fragment pattern of air oxidized Te and Bi(+) direct-current scan cleaned Te is discussed. The most intensive fragments for a cleaned Te surface are positive and negative Tex and BiTex clusters. The sequence of secondary ion cluster formation is Bi-Te alloying followed by sputtering and ionization. For oxidized Te the chemical composition of the produced TexOy fragments satisfies the relation y=2x for positive fragments and y=2x+1 for negative ones. Experimental findings are in a good agreement with the results predicted by Plog's model for TeO2.

  7. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  8. A new-generation 3D ozone FACE (Free Air Controlled Exposure).

    PubMed

    Paoletti, Elena; Materassi, Alessandro; Fasano, Gianni; Hoshika, Yasutomo; Carriero, Giulia; Silaghi, Diana; Badea, Ovidiu

    2017-01-01

    To artificially simulate the impacts of ground-level ozone (O3) on vegetation, ozone FACE (Free Air Controlled Exposure) systems are increasingly recommended. We describe here a new-generation, three-dimensional ozone FACE, with O3 diffusion through laser-generated micro-holes, pre-mixing of air and O3, O3 generator with integral oxygen generator, continuous (day/night) exposure and full replication. Based on three O3 levels and assumptions on the pre-industrial O3 levels, we describe principles to calculate relative yield/biomass and estimate impacts even at lower-than-ambient O3 levels. The case study is called FO3X, and is at present the only ozone FACE in Mediterranean climate and one of the very few ozone FACEs investigating more than one stressor at a time. The results presented here will give further impulse to the research on O3 impacts on vegetation all over the world. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  10. Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries

    SciTech Connect

    Polat, B. D.; Keles, O; Amine, K

    2015-09-22

    The helical array (with 10 atom % Cu) exhibits 3130 mAh g–1 with 83% columbic efficiency and retains 83% of its initial discharge capacity after 100th cycle. Homogeneously distributed interspaces between the helical arrays accommodate high volumetric changes upon cycling and copper atoms form a conductive network to buffer the mechanical stress generated in the electrode while minimizing electrochemical agglomeration of Si. Also, ion assistance is believed to enhance the density of the helices at the bottom thus increasing the adhesion

  11. Enhancement of ion generation in femtosecond ultraintense laser-foil interactions by defocusing

    SciTech Connect

    Xu, M. H.; Li, Y. T.; Liu, F.; Carroll, D. C.; McKenna, P.; Foster, P. S.; Hawkes, S.; Streeter, M. J. V.; Spindloe, C.; Neely, D.; Kar, S.; Markey, K.; Zepf, M.; Sheng, Z. M.; Zhang, J.; Wahlstroem, C.-G.; Zheng, J.

    2012-02-20

    A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement.

  12. Radio-frequency ion source generating beams with an increased proton content

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Podyminogin, A. A.; Shikhovtsev, I. V.

    2007-01-01

    The results of experiments with an rf ion source generating a beam with an improved mass composition are reported. The proton content in the beam is increased by raising the rf power density in the discharge under the antenna and installing a magnetic filter near the plasma grid. Additional steps are taken to prevent the earlier observed degradation of the beam composition because of aluminum reduction on the inner surface of the ceramic discharge chamber and water release. Specifically, the chamber is lined with pyrolytic boron nitride sheets.

  13. Intense shock waves in hot dense matter generated by high-power light ion beams

    SciTech Connect

    Fortov, V.; Kanel, G.; Utkin, A.; Vorobiev, O.

    1996-05-01

    Response of plane targets to the high-power proton beam has been investigated using time-resolved laser Doppler velocimetry with sub-nanosecond temporal resolution. Experiments have been performed at Karlsruhe Light Ion Facility (KALIF). Results of measurements are free-surface velocity profiles of metal foils accelerated by the ablative pressure. An acoustic model was employed for a semi-quantitative interpretation of the initial phase of wave generation. Numerical simulation of foil accelerations have been performed to validate wide-rage EOS models for the region of a dense strongly coupled plasma. {copyright} {ital 1996 American Institute of Physics.}

  14. Intense Ion Beam Generation, Plasma Radiation Source and Plasma Opening Switch Research

    DTIC Science & Technology

    1989-04-01

    ion source on the 150 kV, ls pulse , ifl LONG- SHOT pulsed power generator under NRL support. The completion of this task 2 will demonstrate both higher...following paragraph. This research is continuing under a new NRL-supported grant. 3 The POS system is pulsed by a 1.9MAF Scyllac capacitor charged to 50 kV...electric field measurements made in a surface flashover MID using emission spectroscopy by Maron et al.’ This LIF potential measuring technique could

  15. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry.

    PubMed

    König, Simone; Kollas, Oliver; Dreisewerd, Klaus

    2007-07-15

    We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.

  16. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    NASA Astrophysics Data System (ADS)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  17. Spatial properties of a terahertz beam generated from a two-color air plasma

    NASA Astrophysics Data System (ADS)

    Klarskov, Pernille; Wang, Tianwu; Buron, Jonas D.; Strikwerda, Andrew C.; Jepsen, Peter U.

    2013-09-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses, and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show that this reduces the beam waist, and that the beam spot shape changes from Lorentzian to Gaussian. Finally, we observe a forward-propagating Gaussian THz beam by spatially filtering away the conical off-axis radiation with a 1 cm aperture.

  18. Enhanced third harmonic generation in air by two-colour ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Nath, Arpita; Dharmadhikari, J. A.; Mathur, D.; Dharmadhikari, A. K.

    2016-09-01

    We report on third harmonic generation in air in a non-filamentation regime using tightly focused, ultrashort laser pulses (1-2 µm wavelength). Enhancement in the third harmonic efficiency is observed from co-propagating laser pulses of two different wavelengths which emanate from the same source—an optical parametric amplifier—and are spatially and temporally overlapped. The third harmonic efficiency for signal wavelength (1.35 µm) is measured to be 4 × 10-3 %; in the presence of idler wavelength (2.09 µm), the corresponding value becomes 1.6 × 10-2 %—a fourfold enhancement in efficiency. The pulse duration of the generated third harmonic is measured to be 37 fs. We examine the possible role of plasma to account for the observed enhancement in third harmonic generation.

  19. Slow Dynamics Model of Compressed Air Energy Storage and Battery Storage Technologies for Automatic Generation Control

    SciTech Connect

    Krishnan, Venkat; Das, Trishna

    2016-05-01

    Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

  20. Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum.

    PubMed

    Obata, Toshio

    2003-07-18

    The present study examined the antioxidant effect of phytic acid on iron (II)-enhanced hydroxyl radical (*OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in the extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of *OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Phytic acid (100 microM) did not significantly decrease the levels of MPP(+)-induced *OH formation trapped as 2,3-DHBA. To confirm the generation of *OH by the Fenton-type reaction, iron (II) was infused through a microdialysis probe. Introduction of iron (II) (10 microM) enhanced MPP(+) induced *OH generation. However, phytic acid significantly suppressed iron (II)-enhanced *OH formation after MPP(+) treatment (n=6, P<0.05). These results suggest that the antiradical effect of phytic acid occurs by chelating iron required for the MPP(+)-enhanced *OH generation via the Fenton-type reaction.

  1. Energetic negative ion and neutral atom beam generation at passage of laser accelerated high energy positive ions through a liquid spray

    NASA Astrophysics Data System (ADS)

    Abicht, F.; Prasad, R.; Priebe, G.; Braenzel, J.; Ehrentraut, L.; Andreev, A.; Nickles, P. V.; Schnürer, M.; Tikhonchuk, V.; Ter-Avetisyan, Sargis

    2013-05-01

    Beams of energetic negative ions and neutral atoms are obtained from water and ethanol spray targets irradiated by high intensity (5×1019 W/cm2) and ultrashort (50 fs) laser pulses. The resulting spectra were measured with the Thomson parabola spectrometer, which enabled absolute measurements of both: positive and negative ions. The generation of a beam of energetic neutral hydrogen atoms was confirmed with CR-39 track detectors and their spectral characteristics have been measured using time of flight technique. Generation is ascribed to electron-capture and -loss processes in the collisions of laser-accelerated high-energy protons with spray of droplets. The same method can be applied to generate energetic negative ions and neutral atoms of different species.

  2. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes.

    PubMed

    Sansano, M; Juan-Borrás, M; Escriche, I; Andrés, A; Heredia, A

    2015-05-01

    This paper investigated the effect of air-frying technology, in combination with a pretreatment based of soaking the samples in different chemical agent solutions (citric acid, glycine, calcium lactate, sodium chloride, or nicotinic acid [vitamin B3]), on the generation of acrylamide in fried potatoes. The influence of reducing sugars on the development of surface's color was also analyzed. The experiments were conducted at 180 °C by means of air-frying and deep-oil-frying, as a reference technology. Based on the evolution of color crust with frying time, it could be concluded that the rate of Maillard reaction decreased as the initial reducing sugars content increased in the raw material, and was also lower for deep-oil-frying than for air-frying regardless of pretreatments applied. Air-frying reduced acrylamide content by about 90% compared with conventional deep-oil-frying without being necessary the application of a pretreatment. However, deep-oil fried potatoes pretreated with solutions of nicotinic acid, citric acid, glycine at 1%, and NaCl at 2% presented much lower acrylamide levels (up to 80% to 90% reduction) than nonpretreated samples. © 2015 Institute of Food Technologists®

  3. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  4. Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens.

    PubMed

    Tyagi, A K; Malik, A

    2010-10-15

    The aim of this study was to investigate the antibacterial activity of essential oil (in liquid as well as in vapour phase) and negative air ions (NAI) against Pseudomonas fluorescens. The combined effect of NAI with essential oil vapour was also investigated to determine kill time and morphological changes in bacterial cells. The MIC of Cymbopogon citratus (0.567 mg/ml), Mentha arvensis (0.567 mg/ml), Mentha piperita (1.125 mg/ml) and Eucalyptus globulus (2.25 mg/ml) was studied via the agar dilution method. To estimate the antibacterial activity of essential oils in the vapour phase, agar plates inoculated with P. fluorescens were incubated with various concentrations of each essential oil vapour and zone of inhibition was recorded. Further, in order to assess the kill time, P. fluorescens inoculated agar plates were exposed to selected bactericidal essential oil vapour and NAI, separately, in an air-tight chamber. A continuous decrease in bacterial count was observed over time. A significant enhancement in the bactericidal action was observed by exposure to the combination of essential oil vapour and NAI as compared to their individual action. Scanning electron microscopy was used to study the alteration in morphology of P. fluorescens cells after exposure to C. citratus oil vapour, NAI, and combination of C. citratus oil vapour and NAI. Maximum morphological deformation was found due to the combined effect of C. citratus oil vapour and NAI. This study demonstrates that the use of essential oils in the vapour phase is more advantageous than the liquid phase. Further the antibacterial effect of the essential oil vapours can be significantly enhanced by the addition of NAI. The work described here offers a novel and efficient approach for control of bacterial contamination that could be applied for food stabilization practices.

  5. Li-ion microbatteries generated by a laser direct-write method

    NASA Astrophysics Data System (ADS)

    Wartena, Ryan; Curtright, Aimee E.; Arnold, Craig B.; Piqué, Alberto; Swider-Lyons, Karen E.

    A laser-based direct-write process is demonstrated as a method to fabricate Li-ion microbatteries. The battery electrodes are made by the laser-induced forward transfer of inks of charge-storage materials (composites of carbon/binder and LiCoO 2/carbon/binder) onto micromachined metal-foil current collectors to form 40-60 μm thick electrodes with 16 mm 2(4 mm×4 mm) footprints. Both half cells and packaged microbatteries display capacities of approximately 155 μAh or 100 mAh/g, as normalized to the amount of LiCoO 2, and are comparable to the capacities of control electrodes that have been stenciled and pressed. The electrode capacities are not compromised when they are assembled into microbatteries, packaged and tested in air. The density and volumetric capacity of the laser-transferred electrodes are lower than those reported for sputtered thin-film microbatteries, yet the former electrodes can be made thicker and therefore deliver the same amount of charge from a smaller footprint. The data indicate that this laser direct-write method may be a viable approach for developing Li-ion microbattery systems for autonomous microelectronic devices and microsensors.

  6. Improved generation of ion fluxes by a long laser pulse using laser-induced cavity pressure acceleration

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Parys, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Torrisi, L.

    2013-09-01

    Generation of ion fluxes in the laser-induced cavity pressure acceleration (LICPA) scheme is investigated by the time-of-flight method and compared with the one in the conventional laser-planar target interaction scheme. It is shown that the ion current density and intensity of the ion flux produced in the LICPA scheme from CD2 foil target irradiated by a 0.3-ns laser pulse of intensity ˜1014-1015 W/cm2 are by an order of magnitude higher and the mean and maximum ion energies by a factor 4-5 higher than those for the conventional scheme.

  7. Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan; Vlachoudis, Vasilis

    2005-01-01

    Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.

  8. Generation of large coherent states by bang–bang control of a trapped-ion oscillator

    PubMed Central

    Alonso, J.; Leupold, F. M.; Solèr, Z. U.; Fadel, M.; Marinelli, M.; Keitch, B. C.; Negnevitsky, V.; Home, J. P.

    2016-01-01

    Fast control of quantum systems is essential to make use of quantum properties before they degrade by decoherence. This is important for quantum-enhanced information processing, as well as for pushing quantum systems towards the boundary between quantum and classical physics. ‘Bang–bang' control attains the ultimate speed limit by making large changes to control fields much faster than the system can respond, but is often challenging to implement experimentally. Here we demonstrate bang–bang control of a trapped-ion oscillator using nanosecond switching of the trapping potentials. We perform controlled displacements with which we realize coherent states with up to 10,000 quanta of energy. We use these displaced states to verify the form of the ion-light interaction at high excitations far outside the usual regime of operation. These methods provide new possibilities for quantum-state manipulation and generation, alongside the potential for a significant increase in operational clock speed for trapped-ion quantum information processing. PMID:27046513

  9. Quantum entanglement generation in trapped ions using coherent and dissipative methods

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography, and quantum computation. In this thesis, we focus on the demonstrations of two novel methods to generate entanglement. First, we implement dissipative production of a maximally entangled steady state on two trapped ions. Dissipative and coherent processes are combined and implemented in a continuous time-independent fashion, analogous to optical pumping of atomic states, continuously driving the system towards the steady entangled state. With this method, we obtain a Bell state fidelity up to 0.89(2). Second, we propose and demonstrate a novel coherent process to confine quantum evolution in a subspace between an initial separable state and the target entangled state. We demonstrate this scheme on two and three ions obtaining a Bell state fidelity up to 0.992(2). Both of these methods are robust against certain types of experimental noise and decoherence. Additionally, we demonstrate sympathetic cooling of ion chains to near the ground state of motion with an electromagnetically-induced-transparency (EIT) method. This results in roughly an order of magnitude faster cooling time while using significantly lower laser power compared to the conventional resolved sideband cooling method. These techniques may be helpful for scaled-up quantum computing.

  10. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  11. Liquid-liquid ion transport junctions based on paired gold electrodes in generator-collector mode.

    PubMed

    French, Robert W; Chan, Yohan; Bulman-Page, Philip C; Marken, Frank

    2009-10-01

    Simultaneous electrochemically driven double anion transfer across liquid-liquid interfaces is demonstrated at a gold-gold junction electrode. In the presence of two closely spaced electrodes (generator and collector), anion uptake into the organic phase (oxidation) and anion expulsion into the aqueous phase (reduction) can be combined to result in a generator-collector anion transport system across the liquid-liquid interface. In this report we are employing a paired gold junction grown by electro-deposition to ca. 5 microm gap size with the N,N-diethyl-N',N'-didodecyl-phenylene-diamine water immiscible redox liquid immobilized into the gap to demonstrate simultaneous perchlorate anion uptake and expulsion. The effects of redox liquid volume and scan rate on the magnitude of currents and two mechanistic pathways for ion transport are discussed in the context of micro-electrophoretic processes.

  12. The initial generation of waves in an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, Ken

    2001-11-01

    The initial generation of surface waves over the ocean has a long been a problem of great interest. With the globally averaged wind speed in the range 6-7 m/s, and 40 % of the time below 6 m/s, much of the air-sea interface is in a low wind speed regime, and therefore the initial generation of waves under these conditions is of special interest. There is also a transition in the surface heat flux and surface cool skin at these low wind speeds when gravity capillary waves are first generated. We present the results of laboratory and field experiments, and numerical studies, on the stability of a wind-driven water surface to the initial generation of surface waves. Using modern quantitative flow visualization techniques, we show that the classical wave generation problem, where the wind is linearly accelerated over a still water surface, leads to the generation of a two-dimensional wave field. At this stage, the flow in the water phase has been observed to be sub-critical. These results are compared with numerical solutions of the stability of the coupled air-water problem obtained by solving both the linear and non-linear Orr-Sommerfeld coupled equations. The effects of non-linearity will be discussed. In addition, we show that the wave generation problem is accompanied by the turbulent transition of the water surface boundary layer through the formation and dislocation of Langmuir circulations. Field data suggest that this transition, rather than microscale breaking waves, first disrupt the cool skin. We show that this turbulent transition also marks the change from a two- to three-dimensional surface wave field as the coherent sub-surface velocities modulate the waves. This rapid evolution from 2D to 3D surface wave patterns in the early stages of the wave generation implies that 2D models for wind-wave generation might only apply in the very early stages of wave growth. This will be discussed in light of linear and non-linear wave generation models.

  13. Al-air cells - Potential small electric generators for field use

    NASA Astrophysics Data System (ADS)

    Valand, T.; Mollestad, O.; Nilsson, G.

    The Al-air system is a very attractive system for use as an electric generator in the field. Besides the high energy density of the 'fuel' (theoretically 21 kW h per l Al), it is easy and safe to handle. Since it reacts in an electrochemical cell, it also easily adjusts to variations in load. In order to test the ability of the system, a 40 W mechanically rechargeable Al-air cell has been constructed. The reaction products, which in a short time will clog up the cell, are continuously removed from the electrolyte. The cell has a total efficiency of approximately 40% and has a current efficiency of 100% with respect to Al. Unfortunately, some serious problems have to be solved before the cell can be put into use. The properties of the cell, the problems, and possible solutions are discussed.

  14. Dynamical properties of breaking waves: dissipation, air entrainment and spray generation

    NASA Astrophysics Data System (ADS)

    Deike, Luc; Melville, W. Kendall; Popinet, Stephane

    2016-11-01

    Wave breaking in the ocean is of fundamental importance in order to quantify wave dissipation and air-sea interaction, including gas and momentum exchange, and to improve parametrization for ocean-atmosphere exchange in weather and climate models. Here, we present 2D and 3D direct numerical simulations of breaking waves, compared with laboratory measurements. The dissipation due to breaking in the 2D and 3D simulations is found to be in good agreement with experimental observations and inertial-scaling arguments. We discuss the transition from a 2D to a 3D flow during breaking. We present a model for air entrainment and bubble statistics that describes well the experimental and numerical data, and is based on turbulent fragmentation of the bubbles and a balance between buoyancy forces and viscous dissipation. Finally we discuss the generation of large drops during the impact and splashing process.

  15. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    SciTech Connect

    El-Bedwehy, N. A.

    2016-07-15

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev–Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  16. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13

  17. Geometric Effects on Power Generation by Reverse Electrodialysiswith Self-induced Electrolyte Flow in Ion-Selective Nanochannels

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Jae; Kim, Dong-Kwon; Lee, Seung-Hyun

    2012-11-01

    Recently, solid-state nanofluidic channels or nanopores have been demonstrated experimentally to serve as ion-selective membranes for small reverse electrodialysis systems. Ions of opposite charge to that of the surface (counter-ions) are attracted toward the surface while ions of like charge (co-ions) are repelled from the surface. As a result, the counter-ions are preferentially transported over the co-ions in the charged nanochannels. Under a concentration gradient, the ions diffuse spontaneously across the nanochannels, and a portion of the Gibbs free energy of mixing can be harvested continuously from the nanochannels by means of the net diffusion current. In the present study, power generation by reverse eletrodialysis in ion-selective nanochannels is numerically investigated by solving the Nernst-Planck equation for the ionic concentrations, the Poisson equation for the electric potential, and the Navier-Stokes equation for the electrolyte velocity simultaneously. We elucidated the effect of various parameters on power generation such as geometry of channel cross section, channel length, hydraulic diameter and the surface charge density etc. Corresponding Author.

  18. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  19. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods.

  20. Thermal behavior and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell

    NASA Astrophysics Data System (ADS)

    Schuster, Elke; Ziebert, Carlos; Melcher, Andreas; Rohde, Magnus; Seifert, Hans Jürgen

    2015-07-01

    Quantitative data on the thermal behavior of lithium ion batteries under charging and discharging conditions are essential for designing thermal management systems and improving battery safety. In this work, commercial 40 Ah lithium ion pouch cells with Li(Ni1/3Mn1/3Co1/3)O2 cathodes were tested under isoperibolic and adiabatic conditions in an Accelerating Rate Calorimeter at different charging/discharging currents from 5 A to 40 A. Adiabatic tests simulate the worst-case scenario of a battery pack without cooling. For charging and discharging an overall exothermic behavior was found and a total temperature increase for one half cycle between 3 and 11 K. Isoperibolic tests simulate a single cell under constant environmental temperature. Here an exothermic behavior for discharging and an endothermic behavior for charging were observed. To transfer the measured temperature changes into heat data, the effective specific heat capacity and the heat transfer coefficient were determined. For the first time the heat generation data for a large format pouch cell have been determined using both isoperibolic and adiabatic conditions. These data were compared with the total heat data calculated as the sum of reversible and irreversible heat that were measured by potentiometric and current interruption techniques respectively. A good agreement was found between all three heat generation determination methods.