Science.gov

Sample records for air jet velocity

  1. Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Foster, Hampton H.; Heidmann, Marcus F.

    1960-01-01

    The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.

  2. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  3. Measurements of Shaped Charge Jet Velocity

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2013-06-01

    Penetration depth is an important requirement in oil/gas well perforating jobs. The depth determines how far the wellbore can directly communicate with reservoir fluids. Deep perforation charges are widely used in oilfield industry and most of those are powder metal liner charge for no carrot-like slug left as solid liner does. Comprehensive measurements for the powder metal liner shaped charge jet characteristics, namely, the jet density and velocity, are needed to predict the shaped charge performance and to plan the perforating job. This paper focuses on an experimental work of jet velocity measurements. A medium size of powder metal liner charges (27 grams HMX) is used in the tests. The powder jet shoots through a stack of limestone blocks with shorting switch set in between. Half inch air-gap between two blocks is design to provide space for jet traveling in air to record free fly velocity, meanwhile the jet penetration velocity in the limestone is measured. Aluminum foil switches are used to record the jet Time of Arrival (TOA). The charged switch shorted by the metal jet when it arrives. The shorting signal is recorded. The two velocities can be used to estimate the jet penetration effectiveness. A series of TOA tests show that jet velocity along its length linearly decreases from jet tip to tail until the stagnation points referring to which jet material moves in opposite direction.

  4. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  5. Velocity field near the jet orifice of a round jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Benson, J. P.

    1979-01-01

    Experimentally determined velocities at selected locations near the jet orifice are presented and analyzed for a round jet in crossflow. Jet-to-crossflow velocity ratios of four and eight were studied experimentally for a round subsonic jet of air exhausting perpendicularly through a flat plate into a subsonic crosswind of the same temperature. Velocity measurements were made in cross sections to the jet plume located from one to four jet diameters from the orifice. Jet centerline and vortex properties are presented and utilized to extend the results of a previous study into the region close to the jet orifice.

  6. Velocity-modulation atomization of liquid jets

    NASA Technical Reports Server (NTRS)

    Dressler, John L.

    1994-01-01

    A novel atomizer based on high-amplitude velocity atomization has been developed. Presently, the most common methods of atomization can use only the Rayleigh instability of a liquid cylinder and the Kelvin-Helmholtz instability of a liquid sheet. Our atomizer is capable of atomizing liquid jets by the excitation and destabilization of many other higher-order modes of surface deformation. The potential benefits of this sprayer are more uniform fuel air mixtures, faster fuel-air mixing, extended flow ranges for commercial nozzles, and the reduction of nozzle plugging by producing small drops from large nozzles.

  7. Air admixture to exhaust jets

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1953-01-01

    The problem of thrust increase by air admixture to exhaust jets of rockets, turbojet, ram- and pulse-jet engines is investigated theoretically. The optimum ratio of mixing chamber pressure to ambient pressure and speed range for thrust increase due to air admixture is determined for each type of jet engine.

  8. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  9. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  10. Discrete wall jets in quiescent air

    NASA Technical Reports Server (NTRS)

    Mclean, J. D.; Herring, H. J.

    1974-01-01

    An experimental investigation was made of turbulent jet flows resulting from small, round nozzles discharging parallel to a smooth, flat wall in quiescent air. Nozzle axes were located 3.0 nozzle diameters above the wall surface. The case of a single nozzle and the case of a spanwise array of equally spaced nozzles were investigated. Several forms of approximate velocity profile similarity were noted, and the flow from the array of nozzles was seen to approach the form of a two-dimensional wall jet.

  11. Synthetic Jets in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Yao, C. S.; Chen, F. J.; Neuhart, D.; Harris, J.

    2007-01-01

    An oscillatory jet with zero net mass flow is generated by a cavity-pumping actuator. Among the three test cases selected for the Langley CFD validation workshop to assess the current CFD capabilities to predict unsteady flow fields, this basic oscillating jet flow field is the least complex and is selected as the first test case. Increasing in complexity, two more cases studied include jet in cross flow boundary layer and unsteady flow induced by suction and oscillatory blowing with separation control geometries. In this experiment, velocity measurements from three different techniques, hot-wire anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), documented the synthetic jet flow field. To provide boundary conditions for computations, the experiment also monitored the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature.

  12. Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David; Neilsen, Tracianne B.; Gee, Kent L.; Ogden, Darcy E.

    2013-12-01

    A fundamental goal of volcano acoustics is to relate observed infrasonic signals to the eruptive processes generating them. A link between acoustic power Πvelocity V was proposed by Woulff and McGetchin (1976) based upon the prevailing jet noise theory at the time (acoustic analogy theory). We reexamine this approach in the context of the current understanding of jet noise, using data from a laboratory jet, a full-scale military jet aircraft, and a full-scale rocket motor. Accurate estimates of Πjet noise directionality; this is not usually possible in volcano acoustic field experiments. Typical volcano acoustic data better represent point measurements of acoustic intensity Ijet axis rather than Πair jet flows, velocity-scaling laws currently proposed for acoustic intensity differ from those for acoustic power and are of the form Ijet flows are more complex than the pure air laboratory case, which suggests that we do not currently know how the exponent nθ varies for a volcanic jet flow. This indicates that the formulation of Woulff and McGetchin (1976) can lead to large errors when inferring eruption parameters from acoustic data and thus requires modification. Quantitative integration of field, numerical, and laboratory studies within a modern aeroacoustics framework will lead to a more accurate relationship between volcanic infrasound and eruption parameters.

  13. Jets in air-jet family

    NASA Technical Reports Server (NTRS)

    Navia, C. E.; Sawayanagi, K.

    1985-01-01

    The A-jet families on Chacaltaya emulsion chamber experiments were analyzed by the study of jets which are reconstructed by a grouping procedure. It is demonstrated that large-E sub J R sub J events are characterized by small number of jets and two-jet like asymmetric shape, binocular events and the other type. This type has a larger number of jets and more symmetrical shape in the P sub t plane.

  14. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  15. Turbulence measurements in axisymmetric jets of air and helium

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.

    Turbulent axisymmetric jets of air helium with the same nozzle momentum flux were studied experimentally using hot-wire probes. An X-wire hot-wire probe was used in the air jet and a composite probe consisting of an X-wire and an interference probe of the Way-Libby type was used in the helium jet to measure the helium concentration and two velocity components. Moments of turbulent fluctuations, up to fourth order, were calculated to characterize turbulent transport in the jet and to evaluate current models for triple moments that occur in the Reynolds stress equation. In the air jet, the momentum flux across the jet was found to be within +/- 5 percent of the nozzle input and the integral of the radial diffusive flux of the turbulent kinetic energy across the jet was found to be close to zero indicating consistency of measurements with the equations of motion. The fourth moments were very well described in terms of the second moments by the quasi-Gaussian approximation across the entire jet. Profiles of third moments were found to be significantly different from earlier measurements - (u(v exp 2)) (u(w exp 2)) and ((u exp 2)v) were found to be negative near the axis of the jet. The measurements in the helium jet were in the intermediate region between the non-buoyant jet and the plume regions. The helium mass flux across the jet was found to be within +/- 0 percent of the nozzle input. The far field behavior was in accord with the expected plume scalings. The near field behavior of the mean velocity along the axis of the jet follows the scaling expressed by the effective diameter but the mean concentration decay has a different density ratio dependence. The radical profiles of mean velocity and concentration indicate a turbulent Schmidt number of 0.7, the same as for passive scalars in round jets. Turbulent intensity of axial velocity fluctuations was significantly higher than that observed in the air jet while the radial and azimuthal intensities are virtually

  16. Development of the mean velocity distribution in rectangular jets

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.; Deotte, R. E., Jr.

    1992-01-01

    The mean flowfield of 1 x 2 and 1 x 4 aspect ratio rectangular jets has been measured using a laser Doppler anemometer system. The development of the downstream velocity distribution is analyzed with respect to centerline velocity decay, shear layer growth, axis switching, and velocity profile development. Comparisons are made with axisymmetric, planar, and other rectangular jets.

  17. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  18. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  19. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  20. Penetration of Air Jets Issuing from Circular, Square, and Elliptical Orifices Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; Callaghan, Edmund E.; Bowden, Dean T.

    1950-01-01

    An experimental investigation was conducted to determine the penetration of air jets d.irected perpendicularlY to an air stream. Jets Issuing from circular, square, and. elliptical orifices were investigated. and. the jet penetration at a position downstream of the orifice was determined- as a function of jet density, jet velocity, air-stream d.enaity, air-stream velocity, effective jet diameter, and. orifice flow coeffIcient. The jet penetrations were determined for nearly constant values of air-stream density at three tunnel-air velocities arid for a large range of Jet velocities and. densities. The results were correlated in terms of dimensionless parameters and the penetrations of the various shapes were compared. Greater penetration was obtained. with the square orifices and the elliptical orifices having an axis ratio of 4:1 at low tunnel-air velocities and low jet pressures than for the other orifices investigated. The square orifices gave the best penetrations at the higher values of tunnel-air velocity and jet total pressure.

  1. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  2. Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.

    2008-01-01

    Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.

  3. Jet engine air intake system

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A. (Inventor)

    1977-01-01

    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member.

  4. Impact pressures of turbulent high-velocity jets plunging in pools with flat bottom

    NASA Astrophysics Data System (ADS)

    Manso, P. A.; Bollaert, E. F. R.; Schleiss, A. J.

    2007-01-01

    Dynamic pressures created by the impact of high-velocity turbulent jets plunging in a water pool with flat bottom were investigated. Pressure fluctuations were sampled at 1 kHz at the jet outlet and at the pool bottom using piezo-resistive pressure transducers, jet velocities of up to 30 m/s and pool depth to jet diameter ratios from 2.8 to 11.4. The high-velocity jets entrain air in the pool in conditions similar to prototype applications at water release structures of dams. The intermittent character of plunge pool flows was investigated for shallow and deep pools, based on high order moments and time correlations. Maximum intermittency was observed for pool depths at 5.6 jet diameters, which approximate the core development length. Wall pressure skewness was shown to allow identifying the zone of influence of downward and upward moving currents.

  5. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  6. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  7. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  8. Entrainment of Air into Vertical Jets in a Crosswind

    NASA Astrophysics Data System (ADS)

    Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.

    2015-12-01

    During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.

  9. Entrainment in High-Velocity, High Temperature Plasma Jets Part I: Experimental Results

    SciTech Connect

    Fincke, J.R.; Crawford, D.M.; Snyder, S.C.; Swank, W.D.; Haggard, D.C.; Williamson, R.L.

    2002-03-27

    The development of a high-velocity, high-temperature argon plasma jet issuing into air has been investigated. In particular the entrainment of the surrounding air, its effect on the temperature and velocity profiles and the subsequent mixing and dissociation of oxygen has been examined in detail. The total concentration of oxygen and the velocity and temperature profiles in the jet were obtained from an enthalpy probe. High-resolution Thomson scattering provided an independent measure of plasma velocity and temperature, validating enthalpy probe measurements and providing non-intrusive measurements near the nozzle exit. The concentration of atomic oxygen was obtained from two-photon Laser Induced Fluorescence (LIF). Molecular oxygen concentration and temperature was obtained from Coherent Anti-Stokes Raman Spectroscopy (CARS). It was found that both the incompleteness of mixing at the molecular scale and the rate of oxygen dissociation and recombination effects jet behavior.

  10. PERFORMANCE OF A HIGH VELOCITY PULSE-JET FILTER

    EPA Science Inventory

    Pulse-jet fabric filters have captured an increasing share of the industrial air filtration market and currently make up half the fabric filter sales in the United States. (1) Part of the reason for their popularity is that pulse-jet filters operate with an air to cloth ratio, or...

  11. Induced velocity field of a jet in a crossflow

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1978-01-01

    An experimental investigation of a subsonic round jet exhausting perpendicularly from a flat plate into a subsonic crosswind of the same temperature was conducted. Velocity and pressure measurements were made in planes perpendicular to the path of the jet for ratios of jet velocity to crossflow velocity ranging from 3 to 10. The results of these measurements are presented in tabular and graphical forms. A pair of diffuse contrarotating vortices is identified as a significant feature of the flow, and the characteristics of the vortices are discussed.

  12. Velocity field measurement of a round jet using quantitative schlieren.

    PubMed

    Iffa, Emishaw D; Aziz, A Rashid A; Malik, Aamir S

    2011-02-10

    This paper utilizes the background oriented schlieren (BOS) technique to measure the velocity field of a variable density round jet. The density field of the jet is computed based on the light deflection created during the passage of light through the understudy jet. The deflection vector estimation was carried out using phase-based optical flow algorithms. The density field is further exploited to extract the axial and radial velocity vectors with the aid of continuity and energy equations. The experiment is conducted at six different jet-exit temperature values. Additional turbulence parameters, such as velocity variance and power spectral density of the vector field, are also computed. Finally, the measured velocity parameters are compared with the hot wire anemometer measurements and their correlation is displayed. PMID:21343981

  13. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  14. Noise from Supersonic Coaxial Jets. Part 3; Inverted Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    The instability wave noise generation model is used to study the instability waves in the two shear layers of an inverted velocity profile, supersonic, coaxial jet and the noise radiated from the dominant wave. The inverted velocity profile jet has a high speed outer stream surrounding a low speed inner stream and the outer shear layer is always larger than the inner shear layer. The jet mean flows are calculated numerically. The operating conditions are chosen to exemplify the effect of the coaxial jet outer shear layer initial spreading rates. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. Results for inverted velocity profile jets indicate that relative maximum instability wave amplitudes and far field peak noise levels can be reduced from that of the reference jet by having higher spreading rates for the outer shear layer, low velocity ratios, and outer streams hotter than the inner stream.

  15. Disturbance convection velocity in turbulent jets under aeroacoustic excitation

    NASA Astrophysics Data System (ADS)

    Pimshtein, V. G.

    2007-09-01

    The velocity of propagation of toroidal and oblique vortices formed in subsonic and supersonic turbulent jets under longitudinal internal and transverse external excitation by finite-amplitude saw-tooth acoustic waves is studied experimentally. It is demonstrated that the convection velocity of vortices is not constant, and the character of its variation depends on the vortex shape.

  16. Jet-intracluster medium interaction in Hydra A - I. Estimates of jet velocity from inner knots

    NASA Astrophysics Data System (ADS)

    Nawaz, M. A.; Wagner, A. Y.; Bicknell, G. V.; Sutherland, R. S.; McNamara, B. R.

    2014-10-01

    We present the first stage of an investigation of the interactions of the jets in the radio galaxy Hydra A with the intracluster medium. We consider the jet kinetic power, the galaxy and cluster atmosphere and the inner structure of the radio source. Analysing radio observations of the inner lobes of Hydra A by Taylor et al. we confirm the jet power estimates ˜1045 erg s-1 derived by Wise et al. from dynamical analysis of the X-ray cavities. With this result and a model for the galaxy halo, we explore the jet-intracluster medium interactions occurring on a scale of 10 kpc using two-dimensional, axisymmetric, relativistic pure hydrodynamic simulations. A key feature is that we identify the three bright knots in the northern jet as biconical reconfinement shocks, which result when an overpressured jet starts to come into equilibrium with the galactic atmosphere. Through an extensive parameter space study we deduce that the jet velocity is approximately 0.8c at a distance 0.5 kpc from the black hole. The combined constraints of jet power, the observed jet radius profile along the jet and the estimated jet pressure and jet velocity imply a value of the jet density parameter χ ≈ 13 for the northern jet. We show that for a jet β = 0.8 and θ = 42°, an intrinsic asymmetry in the emissivity of the northern and southern jet is required for a consistent brightness ratio ≈7 estimated from the 6-cm Very Large Array image of Hydra A.

  17. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  18. Into Mesh Lubrication of Spur Gears with Arbitrary Offset Oil Jet. I: For Jet Velocity Less than or Equal to Gear Velocity

    NASA Technical Reports Server (NTRS)

    Akin, L. S.; Townsend, D. P.

    1982-01-01

    An analysis was conducted for into mesh oil jet lubrication with an arbitrary offset and inclination angle from the pitch point for the case where the oil jet velocity is equal to or less than pitch line velocity. The analysis includes the case for the oil jet offset from the pitch point in the direction of the pinion and where the oil jet is inclined to intersect the common pitch point. Equations were developed for the minimum oil jet velocity required to impinge on the pinion or gear and the optimum oil jet velocity to obtain the maximum impingement depth.

  19. IR diagnostics of embedded jets: velocity resolved observations of the HH34 and HH1 jets

    NASA Astrophysics Data System (ADS)

    Garcia Lopez, R.; Nisini, B.; Giannini, T.; Eislöffel, J.; Bacciotti, F.; Podio, L.

    2008-09-01

    Context: We present VLT-ISAAC medium resolution spectroscopy of the HH34 and HH1 jets, driven by young Class 0/I sources. Aims: Our aim is to derive the kinematics and the physical parameters associated with infrared jets, and to study how they vary with jet velocity. Methods: We use several important diagnostic lines covered by our spectral range, such as [Fe II] 1.644~μm, 1.600~μm and H2 2.122~μm, to probe both the atomic and the molecular jet components. Results: In the inner jet region of HH34, we find that both the atomic and molecular gas present two components at high and low velocity (the so-called HVC and LVC), as reported by previous studies. The [Fe II] LVC in HH34 is detected up to large distances from the source (>1000 AU), at variance with TTauri jets where the LVC is usually confined within 200 AU from the star. In H2 2.122~μm, the LVC and HVC are spatially separated, with an abrupt transition from low- to high-velocity emission at ~1.5 arcsec. We moreover detect, for the first time, the fainter red-shifted counterpart down to the central source. This lobe shows several emission knots displaced symmetrically with respect to the corresponding blue-shifted gas. In HH1, we trace the jet down to ~1 arcsec from the VLA1 driving source: the kinematics of this inner region is again characterised by the presence of two velocity components, one blue-shifted and one red-shifted with respect to the source LSR velocity. We interpret this double component as arising from the interaction of two different jets. We suggest that the red-shifted component could be part of the HH501 jet. Electron densities and mass fluxes have been measured separately for the different velocity components in the HH34 and HH1 jets. In the inner HH34 jet region, ne increases with decreasing velocity, with an average value of ~1 × 104 cm-3 in the HVC and ~2.2 × 104 cm-3 in the LVC. Up to ~10 arcsec from the driving source, and along the whole HH1 jet an opposite behaviour is

  20. Behavior of Water Jet Accompanied with Air Suction

    NASA Astrophysics Data System (ADS)

    Kawakami, Hironobu; Ishido, Tsutomu; Ihara, Akio

    In order to atomize a liquid, the authors have investigated the behavior of air-water jets. In a series of experiments, we have discovered a strange phenomenon that the water jet accompanied with air suction from the free surface has made a periodic radial splash of water drop. The purpose of the present paper is to clear out the origin of this phenomenon and the behavior of water jet accompanied with air suction. The behavior of water jet has been photographed by a digital camera aided with a flashlight and high-speed video camera. Those experiments enable us to find the origin of a periodic radial splash due to a formation of single air bubble at the flow separation region inside the nozzle and due to explosive expansion of the bubble after injected in the free space. In order to analyze the radial splash of water, we have conducted the equation of spherical liquid membrane. The numerical results obtained have been compared with the experimental results and good agreement has been obtained in radial expansion velocity.

  1. High-Velocity Jets in Recurrent Nova Outbursts

    NASA Astrophysics Data System (ADS)

    Kato, Mariko; Hachisu, Izumi

    2003-04-01

    Very fast bipolar mass outflows are suggested from emission-line profiles during the early stage of outbursts in the recurrent nova U Sco. The ejection velocity reaches 5000 or 6000 km s-1 at the optical peak and gradually decreases in time. Such properties have not been reproduced so far in nova theories. We propose a jet-shaped mass outflow as a mechanism of acceleration up to several thousand kilometers per second. The mass flow is accelerated where the jet is shaped, which is deep inside the region where the spherically symmetric winds would be accelerated. The terminal jet velocity depends sensitively on the white dwarf mass but weakly on other parameters.

  2. Jet Velocity Profile Effects on Spray Characteristics of Impinging Jets at High Reynolds and Weber Numbers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.

    2014-11-01

    While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  3. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  4. Velocity field of a round jet in a cross flow for various jet injection angles and velocity ratios. [Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Fearn, R. L.; Weston, R. P.

    1979-01-01

    A subsonic round jet injected from a flat plate into a subsonic crosswind of the same temperature was investigated. Velocity and pressure measurements in planes perpendicular to the path of the jet were made for nominal jet injection angles of 45 deg, 60 deg, 75 deg, 90 deg, and 105 deg and for jet/cross flow velocity ratios of four and eight. The velocity measurements were obtained to infer the properties of the vortex pair associated with a jet in a cross flow. Jet centerline and vortex trajectories were determined and fit with an empirical equation that includes the effects of jet injection angle, jet core length, and jet/cross flow velocity ratios.

  5. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  6. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  7. Fluid shielding of high-velocity jet noise

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.

    1984-01-01

    Experimental noise data for a nozzle exhaust system incorporating a thermal acoustic shield (TAS) are presented to show the effect of changes in geometric and flow parameters on attenuation of high-velocity jet exhaust noise in the flyover plane. The results are presented for a 10.00-cm-diameter primary conical nozzle with a TAS configuration consisting of a 2.59- or 5.07-cm-wide annular gap. Shield-stream exhaust velocity was varied from 157 to 248 m/sec to investigate the effect of velocity ratio. The results showed that increasing the annular gap width increases attenuation of high-frequency noise when comparisons are made on the same ideal thrust basis. Varying the velocity ratio had a minor effect on the noise characteristics of the nozzles investigated.

  8. Experimental Characterization of Magnetogasdynamic Phenomena in Ultra-High Velocity Pulsed Plasma Jets

    NASA Astrophysics Data System (ADS)

    Loebner, Keith; Wang, Benjamin; Cappelli, Mark

    2014-10-01

    The formation and propagation of high velocity plasma jets in a pulsed, coaxial, deflagration-type discharge is examined experimentally. A sensitive, miniaturized, immersed probe array is used to map out magnetic flux density and associated radial current density as a function of time and axial position. This array is also used to probe the magnetic field gradient across the exit of the accelerator and in the jet formation region. Sensitive interferometry via a continuous-wave helium-neon laser source is used to probe the structure of the plasma jet over multiple chords and axial locations. A two dimensional plasma density gradient profile at an instant in time during jet formation is compiled via Shack-Hartmann wavefront sensor analysis. The qualitative characteristics of rarefaction and/or shock wave formation as a function of chamber back-pressure is examined via fast-framing ICCD imaging. These measurements are compared to existing resistive MHD simulations of the coaxial deflagration accelerator and the ensuing rarefaction jet that is expelled from the electrode assembly. The physical mechanisms governing the behavior of the discharge and the formation of these high energy density plasma jets are proposed and validated against both theoretical models and numerically simulated behavior. This research was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  9. Portable nanosecond pulsed air plasma jet

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2011-08-22

    Low-temperature atmospheric pressure plasmas are of great importance in many emerging biomedical and materials processing applications. The redundancy of a vacuum system opens the gateway for highly portable plasma systems, for which air ideally becomes the plasma-forming gas and remote plasma processing is preferred to ensure electrical safety. Typically, the gas temperature observed in air plasma greatly exceeds that suitable for the processing of thermally liable materials; a large plasma-sample distance offers a potential solution but suffers from a diluted downstream plasma chemistry. This Letter reports a highly portable air plasma jet system which delivers enhanced downstream chemistry without compromising the low temperature nature of the discharge, thus forming the basis of a powerful tool for emerging mobile plasma applications.

  10. On the use of relative velocity exponents for jet engine exhaust noise

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1978-01-01

    The effect of flight on jet engine exhaust noise has often been presented in terms of a relative velocity exponent, n, as a function of radiation angle. The value of n is given by the OASPL reduction due to relative velocity divided by 10 times the logarithm of the ratio of relative jet velocity to absolute jet velocity. In such terms, classical subsonic jet noise theory would result in a value of n being approximately 7 at 90 degree angle to the jet axis with n decreasing, but remaining positive, as the inlet axis is approached and increasing as the jet axis is approached. However, flight tests have shown a wide range of results, including negative values of n in some cases. In this paper it is shown that the exponent n is positive for pure subsonic jet mixing noise and varies, in a systematic manner, as a function of flight conditions and jet velocity.

  11. Estimation of Turbulent Wall Jet Velocity Fields for Noise Prediction

    NASA Astrophysics Data System (ADS)

    Nickels, Adam; Ukeiley, Lawrence; Reger, Robert; Cattafesta, Louis

    2015-11-01

    Estimation of the time-dependent turbulent velocity field of a planar wall jet based on discrete surface pressure measurements is performed using stochastic estimation in both the time and frequency domain. Temporally-resolved surface pressure measurements are measured simultaneously with planar Particle Image Velocimetry (PIV) snapshots, obtained at a relatively reduced rate. Proper Orthogonal Decomposition (POD) is then applied to both the surface pressure probes and the PIV snapshots, allowing for the isolation of portions of the wall pressure and velocity field signals that are well correlated. Using the time-varying pressure expansion coefficients as unconditional variables, velocity expansion coefficients are estimated and used to produce reconstructed estimates of the velocity field. Optimization in terms of number of unconditional probes employed, location of probes, and effects of PIV discretization are investigated with regards to the resulting estimates. Coupled with this analysis, Poisson's equation for fluctuating pressure is solved such that the necessary source terms of an acoustic analogy can be calculated for estimates of the far-field acoustics. Specifically in this work, the effects of using estimated velocity fields to solve for the hydrodynamic pressure and acoustic pressure will be studied.

  12. The Fluid Dynamics of Secondary Cooling Air-Mist Jets

    NASA Astrophysics Data System (ADS)

    Hernández C., I.; Acosta G., F. A.; Castillejos E., A. H.; Minchaca M., J. I.

    2008-10-01

    For the conditions of thin-slab continuous casting, air-mist secondary cooling occurs in the transition-boiling regime, possibly as a result of an enhanced intermittent contact of high- momentum water drops with the hot metallic surface. The dynamics of the intermittent contact or wetting/dewetting process should be primarily dependent on the drop size, drop impact-velocity and -angle and water-impact flux, which results from the nozzle design and the interaction of the drops with the conveying and entrained air stream. The aim of this article was to develop a model for predicting the last three parameters based on the design and operating characteristics of air-mist nozzles and on experimentally determined drop-size distributions. To do this, the Eulerian fluid-flow field of the air in three dimensions and steady state and the Lagrangian velocities and trajectories of water drops were computed by solving the turbulent Navier Stokes equation for the air coupled to the motion equation for the water drops. In setting this model, it was particularly important to specify appropriately the air-velocity profile at the nozzle orifice, as well as, the water-flux distribution, and the velocities (magnitude and angle) and exit positions of drops with the different sizes generated, hence special attention was given to these aspects. The computed drop velocities, water-impact flux distributions, and air-mist impact-pressure fields compared well with detailed laboratory measurements carried out at ambient temperature. The results indicate that under practical nozzle-operating conditions, the impinging-droplet Weber numbers are high, over most of the water footprint, suggesting that the droplets should establish an intimate contact with the solid surface. However, the associated high mean-droplet fluxes hint that this contact may be obstructed by drop interference at the surface, which would undermine the heat-extraction effectiveness of the impinging mist. The model also points

  13. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  14. On the use of relative velocity exponents for jet engine exhaust noise

    NASA Technical Reports Server (NTRS)

    Stone, J. R.

    1978-01-01

    The effect of flight on jet engine exhaust noise has often been presented in terms of a relative velocity exponent, n, as a function of radiation angle. The value of n is given by the OASPL reduction due to relative velocity divided by 10 times the logarithm of the ratio of relative jet velocity to absolute jet velocity. It is shown in this paper that the exponent n is positive for pure subsonic jet mixing noise and varies, in a systematic manner, as a function of flight conditions and jet velocity. On the basis of calculations from simple empirical models for jet mixing noise, shock noise and internally-generated noise, it is shown that when other sources are present, the resulting range of n is increased over the range for jet mixing noise, and in some cases negative values of n are obtained.

  15. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  16. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  17. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  18. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  19. Velocity and Temperature Measurement in Supersonic Free Jets Using Spectrally Resolved Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2004-01-01

    The flow fields of unheated, supersonic free jets from convergent and convergent-divergent nozzles operating at M = 0.99, 1.4, and 1.6 were measured using spectrally resolved Rayleigh scattering technique. The axial component of velocity and temperature data as well as density data obtained from a previous experiment are presented in a systematic way with the goal of producing a database useful for validating computational fluid dynamics codes. The Rayleigh scattering process from air molecules provides a fundamental means of measuring flow properties in a non-intrusive, particle free manner. In the spectrally resolved application, laser light scattered by the air molecules is collected and analyzed using a Fabry-Perot interferometer (FPI). The difference between the incident laser frequency and the peak of the Rayleigh spectrum provides a measure of gas velocity. The temperature is measured from the spectral broadening caused by the random thermal motion and density is measured from the total light intensity. The present point measurement technique uses a CW laser, a scanning FPI and photon counting electronics. The 1 mm long probe volume is moved from point to point to survey the flow fields. Additional arrangements were made to remove particles from the main as well as the entrained flow and to isolate FPI from the high sound and vibration levels produced by the supersonic jets. In general, velocity is measured within +/- 10 m/s accuracy and temperature within +/- 10 K accuracy.

  20. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  1. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  2. PERFORMANCE TESTING OF THE TETRADYNE HIGH SPEED AIR JET SKIMMER

    EPA Science Inventory

    The U.S. Environmental Protection Agency evaluated the performance of the prototype Tetradyne High Speed Air Jet Skimmer at their OHMSETT test facility at Leonardo, New Jersey. The skimmer depends on an air-jet impacting the water surface at an angle and deflecting rapidly moving...

  3. Spot cooling. Part 1: Human responses to cooling with air jets

    SciTech Connect

    Melikov, A.K.; Halkjaer, L.; Arakelian, R.S.; Fanger, P.O.

    1994-12-31

    Eight standing male subjects and a thermal manikin were studied for thermal, physiological, and subjective responses to cooling with an air jet at room temperatures of 28 C, 33 C, and 38 C and a constant relative humidity of 50%. The subjects wore a standard uniform and performed light work. A vertical jet and a horizontal jet were employed The target area of the jet, i.e., the cross section of the jet where it first met the subject, had a diameter of 0.4 m and was located 0.5 m from the outlet. Experiments were performed at average temperatures at the jet target area of 20 C, 24 C, and 28 C. Each experiment lasted 190 minutes and was performed with three average velocities at the target area: 1 and 2 m/s and the preferred velocity selected by the subjects. The impact of the relative humidity of the room air, the jet`s turbulence intensity, and the use of a helmet on the physiological and subjective responses of the eight subjects was also studied The responses of the eight subjects were compared with the responses of a group of 29 subjects. The spot cooling improved the thermal conditions of the occupants. The average general thermal sensation for the eight subjects was linearly correlated to the average mean skin temperature and the average sweat rate. An average mean skin temperature of 33 C and an average sweat rate of 33 g{center_dot}h{sup {minus}1} m{sup {minus}2} were found to correspond to a neutral thermal sensation. The local thermal sensation at the neck and at the arm exposed to the cooling jet was found to be a function of the room air temperature and the local air velocity and temperature of the jet. The turbulence intensity of the cooling jet and the humidity of the room air had no impact on the subjects` physiological and subjective responses. Large individual differences were observed in the evaluation of the environment and in the air velocity preferred by the subjects.

  4. Time-Series Position-Velocity Diagrams of the Jet and Low-Velocity Components in HH 444

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick M.; Jones, S. K.

    2014-01-01

    HH 444 is a collimated YSO jet in Orion notable for a well-defined low-velocity component that merges with a high-velocity component a few arcseconds away from the source. A high-quality position-velocity diagram taken in 2000 (Andrews et al. 2004) shows both a high-velocity jet (HVC) and a low-velocity component (LVC) in the red lines of [S II], H-alpha and [N II]. A bridge of intermediate velocity (IVC) connects the LVC and the HVC. In this poster we report new Keck observations of the system taken a decade later with the same spectrograph but a larger detector. Enough time has now passed since the previous observations to allow us to track proper motions, and thereby learn which features in the position-velocity map of the jet evolve dynamically, and which are static. The new CCD makes more line ratios and diagnostics possible as well. These data represent the most through exploration of the phase space of stellar jets to date, and include temporal, spatial, and radial velocity data for each point in the flow. The new spectra show how jets evolve with time as they emerge from accretion disks. The LVC is dense and mostly neutral near the star, and has no discernible proper motion. The IVC is hot, with a high ionization fraction, but also no proper motion, while the HVC has kinematic signatures and excitations of a jet, with high proper motions, a declining density with distance, and relatively low ionization fraction. Taken together, these data imply that the jet entrains and heats the IVC within a few arcseconds from the star. The HVC drops in velocity where it intersects the IVC, probably owing to mass loading, and there is evidence for a second IVC that connects with the jet at a greater distance from the star.

  5. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  6. Application of the k-epsilon turbulence model to the simulation of a fully pulsed free air jet

    NASA Astrophysics Data System (ADS)

    Graham, L. J. W.; Bremhorst, K.

    1993-03-01

    The work describes application of the k-epsilon turbulence model to a fully pulsed air jet. The standard model failed to predict the change in slope of the velocity decay where the jet changes from pulsed to steady jet behavior. A change in one of the constants of the k-epsilon model based on the behavior of the periodic velocity component relative to the intrinsic component yielded satisfactory results. Features of the pulsed jet which were successfully simulated included the flow reversal near the edge of the jet, increased entrainment when compared to steady jets and large radial outflow near the leading edge of the pulse and large radial inflow near the outer edge of the jet for the remainder of the pulse.

  7. Spatially growing disturbances in a high velocity ratio two-stream, coplanar jet

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1987-01-01

    The influence of cold and heated secondary flow on the instability of a two-stream, coplanar jet having a 0.7 Mach number heated primary jet for a nominal fan to primary velocity ratio of 0.68 was investigated by means of inviscid linearized stability theory. The instability properties of spatially growing axisymmetric and first order azimuthal disturbances were studied. The instability characteristics of the two-stream jet with a velocity ratio of 0.68 are very different from those of a single stream jet, and a two-stream, coplanar jet having a 0.9 Mach number heated primary jet and a cold secondary jet for a fan to primary velocity ratio of 0.30. For X/D = 1 and in comparison to the case where the velocity ratio was 0.3, the presence of the fan stream with a velocity ratio of 0.68 enhanced the instability of the jet and increased the unstable frequency range. However, the axisymmetric mode (m = 0) and the first order azimuthal mode (m = 1) have similar spatial growth rates where the velocity ratio is 0.68 while for a velocity ratio of 0.3 the growth rate of the first order azimuthal mode (m = 1) is greater. Comparing the cold and hot secondary flow results showed that for a velocity ratio of 0.68 the growth rate is greater for cold.

  8. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2008-01-01

    A molecular Rayleigh scattering technique was utilized to measure time-resolved gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz. A high power continuous-wave (cw) laser beam was focused at a point in an air flow field and Rayleigh scattered light was collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultipler tubes operated in the photon counting mode allowed high frequency sampling of the total signal level and the circular interference pattern to provide time-resolved density, temperature, and velocity measurements. Mean and rms velocity and temperature, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at the NASA Glenn Research Center (GRC). The Rayleigh measurements are compared with particle image velocimetry data and CFD predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  9. Dynamic Measurement of Temperature, Velocity, and Density in Hot Jets Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.

    2009-01-01

    A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  10. Dynamic measurement of temperature, velocity, and density in hot jets using Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Mielke, Amy F.; Elam, Kristie A.

    2009-10-01

    A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry-Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.

  11. Time-Averaged Velocity, Temperature and Density Surveys of Supersonic Free Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.

    2005-01-01

    A spectrally resolved molecular Rayleigh scattering technique was used to simultaneously measure axial component of velocity U, static temperature T, and density p in unheated free jets at Mach numbers M = 0.6,0.95, 1.4 and 1.8. The latter two conditions were achieved using contoured convergent-divergent nozzles. A narrow line-width continuous wave laser was passed through the jet plumes and molecular scattered light from a small region on the beam was collected and analyzed using a Fabry-Perot interferometer. The optical spectrum analysis air density at the probe volume was determined by monitoring the intensity variation of the scattered light using photo-multiplier tubes. The Fabry-Perot interferometer was operated in the imaging mode, whereby the fringe formed at the image plane was captured by a cooled CCD camera. Special attention was given to remove dust particles from the plume and to provide adequate vibration isolation to the optical components. The velocity profiles from various operating conditions were compared with that measured by a Pitot tube. An excellent comparison within 5m's demonstrated the maturity of the technique. Temperature was measured least accurately, within 10K, while density was measured within 1% uncertainty. The survey data consisted of centerline variations and radial profiles of time-averaged U, T and p. The static temperature and density values were used to determine static pressure variations inside the jet. The data provided a comparative study of jet growth rates with increasing Mach number. The current work is part of a data-base development project for Computational Fluid Dynamics and Aeroacoustics codes that endeavor to predict noise characteristics of high speed jets. A limited amount of far field noise spectra from the same jets are also presented. Finally, a direct experimental validation was obtained for the Crocco-Busemann equation which is commonly used to predict temperature and density profiles from known velocity

  12. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  13. Instability of a confined jet impinging on a water/air free surface

    NASA Astrophysics Data System (ADS)

    Bouchet, G.; Climent, E.; Maurel, A.

    2002-09-01

    Self-sustained oscillations in sinuous mode occur when a water jet impinges from below on a water/air free surface. Confined jet instability is experimentally investigated by image processing and velocity measurements. Despite small deformations of the surface, dynamic response of the jet provides unusual behaviour with comparable configurations (hole-tone, jet edge ...). The central feature is a bounded evolution of the oscillation frequency. Modal transitions are observed when physical parameters are varied. Each frequency jump is related to wavelength modification of the spatial pattern. Atypical evolution of the predominant length scale has to be connected to strong coupling with the weak deformations induced by the impinging jet on the free surface.

  14. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  15. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  16. Time-Series Position-Velocity Diagrams of the Jet and Low-Velocity Components in HH444

    NASA Astrophysics Data System (ADS)

    Hartigan, Patrick; Jones, Sharad; Frank, Adam; Lebedev, Sergey; Ray, Tom

    2013-07-01

    HH 444 is a collimated YSO jet in Orion notable for a well-defined low-velocity component that merges with a high-velocity component a few arcseconds away from the source. A high-quality position-velocity diagram taken in 2000 (Andrews et al. 2004) shows both the jet and the low-velocity component in the red lines of [S˜II], Hα and [N˜II]. In this poster we report new Keck observations of the system taken a decade later with the same spectrograph but a larger detector. Enough time has now passed since the previous observations to allow us to track proper motions, and thereby learn which features in the position-velocity map of the jet evolve dynamically, and which are static. The new CCD makes more line ratios and diagnostics possible as well. These data represent the most through exploration of the phase space of stellar jets to date, and include temporal, spatial, and radial velocity data for each point in the flow. The new spectra show how jets evolve with time as they emerge from accretion disks.

  17. The ADPI of cold air jets in an enclosure

    SciTech Connect

    Kirkpatrick, A.T.; Knappmiller, K.D.

    1996-11-01

    The subject of this paper is the computational determination of the air diffusion performance index (ADPI) of a cold air jet in an enclosure. The jet outlet size, temperature, momentum, and Archimedes number were varied to produce a range of attached and separated flow regimes. The cooling load was produced by heating one of the room walls. The effect of using conventional and cold supply jets was investigated for two heat source locations. The results indicate that, for the type of diffuser and room configuration studied, an optimum ADPI was obtained when the jet separation distance is approximately equal to the room characteristic length. Room airflow conditions produced by conventional and cold air supply temperature air are almost identical to each other when the same separation distance criteria, i.e., same momentum flux, are used.

  18. Effect of crossflow velocity on the generation of lift fan jet noise in VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Fogg, R. G.

    1973-01-01

    Analytical studies based on a turbulent mixing noise prediction technique indicate that jet noise power levels are increased when a jet is situated in a crossflow. V/STOL model transport acoustic test data obtained in the NASA Ames 40 ft. x 80 ft. wind tunnel confirmed this jet noise power level increase due to crossflow. Increases up to 6 db at a Strouhal number of 2.5 and crossflow velocity to jet velocity ratio of 0.58 were observed. The power level increases observed in the experimental data confirm the predicted power level increases.

  19. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  20. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  1. THE RATE OF GAS ACCRETION ONTO BLACK HOLES DRIVES JET VELOCITY

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Gültekin, Kayhan; Reynolds, Mark; Bietenholz, Michael; Bartel, Norbert; Mioduszewski, Amy; Rupen, Michael

    2015-01-20

    Accreting black holes are observed to launch relativistic, collimated jets of matter and radiation. In some sources, discrete ejections have been detected with highly relativistic velocities. These particular sources typically have very high mass accretion rates, while sources lower knot velocities are predominantly associated with black holes with relatively low mass accretion rates. We quantify this behavior by examining knot velocity with respect to X-ray luminosity, a proxy for mass accretion rate onto the black hole. We find a positive correlation between the mass-scaled X-ray luminosity and jet knot velocity. In addition, we find evidence that the jet velocity is also a function of polar angle, supporting the ''spine-sheath'' model of jet production. Our results reveal a fundamental aspect of how accretion shapes mechanical feedback from black holes into their host environments.

  2. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  3. PERFORMANCE OF A HIGH-VELOCITY PULSE-JET FILTER, II

    EPA Science Inventory

    The report gives results of a study of the performance of a high-velocity pulse-jet filter. Such filtration has distinct advantages over low-velocity filtration in that the equipment required to clean a gas stream is reduced in size and initial cost as velocity increases. Althoug...

  4. PERFORMANCE OF A HIGH-VELOCITY PULSE-JET FILTER, III

    EPA Science Inventory

    The report gives results of a continuing study of the performance of a high-velocity pulse-jet filter. Such filtration has distinct advantages over low-velocity filtration in that the equipment required to clean a gas stream is reduced in size and initial cost as filtration veloc...

  5. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  6. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  7. High Velocity Precessing Jet from the Water Fountain IRAS 18286-0959 Revealed by VLBA Observations

    NASA Astrophysics Data System (ADS)

    Yung, Bosco; Nakashima, J.; Imai, H.; Deguchi, S.; Diamond, P. J.; Kwok, S.

    2011-05-01

    We report the multi-epoch VLBA observations of 22.2GHz water maser emission associated with the "water fountain" star IRAS 18286-0959. The detected maser emission are distributed in the velocity range from -50km/s to 150km/s. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (namely, jet 1) extended from southeast to northwest direction, and the rest of the features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a "double-helix" pattern which lies across 200 milliarcseconds (mas). The maser features are reasonably fit by a model consisting of two precessing jets. The velocities of jet 1 and jet 2 are derived to be 138km/s and 99km/s, respectively. The precession period of jet 1 is about 56 years, and for jet 2 it is about 73 years. We propose that the appearance of two jets observed are the result of a single driving source with a significant proper motion. This research was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China, the Seed Funding Programme for Basic Research of the University of Hong Kong, Grant-in-Aid for Young Scientists from the Ministry 9 of Education, Culture, Sports, Science, and Technology, and Grant-in-Aid for Scientific Research from Japan Society for Promotion Science.

  8. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  9. Supersonic moist air jet impingements on flat surface

    NASA Astrophysics Data System (ADS)

    Alam, Miah Md. Ashraful; Matsuo, Shigeru; Setoguchi, Toshiaki

    2010-02-01

    Pronounced aeroacoustic resonances are exhibited in the flowfield where a jet emerges from an orifice or a nozzle and impinges on a solid surface. One instance where such resonances are produced is in a high speed jet impingement, such as in the space launch vehicle systems, jet-engine exhaust impingement, and in the short take-off and vertical landing (STOVL) aircraft, etc. A highly unsteady flowfield leading to a drastic increase of noise level with very high dynamic pressure and thermal loads are noticed on nearby surfaces results dramatic lift loss, severe ground erosion and hot gas ingestion to the inlet in the jet engines. This highly unsteady behavior of the impinging jets is due to a feedback loop between the fluid and acoustic fields. In actual jet flow, the working gas may contain condensable gas such as steam or moist air. In these cases, the non-equilibrium condensation may occur at the region between nozzle exit and an object. The jet flow with non-equilibrium condensation may be quite different from that without condensation. Therefore, in this study, the effect of the non-equilibrium condensation of moist air on the axisymmetric under-expanded supersonic impinging jet on a vertical flat plate was investigated numerically.

  10. Numerical model of boundary-layer control using air-jet generated vortices

    NASA Astrophysics Data System (ADS)

    Henry, F. S.; Pearcey, H. H.

    1994-12-01

    Numerical calculations of the three-dimensional flowfield generated by pitched and skewed air jets issuing into an otherwise undisturbed turbulent boundary layer are presented. It is demonstrated that each such jet produces a single strong longitudinal vortex. The strength of the vortex, as inferred from its effect on the development of skin friction, is shown to be influenced by pitch and skew angles, exit velocity, and downstream distance in ways which accord with published experimental results. The calculated beneficial effect that the longitudinal vortices have on the development of skin friction in an adverse pressure gradient demonstrates the mechanism by which vortex generators delay boundary-layer separation. It follows that the numerical model could be used to optimize arrays of air-jet vortex generators. Furthermore, the facility to quantify the interaction between the vortex and the boundary layer should also be valuable in the application of vane vortex generators, and possible even more generally.

  11. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  12. A method for predicting the noise levels of coannular jets with inverted velocity profiles

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1979-01-01

    A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.

  13. Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Symons, E. P.

    1972-01-01

    An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.

  14. Atmospheric Pressure Non-Thermal Air Plasma Jet

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam; Al-Mashraqi, Ahmed; Benghanem, Mohamed; Al Shariff, Samir

    2013-09-01

    Atmospheric pressure air cold plasma jet is introduced in this work. It is AC (60 Hz to 20 kHz) cold plasma jet in air. The system is consisted of a cylindrical alumina insulator tube with outer diameter of 1.59 mm and 26 mm length and 0.80 mm inner diameter. AC sinusoidal high voltage was applied to the powered electrode which is a hollow needle inserted in the Alumina tube. The inner electrode is a hollow needle with 0.80 mm and 0.46 mm outer and inner diameters respectively. The outer electrode is grounded which is a copper ring surrounded the alumina tube locates at the nozzle end. Air is blowing through the inner electrode to form a plasma jet. The jet length increases with flow rate and applied voltage to reach 1.5 cm. The gas temperature decreases with distance from the end of the nozzle and with increasing the flow rate. The spectroscopic measurement between 200 nm and 900 nm indicates that the jet contains reactive species such as OH, O in addition to the UV emission. The peak to peak current values increased from 6 mA to 12 mA. The current voltage waveform indicates that the generated jet is homogenous plasma. The jet gas temperature measurements indicate that the jet has a room temperature. This work was supported by the National Science, Technology and Innovation Plan(NSTIP) through the Science and Technology Unit (STU) at Taibah University, Al Madinah Al Munawwarah, KSA, with the grant number 08-BIO24-5.

  15. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2016-06-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  16. Effects of velocity profile and inclination on dual-jet-induced pressures on a flat plate in a crosswind

    NASA Technical Reports Server (NTRS)

    Jakubowski, A. L.; Schetz, J. A.; Moore, C. L.; Joag, R.

    1985-01-01

    An experimental study was conducted to determine surface pressure distributions on a flat plate with dual subsonic, circular jets exhausting from the surface into a crossflow. The jets were arranged in both side-by-side and tandem configurations and were injected at 90 deg and 60 deg angles to the plate, with jet-to-crossflow velocity ratio of 2.2 and 4. The major objective of the study was to determine the effect of a nonuniform (vs uniform) jet velocity profile, simulating the exhaust of a turbo-fan engine. Nonuniform jets with a high-velocity outer annulus and a low-velocity core induced stronger negative pressure fields than uniform jets with the same mass flow rate. However, nondimensional lift losses (lift loss/jet thrust lift) due to such nonuniform jets were lower than lift losses due to uniform jets. Changing the injection angle from 90 deg to 60 deg resulted in moderate (for tandem jets) to significant (for side-by-side jets) increases in the induced negative pressures, even though the surface area influenced by the jets tended to reduce as the angle decreased. Jets arranged in the side-by-side configuration led to significant jet-induced lift losses exceeding, in some cases, lift losses reported for single jets.

  17. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  18. Multiscale turbulence effects in supersonic jets exhausting into still air

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Wilmoth, Richard G.

    1987-01-01

    A modified version of the multiscale turbulence model of Hanjalic has been applied to the problem of supersonic jets exhausting into still air. In particular, the problem of shock-cell decay through turbulent interaction with the mixing layer has been studied for both mildly interacting and strongly resonant jet conditions. The modified Hanjalic model takes into account the nonequilibrium energy transfer between two different turbulent spectral scales. The turbulence model was incorporated into an existing shock-capturing, parabolized Navier-Stokes computational model in order to perform numerical experiments. The results show that the two-scale turbulence model provides significant improvement over one-scale models in the prediction of plume shock structure for underexpanded supersonic (Mach 2) and sonic (Mach 1) jets. For the supersonic jet, excellent agreement with experiment was obtained for the centerline shock-cell pressure decay up to 40 jet radii. For the sonic jet, the agreement with experiment was not so good, but the two-scale model still showed significant improvement over the one-scale model. It is shown that by relating some of the coefficients in the turbulent-transport equations to the relative time scale for transfer of energy between scales the two-scale model can provide predictions that bound the measured shock-cell decay rate for the sonic jet.

  19. Parameter investigation of air-driving fluid jet polishing

    NASA Astrophysics Data System (ADS)

    Yu, Zong-Ru; Hsu, Wei-Yao; Pham, Loc Huu; Ho, Cheng-Fang; Kuo, Ching-Hsiang; Shiou, Fang-Jung

    2012-10-01

    Air-driving fluid jet polishing (FJP) technique was first presented in 2011. Slurry was drop out due to Venturi effect inside the atomizer which is the main component of air-driving FJP system, and was guided to mix with air flow by the nozzle. The Venturi effect and the added high speed air flow provide slurry more kinetic energy to impact the optical surface. Therefore, the air-driving FJP system has a rotational symmetrical Gaussian-like removal profile with lower air pressure and normal incidence configuration. In this paper, we investigate oblique incidence polishing to find the optimal material removal performance of the technique, including removal shape and depth and surface roughness. Different oblique angles ranged from 80 to 20 degree were tested. The air-driving FJP system was adapted upon a CNC machine, so not only single point polishing but also straight line polishing with constant feed rate can be carried out. We report on the performance of oblique air-driving FJP in different air pressure and processing time, and also the material removal of dynamic polishing for N-BK7, Fused Silica and ZERODUR®. The results indicate oblique incidence can get a Gaussian-like removal shape, and improve the surface roughness. The air-driving FJP not only has the advantages of conventional fluid jet polishing, such as no tool wears, cutter interference and debris deposition problems, but also has excellent material removal rate with lower energy.

  20. Forces Acting on a Ball in an Air Jet

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S.

    2011-01-01

    The forces acting on a ball in an air jet have been measured using simple equipment. Such measurements allow quite a precise, non-ambiguous description and understanding of the physical mechanism which explains the famous levitating ball experiment. (Contains 7 figures.)

  1. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  2. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    SciTech Connect

    Rodriguez-Gonzalez, A.; Esquivel, A.; Raga, A. C.; Canto, J.; Curiel, S.; Riera, A.; Beck, T. L.

    2012-03-15

    We present an analysis of H{alpha} spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scattered in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.

  3. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  4. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    SciTech Connect

    Wang, Zhen-guo Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-29

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  5. Effect of simulated forward speed on the jet noise of inverted velocity profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Packman, A. B.; Ng, K. W.; Chen, C. Y.

    1977-01-01

    Tests were conducted of inverted velocity profile coannular nozzles and a conical nozzle in an acoustic wind tunnel facility to simulate flight effects on jet noise generation. Coannular model nozzles were tested at fan to core nozzle exit area ratios of .75 and 1.2. Fan stream jet velocity ranged up to 2000 fps at a variety of fan exhaust pressure ratios and temperatures for a core stream of 1000 fps. The wind tunnel airflow was varied from static to 425 fps. The acoustic results indicated that the noise level differences seen previously under static conditions are retained in the flight environment.

  6. JET experience in recovery from large air leak incidents

    NASA Astrophysics Data System (ADS)

    Orchard, J. C.; Peacock, A. T.; Saibene, G.

    1993-05-01

    Since July 1990 JET has experienced three occasions where air leaks greater than 10 4 mbar · l/ s happened at a time when the JET vacuum vessel has been under operational conditions at 300°C. Recovery after these incidents to a point at which plasma pulses are successful have involved a bake to high temperature (350°C) followed by a prolonged period of glow discharge cleaning (circa 120 h) to remove the oxygen present as a result of the air ingress and then a beryllium evaporation to finally getter any remaining impurities. Plasma performance before and after conditioning is compared and an understanding of the mechanism of oxygen removal presented. It will be shown that, after an air leak of the magnitude under discussion, vessel conditioning by glow discharge cleaning is essential for the successful resumption of plasma operation and that any future large fusion machines will need such a facility.

  7. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  8. Suppression of jet noise peak by velocity profile reshaping

    NASA Astrophysics Data System (ADS)

    Fujii, S.; Nishiwaki, H.; Takeda, K.

    1981-07-01

    Proposed here is an efficient noise-abating system having the potential for application to a broad spectrum of turbofan engines. An exhaust system with the core nozzle reshaped into an elliptic exit section from the conventional circular nozzle is recommended. The comparison of the scale-model tests revealed that a 5 dB decrease in peak noise levels was realized with a slight increase of the sound pressure at large emission angles. A laser Doppler velocimeter was used to quantify the high-temperature flow turbulence. With the elliptic core nozzle, the jet flow was more diffused axially and spread radially along the major axis. The noise reduction was attributed to the enhancement of the sound refraction and to the lower sound generation, due to the turbulence suppression as well as the lowered mean density gradients at the noise source.

  9. WHAT GOVERNS THE BULK VELOCITY OF THE JET COMPONENTS IN ACTIVE GALACTIC NUCLEI?

    SciTech Connect

    Chai Bo; Cao Xinwu; Gu Minfeng E-mail: cxw@shao.ac.cn

    2012-11-10

    We use a sample of radio-loud active galactic nuclei (AGNs) with measured black hole masses to explore the jet formation mechanisms in these sources. Based on Koenigl's inhomogeneous jet model, the jet parameters, such as the bulk motion Lorentz factor, magnetic field strength, and electron density in the jet, can be estimated with the very long baseline interferometry and X-ray data.. We find a significant correlation between black hole mass and the bulk Lorentz factor of the jet components for this sample, while no significant correlation is present between the bulk Lorentz factor and the Eddington ratio. The massive black holes will be spun up through accretion, as the black holes acquire mass and angular momentum simultaneously through accretion. Recent investigation indeed suggested that most supermassive black holes in elliptical galaxies have on average higher spins than the black holes in spiral galaxies, where random, small accretion episodes (e.g., tidally disrupted stars, accretion of molecular clouds) might have played a more important role. If this is true, then the correlation between black hole mass and the bulk Lorentz factor of the jet components found in this work implies that the motion velocity of the jet components is probably governed by the black hole spin. No correlation is found between the magnetic field strength at 10R {sub S} (R {sub S} = 2GM/c {sup 2} is the Schwarzschild radius) in the jets and the bulk Lorentz factor of the jet components for this sample. This is consistent with the black hole spin scenario, i.e., the faster moving jets are magnetically accelerated by the magnetic fields threading the horizon of more rapidly rotating black holes. The results imply that the Blandford-Znajek mechanism may dominate over the Blandford-Payne mechanism for the jet acceleration, at least in these radio-loud AGNs.

  10. Velocity characterisation of axisymmetric jets from human-sized channels

    NASA Astrophysics Data System (ADS)

    Grandchamp, X.; van Hirtum, A.; Pelorson, X.

    Objectives: Howe and McGowan (Proc. R. Soc. A, 461, 2005) pointed out the lack of low velocity flow measurements issuing from upper airway configurations. Therefore, influence of moderate bulk Reynolds number (1130 < {mathopRenolimits} = U_b d/v < 11320) for low length-to-tube diameter ratios, i.e. L/d = {4.4 7.2 20 53.2}, relevant for the human airways are investigated.

  11. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    SciTech Connect

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen; Liu, Fucheng

    2014-06-15

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the applied voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.

  12. The transverse velocity and excitation structure of the HH 110 jet

    NASA Astrophysics Data System (ADS)

    Riera, A.; López, R.; Raga, A. C.; Estalella, R.; Anglada, G.

    2003-03-01

    We present long-slit spectroscopic observations of the HH 110 jet obtained with the 4.2 m William Herschel Telescope. We have obtained for the first time, spectra for slit positions along and across the jet axis (at the position of knots B, C, I, J and P) to search for the observational signatures of entrainment and turbulence by studying the kinematics and the excitation structure. We find that the HH 110 flow accelerates from a velocity of 35 km s-1 in knot A up to 110 km s-1 in knot P. We find some systematic trends for the variation of the emission line ratios along the jet. No clear trends for the variation of the radial velocity are seen across the width of the jet beam. The cross sections of the jet show complex radial velocity and line emission structures which differ quite strongly from each other. Based on observations made with the 4.2 m William Herschel Telescope operated on La Palma by the Issac Newton Group of Telescopes at the Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  13. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  14. Electrical method and apparatus for impelling the extruded ejection of high-velocity material jets

    DOEpatents

    Weingart, Richard C.

    1989-01-01

    A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocity material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.

  15. On the correlation of plume centerline velocity decay of turbulent acoustically excited jets

    NASA Technical Reports Server (NTRS)

    Vonglahn, Uwe H.

    1987-01-01

    Acoustic excitation was shown to alter the velocity decay and spreading characteristics of jet plumes by modifying the large-scale structures in the plume shear layer. The present work consists of reviewing and analyzing available published and unpublished experimental data in order to determine the importance and magnitude of the several variables that contribute to plume modification by acoustic excitation. Included in the study were consideration of the effects of internal and external acoustic excitation, excitation Strouhal number, acoustic excitation level, nozzle size, and flow conditions. The last include jet Mach number and jet temperature. The effects of these factors on the plume centerline velocity decay are then summarized in an overall empirical correlation.

  16. Knot structures in jets formed by a two-mode ejection velocity time-variability

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Rodríguez-Ramírez, J. C.; Cantó, J.; Velázquez, P. F.

    2015-11-01

    We present a 1D analytic model for the formation of working surfaces along a jet produced by an outflow source with a double-sinusoidal mode ejection velocity variability. We succeed in obtaining simple expressions for the distance of formation and for the initial velocity jump across the `fast-mode' working surfaces, which are modulated by the phase of the `slow mode'. These results can be straightforwardly applied to interpret observations of Herbig-Haro jets showing a chain of aligned knots close to the source, and large `heads' at greater distances, for which a two-mode ejection variability is likely to be applicable. We use our new analytic model to interpret observations of the externally photoionized HH 333 jet.

  17. Mass Flux and Terminal Velocities of Magnetically Driven Jets from Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1995-10-01

    In order to investigate astrophysical jets from accretion disks, we solve 1.5-dimensional steady MHD equations for a wide range of parameters, assuming the shape of poloidal magnetic field lines. We include a thermal effect to obtain the relation between the mass flux of the jet and the magnetic energy at the disk, although the jet is mainly accelerated by the magnetic force. It is found that the mass flux of the jets ( M dot ) is dependent on the magnetic energy at the disk surface, i.e., M dot ~ (rho Aa|Bp/B|)_{{slow}} ~ (rho Aa|Bp/Bphi|)_{{slow}} ~ Ealpha_{{mg}} [where rho is the density, a is the sound velocity, A is the cross section of the magnetic flux, B = (B2p + B2phi)^{1/2} , Bp and B phi are the poloidal and toroidal magnetic field strength, respectively, Emg is the magnetic energy in unit of the gravitational energy at the disk surface, and the suffix "slow" denotes the value at a slow point], when the magnetic energy is not too large. The parameter alpha increases from 0 to 0.5 with decreasing magnetic energy. Since the scaling law of Michel's minimum energy solution nearly holds in the magnetically driven flows, the dependence of the terminal velocity on the magnetic energy becomes weaker than had been expected, i.e., v_∞ ~ E^{(1-alpha)/3}_{{mg}} . It is shown that the terminal velocity of the jet is an order of Keplerian velocity at the footpoint of the jets for a wide range of values of Emg expected for accretion disks in star-forming regions and active galactic nuclei. We argue that the mass-loss rates observed in the star-forming regions would constrain the magnetic energies at the disk surfaces.

  18. Collective and fractal properties of pion jets in the space of 4-velocities at intermediate energies

    SciTech Connect

    Okorokov, V. A. Ponosov, A. K.; Sergeev, F. M.

    2010-11-15

    Experimental results obtained by studying collective and fractal properties of soft pion jets in the space of relative 4-velocities at intermediate energies are presented. The mean square of the distance between secondary particles and the jet axis is found to be significantly smaller in the case of pion-proton interactions at initial energies of about 3 GeV than in the case of hadron-hadron collisions at similar energies. This reduction leads to a power-law dependence of this quantity on the interaction energy in the energy range between about 2 and 4 GeV, and this makes it possible to estimate the lower boundary of the region where color degrees of freedom manifest themselves in pion-jet production. The cluster dimensions of pion jets in various reactions were obtained for the first time. Fractional values of this dimension may be a manifestation of fractal properties of pion jets. The change in the mean kinetic energy of particles in the jet and the change in the fractal dimension in response to the change in the collision energy is compatible with the assumption that color degrees of freedom come into play in pion-jet production at intermediate energies.

  19. Explaining near light velocities observed in Astronomical Jets using SITA simulations

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Very high velocities like velocity of light are observed in astronomical jets from the centres of many Galaxies including our own Milkyway. The formation of such high velocity jet is explained using SITA simulations in this paper. For this purpose the velocity attained by a test neutron in the path traced by it is calculated and depicted using a setup of 133 bodies. This setup consisting of one densemass of the mass equivalent to Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. The velocity of particle attained in the path by this test neutron was found to be very high as observed in an astronomical jet emerging from Galaxy center. Dynamic Universe model can be used for such an application. Dynamic Universe Model uses a new type of Tensor. There are no differential or integral equations here. No singularities and body to body collisions in this model. Many papers were published in USA and CANADA. See Dynamic Universe Model Blog for further details and papers

  20. Shock associated noise reduction from inverted-velocity-profile coannular jets

    NASA Technical Reports Server (NTRS)

    Tanna, H. K.; Tam, C. K. W.; Brown, W. H.

    1981-01-01

    Acoustic measurements show that the shock noise from the outer stream is virtually eliminated when the inner stream is operated at a Mach number just above unity, regardless of all the other jet operating conditions. At this optimum condition, the coannular jet provides the maximum noise reduction relative to the equivalent single jet. The shock noise reduction can be achieved at inverted-as well as normal-velocity-profile conditions, provided the coannular jet is operated with the inner stream just slightly supersonic. Analytical models for the shock structure and shock noise are developed indicate that a drastic change in the outer stream shock cell structure occurs when the inner stream increases its velocity from subsonic to supersonic. At this point, the almost periodic shock cell structure of the outer stream nearly completely disappears the noise radiated is minimum. Theoretically derive formulae for the peak frequencies and intensity scaling of shock associated noise are compared with the measured results, and good agreement is found for both subsonic and supersonic inner jet flows.

  1. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  2. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    NASA Technical Reports Server (NTRS)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  3. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2016-06-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  4. A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victir A.; Skakun, Victor S.; Tarasenko, Victor F.; Pechenitsin, Dmitrii S.; Kuznetsov, Vladimir S.

    2015-12-01

    The paper proposes a new atmospheric pressure plasma jet (APPJ) source for operation in air and nitrogen. The conditions for the formation of stable plasma jets 4 cm long are determined. Energy and spectral measurement data are presented.

  5. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  6. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  7. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  8. Axisymmetric electromagnetic field influence on the characteristic velocity of an arc-jet

    NASA Technical Reports Server (NTRS)

    Oggero, M.; Gennuso, D.

    1984-01-01

    Tests for determining the influence of an axisymmetric EM field on the characteristic velocity of an arc jet are presented. The experimental set up is briefly described. Tests were performed with rotation induced by the centrifugal and magnetic fields in the same sense. The fuels used were HE and N2 and the results are discussed. It is found that by variation of the induction, current, and arc jet strength, the behavior is determined essentially by the shape of the cathodic and anodic blobs on the electrodes together with their movement under the combined effect of the aerodynamic and magnetic fields. In view of the different characteristics of He and N2 in respect to the dissociation heat and ionization, it is expected that the regime of the arc jet when used with H2 fuel will be similar to that with He.

  9. Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.

  10. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    NASA Astrophysics Data System (ADS)

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    2014-08-01

    An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.

  11. Degradation Through Erosion: Mechanistic Studies on IN-718 Superalloy Under Hot Air Jet Conditions

    NASA Astrophysics Data System (ADS)

    Thirugnanasambantham, K. G.; Natarajan, S.

    2015-07-01

    IN718 is a Nickel-based superalloy, widely used in high-temperature applications such as aircraft, and land-based and marine turbines. This technical paper deals with high-temperature erosion behavior and its mechanism of IN718. The erosion mechanism of the IN718 was studied using hot air jet erosion experiments at 800 °C with varying parameters such as angle of impingement and erodent velocity. Characterization of the eroded samples was done using SEM micrographs and high-resolution universal tribometer to determine the erosion mechanisms. SEM micrographs of eroded samples reveal that lip formation, cutting, and ploughing are the dominant erosion mechanisms for IN718 at 45° angle of impingement, while at 90°, it is lip extrusion followed by flattening of lip and detachment of platelet. These mechanisms eventually retard the particle impact velocity, thus enhancing erosion resistance.

  12. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  13. Comparison of umbo velocity in air- and bone-conduction.

    PubMed

    Röösli, Christof; Chhan, David; Halpin, Christopher; Rosowski, John J

    2012-08-01

    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. PMID:22609771

  14. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  15. Velocity asymmetries in young stellar object jets. Intrinsic and extrinsic mechanisms

    NASA Astrophysics Data System (ADS)

    Matsakos, T.; Vlahakis, N.; Tsinganos, K.; Karampelas, K.; Sauty, C.; Cayatte, V.; Matt, S. P.; Massaglia, S.; Trussoni, E.; Mignone, A.

    2012-09-01

    Context. It is well established that some YSO jets (e.g. RW Aur) display different propagation speeds between their blue and red shifted parts, a feature possibly associated with the central engine or the environment in which the jet propagates. Aims: To understand the origin of asymmetric YSO jet velocities, we investigate the efficiency of two candidate mechanisms, one based on the intrinsic properties of the system and the other on the role of the external medium. In particular, a parallel or anti-parallel configuration between the protostellar magnetosphere and the disk magnetic field is considered, and the resulting dynamics examined both in an ideal and in a resistive magneto-hydrodynamical (MHD) regime. Moreover, we explore the effects of a potential difference in the pressure of the environment, as a consequence of the nonuniform density distribution of molecular clouds. Methods: Ideal and resistive axisymmetric numerical simulations were carried out for a variety of models, all of which are based on a combination of two analytical solutions, a disk wind and a stellar outflow. The initial two-component jet is modified by either inverting the orientation of its inner magnetic field or imposing a constant surrounding pressure. The velocity profiles are studied by assuming steady flows as well as after strong time variable ejection is incorporated. Results: Discrepancies between the speeds of the two outflows in opposite directions can indeed occur both due to unaligned magnetic fields and different outer pressures. In the former case, the asymmetry appears only on the dependence of the velocity on the cylindrical distance, but the implied observed value is significantly altered when the density distribution is also taken into account. On the other hand, a nonuniform medium collimates the two jets unevenly, directly affecting their propagation speed. A further interesting feature of the pressure-confined outflow simulations is the formation of static knots

  16. HIGH VELOCITY PRECESSING JETS FROM THE WATER FOUNTAIN IRAS 18286-0959 REVEALED BY VERY LONG BASELINE ARRAY OBSERVATIONS

    SciTech Connect

    Yung, Bosco H. K.; Nakashima, Jun-ichi; Kwok, Sun; Imai, Hiroshi; Deguchi, Shuji; Diamond, Philip J.

    2011-11-10

    We report the results of multi-epoch Very Long Baseline Array observations of the 22.2 GHz H{sub 2}O maser emission associated with the 'water fountain' IRAS 18286-0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by H{sub 2}O maser emission, the other is W 43A. The detected H{sub 2}O emission peaks are distributed over a velocity range from -50 km s{sup -1} to 150 km s{sup -1}. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (jet 1) extended southeast to northwest; the remaining features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a 'double-helix' pattern which lies across {approx}200 mas. The maser distribution is reasonably fit by a model consisting of two bipolar precessing jets. The three-dimensional velocities of jet 1 and jet 2 are derived to be 138 km s{sup -1} and 99 km s{sup -1}, respectively. The precession period of jet 1 is about 56 years. For jet 2, three possible models are tested and they give different values for the kinematic parameters. We propose that the appearance of two jets is the result of a single driving source with significant proper motion.

  17. 77 FR 59391 - Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways Corporation, United Air Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways...(a) and 343.2(c); Delta Air Lines, Inc., Continental Airlines, Inc., JetBlue Airways...

  18. Deposition of micron liquid droplets on wall in impinging turbulent air jet

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Nink, Jacob; Merati, Parviz; Tian, Tian; Li, Yong; Shieh, Tom

    2010-06-01

    The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by using luminescent oil visualization technique, and the statistical data of deposited droplets are obtained through microscopic imagery. Two distinct rings of droplets deposited on a wall are found, and the mechanisms of the formation of the inner and outer rings are investigated based on global diagnostics of velocity and skin friction fields. In particular, the intriguing effects of turbulence, including large-scale coherent vortices and small-scale random turbulence, on micron droplet deposition on a wall and coalescence in the air are explored.

  19. Evidence for Highly Relativistic Velocities in the Kiloparsec-scale Jet of the Quasar 3C 345

    NASA Astrophysics Data System (ADS)

    Roberts, David H.; Wardle, John F. C.

    2012-11-01

    In this paper we use radio polarimetric observations of the jet of the nearby bright quasar 3C 345 to estimate the fluid velocity on kiloparsec scales. The jet is highly polarized, and surprisingly, the electric vector position angles in the jet are "twisted" with respect to the jet axis. Simple models of magnetized jets are investigated in order to study various possible origins of the electric vector distribution. In a cylindrically symmetric transparent jet a helical magnetic field will appear either transverse or longitudinal due to partial cancellations of Stokes parameters between the front and back of the jet. Synchrotron opacity can break the symmetry, but it leads to fractional polarization less than that observed and to strong frequency dependence that is not seen. Modeling shows that differential Doppler boosting in a diverging jet can break the symmetry, allowing a helical magnetic field to produce a twisted electric vector pattern. Constraints on the jet inclination, magnetic field properties, intrinsic opening angle, and fluid velocities are obtained and show that highly relativistic speeds (β >~ 0.95) are required. This is consistent with the observed jet opening angle, with the absence of a counter-jet, with the polarization of the knots at the end of the jet, and with some inverse-Compton models for the X-ray emission from the 3C 345 jet. This model can also apply on parsec scales and may help explain those sources where the electric vector position angles in the jet are neither parallel nor transverse to the jet axis.

  20. EVIDENCE FOR HIGHLY RELATIVISTIC VELOCITIES IN THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    SciTech Connect

    Roberts, David H.; Wardle, John F. C.

    2012-11-10

    In this paper we use radio polarimetric observations of the jet of the nearby bright quasar 3C 345 to estimate the fluid velocity on kiloparsec scales. The jet is highly polarized, and surprisingly, the electric vector position angles in the jet are 'twisted' with respect to the jet axis. Simple models of magnetized jets are investigated in order to study various possible origins of the electric vector distribution. In a cylindrically symmetric transparent jet a helical magnetic field will appear either transverse or longitudinal due to partial cancellations of Stokes parameters between the front and back of the jet. Synchrotron opacity can break the symmetry, but it leads to fractional polarization less than that observed and to strong frequency dependence that is not seen. Modeling shows that differential Doppler boosting in a diverging jet can break the symmetry, allowing a helical magnetic field to produce a twisted electric vector pattern. Constraints on the jet inclination, magnetic field properties, intrinsic opening angle, and fluid velocities are obtained and show that highly relativistic speeds ({beta} {approx}> 0.95) are required. This is consistent with the observed jet opening angle, with the absence of a counter-jet, with the polarization of the knots at the end of the jet, and with some inverse-Compton models for the X-ray emission from the 3C 345 jet. This model can also apply on parsec scales and may help explain those sources where the electric vector position angles in the jet are neither parallel nor transverse to the jet axis.

  1. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  2. Comparison of measured and calculated velocity profiles of a laminar incompressible free jet at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Greene, G. C.

    1974-01-01

    A comparison of the measured and calculated velocity profiles of a laminar, incompressible, low Reynolds number jet is presented. The experimental jet was produced by a nozzle which consists of a porous metal plate covering the end of a pipe. This nozzle produces a uniform exit velocity profile at Reynolds numbers well below those at which conventional contoured nozzles are completely filled by the boundary layer. A jet mixing analysis based on the boundary-layer equations accurately predicted the velocity field for each test condition. The Reynolds number based on nozzle diameter ranged from 50 to 1000 with jet exit velocity either 30 or 61 m/s (100 or 200 ft/sec).

  3. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  4. Rayleigh Scattering Diagnostic for Dynamic Measurement of Velocity Fluctuations in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Panda, Jayanta; Elam, Kristie A.

    2001-01-01

    A flow diagnostic technique based on the molecular Rayleigh scattering of laser light is used to obtain dynamic density and velocity data in a high speed flow. The technique is based on analyzing the Rayleigh scattered light with a Fabry-Perot interferometer used in the static, imaging mode. An analysis is presented that established a lower bound for measurement uncertainty of about 20 m/sec for individual velocity measurements obtained in a 100 microsecond time interval. Software and hardware interfaces were developed to allow computer control of all aspects of the experiment and data acquisition. The signals from three photomultiplier tubes were simultaneously recorded using photon counting at a 10 kHz sampling rate and 10 second recording periods. Density and velocity data, including distribution functions and power spectra, taken in a Mach 0.8 free jet, are presented.

  5. Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    SciTech Connect

    Jacobsen, A. S. Salewski, M.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Eriksson, J.; Ericsson, G.; Hjalmarsson, A.

    2014-11-15

    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

  6. Effects of geometry and jet velocity on noise associated with an upper-surface-blowing model

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Yu, J. C.

    1977-01-01

    The noise characteristics associated with various upper surface blowing configurations were investigated using a small model consisting of a plate and flap assembly (simulated wing with flap) attached to a rectangular nozzle. Nozzle aspect ratio, flow-run length, and flap-deflection angle were the experimental parameters studied. Three nozzle-exit velocities were used. The normalized noise spectra obtained for different nozzle aspect ratios proved to be similar in terms of Strouhal number based on jet velocity and flow-run length. Consequently, the need for knowing local flow velocity and length scales (for example, at the flap trailing edge) as required in some of the existing noise prediction schemes is eliminated. Data are compared with results computed from three different noise prediction schemes, and the validity of each scheme is assessed. A simple method is proposed to evaluate the frequency dependence of acoustic shielding obtained with the simulated wing flap.

  7. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    PubMed

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV. PMID:21585113

  8. Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering

    SciTech Connect

    Beausang, K. V.; Prunty, S. L.; Scannell, R.; Beurskens, M. N.; Walsh, M. J.; Collaboration: JET EFDA Contributors

    2011-03-15

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6-7 keV, where in some cases the ECE electron temperature measurements can be 15%-20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  9. Local quenching phenomena of a lean premixed flat flame impinging with a pulsating air jet

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Makino, I.

    2014-08-01

    Local quenching phenomena of a lean methane air premixed flat flame formed horizontally in a wall stagnating flow impinging with a pulsating air jet has been investigated experimentally. The burner system consists of 40mm inverted nozzle burner and a solid wall with 8mm diameter air jet placed in line vertically. The pulsating frequencies set up to 100Hz while the jet intensities generate up to 6 m/s by a loud speaker. Approximately '00mm disk shape flame front is curved by the pulsating air jet and the air jet impacting point is locally quenched. The fuel concentration of quenching start condition increases with increasing the intensity of air jet, because the increased jet intensity linked with the flame strain rate gain. For weak jet intensity range, the quenching hole becomes directly to develop the whole flame extinction. On the other hand, for moderate or strong jet condition, the flame can recover from the local quenching phenomena. In this condition, once the quenching hole creates, but the hole may close by the flame propagation or reigniting process. Then, the whole flame extinction limits are lower than no jet impacting condition depending on the circumstances.

  10. C60-Fullerene Hyper-Velocity High-Density Plasma Jets for MIF and Disruption Mitigation

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2009-06-01

    We present an innovative idea to use hyper-velocity (>30 km/s) high-density (>1017 cm-3) plasma jets of D-T/H and C60-fullerene for magneto-inertial fusion (MIF), high energy density laboratory plasma (HEDLP), and disruption mitigation in magnetic fusion plasma devices. The mass (~1-2 g) of sublimated C60 and hydrogen (or D-T fuel) produced in a pulsed power source is ionized and accelerated as a plasma slug in a coaxial plasma accelerator. For MIF/HEDLP we propose to create a magnetized plasma target by injecting two high-Mach number high-density jets with fuel (D-T) and liner (C60/C) structure along the axis of a pulsed magnetic mirror. The magnetized target fusion (MTF) plasma created by head-on collision and stagnation of jets is compressed radially by a metallic liner (Z-pinch) and axially by the C60/C liner. For disruption mitigation, the C60 plasma jets were shown to be able to provide the required impurity mass (J Fusion Energy 27:6, 2008).

  11. Velocity Measurements of a Pistol Shrimp's Micro Water Jet Using High Speed PIV

    NASA Astrophysics Data System (ADS)

    Torres, J.; Washington, K.; Wong, S.; Zarzecki, M.; Cheng, Y.; Diez, F. J.

    2007-11-01

    The pistol shrimp generates a high speed micro water jet that was studied experimentally using time resolved particle image velocimetry. The pistol shrimp, with an average size of about 5.5 cm, is considered to be one of the loudest animals in the world. The sound generated can reach intensity levels as high as 200 db. In the past, it was believed that the loud noise was produced by the shrimp closing its claws. Recent research has revealed that the sound is actually generated by a bubble that is created when the claw is shut. The generated bubble is followed by a micro jet. This process is used by the shrimp to stunt and attack preys and to defend itself. In this cavitation process, the bubble is created by a sudden drop in pressure as the claw closes at speeds of 100 km/hr. The temperature inside the bubble can range from 5,000 to 10000 degrees Kelvin and generates infrared light. This whole process is estimated to last around 300 microseconds. The phenomenon of the bubble itself is believed to take at most 10 nanoseconds. This research focuses in visualizing the bubble and the micro jet produced during the closing of the claw and characterizing the velocity field generated by the micro jet by taking PIV images at a rate of up to 40,000 frames per second.

  12. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  13. Velocity selective flow visualization in a free supersonic nitrogen jet with the resonant Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Zimmermann, M.; Cheng, S.; Miles, R. B.

    1985-01-01

    The use of the resonant Doppler velocimeter for flow visualization in a free supersonic nitrogen jet is demonstrated experimentally. In the experiment reported here, room-temperature nitrogen at 12.7 psi expands through a Mach 3.4 converging diverging nozzle into a plenum chamber; small amount of sodium is injected through a heated needle centered 0.5-in. upstream of the nozzle throat. The beam of a single frequency dye laser is expanded into a sheet of light with a cylindrical beam expander and directed counter to the jet to spatially resolve any slice across the core of the flow. By tuning the laser to different frequencies, particular velocity and density fields can be highlighted.

  14. Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity

    NASA Astrophysics Data System (ADS)

    de Jong, Jos; Jeurissen, Roger; Borel, Huub; van den Berg, Marc; Wijshoff, Herman; Reinten, Hans; Versluis, Michel; Prosperetti, Andrea; Lohse, Detlef

    2006-12-01

    Air bubbles entrapped in the ink channel are a major problem in piezo-driven inkjet printing. They grow by rectified diffusion and eventually counteract the pressure buildup at the nozzle, leading to a breakdown of the jetting process. Experimental results on the droplet velocity udrop as a function of the equilibrium radius R0 of the entrained bubble are presented. Surprisingly, udrop(R0) shows a pronounced maximum around R0=17μm before it sharply drops to zero around R0=19μm. A simple one-dimensional model is introduced to describe this counterintuitive behavior which turns out to be a resonance effect of the entrained bubble.

  15. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    NASA Technical Reports Server (NTRS)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative

  16. Toward Two-dimensional Velocity Fields in Kiloparsec-scale Quasar Jets

    NASA Astrophysics Data System (ADS)

    Hough, David; Jones, Gareth

    2012-03-01

    An outstanding question in quasar jet physics concerns their velocity fields (Blandford 2008, ASP Conf.Ser. 386, 3). We are investigating this in a sample of 21 3CR lobe-dominated quasars. Complex structures and narrow widths present difficulties not found in smooth, well-resolved radio galaxy jets (Laing and Bridle 2002, MNRAS, 336, 328). We now have a systematic method for distinguishing between compact knots and lower-level inter-knot emission. Application to four sources with prominent knot trains in Bridle et al. (1994, AJ, 108, 766) shows that the first knot is the brightest with a simple Gaussian profile. Succeeding knots are both fainter and have a broad, complex base of associated emission. We will report on analyses of knot vs. inter-knot brightnesses and their implications via Doppler boosting for longitudinal velocity fields. We have also begun investigating transverse velocity fields by convolving trial spine-sheath profiles with the beam. We studied profiles with a fast spine occupying the central one-third, Doppler-dimmed by a factor of two relative to a slower sheath, with these results: a spine of width half a beam yields a convolved profile 30 per cent wider than the beam, while a spine of width one beam leads to a clearly resolved sheath.

  17. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  18. Two Point Space-Time Correlation of Density Fluctuations Measured in High Velocity Free Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2006-01-01

    Two-point space-time correlations of air density fluctuations in unheated, fully-expanded free jets at Mach numbers M(sub j) = 0.95, 1.4, and 1.8 were measured using a Rayleigh scattering based diagnostic technique. The molecular scattered light from two small probe volumes of 1.03 mm length was measured for a completely non-intrusive means of determining the turbulent density fluctuations. The time series of density fluctuations were analyzed to estimate the integral length scale L in a moving frame of reference and the convective Mach number M(sub c) at different narrow Strouhal frequency (St) bands. It was observed that M(sub c) and the normalized moving frame length scale L*St/D, where D is the jet diameter, increased with Strouhal frequency before leveling off at the highest resolved frequency. Significant differences were observed between data obtained from the lip shear layer and the centerline of the jet. The wave number frequency transform of the correlation data demonstrated progressive increase in the radiative part of turbulence fluctuations with increasing jet Mach number.

  19. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  20. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  1. EROSIVE WEAR OF DUCTILE METALS BY A PARTICLE-LADEN HIGH-VELOCITY LIQUID-JET

    SciTech Connect

    Li, Simon Ka-Keung; Humphrey, Joseph A.C.; Levy, Alan

    1980-12-01

    A liquid-solid particle jet impingement flow apparatus is described and experimental measurements are reported for the accelerated erosion of copper, aluminum and mild steel sheet metal by coal suspensions in kerosene and alumina and silicon carbide suspensions in water. Slurry velocities of up to 130 ft/sec (40 m/sec) and impingement angles ranging from 15 degrees to 90 degrees were investigated. The maximum particle concentration used was 40% by weight. For high velocity the results of this study show two erosion maxima arising at impingement angles of 90 degrees and 40 degrees respectively~ whereas in corresponding gas-solid particle investigations maximum erosion occurs at approximately 20 degrees. In the study both particle concentration and composition were varied. A polynomial regression technique was used to calculate empirical and semi-theoretical correlation constants.

  2. Active Control of Jet Noise Using High Resolution TRPIV Part 2: Velocity-Pressure-Acoustic Correlations

    NASA Astrophysics Data System (ADS)

    Low, Kerwin; Kostka, Stanislav; Berger, Zachary; Berry, Matthew; Gogineni, Sivaram; Glauser, Mark

    2011-11-01

    We investigate the pressure, velocity and acoustic field of a transonic jet. Test conditions comprise a 2 inch nozzle, analyzing two flow speeds, Mach 0.6 and 0.85, with open loop control explored for the Mach 0.6 case. We make simultaneous measurements of the near-field pressure and far-field acoustics at 40 kHz, alongside 10 kHz time resolved PIV measurements in the r-z plane. Cross correlations are performed exploring how both the near-field Fourier filtered pressure and low dimensional POD modes relate to the far-field acoustics. Of interest are those signatures witch exhibit the strongest correlation with far-field, and subsequently how these structures can be controlled. The goal is to investigate how flow-induced perturbations, via synthetic jet actuators, of the developing shear layer might bring insight into how one may alter the flow such that the far-field acoustic signature is mitigated. The TR-PIV measurements will prove to be a powerful tool in being able to track the propagation of physical structures for both the controlled and uncontrolled jet.

  3. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  4. Analysis of Performance of Jet Engine from Characteristics of Components I : Aerodynamic and Matching Characteristics of Turbine Component Determined with Cold Air

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1947-01-01

    The performance of the turbine component of an NACA research jet engine was investigated with cold air. The interaction and the matching of the turbine with the NACA eight-stage compressor were computed with the combination considered as a jet engine. The over-all performance of the engine was then determined. The internal aerodynamics were studied to the extent of investigating the performance of the first stator ring and its influence on the turbine performance. For this ring, the stream-filament method for computing velocity distribution permitted efficient sections to be designed, but the design condition of free-vortex flow with uniform axial velocities was not obtained.

  5. Break-up and atomization of a round water jet by a high-speed annular air jet

    NASA Astrophysics Data System (ADS)

    Lasheras, J. C.; Villermaux, E.; Hopfinger, E. J.

    1998-02-01

    The near- and far-field break-up and atomization of a water jet by a high-speed annular air jet are examined by means of high-speed flow visualizations and phase Doppler particle sizing techniques. Visualization of the jet's near field and measurements of the frequencies associated with the gas liquid interfacial instabilities are used to study the underlying physical mechanisms involved in the primary break-up of the water jet. This process is shown to consist of the stripping of water sheets, or ligaments, which subsequently break into smaller lumps or drops. An entrainment model of the near-field stripping of the liquid is proposed, and shown to describe the measured liquid shedding frequencies. This simplified model explains qualitatively the dependence of the shedding frequency on the air/water momentum ratio in both initially laminar and turbulent water jets. The role of the secondary liquid break-up in the far-field atomization of the water jet is also investigated, and an attempt is made to apply the classical concepts of local isotropy to explain qualitatively the measurement of the far-field droplet size distribution and its dependence on the water to air mass and momentum ratios. Models accounting for the effect of the local turbulent dissipation rate in the gas on both the break-up and coalescence of the droplets are developed and compared with the measurements of the variation of the droplet size along the jet's centreline. The total flux of kinetic energy supplied by the gas per unit total mass of the spray jet was found to be the primary parameter determining the secondary break-up and coalescence of the droplets in the far field.

  6. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  7. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  8. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  9. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  10. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  11. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  12. Mean velocity, turbulence intensity, and scale in a subsonic turbulent jet impinging normal to a large flat plate

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1977-01-01

    To explain the increase in noise when a jet impinges on a large flat plate, mean velocity, turbulence intensity, and scale were measured at nominal nozzle-exit velocities of 61, 138, and 192 meters per second with the plate located 7.1 nozzle-exit diameters from the nozzle. The maximum turbulence intensities in free and impinging jets were about the same; however, the integral length scale near the plate surface was only about one-half the free jet scale. The measured intensities and length scales, in conjunction with a contemporary theory of aerodynamic noise, provided a good explanation for the observed increase in noise associated with the impinging jet. An increase in the volume of highly turbulent flow could be the principal reason for the increase in noise.

  13. NO{sub x} emissions of a jet diffusion flame which is surrounded by a shroud of combustion air

    SciTech Connect

    Tran, P.X.; White, F.P.; Mathur, M.P.; Ekmann, J.M.

    1996-08-01

    The present work reports an experimental study on the behavior of a jet flame surrounded by a shroud of combustion air. Measurements focussed on the flame length and the emissions of NO{sub x}, total unburned hydrocarbons, CO{sub 2}, and O{sub 2}. Four different fuel flow rates (40.0, 78.33, 138.33, and 166.6 cm/s), air flow rates up to 2500 cm{sup 3}/s and four different air injector diameters (0.079 cm, 0. 158 cm, 0.237 cm, and 0.316 cm) were used. The shroud of combustion air causes the flame length to decrease by a factor proportional to 1/[p{sub a}/p{sub f} + C{sub 2}({mu}{sub a}Re,a/{mu}{sub f}Re,f){sup 2}]{sup {1/2}}. A substantial shortening of the flame length occurred by increasing the air injection velocity keeping fuel rate fixed or conversely by lowering the fuel flow rate keeping air flow rate constant. NO{sub x} emissions ranging from 5 ppm to 64 ppm were observed and the emission of NO{sub x} decreased strongly with the increased air velocity. The decrease of NO{sub x} emissions was found to follow a similar scaling law as does the flame length. However, the emission of the total hydrocarbons increased with the increased air velocity or the decreased fuel flow rate. A crossover condition where both NO{sub x} and unburned- hydrocarbon emissions are low, was identified. At an air-to-fuel velocity ratio of about 1, the emissions of NO{sub x} and the total hydrocarbons were found to be under 20 ppm.

  14. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  15. An analysis of the three-dimensional velocity field of a free laminar jet issuing from a rectangular nozzle

    NASA Astrophysics Data System (ADS)

    Gariaev, A. B.; Krauze, Kh.; Motulevich, V. P.; Sergievskii, E. D.; Khanel, B.

    1984-11-01

    Results are presented of an analytical study of three-dimensional incompressible fluid jets issuing from a rectangular nozzle into a slipstream of a fluid whose physical properties are similar to those of the jet. The analysis is based on solving the Navier-Stokes equations in the approximation of a three-dimensional boundary layer. The resulting three-dimensional velocity profiles are shown in graphical form.

  16. THREE-DIMENSIONAL STRUCTURE OF THE CENTRAL REGION OF NGC 7027: A QUEST FOR TRAILS OF HIGH-VELOCITY JETS

    SciTech Connect

    Nakashima, Jun-ichi; Kwok, Sun; Zhang Yong; Koning, Nico

    2010-08-15

    We report on the results of a radio interferometric observation of NGC 7027 in the CO J = 2-1 and {sup 13}CO J = 2-1 lines. The results are analyzed with morpho-kinematic models developed from the software tool Shape. Our goal is to reveal the morpho-kinematic properties of the central region of the nebula, and to explore the nature of unseen high-velocity jets that may have created the characteristic structure of the central region consisting of molecular and ionized components. A simple ellipsoidal shell model explains the intensity distribution around the systemic velocity, but the high-velocity features deviate from the ellipsoidal model. Through the Shape automatic reconstruction model, we found a possible trail of a jet only in one direction, but no other possible holes were created by the passage of a jet.

  17. Structure of backward facing step flow in low Reynolds number controlled by synthetic jet array with different injection velocities

    NASA Astrophysics Data System (ADS)

    Takano, Saneyuki

    2013-11-01

    This study presents detailed structure of separated flow downstream of a backward facing step affected by a non-uniform periodic disturbance along spanwise direction induced by synthetic jet array. The Reynolds number based on the step height ranged from 300 to 900. The frequency of the synthetic jet actuation was selected within the acceptance frequency range of separating shear layer. The periodic disturbance generates periodic transverse vortices whose size and shape change corresponding to the strength of the disturbance. The effect of different injection velocities in the synthetic jet array from those of adjacent jets on the transverse vortex structure and resulting reattachment process is discussed based on the wall shear stress measured by the Micro Flow Sensor (MFS) and flow visualization. Near wall behavior of the transverse vortex above the MFS was related to the sensor output. The results show that non-uniform injection velocity manipulated in the jet array induces difference in the distorted vortex structure and reattachment process in spanwise direction, which strongly depend on the Reynolds number and injection velocities of the synthetic jets.

  18. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  19. Experimental Investigation of Spreading Characteristics of Choked Jets Expanding into Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rousso, Morris D.; Kochendorfer, Fred D.

    1950-01-01

    Investigations have been conducted to determine by means of total-pressure surveys the boundaries of single and twin jets discharging through convergent nozzles into quiescent air. The jet boundaries for the region from the nozzle outlets to a station 6 nozzle diameters downstream are presented for nozzle pressure ratios ranging from 2.5 t o 16.0 and for twin-Jet nozzle center-line spacings ranging from 1.42 to 2.50 nozzle diameters. The effects of these parameters on the interaction of twin Jets are discussed. In order to ascertain the utility of the results for other than the test conditions, the effects of jet temperature, Reynolds number, and humidity on the pressure boundaries have been briefly investigated. The result indicate that for a jet of 2.6 the pressure boundaries are slightly smaller than those of corresponding unheated jets and that the effects of Reynolds number and humidity are negligible.

  20. Cold atmospheric air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Price, Robert O.; Stacey, Michael; Swanson, R. James; Bowman, Angela; Chiavarini, Robert L.; Schoenbach, Karl H.

    2008-10-01

    By flowing ambient air through the discharge channel of a microhollow cathode geometry, we were able to sustain a stable 1.5-2 cm long afterglow plasma jet with dc voltages of only a few hundred volts. The temperature in this expelled afterglow plasma is close to room temperature. Emission spectra show atomic oxygen, hydroxyl ions and various nitrogen compounds. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In first experiments, we have successfully tested the efficacy on Candida kefyr (a yeast), E.coli, and a matching E.coli strain-specific virus. All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument.

  1. Measurement of Correlation Between Flow Density, Velocity, and Density*velocity(sup 2) with Far Field Noise in High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.

    2002-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p', measured at far field locations, were correlated with each of radial velocity v, density rho, and phov(exp 2) fluctuations measured from various points in jet plumes. The experiments follow the cause-and-effect method of sound source identification, where correlation is related to the first, and correlation to the second source terms of Lighthill's equation. Three fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8 were studied for this purpose. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering. It was observed that along the jet centerline the density fluctuation spectra S(sub rho) have different shapes than the radial velocity spectra S(sub v), while data obtained from the peripheral shear layer show similarity between the two spectra. Density fluctuations in the jet showed significantly higher correlation, than either rhov(sub 2) or v fluctuations. It is found that a single point correlation from the peak sound emitting region at the end of the potential core can account for nearly 10% of all noise at 30 to the jet axis. The correlation, representing the effectiveness of a longitudinal quadrupole in generating noise 90 to the jet axis, is found to be zero within experimental uncertainty. In contrast rhov(exp 2) fluctuations were better correlated with sound pressure fluctuation at the 30 location. The strongest source of sound is found to lie at the centerline and beyond the end of potential core.

  2. Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    SciTech Connect

    Bettarini, Lapo; Landi, Simone; Velli, Marco; Londrillo, Pasquale

    2009-06-15

    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled as a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.

  3. Flight velocity influence on jet noise of conical ejector, annular plug and segmented suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.

    1972-01-01

    An F106 aircraft with a J85-13 engine was used for static and flight acoustic and aerodynamic tests of a conical ejector, an unsuppressed annular plug, and three segmented suppressor nozzles. Static 100 ft. arc data, corrected for influences other than jet noise, were extrapolated to a 300 ft. sideline for comparison to 300 ft. altitude flyover data at M = 0.4. Data at engine speeds of 80 to 100% (max dry) static and 88 to 100% flight are presented. Flight velocity influence on noise is shown on peak OASPL and PNL, PNL directivity, EPNL and chosen spectra. Peak OASPL and PNL plus EPNL suppression levels are included showing slightly lower flight than static peak PNL suppression but greater EPNL than peak PNL suppression. Aerodynamic performance was as anticipated and closely matched model work for the 32-spoke nozzle.

  4. Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    NASA Astrophysics Data System (ADS)

    Bettarini, Lapo; Landi, Simone; Velli, Marco; Londrillo, Pasquale

    2009-06-01

    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled as a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.

  5. Experimental study of stratified jet by simultaneous measurements of velocity and density fields

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Chen, Jun

    2012-07-01

    Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.

  6. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

    2013-05-01

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  7. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  8. The ultrasonic velocity profile measurement of flow structure in the near field of a square free jet

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Yamashita, S.; Kondo, K.

    Coherent structures in the near field of a three-dimensional jet have been investigated. Experiments were carried out for a free jet issuing from a square nozzle using a water channel. Instantaneous velocity profiles were obtained in the axial and radial directions by using an ultrasonic velocity profile (UVP) monitor. Axial variations of dominant time-scales of vortex structures were examined from one-dimensional wavelet spectra. Wavenumber-frequency spectra were calculated by two-dimensional Fourier transform along the axial direction in a mixing layer, and it was found that a convective velocity of flow structures was nearly constant independently of their scales in space and time. Coherent structures in the axial direction were investigated in terms of proper orthogonal decomposition (POD). Eigenfunctions are similar to a sinusoidal wave, and reconstructed velocity fields by the lower-order and higher-order POD modes demonstrate large-scale and smaller-scale coherent structures, respectively.

  9. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    EPA Science Inventory

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  10. Analytical description of the breakup of liquid jets in air

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1993-01-01

    A viscous or inviscid cylindrical jet with surface tension in a vacuum tends to pinch due to the mechanism of capillary instability. Similarity solutions are constructed which describe this phenomenon as a critical time is encountered, for two physically distinct cases: inviscid jets governed by the Euler equations and highly viscous jets governed by the Stokes equations. In both cases the only assumption imposed is that at the time of pinching the jet shape has a radial length scale which is smaller than the axial length scale. For the inviscid case, we show that our solution corresponds exactly to one member of the one-parameter family of solutions obtained from slender jet theories and the shape of the jet is locally concave at breakup. For highly viscous jets our theory predicts local shapes which are monotonic increasing or decreasing indicating the formation of a mother drop connected to the jet by a thin fluid tube. This qualitative behavior is in complete agreement with both direct numerical simulations and experimental observations.

  11. Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Deo, Ravinesh C.; Nathan, Graham J.; Mi, Jianchun

    2013-01-01

    A similarity analysis is presented of the momentum field of a subsonic, plane air jet over the range of the jet-exit Reynolds number Reh (≡ Ubh/υ where Ub is the area-averaged exit velocity, h the slot height, and υ the kinematic viscosity) = 1500 - 16 500. In accordance with similarity principles, the mass flow rates, shear-layer momentum thicknesses, and integral length scales corresponding to the size of large-scale coherent eddy structures are found to increase linearly with the downstream distance from the nozzle exit (x) for all Reh. The autocorrelation measurements performed in the near jet confirmed reduced scale of the larger coherent eddies for increased Reh. The mean local Reynolds number, measured on the centerline and turbulent local Reynolds number measured in the shear-layer increases non-linearly following x1/2, and so does the Taylor microscale local Reynolds number that scales as x1/4. Consequently, the comparatively larger local Reynolds number for jets produced at higher Reh causes self-preservation of the fluctuating velocity closer to the nozzle exit plane. The near-field region characterized by over-shoots in turbulent kinetic energy spectra confirms the presence of large-scale eddy structures in the energy production zone. However, the faster rate of increase of the local Reynolds number with increasing x for jets measured at larger Reh is found to be associated with a wider inertial sub-range of the compensated energy spectra, where the -5/3 power law is noted. The downstream region corresponding to the production zone persists for longer x/h for jets measured at lower Reh. As Reh is increased, the larger width of the sub-range confirms the narrower dissipative range within the energy spectra. The variations of the dissipation rate (ɛ) of turbulent kinetic energy and the Kolmogorov (η) and Taylor (λ) microscales all obey similarity relationships, \\varepsilon h/U_b^3 ˜ Re_h^3, η/h ˜ Reh-3/4, and λ/h ˜ Reh-1/2. Finally, the

  12. Experimental study on gas-liquid flow characteristics of submerged air jets

    NASA Astrophysics Data System (ADS)

    Qin, S. J.; Liu, J. T.; Miao, T. C.; Wu, D. Z.

    2016-05-01

    The gas-liquid flow structure and interfacial behavior of submerged air jets were investigated experimentally using high speed digital video camera and image processing techniques. The jet pressure ratio varied from 1.8 to 4.8 in the experiment. And results from different jet nozzles were processed and compared. Statistical characteristics of the jet diameters along the axial distance were obtained and analyzed. Time series analysis was implemented to study the interface unsteadiness by calculating the gas-liquid interface deviation. The results showed that the jet diameters increase first linearly then nonlinearly and its growth rate decreases along the axial distance. The reason for the divergence between the result of this experiment and those done by other researchers was analyzed. Comparing the results of different pressure ratios and nozzle diameters, we found that larger jet pressure ratios have larger jet diameters and nozzle diameters nearly have no bearing on the distribution of dimensionless jet diameters. The interface unsteadiness in low and high pressure ratios exhibited totally distinct properties. And a minimum unsteady value was found along the axis of the air jets.

  13. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  14. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  15. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  16. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  17. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  18. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  19. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  20. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  1. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  2. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  3. On the convective velocity of large-scale structures in compressible axisymmetric jets

    NASA Astrophysics Data System (ADS)

    Thurow, Brian S.

    2005-12-01

    The role of compressibility on the convective velocity of large-scale structures in axisymmetric jets is studied using a home-built pulse burst laser system and newly developed high-repetition rate experimental diagnostics. In the last decade and a half, a number of researchers have made measurements of the convective velocity of large-scale structures within compressible free shear layers. These measurements, based entirely on flow visualization images, indicate a departure of the convective velocity from its theoretically expected value. This work attempts to explore this in further detail through the acquisition of time-correlated planar velocimetry data in two compressible axisymmetric flow fields. A pulse burst laser system was designed and constructed with the ability to produce a burst of short duration (10 nsec) pulses over a ˜150 microsecond period with inter-pulse timing as low as 1 microsecond (1 MHz). Pulse energies were increased by a factor of five through the addition of a phase conjugate mirror, which eliminates a gain robbing low-energy pedestal superimposed on the burst of pulses. The laser can produce individual pulse with energies over 100 mJ/pulse and 2nd and 3rd harmonic conversion efficiencies reaching 50% and 40%, respectively. In addition, the frequency of the laser is found to fluctuate less than 12 MHz, making it ideal for spectroscopic applications. The application of the pulse burst laser for flow measurements was investigated through the development of MHz rate flow visualization and MHz rate planar Doppler velocimetry (PDV). MHz rate flow visualization is achieved by using a high-repetition rate camera to image laser light scattered from particles in the flow. MHz rate PDV is a spectroscopic technique that uses the laser output at 532 nm, two ultra-high framing rate cameras and a molecular iodine vapor filter to measure the Doppler frequency shift of laser light scattered from seed particles contained in the flow field. The technique

  4. Influence of mixer nozzle velocity decay characteristics on CTOL-OTW jet noise shielding. [considering shielding effects in nozzle installation over wing

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D. E.

    1974-01-01

    Jet noise shielding benefits for CTOL engine-over-the-wing configurations were obtained with model scale multitube and lobed mixer nozzles and various shielding surface geometries. Spectral data were obtained with jet velocities from 585 to 1110 ft/sec. Correlation equations for predicting jet noise shielding benefits with single conical nozzle installations were modified to correlate the mixer nozzle data. The modification included consideration of the number of nozzle elements and the peak axial velocity decay in the flow field adjacent to the shielding surface. The effect of forward velocity on jet noise attenuation by a shielding surface is discussed.

  5. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  6. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  7. Simultaneous planar measurements of soot structure and velocity fields in a turbulent lifted jet flame at 3 kHz

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.

    2011-05-01

    We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.

  8. Nerve-mediated antidiuresis and antinatriuresis after air-jet stress is modulated by angiotensin II.

    PubMed

    Veelken, R; Hilgers, K F; Stetter, A; Siebert, H G; Schmieder, R E; Mann, J F

    1996-11-01

    A putative interaction between angiotensin II (Ang II) and the sympathetic nervous system within the kidney has been reported. We tested the hypothesis in conscious rats that endogenous Ang II modulates the renal effects of a stress-induced increase in sympathetic nerve activity. We recorded mean arterial blood pressure, heart rate, renal sympathetic nerve activity, renal hemodynamics, urine volume, and urinary sodium content in conscious rats. We used the Ang II type 1 receptor blocker ZD 7155 to inhibit the effects of endogenous Ang II. Ten minutes of air-jet stress increased renal sympathetic nerve activity by 98 +/- 4% (n = 6) without changing systemic hemodynamics. Air-jet stress reduced urine volume (from 31 +/- 3 to 8 +/- 4 microL/min per gram kidney weight, P < .05, n = 12) and sodium excretion (from 4.3 +/- 0.9 to 1.2 +/- 0.3 mumol/min per gram kidney weight, P < .05, n = 12). After renal denervation, air-jet stress had no effect on either parameter. Six micrograms of the Ang II type 1 receptor inhibitor ZD 7155 blunted the decrease in urine volume and sodium excretion in response to air-jet stress, although the increase in renal sympathetic nerve activity during air-jet stress and the pressor response to exogenous Ang II were not affected. Glomerular filtration rate and renal plasma flow were also not affected. Higher doses of 30 and 60 micrograms ZD 7155 inhibited the pressor response to exogenous Ang II and abolished the changes in urine volume and sodium excretion in response to air-jet stress. None of the ZD 7155 doses affected urinary sodium excretion permanently. Hence, the Ang II type 1 receptor antagonist ZD 7155 impaired or abolished the renal nerve-mediated antinatriuresis and anitidiuresis in response to air-jet stress. We conclude that endogenous Ang II modulates the renal effects of centrally mediated changes of sympathetic nerve activity in conscious rats. PMID:8901830

  9. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames

    SciTech Connect

    Lee, Seong-Young; Turns, Stephen R.; Santoro, Robert J.

    2009-12-15

    This paper presents results from an investigation of soot formation in turbulent, non-premixed, C{sub 2}H{sub 4}/air jet flames. Tests were conducted using a H{sub 2}-piloted burner with fuel issuing from a 2.18 mm i.d. tube into quiescent ambient air. A range of test conditions was studied using the initial jet velocity (16.2-94.1 m/s) as a parameter. Fuel-jet Reynolds numbers ranged from 4000 to 23,200. Planar laser-induced incandescence (LII) was employed to determine soot volume fractions, and laser-induced fluorescence (LIF) was used to measure relative hydroxyl radical (OH) concentrations and polycyclic aromatic hydrocarbons (PAHs) concentrations. Extensive information on the structure of the soot and OH fields was obtained from two-dimensional imaging experiments. Quantitative measurements were obtained by employing the LII and LIF techniques independently. Imaging results for soot, OH, and PAH show the existence of three soot formation/oxidation regions: a rapid soot growth region, in which OH and soot particles lie in distinctly different radial locations; a mixing-dominated region controlled by large-scale motion; and a soot-oxidation region in which the OH and soot fields overlap spatially, resulting in the rapid oxidation of soot particles. Detailed quantitative analyzes of soot volume fractions and OH and soot zone thicknesses were performed along with the temperature measurement using the N{sub 2}-CARS system. Measurements of OH and soot zone thicknesses show that the soot zone thickness increases linearly with axial distance in the soot formation region, whereas the OH zone thickness is nearly constant in this region. The OH zone thickness then rapidly increases with downstream distance and approximately doubles in the soot-oxidation region. Probability density functions also were obtained for soot volume fractions and OH concentrations. These probability density functions clearly define the spatial relationships among the OH, PAH concentrations, the

  10. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  11. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGESBeta

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  12. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    SciTech Connect

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C. E-mail: npatel@cfa.harvard.edu E-mail: baezra@cab.inta-csic.es

    2011-05-10

    We present the first detection of the H40{alpha}, H34{alpha}, and H31{alpha} radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of {approx}1100 km s{sup -1}. From the line widths, we estimate a terminal velocity for the ionized gas in the jet of {>=}500 km s{sup -1}, consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40{alpha}, H34{alpha}, and H31{alpha} lines are 43, 229, and 280 km s{sup -1}, clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r {sup -2.11}, and turbulent and expanding wind velocities of 60 and 500 km s{sup -1}.

  13. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Langlois-Bertrand, Emilie; de Izarra, Charles

    2011-10-01

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s-1 at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  14. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  15. Performance of a high-velocity pulse-jet filter, III. Final report Sep 79-Sep 80

    SciTech Connect

    Leith, D.; Ellenbecker, M.J.; First, M.W.

    1981-03-01

    The report gives results of a continuing study of the performance of a high-velocity pulse-jet filter. Such filtration has distinct advantages over low-velocity filtration in that the equipment required to clean a gas stream is reduced in size and initial cost as filtration velocity increases. Although high filtration velocity brings on a number of problems, some of them can be dealt with using the information in this report. The study indicates that penetration by particle collection and subsequent seepage (not straight-through penetration) is the primary mechanism by which penetration occurs. A model is presented which encompasses both mechanisms. The model was useful in showing the general trends that should occur with changes in filter operating conditions, but additional information is required to test its ability to predict penetration. Tests were designed to measure the actual fraction of fly ash removed from a polyester felt under typical pulse-jet conditions. Test results showed that failure to remove dust with the cleaning pulse, as well as redisposition, contributed to high pressure drop in pulse-jet filters with nonwoven fabrics.

  16. Investigation of two plane parallel jets

    NASA Astrophysics Data System (ADS)

    Elbanna, H.; Gahin, S.; Rashed, M. I. I.

    1983-07-01

    Flow measurements made downstream from two air jets are reported. The exit Re was 20,000 and turbulence was kept to 1 pct. X-wire constant temperature anemometers were employed to measure the mean velocities and the three component turbulent intensities. Data were gathered on the flowfield of both a single jet and from two jets. A velocity profile from two jets was found to be similar to that of a single jet, with the combined jets width spreading linearly downstream as a single jet, but with a slightly lower spread angle. The turbulent velocity fluctuations were, however, dissimilar up to 120 nozzle diameters downstream. Finally, the maximum shear stress was nearly the same with two jets as with one jet.

  17. Influence of air-jet vortex generator diameter on separation region

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard

    2013-08-01

    Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.

  18. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  19. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  20. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  1. Experimental Investigation of the Differences Between Reynolds-Averaged and Favre-Averaged Velocity in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2005-01-01

    Recent advancement in the molecular Rayleigh scattering based technique allowed for simultaneous measurement of velocity and density fluctuations with high sampling rates. The technique was used to investigate unheated high subsonic and supersonic fully expanded free jets in the Mach number range of 0.8 to 1.8. The difference between the Favre averaged and Reynolds averaged axial velocity and axial component of the turbulent kinetic energy is found to be small. Estimates based on the Morkovin's "Strong Reynolds Analogy" were found to provide lower values of turbulent density fluctuations than the measured data.

  2. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  3. An Extremely High Velocity Molecular Jet Surrounded by an Ionized Cavity in the Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Kristensen, Lars E.; Dunham, Michael M.; Rodríguez-Kamenetzky, Adriana; Carrasco-González, Carlos; Cortés, Paulo C.; Li, Zhi-Yun; Plambeck, Richard L.

    2016-06-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of a one-sided, high-velocity (∼80 km s‑1) CO(J = 2\\to 1) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-angle cavity; the walls of the cavity can be seen in both 4 cm free–free emission detected by the Very Large Array and 1.3 mm thermal dust emission detected by ALMA. This is the first time that ionization of an outflow cavity has been directly detected via free–free emission in a very young, embedded Class 0 protostellar source that is still powering a molecular jet. The cavity walls are ionized either by UV photons escaping from the accreting protostellar source or by the precessing molecular jet impacting the walls. These observations suggest that ionized outflow cavities may be common in Class 0 protostellar sources, shedding further light on the radiation, outflow, and jet environments in the youngest, most embedded forming stars.

  4. Assessment of air velocity sensors for use in animal produciton facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  5. Performance studies of energy consumption for single and multiple nozzle systems under impinging air jets

    NASA Astrophysics Data System (ADS)

    Etemoglu, Akin Burak; Can, Muhiddin

    2013-08-01

    Impinging air jets of various shapes, sizes and configurations are commonly used in heating, cooling and drying industrial processes. An analytical study has been carried out to optimise the thermal performance of single and multiple nozzle systems using impinging air jets. The optimisation of the nozzle array was given for practical purposes. The results show that within practical limits, a narrower nozzle size results in a greater heat and mass transfer coefficient. An economical analysis of the drying processes is also given for slot nozzles.

  6. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  7. "New Proper Motion Measurements of the Superluminal Velocities in the M87 Optical Jet with HST"

    NASA Astrophysics Data System (ADS)

    Meyer, Eileen T.; Sparks, W. B.; Biretta, J. A.; Sohn, S.; Anderson, J.; Van Der Marel, R. P.; Norman, C. A.; Nakamura, M.

    2014-01-01

    Using over 13 years of archival HST observations of the relativistic jet in the archetypal radio galaxy M87, we have produced astrometric speed measurements of the optically bright synchrotron emitting plasma components in the jet with unprecedented accuracy. Building on previous work showing the superluminal nature of the jet in the optical, we have found that the jet motion is incredibly complex, with both transverse motions and flux variations which can be seen very clearly by eye in the timeseries of deep exposures. These observations of M87 provide us with a unique dataset with which to refine theoretical models of the largescale jet structure, potentially addressing open questions such as the jet collimation mechanism, bulk acceleration and deceleration in the jet, and the presence of a helical structure. I will also present very recent results using data from the HST archive on the optical counterjet and nuclear regions of M87 and discuss the larger implications of these detailed studies of one of the most nearby AGN jets.

  8. Mean streamwise velocity measurements in a triple jet of equilateral triangular configuration

    SciTech Connect

    Moustafa, G.H. . Coll. of Engineering); Sundararajan, T. . Dept. of Mechanical Engineering); Rathakrishnan, E. . Dept. of Aerospace Engineering)

    1993-09-01

    Multijet flows arise in several applications such as jet engine/rocket combustors, the thrust augmenting ejectors for VTOL/STOL aircraft, and industrial gas burners. In order to achieve proper combustion, thrust development, and reduction in the noise level, it is often desirable to control the inter-mixing between the jets and also the entrainment of the surrounding atmosphere. This, in turn, requires a detailed study of the behavior of high speed jets in multijet configuration. The situation of interest here is an array of three axisymmetric nozzles set in a common end wall with equal spacing in a triangular configuration. The reason why this particular configuration has been chosen is that it promotes bending of the jet axes toward each other, thus leading to greater mixing. In the present study, experiments have been conducted to investigate the effect of stagnation pressure ratio and nozzle spacing upon the mean flow characteristic of compressible jets in triangular configuration. The individual flow features of the vertex jet and the base twin jet are analyzed and their contributions to the axis switching as well as the overall triple jet behavior are highlighted.

  9. Rise velocity of an air bubble in porous media: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Cihan, Abdullah; Drazenovic, Mirna

    2004-04-01

    The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/s. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

  10. Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Kushner, Mark J.

    2014-02-01

    Arrays of atmospheric-pressure plasma jets are being considered as a means to increase the area being treated in surface modification and in plasma medicine in particular. A unique challenge of scaling plasma jet arrays is that individual plasma jets in an array tend to interact with each other, which can lead to quenching of some individual jets. To investigate these potential interactions, a computational study of one-, two- and three-tube arrays of micro-plasma jet arrays was performed. An atmospheric-pressure He/O2 = 99.8/0.2 mixture was flowed through the tubes into humid room air. We found that the jets interact through electrostatic, hydrodynamic and photolytic means. The hydrodynamic interactions result from the merging of individual He channels emerging from individual tubes as air diffuses into the extended gas jets. Ionization waves (IWs) or plasma bullets, which form the jets on the boundaries of an array, encounter higher mole fractions of air earlier compared with the center jet and so are slower or are quenched earlier. The close proximity of the jets produces electrostatic repulsion, which affects the trajectories of the IWs. If the jets are close enough, photoionizing radiation from their neighbors is an additional form of interaction. These interactions are sensitive to the spacing of the jets.

  11. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  12. Performance of a high-velocity pulse-jet filter, II. Final report Sep 76-Sep 79

    SciTech Connect

    Leith, D.; Ellenbecker, M.J.; First, M.W.; Price, J.M.; Martin, A.

    1980-03-01

    The report gives results of a study of the performance of a high-velocity pulse-jet filter. Such filtration has distinct advantages over low-velocity filtration in that the equipment required to clean a gas stream is reduced in size and initial cost as velocity increases. Although high filtration velocity causes a number of problems, many of them are dealt with in the report. Location of the gas inlet to the filter was found to affect penetration and pressure drop; both were higher for inlets near the bottom of the filter housing. Fabric type was also found to affect performance by affecting the amount and characteristics of the dust deposit accumulated. Fabric surface properties help explain the nature of this deposit. These ideas and others were used to develop a mathematical model for pressure drop in a pulse-jet cleaned filter. The model can be used to predict pressure drop under stable or variable operating conditions, and to predict operating conditions that cause unstable filter operation. An understanding of particle/fiber interactions is essential to understanding the collection characteristics of a felt fabric. Under certain conditions, particles bounce on impact with fibers. An adhesion probability was determined and found to depend on incident particle kinetic energy.

  13. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  14. Pneumomediastinum and retroperitoneal air after removal of papillomas with the microdebrider and jet ventilation.

    PubMed Central

    Sims, H. Steven; Lertsburapa, Keith

    2007-01-01

    OBJECTIVE: To discuss the complication of pneumothorax from alveolar rupture after transtracheal high-frequency jet ventilation and to present a case of pneumothorax, pneumomediastinum and pneumoperitoneum after jet ventilation coupled with use of the microdebrider. METHOD: Detailed case report. RESULTS: Unilateral pnuemothorax, subcutaneous emphysema, pneumomediastinum and retroperitoneal air discovered after jet ventilation for removal of airway papillomas resolved with conservative management. DISCUSSION: We discuss the difference between the respective patterns of air seepage in a peripheral alveolar injury versus a probable microperforation in the trachea. We also review the epidemiology of this rare disorder and its incidence in the African-American community. CONCLUSION: The recurrent nature of this disorder mandates multiple surgical procedures. Great care must be taken to eradicate disease and avoid complications. Pneumomediastinum in this setting can be managed conservatively. Images Figure 1 Figure 2 PMID:17913120

  15. The faster the narrower: characteristic bulk velocities and jet opening angles of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Salvaterra, R.; Nava, L.; Burlon, D.; Tagliaferri, G.; Campana, S.; D'Avanzo, P.; Melandri, A.

    2013-01-01

    The jet opening angle θjet and the bulk Lorentz factor Γ0 are crucial parameters for the computation of the energetics of gamma-ray bursts (GRBs). From the ˜30 GRBs with measured θjet or Γ0 it is known that (i) the real energetic Eγ, obtained by correcting the isotropic equivalent energy Eiso for the collimation factor ˜ θ2jet, is clustered around 1050-1051 erg and it is correlated with the peak energy Ep of the prompt emission and (ii) the comoving frame E'p and E'γ are clustered around typical values. Current estimates of Γ0 and θjet are based on incomplete data samples and their observed distributions could be subject to biases. Through a population synthesis code we investigate whether different assumed intrinsic distributions of Γ0 and θjet can reproduce a set of observational constraints. Assuming that all bursts have the same E'p and E'γ in the comoving frame, we find that Γ0 and θjet cannot be distributed as single power laws. The best agreement between our simulation and the available data is obtained assuming (a) log-normal distributions for θjet and Γ0 and (b) an intrinsic relation between the peak values of their distributions, i.e. θjet2.5Γ0 = const. On average, larger values of Γ0 (i.e. the `faster' bursts) correspond to smaller values of θjet (i.e. the `narrower'). We predict that ˜6 per cent of the bursts that point to us should not show any jet break in their afterglow light curve since they have sin θjet < 1/Γ0. Finally, we estimate that the local rate of GRBs is ˜0.3 per cent of all local Type Ib/c supernova (SNIb/c) and ˜4.3 per cent of local hypernovae, i.e. SNIb/c with broad lines.

  16. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  17. Evaluation of the Ram-Jet device, a PCV air bleed. Technical report

    SciTech Connect

    Barth, E.A.

    1980-01-01

    The Environmental Protection Agency receives information about many systems which appear to offer potential for emission reduction or fuel economy improvement compared to conventional engines and vehicles. This report discusses EPA's evaluation of the Ram-Jet, a retrofit device marketed by Ed Almquist. It is designed to bleed in extra air to the engine by allowing ambient air to bypass the carburetor under high engine load conditions. The manufacturer claims the device reduces emission pollutants and improves fuel economy.

  18. Linear-response reflection coefficient of the recorder air-jet amplifier.

    PubMed

    Price, John C; Johnston, William A; McKinnon, Daniel D

    2015-11-01

    In a duct-flute such as the recorder, steady-state oscillations are controlled by two parameters, the blowing pressure and the frequency of the acoustic resonator. As in most feedback oscillators, the oscillation amplitude is determined by gain-saturation of the amplifier, and thus it cannot be controlled independently of blowing pressure and frequency unless the feedback loop is opened. In this work, the loop is opened by replacing the recorder body with a waveguide reflectometer: a section of transmission line with microphones, a signal source, and an absorbing termination. When the mean flow from the air-jet into the transmission line is not blocked, the air-jet amplifier is unstable to edge-tone oscillations through a feedback path that does not involve the acoustic resonator. When it is blocked, the air-jet is deflected somewhat outward and the system becomes stable. It is then possible to measure the reflection coefficient of the air-jet amplifier versus blowing pressure and acoustic frequency under linear response conditions, avoiding the complication of gain-saturation. The results provide a revealing test of flute drive models under the simplest conditions and with few unknown parameters. The strengths and weaknesses of flute drive models are discussed. PMID:26627801

  19. The Original Seven Astronauts in Front of an Air Force Jet

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The original seven astronauts for the Mercury Project pose in front of an Air Force Jet. From left to right: Scott Carpenter, L. Gordon Cooper, John H. Glenn, Virgil I. Gus Grissom, Walter M. Wally Schirra, Alan B. Shepard, and Donald K. Deke Slayton.

  20. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  1. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  2. Local Velocity Field Measurements towards Understanding Flame Stabilization of Turbulent Non-premixed Jet Flames in Vitiated Coflow

    NASA Astrophysics Data System (ADS)

    Ramachandran, Aravind; Mothe, Anirudh Reddy; Narayanaswamy, Venkateswaran

    2015-11-01

    Turbulent combustion of a non-premixed methane jet issuing into a vitiated coflow is being studied in our lab. Flame luminosity studies demonstrated three dominant characteristic flame motions - a stable flame base (Mode A), complete blowout (Mode B), and partial blowout followed by re-anchoring of the flame by autoignition kernels (Mode C). The experiments presented in this work focused on Mode A, and were carried out over a range of oxidizer temperatures, oxygen molefractions, and fuel jet Reynolds numbers. Measurements of 2-D velocity fields near the base of the lifted jet flame were obtained using Particle Image Velocimetry (PIV) with the objective to delineate the dominant mechanisms involved in the flame stabilization. Statistical analysis of these instantaneous velocity fields will be presented, which shows non-trivial contributions from autoignition kernels as well as edge flame propagation towards flame stabilization. The effect of vortices and high local strain rates was observed to produce local extinctions and destabilize the flame, indicating their role as precursors to (unstable) Mode B and Mode C motions. NSF Grant CBET-1511216.

  3. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  4. The structure of the velocity field in a confined flow driven by an array of opposed jets

    NASA Astrophysics Data System (ADS)

    Krawczynski, J. F.; Renou, B.; Danaila, L.

    2010-04-01

    We investigate the confined flow in a new turbulence box configuration. Fluid is injected through two sets of 16 vertically opposed jets and outflows through two top/bottom porous planes. The resulting flow is generated by pairs of opposed round jets with backflow and their subsequent interactions. The research issue being addressed here is that of the dependence of the velocity field structure on two parameters: the injection Reynolds number based on jet diameter Reinj, which is varied between 6000 and 28000, and the flow geometry. The latter issue is addressed by investigating two kinds of flow geometries: (i) recirculating opposed jets (ROJ), for which the distance among two consecutive jet nozzles is 2.4 diameters and the nozzle-to-nozzle distance among each two opposed jets is 6 diameters, and (ii) simple opposed jets (SOJ), for which the distance among two consecutive jet nozzles is 4 diameters and the nozzle-to-nozzle distance among each two opposed jets is 10 diameters. The instantaneous aspect of the flow field is dominated by vortical structures and it is strongly dependent on the flow geometry. For both flow geometries, no coherence between each two consecutive pairs of jets is observed. All the statistics (dimensionless profiles of mean velocities and kinetic energy, derived quantities, and inner scales) do not depend on the Reynolds number and they are only the result of the flow geometry. The ROJ geometry leads to a flow which is characterized by strong interactions between opposed and neighboring jets which lead to both top-bottom and left-right instabilities in the central region. This leads to a strong energy and enstrophy injection, which imposes its signature on the two-dimensional kinetic energy spectra regime, characterized by a kxy-3 scaling, associated to the vortical structures present in the flow. The classical kxy-5/3 regime is very poorly represented, most likely because it is supposed to be present at scales smaller than the particle

  5. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  6. A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation

    NASA Technical Reports Server (NTRS)

    Clifton, Chandler W.; Cutler, Andrew D.

    2007-01-01

    A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.

  7. Rupture of thin liquid films induced by impinging air-jets.

    PubMed

    Berendsen, Christian W J; Zeegers, Jos C H; Kruis, Geerit C F L; Riepen, Michel; Darhuber, Anton A

    2012-07-01

    Thin liquid films on partially wetting substrates are subjected to laminar axisymmetric air-jets impinging at normal incidence. We measured the time at which film rupture occurs and dewetting commences as a function of diameter and Reynolds number of the air-jet. We developed numerical models for the air flow as well as the height evolution of the thin liquid film. The experimental results were compared with numerical simulations based on the lubrication approximation and a phenomenological expression for the disjoining pressure. We achieved quantitative agreement for the rupture times. We found that the film thickness profiles were highly sensitive to the presence of minute quantities of surface-active contaminants. PMID:22671425

  8. Opposed jet burner studies of hydrogen combustion with pure and N2, NO-contaminated air

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    A counterflow diffusion flame formed by an argon-bathed tubular-opposed jet burner (OJB) was used to determine the 'blowoff' and 'restore' combustion characteristics for jets of various H2/N2 mixtures and for jets of air contaminated by NO (which normally occurs in high-enthalpy airflows supplied to hypersonic test facilities for scramjet combustors). Substantial divergence of 'blowoff' and 'restore' limits occurred as H2 mass flux, M(H)2, increased, the H2 jet became richer, and the M(air)/M(H2 + N2) ratio increased from 1 to 3 (molar H2/O2 from 1 to 16). Both OJB limits were sensitive to reactant composition. One to six percent NO in air led to significant N2-corrected decreases in the M(H2) values for 'blowoff' (2-8 percent) and 'restore' (6-12 percent) for mole fractions of H2 ranging from 0.5 to 0.95. However, when H2/O2 was held constant, all N2-corrected changes in M(H2) were negligible.

  9. Role of water and discharge mode on modulating properties in an atmospheric air MHCD jet

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Chenying; Lei, Juzhang; Hu, Huimin; Zheng, Peichao; He, Wei

    2016-04-01

    A portable micro hollow cathode discharge (MHCD) device was designed in this paper to generate water-air plasma jet. The results showed that MHCD jet pattern was changed from self-pulsing discharge mode to DC mode with the increasing of voltage, and the critical voltage value of discharge mode increased with the rise of gas flow. In order to study the influences of discharge mode and water content on MHCD jet, the electrical characteristics and radicals were all measured in different conditions. We found that the length of jet decreased and temperature increased with raising water-air ratio, and during self-pulsing discharge mode, •OH content was extremely low because of the low energy of electron, but level of NO was raised with gradually increasing applied voltage. In DC mode, the results showed there was least NO content, on the other hand •OH content increased with rise of voltage and water-air ratio. O existed in both discharge modes and the effect of water content on the O production was complex. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  10. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  11. An H&beta surge and X-ray jet - Magnetic properties and velocity patterns

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Wang, J.; Liu, Y.

    2000-09-01

    We described simultaneous observations of a surge in H&beta and an X-ray jet in NOAA 8100 on November 1, 1997. We found that the H&beta surge was spatially coincident with the X-ray jet. They occurred at the site where the pre-existing magnetic flux was ``cancelled" by a newly emerging flux of opposite polarity. At the base of the surge we identified surge-flaring in the H&beta filtergrams, and both blueshifts and redshifts in the H&beta Dopplergrams. The X-ray jet appeared about 2 hours after the first appearance of the surge. The surge consisted of two ejecting threads. Initially, these two components were twisted together, then became untwisted before the appearance of the X-ray jet. This example presents an alternative scenario of plasma ejection. The magnetic reconnection in the lower atmosphere, which was responsible for the H&beta surge, created the twisted surge threads; the X-ray jet likely resulted from a fast reconnection in the upper atmosphere, which took place well after the H&beta surge.

  12. Similarity between the primary and secondary air-assisted liquid jet breakup mechanisms.

    PubMed

    Wang, Yujie; Im, Kyoung-Su; Fezzaa, Kamel

    2008-04-18

    We report an ultrafast synchrotron x-ray phase-contrast imaging study of the primary breakup mechanism of a coaxial air-assisted water jet. There exist great similarities between the primary (jet) and the secondary (drop) breakup, and in the primary breakup on different length scales. A transition from a ligament- to a membrane-mediated breakup is identified around an effective Weber number We' approximately 13. This observation reveals the critical role an effective Weber number plays in determining the atomization process and strongly supports the cascade breakup model. PMID:18518113

  13. Development and Validation of a Supersonic Helium-Air Coannular Jet Facility

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.; Cutler, Andrew D.

    1999-01-01

    Data are acquired in a simple coannular He/air supersonic jet suitable for validation of CFD (Computational Fluid Dynamics) codes for high speed propulsion. Helium is employed as a non-reacting hydrogen fuel simulant, constituting the core of the coannular flow while the coflow is composed of air. The mixing layer interface between the two flows in the near field and the plume region which develops further downstream constitute the primary regions of interest, similar to those present in all hypersonic air breathing propulsion systems. A computational code has been implemented from the experiment's inception, serving as a tool for model design during the development phase.

  14. Contributions of the secondary jet to the maximum tangential velocity and to the collection efficiency of the fixed guide vane type axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru

    2015-11-01

    In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.

  15. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  16. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  17. Spectroscopic Diagnostics and an Arc Jet Heated Air Plasma

    NASA Technical Reports Server (NTRS)

    Mack, Larry Howard, Jr.

    1996-01-01

    Spectral radiation measurements were made in the range of 200 to 900 nm across a section of the plenum of an arc jet wind tunnel using a series of optical fibers. The spectra contained line radiation from Oxygen and Nitrogen atoms and molecular radiation from N2(+), N2, and NO. Abel inversion technique is used to obtain radial distribution of the spectra. The analysis yielded radial profiles of the electronic excitation, vibrational and rotational temperatures of the flow field. Spectral fitting yielded branching ratios for different vibrational and rotational bands. Relatively mild flow conditions, i.e. enthalpy and mass flow rate, were used for prolonged measurements of up to and over two hours to establish the best experimental methods of temperature determinations. Signal to noise was improved by at least an order of magnitude enabling the molecular vibrational band heads of N2(+) (first negative system), N2 (second positive system), and NO (beta, gamma, delta, and epsilon systems) to be resolved in the lower ultraviolet wavelength regions. The increased signal to noise ratio also enabled partial resolution of the rotational lines of N2(+) and N2 in certain regions of minimal overlap. Comparison of the spectra with theoretical models such as the NEQAIR2 code are presented and show potential for fitting the spectra when reliable calibration is performed for the complete wavelength range.

  18. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  19. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  20. Three-dimensional consideration of jet impingement onto the kerf in relation to laser cutting process: Effect of jet velocity on heat transfer rates

    NASA Astrophysics Data System (ADS)

    Melhem, Omar A.; Yilbas, Bekir S.; Shuja, Shahzada Z.

    2011-03-01

    In laser cutting process, an assisting gas is used to improve the mass removal rate from the cutting kerf and protect the kerf surfaces from the high temperature exothermic reactions, such as oxidation reactions, during the cutting process. Therefore, heat transfer rates from the kerf wall and the skin friction along the kerf surface are important for quality cutting. In the present study, jet emerging from a conical convergent nozzle and impinging onto the kerf surface is investigated in relation to the laser cutting process. The flow field in the kerf, the heat transfer rates from the kerf wall, and the skin friction along the kerf surface are computed for four average jet velocities at the nozzle exit and two kerf wall wedge angles. The ratio of the stand-off-distance (distance between the nozzle exit and the kerf top surface) to nozzle diameter is selected as H/ D=2.2., where H is the stand-off-distance and D is the nozzle exit diameter. The kerf wall temperature is kept at 1500 K to resemble the laser cutting process. It is found that the Nusselt number increases sharply at the kerf inlet and decreases towards the kerf exit for the kerf wall angle of 0°. However, it increases gradually in this region for the kerf wedge angle of 4°. The skin friction decreases along the kerf surface.

  1. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and...

  2. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical...

  3. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  4. An Experimental Investigation of an Exhaust-gas-to-air Heat Exchanger for Use on Jet-stack-equipped Engines

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Spies, Ray J , Jr

    1948-01-01

    Tests were made to determine the loss in exhaust-jet thrust and engine power resulting from the insertion of an exhaust-gas-to-air heat exchanger in a jet-type exhaust stack of an aircraft engine. The thermal performance of the heat exchanger was also determined.

  5. Air jet levitation furnace system for observing glass microspheres during heating and melting

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Dunn, S. L.

    1982-01-01

    A collimated hole structure air jet levitation system has been developed which can be used to levitate hollow glass microspheres used in inertial confinement fusion studies. An ellipsoidal furnace has been added to the system to provide a heating source. A video camera and a 16 mm movie camera connected to a microsphere system provide real time observation as well as permanent documentation of the experiments. Microspheres have been levitated at temperatures over 1400 C for over 10 minutes at a time.

  6. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  7. CTD and velocity surveys of seaward jets off northern California, July 1981 and 1982

    NASA Astrophysics Data System (ADS)

    Kosro, P. Michael; Huyer, Adriana

    1986-06-01

    Two mesoscale surveys were conducted (in July 1981 and July 1982) near Point Arena, California, to determine the structure and circulation associated with tongues of cold surface water extending seaward from the coastal zone. Both surveys were designed at sea on the basis of available satellite IR data, and each was completed in less than a week. Sampling extended 100 km alongshore and 150 km (1981) to 250 km (1982) offshore, and included conductivity, temperature, and depth casts to 500 dbar, and continuous ocean current profiling to 150 m by means of a Doppler acoustic log. Both surveys showed that the tongues of cold water seen in the satellite images were the surface manifestation of hydrographic and current anomalies that extended to a depth of at least 100 m. In each case, strong seaward flow was observed along the northern edge of the cold tongue, which also marked a shallow water mass boundary between low-salinity (<32.8 ppt) surface waters to the north and high-salinity (>33.2 ppt) waters to the south. The seaward jets were very strong (up to 80 cm/s) and narrow (30 km), with strong shears (up to 10-2 s-1 in the vertical and up to 10-4 s-1 in the horizontal). They were largely geostrophic, had transports exceeding 1.5 sverdrups, and can persist for 2-3 weeks. The seaward jets seemed to be continuous with southward flowing alongshore coastal jets. There is evidence that the seaward jets are recurrent features in the vicinity of Point Arena.

  8. Evaluation of fish-injury mechanisms during exposure to a high-velocity jet

    SciTech Connect

    Guensch, Gregory R.; Mueller, Robert P.; McKinstry, Craig A.; Dauble, Dennis D.

    2002-11-01

    As part of the research supported by U.S. Department of Energy (DOE) Advanced Hydropower Turbine System (AHTS) Program, the Pacific Northwest National Laboratory (PNNL) conducted a study where age-0 and age-1 Chinook salmon, as well as several other types of fish, were released into a submerged water jet to quantify injuries caused by shear stresses and turbulence (Neitzel et al. 2000). The fish releases were videotaped. These videotape records were digitized and analyzed using new methods to identify the injury mechanisms and the stresses involved. Visible external injuries sustained by fish in this study generally occurred during the initial contact with the jet and not during the tumbling that occurred after the fish fully entered the turbulent flow. The inertial stresses of tumbling, however, may cause temporary or even permanent vestibular and neurological injuries. Such injuries can result in disorientation and loss of equilibrium, which are life threatening in the “natural” environment. Operculum injuries predominated at moderate water jet speeds (12 and 15 m/s). At the highest speed, eye, operculum, isthmus, and gill injuries were equally common, and disorientation was most common. Bruising and descaling were relatively rare, especially for age-0 fish. Age-0 fish were less susceptible than the larger age-1 fish to all visible injury types, especially at lower speeds.

  9. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter; Brandenburg, Ronny

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  10. Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-03-01

    Thermal flow characteristics of air plasma jets generated by a non-transferred plasma torch with hollow electrodes are experimentally and numerically investigated in order to provide more reliable scientific and technical information, which has been insufficient for their practical applications to material and environmental industries. In this work, a thermal plasma torch of hollow electrode type is first designed and fabricated, and similarity criteria for predicting operational conditions for the scale-up to high-power torches are derived from the arc voltage characteristics measured with various operating and geometry conditions of the torch. The thermal flow characteristics of air plasma jets ejected from the torch are measured by enthalpy probe diagnostics and turn out to have relatively low temperatures of around 3000-7000 K, but show features of other unique properties, such as high energy flux, broad high temperature region and long plasma jet with moderate axial velocity, which are promising for their applications to material syntheses and hazardous waste treatments. Such high enthalpy at a relatively low temperature of air thermal plasma compared with the argon one is due to the high thermal energy residing in the vibrational and rotational states and oxygen dissociation, besides the translational states in monatomic gases such as argon. It is expected that this high specific enthalpy of the air plasma will enable material and environmental industries to treat a large amount of precursors and waste materials effectively at a lower temperature for a longer residence time by the low plasma velocity. It is also found from the measurements that the turbulence intensity influenced by the size of the electrode diameter has a significant effect on the axial and radial profiles of plasma jet properties and that a longer plasma jet is more readily achievable with a larger electrode diameter reducing the turbulence intensity in the external region of the torch. In

  11. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  12. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  13. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  14. Analysis of stratified and closely spaced jets exhausting into a crossflow. [aerodynamic characteristics of lift-jet, vectored thrust, and lift fan V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Ziegler, H.; Woller, P. T.

    1973-01-01

    Procedures have been developed for determining the flow field about jets with velocity stratification exhausting into a crossflow. Jets with three different types of exit velocity stratification have been considered: (1) jets with a relatively high velocity core; (2) jets with a relatively low velocity core; and (3) jets originating from a vaned nozzle. The procedure developed for a jet originating from a high velocity core nozzle is to construct an equivalent nozzle having the same mass flow and thrust but having a uniform exit velocity profile. Calculations of the jet centerline and induced surface static pressures have been shown to be in good agreement with test data for a high velocity core nozzle. The equivalent ideal nozzle has also been shown to be a good representation for jets with a relatively low velocity core and for jets originating from a vaned nozzle in evaluating jet-induced flow fields. For the singular case of a low velocity core nozzle, namely a nozzle with a dead air core, and for the vaned nozzle, an alternative procedure has been developed. The internal mixing which takes place in the jet core has been properly accounted for in the equations of motion governing the jet development. Calculations of jet centerlines and induced surface static pressures show good agreement with test data these nozzles.

  15. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  16. Phenomenological study of the behavior of some silica formers in a high velocity jet fuel burner

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.; Handschuh, R. F.

    1985-01-01

    Samples of four silica formers: single crystal SiC, sintered alpha-SiC, reaction sintered Si3N4 and polycrystalline MoSi2, were subjected to a Mach 1 jet fuel burner for 1 hr, at a sample temperature of 1375 deg C (2500 deg F). Two phenomena were identified which may be deleterious to a gas turbine application of these materials. The glass layer formed on the MoSi2 deformed appreciably under the aerodynamic load. A scale developed on the samples of the other materials which consisted of particular matter from the gas stream entrapped in a SiO2 matrix.

  17. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  18. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  19. Simulated flight acoustic investigation of treated ejector effectiveness on advanced mechanical suppresors for high velocity jet noise reduction

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.; Motsinger, R. E.; Hoerst, D. J.

    1986-01-01

    Ten scale-model nozzles were tested in an anechoic free-jet facility to evaluate the acoustic characteristics of a mechanically suppressed inverted-velocity-profile coannular nozzle with an accoustically treated ejector system. The nozzle system used was developed from aerodynamic flow lines evolved in a previous contract, defined to incorporate the restraints imposed by the aerodynamic performance requirements of an Advanced Supersonic Technology/Variable Cycle Engine system through all its mission phases. Accoustic data of 188 test points were obtained, 87 under static and 101 under simulated flight conditions. The tests investigated variables of hardwall ejector application to a coannular nozzle with 20-chute outer annular suppressor, ejector axial positioning, treatment application to ejector and plug surfaces, and treatment design. Laser velocimeter, shadowgraph photograph, aerodynamic static pressure, and temperature measurement were acquired on select models to yield diagnositc information regarding the flow field and aerodynamic performance characteristics of the nozzles.

  20. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  1. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  2. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  3. Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet

    NASA Astrophysics Data System (ADS)

    Rahimi, Mostafa; Mazraeh, Adel Etefagh

    2014-08-01

    Heat transfer from an open-wedge cavity to a symmetrically impinging slot air jet is investigated at the present study. The effect of the cavity angle was mainly examined on the Nusselt number distribution. Based on the results, heat transfer was generally poor at the vicinity of the apex, rising to form a maximum at the impingement and then followed by a moderate decline at further distances. The region of maximum heat transfer on the surfaces shifted outward the cavity as the cavity angle was decreased. Also, average Nusselt number over an effective length of the surface remained almost constant and independent of the cavity angle for a specified jet Reynolds number and nozzle-to-apex spacing.

  4. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  5. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  6. Measurements of velocity shear and ion viscosity profile in a magnetohydrodynamic plasma jet

    NASA Astrophysics Data System (ADS)

    Dorf, L. A.; Intrator, T.; Sun, X.; Hendryx, J.; Wurden, G. A.; Furno, I.; Lapenta, G.

    2010-10-01

    Time-dependent, two-dimensional profiles of the axial flow velocity, density, electron temperature, and magnetic field components are measured at two axial locations in a screw pinch plasma column of the reconnection scaling experiment. The results show that the ion momentum flux for a given column radius is dissipated by the ion-ion Coulomb scattering viscosity due to a significant radial shear of the axial velocity. By comparing the terms of the magnetohydrodynamic momentum balance equation, radial profile of ion viscosity is determined. Chord-integrated ion temperature measurements performed at several radial locations using Doppler broadening spectroscopy show ion temperature of about 1 eV. Measured ion viscosity agrees within a factor of 2 with the classical Braginskii expectations.

  7. Measurements of velocity shear and ion viscosity profile in a magnetohydrodynamic plasma jet

    SciTech Connect

    Dorf, L. A.; Intrator, T.; Sun, X.; Hendryx, J.; Wurden, G. A.; Furno, I; Lapenta, G.

    2010-10-15

    Time-dependent, two-dimensional profiles of the axial flow velocity, density, electron temperature, and magnetic field components are measured at two axial locations in a screw pinch plasma column of the reconnection scaling experiment. The results show that the ion momentum flux for a given column radius is dissipated by the ion-ion Coulomb scattering viscosity due to a significant radial shear of the axial velocity. By comparing the terms of the magnetohydrodynamic momentum balance equation, radial profile of ion viscosity is determined. Chord-integrated ion temperature measurements performed at several radial locations using Doppler broadening spectroscopy show ion temperature of about 1 eV. Measured ion viscosity agrees within a factor of 2 with the classical Braginskii expectations.

  8. Wire melting and droplet atomization in a high velocity oxy-fuel jet

    SciTech Connect

    Neiser, R.A.; Brockmann, J.E.; O`Hern, T.J.

    1995-07-01

    Coatings produced by feeding a steel wire into a high-velocity oxy-fuel (HVOF) torch are being intensively studied by the automotive industry as a cost-effective alternative to the more expensive cast iron sleeves currently used in aluminum engine blocks. The microstructure and properties of the sprayed coatings and the overall economics of the process depend critically on the melting and atomization occurring at the wire tip. This paper presents results characterizing several aspects of wire melting and droplet breakup in an HVOF device. Fluctuations in the incandescent emission of the plume one centimeter downstream from the wire tip were recorded using a fast photodiode. A Fourier transform of the light traces provided a measure of the stripping rate of molten material from the wire tip. Simultaneous in-flight measurement of atomized particle size and velocity distributions were made using a Phase Doppler Particle Analyzer (PDPA). The recorded size distributions approximate a log-normal distribution. Small particles traveled faster than large particles, but the difference was considerably smaller than simple aerodynamic drag arguments would suggest. A set of experiments was carried out to determine the effect that variations in torch gas flow rates have on wire melt rate, average particle size, and average particle velocity. The observed variation of particle size with spray condition is qualitatively consistent with a Weber breakup of the droplets coming off the wire. The measurements also showed that it was possible to significantly alter atomized particle size and velocity without appreciably changing the wire melt rate.

  9. Work performed on velocity profiles in a hot jet by simplified RELIEF

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Lempert, Walter R.

    1991-01-01

    The Raman Excitation + Laser Induced Electronic Fluorescence (RELIEF) velocity measurement method is based on vibrationally tagging oxygen molecules and observing their displacement after a short period of time. Two papers that discuss the use and implementation of the RELIEF technique are presented in this final report. Additionally, the end of the report contains a listing of the personnel involved and the reference documents used in the production of this final report.

  10. Experimental and numerical investigations on slot air jet impingement cooling of a heated cylindrical concave surface

    NASA Astrophysics Data System (ADS)

    Nouri-Bidgoli, H.; Ashjaee, M.; Yousefi, T.

    2014-04-01

    Experimental and numerical studies have been carried out for slot air jet impingement on a heated concave surface of a partially opened-top horizontal cylinder of length L = 20 cm. The slot jet is situated at the symmetry line of the partially opened-top cylinder along the gravity vector and impinges to the bottom of the cylinder which is designated as θ = 0°. The width of the opening at the top of the horizontal cylinder is W = 3 cm which corresponds to a circumferential angle Δθ = 50.8°. The experiments are performed by a Mach-Zehnder interferometer which enables to measure the local convection heat transfer coefficient. Also, a finite volume method based on the SIMPLE algorithm and non-orthogonal grid discretization scheme is used to solve the continuity, momentum, and energy equations. The Poisson equations are solved for (x, y) to find the grid points which are distributed in a non-uniform manner with higher concentration close to the solid regions. The effects of jet Reynolds number ( Re j) in the range from 190 to 1,600 and the ratio of spacing between nozzle and cylinder surface to the jet width from H = 1.5 to H = 10.7 on the local and average Nusselt numbers are examined. It is observed that maximum Nusselt number occurs at the stagnation point at (θ = 0°) and the local heat transfer coefficient decreases on the circumferential surface of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  11. Guard Flow-enhanced Organic Vapor Jet Printing of Molecular Materials in Air

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo

    Rapid advances in the research and development of organic electronics have re-sulted in many exciting discoveries and applications, including OLEDs, OPVs and OTFTs. Devices based on small molecular organic materials often call for sharp interfaces and highly pure materials for improved device performance. Solvent-free deposition and additive patterning of the active layers without the use of vacuum is preferred, calling for specialized processing approaches. Guard flow-enhanced organic vapor jet printing (GF-OVJP), enables addi-tive, rapid, mask-free, solvent-free printing of molecular organic semiconductors in ambient atmosphere by evaporating organic source material into an inert carrier gas jet and collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular "guard flow" hydrodynamically focuses the primary jet carrying the hot organic vapor and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. This thesis demonstrates the deposition of active layers of OLEDs, OPVs and OTFTs by GF-OVJP in air. Process-structure-property relationships are elucidated, using a combination of film deposition and structural characterization (e.g. AFM, XRD, SEM, spectroscopies), device fabrication and testing, as well as compressible fluid flow, heat and mass transport modeling, thus laying the groundwork for rigorous, quantitative design of film deposition apparatus and small molecular organic semiconductor processing.

  12. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  13. Inverted velocity profile semi-annular nozzle jet exhaust noise experiments

    NASA Technical Reports Server (NTRS)

    Goodykoontz, J. H.

    1983-01-01

    Experimental noise data are shown for a conical nozzle with a semi-annular secondary flow passage having secondary to primary velocity ratios ranging from 1.0 to 1.4. Spectral data are presented at different directivity angles in the flyover plane with the semi-annular flow passage located either on the same side or opposite side relative to an observer. A 10.0 cm diameter primary conical nozzle was used with a 2.59 cm and 5.07 cm wide annular gap secondary nozzle. Similar trends were observed for both nozzle configurations. In general, near the peak noise location and at velocity ratios greater than 1.0, noise levels were larger on the side where the secondary passage was closest to an observer. At velocity ratios near 1.0 the opposite was true. When compared to predicted noise levels for a conical nozzle alone operating at the same ideal thrust, the semi-annular configuration showed no benefit in terms of noise attenuation.

  14. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  15. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  16. Effects of shape, size, and air velocity on entry loss factors of suction hoods.

    PubMed

    McLoone, H E; Guffey, S E; Curran, J P

    1993-03-01

    This study further elucidated the effects of air velocity, aspect ratio (face length to face width), and area ratio (face area to duct area) on entry loss factors of suction hoods. A full scale ventilation system was utilized to determine the entry loss factor attributable to each of 20 square and rectangular hoods with a 90 degrees included angle. Static and velocity pressures were measured using Pitot tubes connected by tubing to piezo-resistive pressure transducers and inclined tube manometers. The entry loss factor, Fh, is the ratio of hood total pressure loss to mean velocity pressure. Values of Fh determined in this study ranged from 0.17-1.85. The values of Fh were a hyperbolic function of area ratio with a region rapidly increasing change for area ratios less than 5. For area ratios greater than 5, the values of Fh approached an asymptote of 0.17. Among hoods with a given area ratio (e.g., 2.5, 5.1, or 10.2), values of Fh were independent of aspect ratio. To a limited extent, Fh values decreased as mean air velocities increased from 319-1770 m/min (1046-5807 feet/min). PMID:8447256

  17. An Empirical Model of Human Aspiration in Low-Velocity Air Using CFD Investigations

    PubMed Central

    Anthony, T. Renée; Anderson, Kimberly R.

    2016-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve’s decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion. PMID:25438035

  18. Impact of air velocity on the development and detection of small coal fires

    SciTech Connect

    Egan, M.R.

    1993-12-31

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate, that in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial stage of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine. 9 refs., 3 figs., 10 tabs.

  19. Numerical modeling and simulation of hot air jet anti-icing system employing channels for enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Ahmed, Kamran Zaki

    Aircraft icing is a serious concern for the aviation community since it is one of the major causes of fatal aircraft accidents. Aircrafts use different anti-icing systems and one such system is the hot-air anti-icing system, which utilizes hot-air from the engine compressor bleed to heat critical aircraft surfaces and prevent ice formation. Numerous experimental and numerical studies have been performed to increase the efficiency of the hot-air jet based anti-icing systems. Most of the investigations have focused on either orifice design or the impingement region of target surface geometry. Since the impingement surface heat transfer drops off sharply past the stagnation region, investigators have studied the use of multiple jets to enhance surface heat transfer over a larger area. However, use of multiple jets is a further strain on engine resources. One way to conserve engine resources is to use single jet in conjunction with various geometric and physical mechanisms to enhance heat transfer. The current study focuses on enhancing heat transfer using a single jet and a channel. The study investigates the effect of channel's height, inlet location and Reynolds number on heat transfer characteristics in terms of average Nusselt number distribution along the impingement surface. The commercial CFD code, FLUENT, is used to simulate the different cases. Results indicate that the heat transfer depends strongly on height and width of channel, jet-to-target spacing, inlet angle and jet Reynolds number.

  20. The sound of oscillating air jets: Physics, modeling and simulation in flute-like instruments

    NASA Astrophysics Data System (ADS)

    de La Cuadra, Patricio

    Flute-like instruments share a common mechanism that consists of blowing across one open end of a resonator to produce an air jet that is directed towards a sharp edge. Analysis of its operation involves various research fields including fluid dynamics, aero-acoustics, and physics. An effort has been made in this study to extend this description from instruments with fixed geometry like recorders and organ pipes to flutes played by the lips. An analysis of the jet's response to a periodic excitation is the focus of this study, as are the parameters under the player's control in forming the jet. The jet is excited with a controlled excitation consisting of two loudspeakers in opposite phase. A Schlieren system is used to visualize the jet, and image detection algorithms are developed to extract quantitative information from the images. In order to study the behavior of jets observed in different flute-like instruments, several geometries of the excitation and jet shapes are studied. The obtained data is used to propose analytical models that correctly fit the observed measurements and can be used for simulations. The control exerted by the performer on the instrument is of crucial importance in the quality of the sound produced for a number of flute-like instruments. The case of the transverse flute is experimentally studied. An ensemble of control parameters are measured and visualized in order to describe some aspects of the subtle control attained by an experienced flautist. Contrasting data from a novice flautist are compared. As a result, typical values for several non-dimensional parameters that characterize the normal operation of the instrument have been measured, and data to feed simulations has been collected. The information obtained through experimentation is combined with research developed over the last decades to put together a time-domain simulation. The model proposed is one-dimensional and driven by a single physical input. All the variables in the

  1. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  2. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue. PMID:26282384

  3. Flight velocity effects on the jet noise of several variations of a 104-tube suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    At the relatively high takeoff speeds of supersonic transport aircraft, an important question concerns whether the flight speed affects the noise of suppressor nozzles. To answer this question, flyover and static tests using a modified F-106B aircraft were conducted on a 104-tube suppressor nozzle. Comparison of adjusted flyover and static spectra indicated that flight velocity had a small adverse effect on the suppression of the 104-tube suppressor. The adverse effect was larger with the acoustic shroud installed than without it.

  4. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  5. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  6. Simulation of Synthetic Jets in Quiescent Air Using Unsteady Reynolds Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2006-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for the simulation of a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. This configuration was designated as Case 1 for the CFDVAL2004 workshop held at Williamsburg, Virginia, in March 2004. Time-averaged and instantaneous data for this case were obtained at NASA Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter's turbulence models are presented along with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined in this paper.

  7. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    NASA Astrophysics Data System (ADS)

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  8. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  9. The 90 deg Acoustic Spectrum of a High Speed Air Jet

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2004-01-01

    Tam and Auriault successfully predicted the acoustic spectrum at 90deg to the axis of a high speed air jet by using an acoustic equation derived from ad hoc kinetic theory-type arguments. The present paper shows that similar predictions can be obtained by using a rigorous acoustic analogy approach together with actual measurements of the relevant acoustic source correlations. This puts the result on a firmer basis and enables its extension to new situations and to the prediction of sound at other observation angles.

  10. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

    2010-12-01

    Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

  11. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  12. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  13. The suppression of opposed-jet methane-air flames by methyl bromide

    SciTech Connect

    Miller, E.; McMillion, L.G. )

    1992-04-01

    This paper reports on an opposed-jet diffusion flame burner that was used in conjunction with an emission infrared spectrometer to study the effects of the addition of methyl bromide on the combustion of methane with air. An optical system permitted incremental scanning of a laminar diffusion flame formed between two horizontally opposed burner tubes. The image of the flat flame was focused on an auxiliary slit of the spectrometer by optical mirrors and scanned by moving the slit passed the image. For a methane-air flame with an overall stoichiometric ratio, {phi}, of 0.86, the spectra for the 3700-2400 cm{sup {minus}1} region (H{sub 2}O, OH, CO{sub 2}, CH{sub 3}, and HCHO bands) and 2400 to 2000 cm{sup {minus}1} (CO and CO{sub 2} bands) were compared with the spectra obtained when methyl bromide was added to the air-side of the burner. Supplementary measurements were made on methane-air and methane-oxygen-nitrogen flames with {phi} values in the range of 0.74 - 2.0. In some cases, the methane was diluted with nitrogen, and the methyl bromide was added to either the fuel or the air side of the burner.

  14. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  15. The influence of the air plasma jet on early adherent events of L929 fibroblasts on cell culture polystyrene plate

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-Yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2012-10-01

    Recently, atmospheric pressure plasma was applied to biological field. The aim of this study was to identify whether the air plasma jet increases fibroblast early attachment under moving motion on the cell culture polystyrene plate. Polystyrene plate was treated with plasma jet using compressed air. After 2 minutes of treatment, L929 was seeded on polystyrene plate as well as on untreated plate. Cells were allowed to attach for 4 hours under 70 RPM. FE-SEM, confocal microscopy and RT-PCR were used to evaluate characters of cells. The results suggested that plasma treatment on the polystyrene plate altered surface energy without change of roughness. In occasion of treatment plate, attached L292 were significantly found but not found on untreated surface. Also, despite the small area of treated center by the flame of the plasma jet, cells were also attached on round surface of the area covered by the flame, which suggests that the effect was not only due to the jet flame but perhaps due to the jet interacting with surrounding atmosphere. In the light of this study, the air plasma jet could be useful for early attachment of L292 on the polystyrene plate under moving motion and can be applied to biomaterials.

  16. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  17. The influence of bubble plumes on air-seawater gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Karle, L. M.; Higgins, B. J.; Farley, P. J.; Monahan, E. C.; Leifer, I. S.

    1996-05-01

    Laboratory results have demonstrated that bubble plumes are a very efficient air-water gas transfer mechanism. Because breaking waves generate bubble plumes, it could be possible to correlate the air-sea gas transport velocity kL with whitecap coverage. This correlation would then allow kL to be predicted from measurements of apparent microwave brightness temperature through the increase in sea surface microwave emissivity associated with breaking waves. In order to develop this remote-sensing-based method for predicting air-sea gas fluxes, a whitecap simulation tank was used to measure evasive and invasive kL values for air-seawater transfer of carbon dioxide, oxygen, helium, sulfur hexafluoride, and dimethyl sulfide at cleaned and surfactant-influenced water surfaces. An empirical model has been developed that can predict kL from bubble plume coverage, diffusivity, and solubility. The observed dependence of kL on molecular diffusivity and aqueous-phase solubility agrees with the predictions of modeling studies of bubble-driven air-water gas transfer. It has also been shown that soluble surfactants can decrease kL even in the presence of breaking waves.

  18. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  19. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  20. Experimental study of counter-rotating vortex pair trajectories induced by a round jet in cross-flow at low velocity ratios

    NASA Astrophysics Data System (ADS)

    Cambonie, T.; Gautier, N.; Aider, J.-L.

    2013-03-01

    Circular flush Jets In Cross-Flow were experimentally studied in a water tunnel using Volumetric Particle Tracking Velocimetry, for a range of jet to cross-flow velocity ratios, r, from 0.5 to 3, jet exit diameters d from 0.8 to 1 cm and cross-flow boundary layer thickness δ from 1 to 2.5 cm. The analysis of the 3D mean velocity fields allows for the definition, computation and study of Counter-rotating Vortex Pair trajectories. The influences of r, d and δ were investigated. A new scaling based on momentum ratio r m taking into account jet and cross-flow momentum distributions is introduced based on the analysis of jet trajectories published in the literature. Using a rigorous scaling quality factor Q to quantify how well a given scaling successfully collapses trajectories, we show that the proposed scaling also improves the collapse of CVP trajectories, leading to a final scaling law for these trajectories.

  1. Thermal stability effects on the structure of the velocity field above an air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  2. An experimental study on the airlift pump with air jet nozzle and booster pump.

    PubMed

    Cho, Nam-Cheol; Hwang, In-Ju; Lee, Chae-Moon; Park, Jung-Won

    2009-01-01

    The experiments for high head airlifting performance with vertical tube were examined for wastewater treatment. Comparing with the centrifugal pump and other pumps, the airlift pump has some problems and limited applications. However, an advantage of an airlift pump is in its geometrical simplicity, not having any moving parts, so it is suitable in lifting fluids including tiny pieces of metal or grit. In this study, for the purpose of high lifting head, an air jet nozzle was used. We have performed experimentally according to various characteristics of the airlift pump system such as the change of submerged depth, lifting head of liquid-air mixture (total head) and air flow rate. This work has verified through experiments that airlift pump shows lifting ability for 3 m (Sr = 0.3) in comparison with conventional height, 2 m (Sr = 0.4). Also, we suggested that the new airlift pump system with the air booster pump be used to improve the higher lifting head performance. PMID:25084423

  3. Shear layer structure of a low speed jet. Ph.D. Thesis. Final Report, 28 Jun. 1974 - 31 Dec. 1975; [measurements of field pressure and turbulent velocity functions

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.

    1976-01-01

    A series of measurements of near field pressures and turbulent velocity fluctuations were made in a low speed jet with a Reynolds number near 50,000 in order to investigate more quantitatively the character and behavior of the large scale structures and their interactions with each other. The near field measurements were modelled according to the vortex pairing hypothesis to deduce the distribution of pairings along the jet axis and the variances about the mean locations. The hodograph plane description of turbulence was explored in some detail, and a complex correlation quantity was synthesized which has useful properties for turbulence in the presence of mean shear.

  4. Bouncing jet: a Newtonian liquid rebounding off a free surface.

    PubMed

    Thrasher, Matthew; Jung, Sunghwan; Pang, Yee Kwong; Chuu, Chih-Piao; Swinney, Harry L

    2007-11-01

    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g., the Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing phenomenon exhibits hysteresis and multiple steady states. PMID:18233768

  5. Bouncing jet: A Newtonian liquid rebounding off a free surface

    NASA Astrophysics Data System (ADS)

    Thrasher, Matthew; Jung, Sunghwan; Pang, Yee Kwong; Chuu, Chih-Piao; Swinney, Harry L.

    2007-11-01

    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g., the Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing phenomenon exhibits hysteresis and multiple steady states.

  6. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  7. Effect of filtration velocity and filtration pressure drop on the bag-cleaning performance of a pulse-jet baghouse

    SciTech Connect

    Tsai, C.J.; Tsai, M.L.; Lu, H.C.

    2000-01-01

    In this study the filtration velocity and filtration pressure drop at the beginning of bag cleaning were used as experimental parameters to evaluate the bag-cleaning performance of a pulse-jet baghouse. The effective residual pressure loss was used to indicate the cleaning performance after bag cleaning. Two different test dusts, fly ash and limestone, were used. The critical cleaning indices under different operation conditions for bag cleaning were also investigated. A critical average pulse overpressure was found to exist beyond which bag-cleaning performance did not improve much. It was found the filter's final filtration resistance is an important parameter to decide whether a Venturi is necessary for a good bag-cleaning performance or not. Use of a Venturi was found to increase the average pulse overpressure for a system with a filter's final resistance coefficient greater than about 500 Pa{center{underscore}dot}s/cm. However, no Venturi is recommended when the filter's final resistance coefficient is smaller than 500 Pa{center{underscore}dot}s/cm.

  8. Dynamics of air temperature, velocity and ammonia emissions in enclosed and conventional pig housing systems.

    PubMed

    Song, J I; Park, K-H; Jeon, J H; Choi, H L; Barroga, A J

    2013-03-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  9. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  10. Atmospheric corrosion effects of HNO 3—Influence of concentration and air velocity on laboratory-exposed copper

    NASA Astrophysics Data System (ADS)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    A recently developed experimental set-up has been used to explore the atmospheric corrosion effects of nitric acid (HNO 3) on copper, in particular the influence of concentration and air velocity. Characterization and quantification of the corrosion products on exposed samples were performed with Fourier transform infrared (FT-IR) microspectrocscopy, ion chromatography, X-ray diffraction (XRD), micro-balance and microscopy. At low air velocity (0.03 cm s -1) HNO 3 deposition and weight gain of copper increased linearly with concentration up to 400 μg m -3 or 156 ppb. The influence of air velocity on corrosion of copper was tested within the range of 0.03-35.4 cm s -1. Although the air velocity in this study was significantly lower than typical outdoor wind values, a high HNO 3 concentration of the air velocity of 35.4 cm s -1 resulted in a relatively high deposition velocity ( Vd) of 0.9 cm s -1 on the metal surface and 1.2 cm s -1 on an ideal absorbent, which would imply a limiting deposition velocity on the copper surface ( Vd,surf) of 3.6 cm s -1. Results obtained in this study emphasize the importance for future research on the corrosion effects of HNO 3 on materials as very little has so far been done in this field.

  11. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  12. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  13. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8. PMID:22044926

  14. Opposed jet burner studies of effects of CO, CO2, and N2 air-contaminants on hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    The blowoff/restore characteristics for jets of various H2/N2 mixtures opposed to jets of air contaminated by N2, CO, and CO2 have been determined using a counterflow diffusion flame formed by a tubular opposed jet burner. Both blowoff and restore limits are found to be sensitive to fuel and air composition. Empirically derived variations in the limits of the average mass flux of incoming H2 with percent contaminant, at fixed incoming fuel and H2/O2 inputs, are used to quantify the effects of oxygen dilution, flame augmentation, and flame retardation by N2, CO, and CO2 contaminants. The implications of the results are discussed.

  15. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  16. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  17. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  18. Electrode Erosion in Pulsed Arc for Generating Air Meso-Plasma Jet under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Shiki, Hajime; Motoki, Junpei; Takikawa, Hirofumi; Sakakibara, Tateki; Nishimura, Yoshimi; Hishida, Shigeji; Okawa, Takashi; Ootsuka, Takeshi

    Various materials of the rod electrode were examined in pulsed arc of PEN-Jet (Plasma ENergized-Jet) with working gas of air, which can be used for the surface treatment under atmospheric pressure. The erosion of the rod electrode was measured and it surface was observed. The amount of erosion and surface appearance were found to be different for the materials, input power and energizing time. Tungsten (W) rod electrode was oxidized immediately after starting the discharge and tungsten oxide (WO3) powder was generated over the side surface of electrode tip. This powder contaminated the treating surface. Copper (Cu) rod electrode was also oxidized immediately and CuO/Cu2O multi-layer was formed on the electrode surface. However, the erosion of Cu electrode was quite small. Platinum (Pt) and iridium (20 wt%)-contained-platinum (Pt-Ir) rod electrode were not oxidized and their erosions were significantly small. This indicated that they could be employed for keeping the constant electrode-gap and processing the surface treatment without contamination due to electrode erosion.

  19. Piloted methane/air jet flames : transport effects and aspects of scalar structure.

    SciTech Connect

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.; Frank, Jonathan H.

    2005-02-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  20. Piloted methane/air jet flames: Transport effects and aspects of scalar structure

    SciTech Connect

    Barlow, R.S.; Frank, J.H.; Karpetis, A.N.; Chen, J.-Y.

    2005-12-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  1. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  2. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  3. Simulation of Synthetic Jets in Quiescent Air Using Unsteady Reynolds Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli L.

    2004-01-01

    We report research experience in applying an Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver for the prediction of time-dependent flows in the presence of an active flow control device. The configuration under consideration is a synthetic jet created by a single diaphragm piezoelectric actuator in quiescent air. Time-averaged and instantaneous data for this case were obtained at Langley Research Center, using multiple measurement techniques. Computational results for this case using one-equation Spalart-Allmaras and two-equation Menter s turbulence models are presented here along with comparisons with the experimental data. The effect of grid refinement, preconditioning and time-step variation are also examined.

  4. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  5. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  6. Analysis of opposed-jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.; Pellett, G. L.; Northam, G. B.

    1991-01-01

    An opposed-jet counterflow diffusion-flame configuration is considered for the analysis of a nitrogen-diluted hydrogen-air diffusion flame. A boundary-layer similarity solution is employed in order to reduce the governing equations to a set of equations in one independent variable. The equation set is written in the time-dependent form and solved by the finite-volume time-marching technique. This model uses detailed chemistry and accounts for the variations of Prandtl number and Lewis number as well as the effect of thermal diffusion on the flame. It is noted that a one-step model can predict several features of the flame, while the detailed-chemistry model can be used for fine-tuning the results. The present results indicate that thermal diffusion has negligible effect on the characteristics of the flame.

  7. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  8. Effect of air velocity on kinetics of thin layer carrot pomace drying.

    PubMed

    Kumar, N; Sarkar, B C; Sharma, H K

    2011-10-01

    Carrot pomace is a by-product obtained during carrot juice processing. Thin layer carrot pomace drying was performed in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at the air velocity of 0.5, 0.7 and 1.0 m/s at air temperatures from 60 to 75 °C. It was observed that whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. Mathematical models were tested to fit drying data of carrot pomace. The best fit model was observed on the basis of R², Chi-square and RMSE values. R² values for all the selected models were above 0.9783. The average values of effective diffusivity ranged from 2.61 × 10(-9) to 3.64 × 10(-9) m²/s. PMID:21954311

  9. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  10. Stability of recombinant consensus interferon to air-jet and ultrasonic nebulization.

    PubMed

    Ip, A Y; Arakawa, T; Silvers, H; Ransone, C M; Niven, R W

    1995-10-01

    The stability of recombinant consensus alpha-interferon (rConIFN) to air-jet and ultrasonic nebulization was evaluated. Volumes of 10 mL of 0.5 mg/mL rConIFN in phosphate-buffered saline (PBS) at pH 6.3 were nebulized with a Collison three-jet nebulizer at 40 psig (10 L/min) for up to 25 min. The effects of pH (3.0, 6.3, and 9.0), additive (0.1% w/v Tween 80, 0.1% w/v Tween 20, and 1% w/v PEG 8000), and ionic strength (0, 0.25, and 1.0) were examined. The effects of ultrasonic nebulization were studied using three devices (DeVilbiss "Aerosonic"; Mountain Medical "Microstat", and Medix "Easimist"). Stability of rConIFN was assessed by size exclusion chromatography and native and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE). Structural effects were examined by circular dichroism spectroscopy and bioactivity was assessed by an in vitro mitogenic inhibition bioassay. rConIFN is destabilized by air-jet nebulization. Insoluble noncovalent aggregates are produced rapidly, and only approximately 25% of the initial monomeric protein remains after 25 min of nebulization. This correlates with a decrease in in vitro bioactivity. Aggregation during nebulization is influenced by pH (9.0 < 6.3 < 3.0) but even at the highest pH, > 25% aggregation is observed. Ionic strength does not appear to influence aggregation. rConIFN is also seen to adhere to glass after nebulization. Samples from a rinse of the emptied reservoir with 0.1% w/v SDS, after thorough rinsing with water (three times), show a strong rConIFN band on SDS-PAGE gels. The use of PEG 8000 and Tween mitigate aggregate formation and adhesion (< 20%). The cumulative output collected as a wet or dry aerosol is not aggregated to the same extent as the residual protein remaining in the nebulizer. Ultrasonic nebulization also results in aggregation, but the extent of denaturation is dependent upon the nebulizer used and is related to the heating of nebulizer solutions. Cooling of the nebulizer

  11. Jet array impingement with crossflow-correlation of streamwise resolved flow and heat transfer distributions

    NASA Technical Reports Server (NTRS)

    Florschuetz, L. W.; Metzger, D. E.; Truman, C. R.

    1981-01-01

    Correlations for heat transfer coefficients for jets of circular offices and impinging on a surface parallel to the jet orifice plate are presented. The air, following impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer (impingement) surface. The downstream jets are subjected to a crossflow originating from the upstream jets. Impingement surface heat transfer coefficients resolved to one streamwise jet orifice spacing, averaged across the channel span, are correlated with the associated individual spanwise orifice row jet and crossflow velocities, and with the geometric parameters.

  12. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  13. Counter-gradient transport in the combustion of a premixed CH{sub 4}/air annular jet by combined PIV/OH-LIF

    SciTech Connect

    Troiani, G.; Marrocco, M.; Giammartini, S.; Casciola, C.M.

    2009-03-15

    A combination of PIV/OH laser induced fluorescence technique is used to measure the conditional - burned and unburned - gas velocity in a turbulent premixed CH{sub 4}/air annular bluff-body stabilized burner. By changing the equivalence ratio from lean to almost stoichiometric, the energy budget of the recirculating region anchoring the flame is altered in such a way to increasingly lift the flame away from the jet exit. The overall turbulence intensity interacting with each flame is thus systematically varied in a significant range, allowing for a parametric study of its effect on turbulent scalar transport under well controlled conditions, always well within the flamelet regime. The component of the flux normal to the average front is found to reverse its direction, confirming the Bray number as a good indicator of gradient/counter-gradient behavior, once the actual incoming turbulence level felt locally by the flame is assumed as the proper control parameter. (author)

  14. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    PubMed

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  15. The Bouncing Jet: A Newtonian Liquid Rebounding off a Free Surface

    NASA Astrophysics Data System (ADS)

    Thrasher, Matthew; Jung, Sunghwan; Pang, Yee Kwong; Chuu, Chih-Piao; Swinney, Harry L.

    2007-10-01

    We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally with respect to the jet. Previous observations of jets rebounding off a bath (e.g. Kaye effect) have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing jet phenomenon can be observed in many household fluids using only minimal equipment, making it accessible as a classroom demonstration and a science project.

  16. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  17. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  18. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  19. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  20. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-08-01

    The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1-5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of "deformation cycles" are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

  1. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    NASA Astrophysics Data System (ADS)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  2. The entrainment rate for a row of turbulent jets. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Gordon, Eliott B.; Greber, Isaac

    1990-01-01

    Entrainment rates for a row of isothermal circular air jets issuing into a quiescent environment are found by integrating velocity distributions measured by a linearized hot-wire anemometer. Jet spacing to jet diameter ratios of 2.5, 5, 10, and 20 are studied at jet Reynold's numbers ranging from 5110 to 12070. Velocity distributions are determined at regular downstream intervals at axial distances equal to 16.4 to 164 jet diameters from the jet source. The entrainment rates for the four spacing configurations vary monotonically with increasing spacing/diameter between the limiting case of the slot jet entrainment rate (where the jet spacing to diameter ratio is zero) and the circular jet entrainment rate (in which the spacing to diameter ratio is infinity).

  3. Ram-jet Performance

    NASA Technical Reports Server (NTRS)

    Cervenko, A. J.; Friedman, R.

    1956-01-01

    The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet

  4. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  5. Three dimensional flow field measurements of a 4:1 aspect ratio subsonic jet

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.

    1989-01-01

    Flow field measurements for a subsonic rectangular cold air jet with an aspect ratio of 4:1 (12.7 x 50.8 mm) at a Mach number of 0.09 and Re of 100,000 have been carried out using a three-dimensional laser Doppler anemometer system. Mean velocity measurements show that the jet width spreads more rapidly along the minor axis than along the major axis. The outward velocities, however, are not significantly different for the two axes, indicating the presence of enhanced mixing along the minor axis. The jet slowly changes from a rectangular jet to a circular jet as the flow progresses downstream.

  6. Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet

    NASA Technical Reports Server (NTRS)

    Di Rosa, Michael D.; Chang, Albert Y.; Hanson, Ronald K.

    1993-01-01

    Gas dynamic quantities within an underexpanded nitrogen free jet, seeded with 0.5 percent NO, were measured nonintrusively by using an intracavity-doubled, rapid-tuning, CW ring dye laser. The UV beam passed obliquely through the jet axis, and its frequency repetitively scanned across adjacent rotational lines in the NO gamma band near 225 nm at a rate of 4 kHz. Spatially resolved excitation scans were obtained by monitoring the induced broadband fluoresence. Modeling the Doppler-shifted excitation scans with Voigt profiles permitted simultaneous determinations of NO velocity, rotational temperature, and pressure. Zero Doppler shift was referenced to an absorption trace obtained across a static cell and recorded concurrently with the excitation scan. Typically, the measured and predicted axial distributions agreed within 10 percent. At high Mach numbers there was evidence of rotational freezing of NO.

  7. Generation and characterization of high-density gas jets from a 150 micron diameter nozzle in air

    NASA Astrophysics Data System (ADS)

    Hahn, Luke; Bartas, Kevin; Tay, Yan; Kuk, Donghoon; Kim, Ki-Yong

    This work characterizes argon and nitrogen gas jets in unconventional atmospheric pressure instead of the conventional vacuum pressure, and then compares the results directly to that of the conventional technique of creating gas jet targets. A Mach-Zehnder interferometer was used to estimate the number density of the gas jet, and a Rayleigh scattering setup was used to determine if either of the techniques formed atomic clusters and if so, estimating relative quantity. The diameter of the cylindrical nozzle used for is around 150 μm with backing pressures ranging from 13 bars to 69 bars. The highest backing pressure gives us a maximum phase shift value of 9 rad, number density 4.5 ×1020 cm-3. Another characteristic property of these jets is the shock diamond formation due to the flows interaction with atmospheric air particles. The highest number density for a shock diamond was ~1020 cm-3 which does not necessarily occur at higher backing pressure. Also, the distance from the first shock diamond to the nozzle orifice does increase with increasing backing pressure, consistent with a theory. This type of high-density, thin gas jets can be used as a laser target for creating dense plasmas and producing energetic particles and X-rays in the atmospheric conditions. Work supported by DOE, Fusion Energy Sciences under Award No. DE-SC0010706.

  8. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  9. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-01-01

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure. PMID:25947389

  10. A stratospheric intrusion at the subtropical jet over the Mediterranean Sea: air-borne remote sensing observations and model results

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Hoffmann, L.; Günther, G.; Khosrawi, F.; Olschewski, F.; Preusse, P.; Spang, R.; Stroh, F.; Riese, M.

    2012-09-01

    Remote sensing measurements from the Cryogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers (CRISTA-NF) during a flight on 29 July 2006 are presented. This flight is part of the AMMA-SCOUT-O3 measurement campaign, where CRISTA-NF was deployed on the high-flying research aircraft M55-Geophysica. The flight path was located over Italy and the Mediterranean Sea and crossed over the subtropical jet twice. Measurements of temperature, and the volume mixing ratios of water vapor (H2O), ozone (O3), nitric acid (HNO3) and peroxyacetyl nitrate (PAN) are available with a vertical resolution of up to 500 m between about 6 to 21 km altitude. CRISTA-NF observes these trace gases simultaneously and provides a quasi-2-D view of the transition region between the troposphere and the stratosphere. The observation of these different trace gases allows to determine tropospheric and stratospheric air masses. As expected, higher abundances are found where the main source of the trace gases is located: in the stratosphere for O3 and in the troposphere for H2O and PAN. Tracer-tracer correlations between O3 and PAN are used to identify the mixed tropospheric and lowermost stratospheric air at the subtropical jet and around the thermal tropopause north of the jet. An intrusion of stratospheric air into the troposphere associated with the subtropical jet is found in the CRISTA-NF observations. The observations indicate that the intrusion is connected to a tropopause fold which is not resolved in the ECMWF analysis data. The intrusion was reproduced in a simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The CLaMS simulation shows, that the lowermost stratospheric air masses in the intrusion where transported along the the subtropical jet. The tropospheric air masses around the intrusion originate from the vicinity of the Asian monsoon anticyclone. This work discusses the nature of the observed processes at the subtropical jet based on the

  11. Walk-through survey report: HVLV (high velocity low volume) control technology for aircraft bonded wing and radome maintenance at Air Force Logistics Command, McClellan Air Force Base, Sacramento, California

    SciTech Connect

    Hollett, B.A.

    1983-08-01

    A walk through survey was conducted at the Sacramento Air Logistics Center, McClellan Air Force Base, California, on June 13, 1983, to evaluate the use of High Velocity Low Volume (HVLV) technology in the aircraft-maintenance industry. The HVLV system consisted of 65 ceiling drops in the bonded honeycomb shop where grinding and sanding operations created glass fiber and resin dusts. Preemployment and periodic physical examinations were required. Workers were required to wear disposable coveralls, and disposable dust masks were available. Workers walked through decontamination air jet showers before leaving the area to change clothes. Environmental monitoring revealed no significant dust exposures when the HVLV system was in use. Performance of the exhaust system on the eight-inch-diameter nose cone sanding operation was good, but the three-inch-diameter tools were too large and the shrouds too cumbersome for use on many hand-finishing tasks. The author concludes that the HVLV system is partially successful but requires additional shroud design. Further development of small tool shrouds is recommended.

  12. Effect on a shock wave boundary layer interaction of air jet vortex generators

    NASA Astrophysics Data System (ADS)

    Souverein, L. J.; Debiève, J.-F.

    2012-01-01

    The effect of upstream injection by means of continuous Air Jet Vortex Generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5° , a Mach number Me = 2.3, and a momentum thickness based Reynolds number of 5,000. Considered are the effects of the AJVGs on the upstream boundary layer flow topology and on the spatial and dynamical characteristics of the interaction. To this aim, Stereoscopic Particle Image Velocimetry has been employed, in addition to hot-wire anemometry (HWA) for the investigation of the dynamical characteristics of the reflected shock. It is shown that the AJVGs significantly modify the three-dimensionality of the upstream boundary layer. Overall, the AJVGs cause a reduction of the separation bubble length and height. In addition, the energetic frequency range of the reflected shock is increased by approximately 50%, which is in qualitative agreement with the smaller separation bubble size.

  13. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  14. Analysis of opposed jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.

    1989-01-01

    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.

  15. A Portable, Air-Jet-Actuator-Based Device for System Identification

    NASA Astrophysics Data System (ADS)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  16. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  17. Simultaneous temperature and multi-species measurements in opposed jet flames of nitrogen-diluted hydrogen and air

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, J. A.; Cheng, T. S.; Pitz, R. W.; Nandula, S.; Wilson, L. G.; Pellett, G. L.

    1991-01-01

    A narrowband UV Raman scattering system is used to obtain measurement profiles of major and minor species concentrations, temperature, and mixture fraction in opposed jet diffusion flames. The measurement profiles can be compared to previously obtained temperature and concentration profiles (Pellett et al., 1989), obtained using CARS, and they can also be qualitatively compared to the predicted concentration and temperature profiles in pure hydrogen/air flames (Gutheil and Williams, 1990) and in diluted hydrogen/air flames (Dixon-Lewis and Missaghi, 1988; Ho and Isaac, 1991). The applied stress-rates for the two flame conditions studied are 240/s and 340/s, with respective hydrogen concentrations in the fuel jet of 0.67 and 0.83, on a mole fraction basis (0.13 and 0.26 hydrogen mass fractions, respectively).

  18. Brightness temperature measurements for high-energy jet propagation

    NASA Astrophysics Data System (ADS)

    Glenn, H. D.

    1980-01-01

    The use of fiber optics to measure times of arrival and brightness temperature profiles for high-energy gas jets is described. Voitenko compressors were used to produce high-energy air and oxygen jets through steel pipes 2 cm i.d. and 350 cm in length containing air initially at 0.02 Torr or less. Reduction of the time-of-arrival data indicated that velocities for the various identified jet components ranged between 2.40 and 7.95 cm/microsec. The fiber optics emplacement design and brightness temperature calibration procedure are described. Maximum brightness temperatures of 93,000 and 136,000 K were measured for air and oxygen jets, respectively, as they started down the exit pipes. Brightness temperature profiles were obtained to 50 microsec behind the jet front. The results suggest that delayed entrainment of wall material was the predominant factor in reducing pressures and temperatures in the slower components of the jet.

  19. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  20. Microinjection of muscimol into the periaqueductal gray suppresses cardiovascular and neuroendocrine response to air jet stress in conscious rats

    PubMed Central

    de Menezes, Rodrigo C. A.; Zaretsky, Dmitry V.; Sarkar, Sumit; Fontes, Marco A. P.; DiMicco, Joseph A.

    2008-01-01

    Microinjection of the neuronal inhibitor muscimol into the dorsomedial hypothalamus (DMH) suppresses increases in heart rate (HR), mean arterial pressure (MAP), and circulating levels of adrenocorticotropic hormone (ACTH) evoked in air jet stress in conscious rats. Similar injection of muscimol into the caudal region of the lateral/dorsolateral periaqueductal gray (l/dlPAG) reduces autonomic responses evoked from the DMH, leading to the suggestion that neurons in the l/dlPAG may represent a descending relay for DMH-induced increases in HR and MAP. Here, we examined the role of neuronal activity in the caudal l/dlPAG on the increases in MAP, HR, and plasma ACTH seen in air jet stress in rats. Microinjection of muscimol into the caudal l/dlPAG reduced stress-induced increases in HR and MAP, while identical injections into sites just dorsal or into the rostral l/dlPAG had no effect. Microinjection of a combination of the glutamate receptor antagonists 2-amino-5-phosphonopentanoate (AP5) and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) into the caudal l/dlPAG decreased stress-induced increases in HR alone only at the end of the 20-min stress period but significantly accelerated return to baseline. Surprisingly, microinjection of muscimol into the caudal l/dlPAG also reduced the stress-induced increase in plasma ACTH by 51%. Compared with unstressed control rats, rats exposed to air jet stress exhibited ∼3 times the number of Fos-positive neurons in the l/dlPAG. These findings suggest that neurons in the l/dlPAG are activated in air jet stress and that this activity contributes to increases in HR, MAP, and plasma ACTH. PMID:18650321

  1. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  2. Computation of NOx emission of a methane - air diffusion flame in a two-dimensional laminar jet with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Ju, Yiguang; Niioka, Takashi

    1997-09-01

    NOx formation from a methane - air diffusion flame in a two-dimensional jet involving highly preheated air, which has recently become an important topic in industrial furnaces, is investigated numerically using a full chemistry approach including C2, prompt and thermal mechanisms. Effects of increased air temperature on NOx formation are examined. Numerical results show that both NO formation mechanisms increase dramatically with increasing air temperature. A C-shaped production zone of NOx, corresponding to the fuel-lean and fuel-rich regions of triple flame, is identified. It is shown that NO formation with high air temperature can be suppressed efficiently by decreasing the oxygen concentration in the airstream. Production rate analyses of elementary reactions are made. Formation paths of NOx at low and high temperatures are obtained and compared. The results show that the NOx formation path depends strongly on the air temperature. In addition to the thermal route and the HCN⇒NO route, the HCN⇒CN and NO⇒CN recycling routes are greatly enhanced at high air temperature. The results show that the prompt mechanism and the thermal mechanism are strongly coupled at high air temperature. Calculations of prompt NO and thermal NO in a two-dimensional jet and in the counterflow configuration reveal that the conventional method cannot give a correct prediction of prompt NO and thermal NO, particularly at high air temperature. A method using the concept of fixed nitrogen is presented. Numerical results indicate that the formation process of prompt NO and thermal NO can be evaluated properly by the present method.

  3. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  4. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  5. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  6. Conical shaped charge pressed powder, metal liner jet characterization and penetration in aluminum

    SciTech Connect

    Vigil, M.G.

    1997-05-01

    This work was conducted as part of a Near-wellbore Mechanics program at Sandia National Laboratories. An understanding of the interaction of the perforator jet from an explosive shaped charge with the fluid filled porous sandstone media is of basic importance to the completion of oil wells. Tests were conducted using the five-head Flash X-ray Test Site to measure the jet tip velocities and jet geometry for the OMNI and CAPSULE Conical Shaped Charge (CSC) oil well perforator jets fired into air. These tests were conducted to generate jet velocity and geometry information to be used in validating the CTH hydrocode modeling/simulation development of pressed powder, metal liner jets in air. Ten tests were conducted to determine the CSC jet penetration into 6061-T6 aluminum targets. Five tests were conducted with the OMNI CSC at 0.25, 6.0, and 19 inch standoffs from the target. Five tests were conducted with the CAPSULE CSC at 0.60, 5.0, 10.0, and 19 inch standoffs from the target. These tests were conducted to generate jet penetration into homogeneous target information for use in validating the CTH code modeling/simulation of pressed powder, metal liner jets penetrating aluminum targets. The Flash X-ray radiographs, jet velocities, jet diameters, and jet lengths data for jets fired into air are presented in this report. The jet penetration into aluminum and penetration hole profile data are also presented for the OMNI and CAPSULE perforators. Least Squares fits are presented for the measured jet velocity and jet penetration data.

  7. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  8. CW dye laser technique for simultaneous, spatially-resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet

    NASA Technical Reports Server (NTRS)

    Di Rosa, M. D.; Chang, A. Y.; Hanson, R. K.

    1992-01-01

    Gas dynamic quantities within an underexpanded free jet were measured nonintrusively using a rapid-tuning, CW ring dye laser. A nitrogen jet was seeded with 0.5 percent NO in N2, and the conditions were controlled such that a barrel shock formed. The frequency-doubled output of the dye laser was used to spectrally resolve rotational lines in the NO gamma band near 225 nm. With the rapid-tuning capability, these rotational spectra were acquired at a repetition rate of 4 kHz. Spatial resolution was afforded by monitoring the induced fluorescence via a lens and photomultiplier tube. Modeling the spectrally-resolved features with Voigt profiles permitted simultaneous measurements of NO velocity, rotational temperature, and pressure. Expansion of the jet was assumed to be isentropic, and agreement between measured and expected values was typically better than 10 percent over most of the Mach-number range encountered. At high Mach numbers, the measured rotational temperatures systematically departed from the isentropic temperature distribution. Such a measured departure could be ascribed to the onset of a non-Boltzmann distribution of NO rotational states.

  9. Unconditional jetting.

    PubMed

    Gañán-Calvo, Alfonso M

    2008-08-01

    Capillary jetting of a fluid dispersed into another immiscible phase is usually limited by a critical capillary number, a function of the Reynolds number and the fluid property ratios. Critical conditions are set when the minimum spreading velocity of small perturbations v_{-};{*} along the jet (marginal stability velocity) is zero. Here we identify and describe parametric regions of high technological relevance, where v_{-};{*}>0 and the jet flow is always supercritical independently of the dispersed liquid flow rate; within these relatively broad regions, the jet does not undergo the usual dripping-jetting transition, so that either the jet can be made arbitrarily thin (yielding droplets of any imaginably small size), or the issuing flow rate can be made arbitrarily small. In this work, we provide illustrative analytical studies of asymptotic cases for both negligible and dominant inertia forces. In this latter case, requiring a nonzero jet surface velocity, axisymmetric perturbation waves "surf" downstream for all given wave numbers, while the liquid bulk can remain static. In the former case (implying small Reynolds flow) we found that the jet profile small slope is limited by a critical value; different published experiments support our predictions. PMID:18850933

  10. Interactions between Oceanic Saharan Air Layer and African Easterly Jet- African Easterly Waves System

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2013-12-01

    Aerosols have robust influences on multi-scale climatic systems and variability. Non-linear aerosol-cloud-climate interactions depend on many parameters such as aerosol features, regional atmospheric dynamics and variability. Although there are remarkable modeling studies indicating that aerosols induce robust modifications in cloud properties, circulations and the hydrological cycle, many of the physical and dynamical processes involving in these complex interactions between aerosols and Earth's system are still poorly understood. Better understanding the contribution of aerosols with atmospheric phenomena and their transient changes are crucial for efforts to evaluate climate predictions by next generation climate models. This study provides strong evidence of mechanistic relationships between perturbations of the oceanic Saharan air layer (OSAL) and anomalies of atmospheric circulations over the eastern tropical Atlantic/Africa. These relationships are characterized using an ensemble of daily datasets including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the Moderate Resolution Imaging Spectro-radiometer (MODIS), and the Sea-viewing Wide Field-of-View Sensor (SeaWIFS) for the boreal summer season. The study is motivated by previous results suggesting that oceanic dust-induced large-scale to meso-scale climatic adjustments. Our hypothesis is that perturbations in OSAL significantly interact with regional climate variability through African Easterly Jet- African Easterly Waves (AEJ-AEW) system. Passive/ active phases of AEWs in the northern and southern-track wave packets are associated with dipole patterns of thermal/dynamical anomalies correlated with perturbations of aerosol optical depth (AOD) in OSAL. Enhanced (suppressed) dust AOD in OSAL are significantly correlated with convective re-circulation within subsidence region of Hadley cell as well as robust mid-level dipole vorticity disturbances downstream of the AEJ core

  11. Bag breakup of low viscosity drops in the presence of a continuous air jet

    SciTech Connect

    Kulkarni, V. Sojka, P. E.

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  12. Dermal exposure to jet fuel (JP-8) in US Air Force personnel.

    PubMed

    Chao, Yi-Chun E; Gibson, Roger L; Nylander-French, Leena A

    2005-10-01

    Limited research has been conducted on dermal exposure and risk assessment, owing to the lack of reliable measurement techniques and data for quantitative risk assessment. We investigated the magnitude of dermal exposure to jet propulsion fuel 8 (JP-8), using naphthalene as a surrogate, on the US Air Force fuel-cell maintenance workers. Dermal exposure of 124 workers routinely working with JP-8 was measured using a non-invasive tape-strip technique coupled with gas chromatography-mass spectrometry analysis. The contribution of job-related factors to dermal exposure was determined using multiple linear regression analyses. Average whole body dermal exposure to naphthalene (as a marker for JP-8) was 7.61 +/- 2.27 ln(ng m(-2)). Significant difference (P < 0.0001) between the high-exposure group [8.34 +/- 2.23 ln(ng m(-2))] and medium- and low-exposure groups [6.18 +/- 1.35 ln(ng m(-2)) and 5.84 +/- 1.34 ln(ng m(-2)), respectively] was observed reflecting the actual exposure scenarios. Skin irritation, use of booties, working inside the fuel tank and the duration of JP-8 exposure were significant factors explaining the whole body dermal exposure. This study clearly demonstrates the efficiency and suitability of the tape-strip technique for the assessment of dermal exposure to JP-8 and that naphthalene can serve as a useful marker of exposure and uptake of JP-8 and its components. It also showed that the skin provides a significant route for JP-8 exposure and that actions to reduce exposure are required. Studies to investigate the relative contribution of dermal uptake of JP-8 on total body dose and the toxicokinetics of dermal exposure to JP-8 are underway. PMID:16006502

  13. High pressure air jet in the endoscopic preparation room: risk of noise exposure on occupational health.

    PubMed

    Chiu, King-Wah; Lu, Lung-Sheng; Wu, Cheng-Kun

    2015-01-01

    After high-level disinfection of gastrointestinal endoscopes, they are hung to dry in order to prevent residual water droplets impact on patient health. To allow for quick drying and clinical reuse, some endoscopic units use a high pressure air jet (HPAJ) to remove the water droplets on the endoscopes. The purpose of this study was to evaluate the excessive noise exposure with the use of HPAJ in endoscopic preparation room and to investigate the risk to occupational health. Noise assessment was taken during 7 automatic endoscopic reprocessors (AERs) and combined with/without HPAJ use over an 8-hour time-weighted average (TWA). Analytical procedures of the NIOSH and the ISO for noise-induced hearing loss were estimated to develop analytic models. The peak of the noise spectrum of combined HPAJ and 7 AERs was significantly higher than that of the 7 AERs alone (108.3 ± 1.36 versus 69.3 ± 3.93 dBA, P < 0.0001). The risk of hearing loss (HL > 2.5 dB) was 2.15% at 90 dBA, 11.6% at 95 dBA, and 51.3% at 100 dBA. The odds ratio was 49.1 (95% CI: 11.9 to 203.6). The noise generated by the HPAJ to work over TWA seriously affected the occupational health and safety of those working in an endoscopic preparation room. PMID:25710009

  14. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  15. The flow field of an underexpanded H2 jet coaxially injected into a hot free or ducted supersonic jet of air or nitrogen

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1977-01-01

    Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.

  16. Computational Fluid Dynamics Investigation of Human Aspiration in Low-Velocity Air: Orientation Effects on Mouth-Breathing Simulations

    PubMed Central

    Anthony, T. Renée

    2013-01-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1–0.4 m s−1). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s−1), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min−1, respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins. PMID:23316076

  17. Modeling the receptivity of an air jet to transverse acoustic disturbance with application to musical instruments.

    PubMed

    Blanc, F; François, V; Fabre, B; de la Cuadra, P; Lagrée, P-Y

    2014-06-01

    A simple analytical model for the interaction between a plane jet issued from a flue and a transverse acoustic disturbance is developed in this paper. The model is inspired by direct flow simulation results confronted to experimental data. The interaction is expected to take place in the vicinity of the separation points of the jet. The influence of the detailed geometry of the channel end on the jet receptivity is discussed, and more specifically the chamfer geometries found in flute-like musical instruments. The simplified model explains quite well the difference between the jet response of a flue with square edges compared to a chamfered flue exit. The effect of rounded, lip-like flue exit is not well captured by the model. PMID:24907787

  18. Opposed jet burner studies of silane-methane, silane-hydrogen, and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. The paper presents: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions; (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  19. Opposed jet burner studies of silane-methane, silane-hydrogen and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. Presented are: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions: (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  20. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  1. Density and confinement effects on mixing characteristics of an axisymmetrical CO(2) jet

    NASA Astrophysics Data System (ADS)

    Doty, J. H.

    1985-03-01

    This thesis studies the effects of jet density and confinement on spreading and entrainment rate of axisymmetrical CO2 jet in air. Four tests were conducted to isolate these effects: heated free jet; isothermal free jet; heated confined jet; and isothermal confined jet. The mass flow rate of CO2 was held constant for all tests at 6 kg/hr. Flow visualization studies were also conducted to corroborate results. It was determined that isokinetic sampling for CO2 concentrations is important for obtaining accurate measurements in the jet shear layer for axial distances less than 10 jet diameters. An increase in velocity at the edge of the jet near the entrance plane was noted for the isothermal studies where the density difference between the jet and the surrounding air was significant. Spreading rate for the jets was determined using half width at half maximum criterion. The heated jet entrained more air than the isothermal jet at the same axial location even though the heated jet had a smaller cross sectional area.

  2. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J. ); Kothari, M.; Hariri, H.; Arastoopour, H. )

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  3. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J.; Kothari, M.; Hariri, H.; Arastoopour, H.

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  4. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  5. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  6. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  7. Impact of air velocity on the development and detection of small coal fires. Report of investigations/1993

    SciTech Connect

    Egan, M.R.

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate that, in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial state of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine.

  8. DNS of autoigniting turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan; Mahesh, Krishnan

    2014-11-01

    Direct numerical simulation of a round turbulent hydrogen jet injected into vitiated coflowing air is performed at a jet Reynolds number of 10,000 and the results are discussed. A predictor-corrector density based method for DNS/LES of compressible chemically reacting flows is developed and used on a cylindrical grid. A novel strategy to remove the center-line stiffness is developed. A fully developed turbulent pipe flow simulation is prescribed as the velocity inlet for the fuel jet. The flame base is observed to be stabilized primarily by autoignition. Further downstream the flame exhibits a diffusion flame structure with regions of rich and lean premixed regimes flanking the central diffusion flame. The lift-off height is well predicted by a simple relation between the ignition delay of the most-reactive mixture fraction and the streamwise velocity of the jet and coflow.

  9. The effect of dielectric tube diameter on the propagation velocity of ionization waves in a He atmospheric-pressure micro-plasma jet

    NASA Astrophysics Data System (ADS)

    Talviste, Rasmus; Jõgi, Indrek; Raud, Jüri; Paris, Peeter

    2016-05-01

    The focus of this study was to investigate the effect of the dielectric tube diameter on the velocity of the ionization wave in an atmospheric pressure plasma jet in He gas flow. Plasma was ignited in quartz tubes with inner diameter in the range of 80–500 μm by 6 kHz sinusoidal voltage applied to a cylindrical electrode surrounding the quartz tube and positioned 10 mm from the tube orifice. A grounded plane was placed 2–3 cm downstream from the powered electrode to measure the plasma current. The spatial development of ionization waves was monitored by registering the optical emission along the axis of the tube. The ionization wave velocity was deduced from the temporal shift of the onset of radiation at different axial positions. The velocity of ionization wave increased by almost an order of magnitude with the tube diameter decreasing from 500 to 80 μm and was for the 80 μm microtube 1.7 · 105 m s‑1 during the positive half-cycle and 1.45 · 105 m s‑1 during the negative half-cycle.

  10. Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.; Launder, B. E.; Morse, A. P.; Maples, G.

    1974-01-01

    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow.

  11. Measurements of turbulent inclined plane dual jets

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Lin, Y. F.; Sheu, M. J.

    1993-11-01

    Measurements of mean velocities, flow direction, velocity fluctuations and Reynolds shear stress were made with a split film probe of hot wire anemometer to investigate the interactions created by two air jets issuing from two identical plane inclined nozzles. The reverse flow was detected by using the split film probe and observed by flow visualization. Experimental results with an inclined angle of 9° are presented in the paper. Some experimental results with an inclined angle of 27° are presented to investigate the effect of inclination on the flow field. Mean velocities approach self-preservation in both the converging region and the combining region. Velocity fluctuations and Reynolds shear stress approach self-preservation in the combining region only. The spreads of jet and the square of the decay of maximum mean velocity increase linearly as the distance from the nozzle exit increases.

  12. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  13. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  14. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  15. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zou, Xue-Yong; Zhang, Chun-Lai

    2006-11-01

    Saltating sand grains are the primary component of airborne sand and account for 75% of all transport flux of sand grains. Although they have been widely studied, the microscopic and macroscopic aspects of blown sand physics have not been united, and this has slowed development of this field. The main reason for this is that the bridge (probability distribution functions for initial liftoff velocities of saltating sand grains) between the macroscopic and microscopic research has not been satisfactorily solved because it is difficult to measure the initial liftoff parameters of saltating sand grains and because the underlying theory is lacking. In this paper, we combined theoretical analyses with wind tunnel experiment data to describe the liftoff parameters of saltating sand grains (the horizontal, vertical, and resultant liftoff velocities and angles). On the basis of these data, the liftoff angles follow a LogNorm4 distribution function, whereas the horizontal, vertical, and resultant liftoff velocities follow a Gamma distribution function. We also demonstrated that it is feasible to colligate initial liftoff velocities of saltating sand grains obtained under different frictional wind velocities by different scholars in wind tunnel experiments and comprehensively analyze their distributions. Therefore the distribution functions of initial liftoff velocities of saltating sand grains presented in this paper do a good job of reflecting the underlying physics.

  16. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  17. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  18. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    NASA Astrophysics Data System (ADS)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  19. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  20. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  1. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  2. Decomposition of Methylene Blue by using an Atmospheric Plasma Jet with Ar, N2, O2, or Air

    NASA Astrophysics Data System (ADS)

    Takemura, Yuichiro; Yamaguchi, Naohiro; Hara, Tamio

    2013-05-01

    We have performed experiments on the decomposition of methylene blue by using an atmospheric plasma jet with various working gases. The decomposition efficiencies of Ar, N2, and O2 plasmas are almost equivalent; on the other hand, the rate of methylene blue decomposition by air plasma is lower than those by the other plasmas. From the absorption spectra, it has been found that HONO (nitrous acid) is produced by air plasma-liquid reactions. It has been clarified by a series of experiments, where oxygen concentration in N2 plasma is varied, that the concentration of HONO increases and the rate of methylene blue decomposition degrades with increasing oxygen gas flow rate. Furthermore, the presence of nitrate ions and nitrite ions was confirmed by ion chromatography and pH measurement.

  3. Experimental study of convective heat transfer under arrays of impinging air jets from slots and circular holes

    NASA Astrophysics Data System (ADS)

    Can, M.; Etemog✓lu, A. B.; Avci, A.

    Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs.

  4. Effect of noncircular orifice plates on the near flow field of turbulent free jets

    NASA Astrophysics Data System (ADS)

    Xu, Min-Yi; Tong, Xing-Qing; Yue, Dan-Ting; Zhang, Jian-Peng; Mi, Jian-Chun; Nathan, G. J.; Kalt, P. A. M.

    2014-12-01

    In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters (De) and their aspect ratios (AR) range from 1 to 6.5. Planar particle image velocimetry (PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 104, where Re = UeDe/v with Ue being the exit bulk velocity and v the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core, expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet (AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the `axis-switching' phenomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.

  5. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-06-01

    Atmospheric pressure plasma jets have many beneficial effects in their use in surface treatment and, in particular, plasma medicine. One of these benefits is the controlled production of reactive oxygen and nitrogen species (RONS) in the active discharge through the molecular gases added to the primary noble gas in the input mixture, and through the interaction of reactive species in the plasma effluent with the ambient air. In this computational investigation, a parametric study was performed on the production of RONS in a multiply pulsed atmospheric pressure plasma jet sustained in a He/O2 mixture and flowing into ambient humid air. The consequences of flow rate, O2 fraction, voltage, and repetition rate on reactant densities after a single discharge pulse, after 30 pulses, and after the same total elapsed time were investigated. At the end of the first discharge pulse, voltage has the greatest influence on RONS production. However, the systematic trends for production of RONS depend on repetition rate and flow rate in large part due to the residence time of RONS in the plasma zone. Short residence times result in reactive species produced by the previous pulse still being in the discharge tube or in the path of the ionization wave at the next pulse. The RONS therefore accumulate in the tube and in the near effluent on a pulse-to-pulse basis. This accumulation enables species requiring multiple reactions among the primary RONS species to be produced in greater numbers.

  6. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  7. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  8. Applications of the Zero-Group-Velocity Lamb Mode for Air-Coupled Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Evan, Victoria L.; Chimenti, D. E.

    2005-04-01

    Airborne ultrasound couples particularly well into plates at the zero-group-velocity point of the first order symmetric (S1) Lamb mode. Applications of this mode to ultrasonic imaging of plate-like structures are discussed. The sensitivity and high Q of this mode makes it ideal for imaging. Images from a wide variety of materials and samples, including composites and honeycomb structures are presented. Transmission at the zero-group-velocity frequency is shown to be particularly sensitive to nearby flaws and discontinuities, and is therefore suitable for wide-area scanning for cracks or manufacturing flaws.

  9. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  10. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  11. APEX CO (9-8) MAPPING OF AN EXTREMELY HIGH VELOCITY AND JET-LIKE OUTFLOW IN A HIGH-MASS STAR-FORMING REGION

    SciTech Connect

    Qiu Keping; Wyrowski, Friedrich; Menten, Karl M.; Guesten, Rolf; Leurini, Silvia; Leinz, Christian

    2011-12-10

    Atacama Pathfinder Experiment (APEX) mapping observations in CO (9-8) and (4-3) toward a high-mass star-forming region, NGC 6334 I, are presented. The CO (9-8) map has a 6.''4 resolution, revealing a {approx}0.5 pc, jet-like, and bipolar outflow. This is the first map of a molecular outflow in a THz line. The CO (9-8) and (4-3) lines arising from the outflow lobes both show extremely high velocity line wings, and their ratios indicate a gas temperature greater than 100 K and a density higher than 10{sup 4} cm{sup -3}. The spatial-velocity structure of the CO (9-8) data is typical of a bow-shock-driven flow, which is consistent with the association between the bipolar outflow and the infrared bow-shaped tips. In short, the observations unveil a highly excited and collimated component in a bipolar outflow that is powered by a high-mass protostar, and provide insights into the driving mechanism of the outflow. Meanwhile, the observations demonstrate that high-quality mapping observations can be performed with the new THz receiver on APEX.

  12. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Astrophysics Data System (ADS)

    Balla, R. Jeffrey

    1994-10-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  13. Planar Rayleigh scattering and laser-induced fluorescence for visualization of a hot, Mach 2 annular air jet

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey

    1994-01-01

    Planar Rayleigh scattering (PRS) and planar laser-induced fluorescence (PLIF) were used to investigate the vitiated air component of a coaxial hydrogen/vitiated air nonpremixed turbulent jet flame that is ejected at a Mach number of 2. All experiments were performed with a xenon chloride tunable excimer laser. Planar information for both techniques was obtained using laser sheets 6 cm high, 5 cm wide, and 300 micron thick. In this flow field, the effective Rayleigh cross section of the components in the vitiated air was assumed to be independent of composition. Therefore, the PRS technique produced signals which were proportional to total density. When the flow field was assumed to be at a known and uniform pressure, the PRS signal data for the vitiated air could be converted to temperature information. Also, PLIF images were generated by probing the OH molecule. These images contain striation patterns attributed to small localized instantaneous temperature nonuniformities. The results from the PLIF and PRS techniques were used to show that this flow field contains a nongaseous component, most likely liquid water that can be reduced by increasing the settling chamber wall temperature.

  14. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  15. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  16. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2014-06-01

    In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.8 to 15 m s-1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of three) was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  17. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  18. Piloted jet flames of CH{sub 4}/H{sub 2}/air: Experiments on localized extinction in the near field at high Reynolds numbers

    SciTech Connect

    Barlow, R.S.; Ozarovsky, H.C.; Lindstedt, R.P.; Karpetis, A.N.

    2009-11-15

    Measurements of temperature and major species concentrations, based on the simultaneous line-imaged Raman/Rayleigh/CO-LIF technique, are reported for piloted jet flames of CH{sub 4}/H{sub 2} fuel with varying amounts of partial premixing with air (jet equivalence ratios of {phi}{sub j} = 3.2, 2.5, 2.1 corresponding to stoichiometric mixture fraction values of {xi}{sub st} = 0.35, 0.43, 0.50, respectively) and varying degrees of localized extinction. Each jet flame is operated at a fixed and relatively high exit Reynolds number (60,000 or 67,000), and the probability of localized extinction is increased in several steps by progressively decreasing the flow rate of the pilot flame. Dimensions of the piloted burner, originally developed at Sydney University, are the same as for previous studies. The present measurements complement previous results from piloted CH{sub 4}/air jet flames as targets for combustion model calculations by extending to higher Reynolds number, including more steps in the progression of each flame from a fully burning state to a flame with high probability of local extinction, and adding the degree of partial premixing as an experimental parameter. Local extinction in these flames occurs close to the nozzle near a downstream location of four times the jet exit diameter. Consequently, these data provide the additional modeling challenge of accurately representing the initial development of the reacting jet and the near-field mixing processes. (author)

  19. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  20. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  1. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  2. A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers

    SciTech Connect

    Harding, D.C.; Pierce, J.D.

    1993-06-01

    Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 {times} 10{sup {minus}9} strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments.

  3. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  4. Investigation of the Behavior of Parallel Two-Dimensional Air Jets

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1944-01-01

    An investigation was made of the flow downstream from a "two-dimensional" grid formed of parallel rods. In both two and three dimensional jet fields there is a critical range of grid density below which the downstream flow is stable and above which it is unstable. The flow can be completely stabilized by means of an adequate lateral contraction beginning immediately after the grid or by use of a fine-mesh damping screen parallel to the grid plane and within a definite range of positions downstream from the grid.

  5. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  6. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    NASA Astrophysics Data System (ADS)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  7. Peak axial-velocity decay with single- and multi-element nozzles

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.; Huff, R. G.

    1972-01-01

    Jet peak-velocity decay data were obtained for a variety of circular and noncircular single-element and multi-element nozzles for application to externally-blown-flap (EBF) STOL aircraft. These data permit a rational approach, in terms of element type and element spacing, to nozzles designed to promote mixing of the jet exhaust with the surrounding air. Rapid mixing and the resulting lower axial jet velocity decreases the noise caused by the interaction of jet impingement on the flap assembly of EBF STOL aircraft. Empirical relationships are presented that permit the prediction of peak axial-velocity decay curves for a wide spectrum of mixer-type nozzles. The data are useful also in the design of ejector-type noise suppressors and for the suppression of VTOL downwash velocities caused by vertically oriented exhaust nozzles.

  8. Peak axial-velocity decay with single- and multi-element nozzles.

    NASA Technical Reports Server (NTRS)

    Von Glahn, U. H.; Groesbeck, D. E.; Huff, R. G.

    1972-01-01

    Jet peak-velocity decay data were obtained for a variety of circular and noncircular single-element and multi-element nozzles for application to externally-blown-flap STOL aircraft. These data permit a rational approach, in terms of element type and element spacing, to nozzles designed to promote mixing of the jet exhaust with the surrounding air. Rapid mixing and the resulting lower axial jet velocity decreases the noise caused by the interaction of jet impingement on the flap assembly of EBF STOL aircraft. Empirical relationships are presented that permit the prediction of peak axial-velocity decay curves for a wide spectrum of mixer-type nozzles. The data are useful also in the design of ejector-type noise suppressors and for the suppression of VTOL downwash velocities caused by vertically oriented exhaust nozzles.

  9. Microwave plasma jet assisted combustion of premixed methane-air: Roles of OH(A) and OH(X) radicals

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Wu, Wei

    2013-09-01

    Plasma assisted combustion (PAC) technology can enhance combustion performance by pre-heating combustion fuels, shortening ignition delay time, enhancing flame holding, or increasing flame volume and flame speed. PAC can also increase fuel efficiency by extending fuel lean flammability limit (LFL) and help reduce combustion pollutant emissions. Experiment results have shown that microwave plasma could modify flame structure, increase flame volume, flame speed, flame temperature, and flame stability, and could also extend the fuel lean flammability limit. We report on a novel microwave PAC system that allows us to study PAC using complicated yet well-controlled combinations of operating parameters, such as fuel equivalence ratio (φ) , fuel mixture flow rate, plasma gas flow rate, plasma gases, plasma jet configurations, symmetric or asymmetric fuel-oxidant injection patterns, etc. We have investigated the roles of the stated-resolved OH(A, X) radicals in plasma assisted ignition and combustion of premixed methane-air fuel mixtures. Results suggest that that both the electronically excited state OH(A) and the electronic ground state OH(X) enhance the methane-air ignition process, i.e. extending the fuel LFL, but the flame stabilization and flame holding is primarily determined by the electronic ground state OH(X) as compared to the role of the OH(A). E-mail: cw175@msstate.edu. Supported by National Science Foundation through the grant of ``A quantitative survey of combustion intermediates toward understanding of plasma-assisted combustion mechanism'' (CBET-1066486).

  10. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  11. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  12. Experiments on Injection of Dust Jets into Plasma

    SciTech Connect

    Dubinov, Alexander E.; Lvov, Igor L.; Sadovoi, Sergey A.; Selemir, Victor D.; Vyalykh, Dmitry V.

    2005-10-31

    Experimental technique for studying the injection of dust jets into plasma of a glow discharge in air based on a needle injector is developed. The velocity and flight time of a dust jet is measured under different initial conditions by laser method. Imprints of dust jets on adhesive films are obtained. It is shown that the propagation of 20-{mu}m dust grains in plasma is accompanied by self-contraction instability along and across the discharge, which leads to the dust agglomeration.

  13. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  14. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers.

    PubMed

    Najlah, Mohammad; Parveen, Ishrat; Alhnan, Mohamed Albed; Ahmed, Waqar; Faheem, Ahmed; Phoenix, David A; Taylor, Kevin M G; Elhissi, Abdelbary

    2014-01-30

    Using latex microspheres as model suspensions, the influence of suspension particle size (1, 4.5 and 10 μm) on the properties of aerosols produced using Pari LC Sprint (air-jet), Polygreen (ultrasonic), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir NE-U22 (passively vibrating-mesh) nebulisers was investigated. The performance of the Pari nebuliser was independent of latex spheres particle size. For both Polygreen and Aeroneb Pro nebulizers, total aerosol output increased when the size of latex spheres increased, with highest fine particle fraction (FPF) values being recorded. However, following nebulisation of 1 or 4.5 μm suspensions with the Polygreen device, no particles were detected in the aerosols deposited in a two-stage impinger, suggesting that the aerosols generated from this device consisted mainly of the continuous phase while the dispersed microspheres were excluded and remained in the nebuliser. The Omron nebuliser efficiently nebulised the 1 μm latex spheres, with high output rate and no particle aggregation. However, this device functioned inefficiently when delivering 4.5 or 10 μm suspensions, which was attributed to the mild vibrations of its mesh and/or the blockage of the mesh apertures by the microspheres. The Aeroneb Pro fragmented latex spheres into smaller particles, but uncontrolled aggregation occurred upon nebulisation. This study has shown that the design of the nebuliser influenced the aerosol properties using latex spheres as model suspensions. Moreover, for the recently marketed mesh nebulisers, the performance of the Aeroneb Pro device was less dependent on particle size of the suspension compared with the Omron MicroAir nebuliser. PMID:24275450

  15. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  16. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  17. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2011-01-15

    The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

  18. Investigation with an Interferometer of the Turbulent Mixing of a Free Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Gooderum, Paul B; Wood, George P; Brevoort, Maurice J

    1950-01-01

    The free turbulent mixing of a supersonic jet of Mach number 1.6 has been experimentally investigated. An interferometer, of which a description is given, was used for the investigation. Density and velocity distributions through the mixing zone have been obtained. It was found that there was similarity in distribution at the cross sections investigated and that, in the subsonic portion of the mixing zone, the velocity distribution fitted the theoretical distribution for incompressible flow. It was found that the rates of spread of the mixing zone both into the jet and into the ambient air were less than those of subsonic jets.

  19. Supersonic Air Flow due to Solid-Liquid Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Peters, Ivo R.; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-01

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle—with the key difference that here the “nozzle” is a liquid cavity shrinking rapidly in time.

  20. Focusing phenomenon and stability of spiral-flow jet

    NASA Astrophysics Data System (ADS)

    Horii, Kiyoshi; Matsumae, Yuji; Cheng, Xiao M.; Takei, Masahiro; Yasukawa, Eiji

    1991-02-01

    A new nozzle assembly has been developed for an improved focusing of spiral air jet streams. To obtain a focused and highly stable spiral-flow jet, a nozzle is designed with an annular slit connected to a conical cylinder. Pressurized fluid is forced through the sides of the device into the buffer area and then through the annular slit into the pipe entrance. The fluid, passing through the conical cylinder, develops a spiral structure with a steeper axial velocity distribution, caused by Coanda effect and the instability of flow. The jet stream velocity as well as its focusing phenomenon was experimentally determined using a laser sheet method. The results clearly indicate the focusing characteristic and the high stability of spiral flow jet.

  1. Interaction of Pulsed Vortex Generator Jets with Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    McManus, K. R.; Johari, H.

    1996-11-01

    Vortex Generator Jets (VGJ) have been proposed as a means for active control of turbulent boundary layer separation by Johnston footnote AIAA J. 28, 989 (1990). It has been shown that a vortex generator jet can create weak longitudinal vorticity of a single sign when the surface-mounted jets are pitched and skewed with respect to the solid surface. The primary advantages of VGJs when compared to solid vortex generators are their lack of parasitic drag when the jets are off and the ability to rapidly activate and deactivate the jets for dynamic control. Pulsing of the jets is proposed as a way of increasing the turbulent mixing and therefore, improving the performance of vortex generator jets. Initial experiments with jets pitched at 45 deg and skewed at 90 deg degrees in air have indicated that large-scale turbulent structures are formed by the pulsed VGJs. Subsequent flow visualization experiments in a water tunnel suggest that fully-modulated jets embedded in a flat plate boundary layer result in a series of puffs which penetrate through the boundary layer. The influence of jet velocity, diameter, pulsing frequency and duty-cycle will be discussed. * Supported by NSF and PSI.

  2. The Effects of Projected Future Demand Including Very Light Jet Air-Taxi Operations on U.S. National Airspace System Delays as a Function of Next Generation Air Transportation System Airspace Capacity

    NASA Technical Reports Server (NTRS)

    Smith, Jerry; Viken, Jeff; Dollyhigh, Samuel; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu

    2007-01-01

    This paper presents the results from a study which investigates the potential effects of the growth in air traffic demand including projected Very Light Jet (VLJ) air-taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The geographic region studied is the contiguous United States (U.S.) of America, although international air traffic to and from the U.S. is included. The main focus of this paper is to determine how much air traffic growth, including VLJ air-taxi operations will add to enroute airspace congestion and determine what additional airspace capacity will be needed to accommodate the expected demand. Terminal airspace is not modeled and increased airport capacity is assumed.

  3. Mixing of Multiple Jets with a Confined Subsonic Crossflow: Part III--The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdemann, James D.; Chang, Clarence T.

    2008-01-01

    This study was motivated by a goal to understand the mixing and emissions in the Rich-burn/Quick-mix/Lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported herein was a reacting jet-in-crossflow experiment at atmospheric pressure. The jets were injected from the perimeter of a cylindrical duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of J = 57. The size of individual orifices was decreased as the number of orifices increased to maintain a constant total area; the jet-to-mainstream mass-flow ratio was constant at MR = 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer might not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheating both main and jet air did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of an RQL combustor may comprise over 70 percent of the total air flow, the overall NOx emission levels were found to be more sensitive to main stream air preheat than to jet stream air preheat.

  4. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  5. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  6. Test and evaluation of shale derived jet fuel by the United States Air Force

    SciTech Connect

    Delaney, C.L.

    1985-01-01

    In June 1980, the United States Congress passed the Energy Security Act which provided for the formation of the United States Synthetic Fuels Corporation and amended the Defense Production Act of 1950 to provide for synthetic fuels for the Department of Defense (DOD). A subsequent law, P.L., 96-304, appropriated up to $20 billion for financial incentives to foster a national synthetic fuel industry. The initial synthetic fuel project funded under the Energy Security Act is the Unocal Parachute Creek Project in Colorado with an expected shale oil production of 10,000 bbls/day. The Defense Fuel Supply Center (DFSC) contracted with Gary Energy Refining Company, Fruita, Colorado to provide approximately 5,000 bbls/day of shale JP-4 for the United States Air Force (USAF) using crude from the Parachute Creek Project, with initial deliveries to begin in 1985.

  7. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    NASA Astrophysics Data System (ADS)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  8. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  9. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  10. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  11. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug. PMID:26296782

  12. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  13. Experimental study of a two-phase surface jet

    NASA Astrophysics Data System (ADS)

    Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.

    2013-04-01

    Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses < {u^' } w^' } } rangle decrease when bubbles are injected, indicating turbulence attenuation, and are negative at deeper locations, as turbulent eddies shed downward carry high axial momentum deeper into the flow. Flow visualization reveals that the two-phase jet is lifted with the presence of bubbles and reaches the free surface sooner. Significant bubble coalescence is observed, leading to an increase in mean bubble size as the jet develops. The coalescence near the free surface is particularly strong, due to the time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.

  14. Search for differences in the velocities and directions of the kiloparsec-scale jets of quasars with and without X-ray emission

    NASA Astrophysics Data System (ADS)

    Butuzova, M. S.

    2016-03-01

    The X-ray emission of the kiloparsec-scale jets of core-dominant quasars is usually interpreted as inverse Compton scattering on the cosmic microwave background (CMB) emission (Sample I). By analogy with the situation on parsec scales, ultrarelativistic motion along a jet oriented at a small angle to the line of sight is usually invoked to explain the X-ray emission while also satisfying the condition of equipartition between the energies associated with the relativistic particles and the magnetic field on kiloparsec scales. This leads to an increase in the energy flux of the CMB radiation in the rest frame of the kiloparsec-scale jets. Consequently, the intensity of the CMB radiation is enhanced to the level required for detectable X-ray emission. This suggests that kiloparsec jets of quasars with similar extents and radio flux densities that are not detected in the X-ray (Sample II) could have subrelativistic speeds and larger angles to the line of sight, due to deceleration and bending of the jet between parsec and kiloparsec scales. This suggests the possible presence of differences in the distributions of the difference between the position angle for the parsec-scale and kiloparsec-scale jets for these two groups of quasars; this is not confirmed by a statistical analysis of the data for Samples I and II. It is deduced that most of the sources considered exhibit bending of their jets by less than about 1.5 times the angle of the parsec-scale jet to the line of sight. This suggests that the X-ray emission is generated by other mechanisms that there is no equipartition.

  15. THE APPLICATION OF JET REMPI-TOFMS TO REAL-TIME MONITORING OF AROMATIC AIR TOXIC POLLUTANTS

    EPA Science Inventory

    Jet REMPI-TOFMS is a measurement technique which combines laser induced photoionization with mass spectrometry to create a two-dimensional (wavelength / mass) detection method. In combination with a supersonic jet inlet, aromatic organics are detected in real time (one data poin...

  16. Three dimensional flow field measurements of a 4:1 aspect ratio subsonic jet

    SciTech Connect

    Morrison, G.L.; Swan, D.H.

    1989-01-01

    Flow field measurements for a subsonic rectangular cold air jet with an aspect ratio of 4:1 (12.7 x 50.8 mm) at a Mach number of 0.09 and Re of 100,000 have been carried out using a three-dimensional laser Doppler anemometer system. Mean velocity measurements show that the jet width spreads more rapidly along the minor axis than along the major axis. The outward velocities, however, are not significantly different for the two axes, indicating the presence of enhanced mixing along the minor axis. The jet slowly changes from a rectangular jet to a circular jet as the flow progresses downstream. 11 references.

  17. Effects of northbound long-haul international air travel on sleep quantity and subjective jet lag and wellness in professional Australian soccer players.

    PubMed

    Fowler, Peter; Duffield, Rob; Howle, Kieran; Waterson, Adam; Vaile, Joanna

    2015-07-01

    The current study examined the effects of 10-h northbound air travel across 1 time zone on sleep quantity, together with subjective jet lag and wellness ratings, in 16 male professional Australian football (soccer) players. Player wellness was measured throughout the week before (home training week) and the week of (away travel week) travel from Australia to Japan for a preseason tour. Sleep quantity and subjective jet lag were measured 2 d before (Pre 1 and 2), the day of, and for 5 d after travel (Post 1-5). Sleep duration was significantly reduced during the night before travel (Pre 1; 4.9 [4.2-5.6] h) and night of competition (Post 2; 4.2 [3.7-4.7] h) compared with every other night (P<.01, d>0.90). Moreover, compared with the day before travel, subjective jet lag was significantly greater for the 5 d after travel (P<.05, d>0.90), and player wellness was significantly lower 1 d post-match (Post 3) than at all other time points (P<.05, d>0.90). Results from the current study suggest that sleep disruption, as a result of an early travel departure time (8 PM) and evening match (7:30 PM), and fatigue induced by competition had a greater effect on wellness ratings than long-haul air travel with a minimal time-zone change. Furthermore, subjective jet lag may have been misinterpreted as fatigue from sleep disruption and competition, especially by the less experienced players. Therefore, northbound air travel across 1 time zone from Australia to Asia appears to have negligible effects on player preparedness for subsequent training and competition. PMID:25569181

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Analysis of algorithms predicting blood:air and tissue:blood partition coefficients from solvent partition coefficients for prevalent components of JP-8 jet fuel.

    PubMed

    Sterner, Teresa R; Goodyear, Charles D; Robinson, Peter J; Mattie, David R; Burton, G Allen

    2006-08-01

    Algorithms predicting tissue and blood partition coefficients (PCs) from solvent properties were compared to assess their usefulness in a petroleum mixture physiologically based pharmacokinetic/pharmacodynamic model. Measured blood:air and tissue:blood PCs for rat and human tissues were sought from literature resources for 14 prevalent jet fuel (JP-8) components. Average experimental PCs were compared with predicted PCs calculated using algorithms from 9 published sources. Algorithms chosen used solvent PCs (octanol:water, saline or water:air, oil:air coefficients) due to the relative accessibility of these parameters. Tissue:blood PCs were calculated from ratios of predicted tissue:air and experimental blood:air values (PCEB). Of the 231 calculated values, 27% performed within +/- 20% of the experimental PC values. Physiologically based equations (based on water and lipid components of a tissue type) did not perform as well as empirical equations (derived from linear regression of experimental PC data) and hybrid equations (physiological parameters and empirical factors combined) for the jet fuel components. The major limitation encountered in this analysis was the lack of experimental data for the selected JP-8 constituents. PCEB values were compared with tissue:blood PCs calculated from ratios of predicted tissue:air and predicted blood:air values (PCPB). Overall, 68% of PCEB values had smaller absolute % errors than PCPB values. If calculated PC values must be used in models, a comparison of experimental and predicted PCs for chemically similar compounds would estimate the expected error level in calculated values. PMID:16766479

  20. Visualization research on high efficiency and low NOx combustion technology with multiple air-staged and large angle counter flow of fuel-rich jet

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Li, Y.; Lin, Z. C.; Fan, W. D.; Zhang, M. C.

    2010-03-01

    In this paper, a new technique for tangentially fired pulverized coal boiler, high efficiency and low NOx combustion technology with multiple air-staged and large angle counter flow of fuel-rich jet (ACCT for short), is proposed. Based on traditional air staged and rich-lean combustion technique, a NOx reduction area is introduced through air injection between primary combustion zone and secondary combustion zone. To verify the characters of this technique, experiment with a new developed visualization method, image processing on smog tracing with fractal dimension, is carried out on a cold model of 300 MW furnace designed with this technique. The result shows, compared to injection without counter flow, the center lines of counter flow injection go deeper into the chamber and form a smaller tangential circle, which means the rotating momentum of entire vortex is feebler and the exit gyration is weaker. It also shows that with counter flow, the fractal dimensions of boundary between primary jet and front fire side air is bigger, which means more intense turbulence and better mix. As a conclusion, with fractal dimension, image processing on smog tracing method can be a quantificational, convenient and effective visualization way without disturbing the flow field, and it's also acknowledged that ACCT has the following superiorities: high burn out rate, low NOx emission, stable burning, slagging preventing, and temp-bias reducing.

  1. Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar-H2O RF plasma jet in air

    NASA Astrophysics Data System (ADS)

    Verreycken, Tiny; Mensink, Rob; van der Horst, Ruud; Sadeghi, Nader; Bruggeman, Peter J.

    2013-10-01

    Absolute OH densities are obtained in a radio-frequency-driven Ar-H2O atmospheric-pressure plasma jet by laser-induced fluorescence (LIF), calibrated by Rayleigh scattering and by UV broadband absorption. The measurements are carried out in ambient air and the effect of air entrainment into the Ar jet is measured by analyzing the time-resolved fluorescence signals. The OH densities are obtained for different water vapor concentrations admixed to the Ar and as a function of the axial distance from the nozzle. A sensitivity analysis to deduce the accuracy of the model-calculated OH density from the LIF measurement is reported. It is found that the UV absorption and the LIF results correspond within experimental accuracy close to the nozzle and deviate in the far effluent. The possible reasons are discussed. The OH densities found in the plasma jet are in the range (0.1-2.5) × 1021 m-3 depending on the water concentration and plasma conditions.

  2. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  3. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  4. Noise source detection and measurement in a supersonic air jet using Ultra-high Speed Rainbow Schlieren Deflectometry

    NASA Astrophysics Data System (ADS)

    Rajora, Manik; Agrawal, Ajay; Mitchell, William; Kolhe, Pankaj

    2012-11-01

    Supersonic jets emit noise from various regions including the shear layer containing vortical structures, various shock cell structures in the near field and the downstream jet core breakdown region. Sound waves emitted from these various regions interact with each other and produce distinct noise spectra away from the jet, which depends upon the measurement location. Typically sound is detected by intrusive probes that provide measurements at a specific location, which makes it difficult to identify the origination point of such noise in a supersonic jet. In this study, an ultra-high speed Rainbow Schlieren Deflectometry (RSD) technique has been developed to optically visualize not only the supersonic jet flow but also the sound waves emanating from it in real time. Color schlieren images are acquired at up to 250,000 frames per second to capture the sound wave propagation with adequate spatial resolution. Optical components of the system were optimized to improve the spatial and temporal resolutions and hence, the schlieren video quality. To the best of our knowledge, this is the first time sound wave propagation from supersonic jets has been recorded in real time on a schlieren video. Acquired color schlieren images are amenable to quantitative analysis, and can provide data on sound power and sound wave frequency across the whole field. This project was funded by NSF REU 1062611 and Department of Energy for Institue for Sustainable Energy EE003134.

  5. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Pušková, Pavlína; Trávníček, Zdeněk; Šafařík, Pavel

    2016-03-01

    An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex - in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD) and the sound pressure level (SPL) were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600-18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x) in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  6. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  7. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  8. Exploring morphological variations of a laser-induced water jet in temporal evolution: formation of an air bubble enclosing a water drop

    NASA Astrophysics Data System (ADS)

    Chen, Ross C. C.; Yu, Y. T.; Su, K. W.; Chen, Y. F.

    2013-11-01

    We explore the spatio-temporal dynamics of a water jet that is generated by laser-induced water breakdown beneath a flat free surface. We find that morphological variations in the temporal evolution can be divided into three categories depending on the depth parameter γ, which is the ratio of the water-breakdown depth to the maximum bubble radius. For a depth parameter in the range 0.8 ≤ γ ≤ 1.03, we observe an intriguing pattern formation in which an air bubble perfectly encloses a water drop through the process of the Plateau-Rayleigh instability.

  9. The Penetration Behavior of an Annular Gas-Solid Jet Impinging on a Liquid Bath: Comparison with a Conventional Circular Jet

    NASA Astrophysics Data System (ADS)

    Park, Sung Sil; Dyussekenov, Nurzhan; Sohn, H. Y.

    2010-02-01

    The top-blow injection technique of a gas-solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.

  10. Influence of the initial conditions on axisymmetric jets in a parallel flow

    NASA Astrophysics Data System (ADS)

    Navoznov, O. I.; Pavelev, A. A.

    1980-07-01

    The paper deals with an experimental investigation of the flow in the initial portion of axisymmetric helium, air, and Freon-12 jets in turbulent mixing layers. Measurements of the mean and pulsation velocities and temperature are presented, along with flow pattern photographs.

  11. Jets from young stars

    NASA Astrophysics Data System (ADS)

    Bally, John

    2007-10-01

    Most stars produce spectacular jets during their formation. There are thousands of young stars within 500 pc of the Sun and many power jets. Thus protostellar jets may be the most common type of collimated astrophysical outflow. Shocks powered by outflows excite many emission lines, exhibit a rich variety of structure, and motions with velocities ranging from 50 to over 500 km s-1. Due to their relative proximity, proper motions and structural changes can be observed in less than a year. I review the general properties of protostellar jets, summarize some results from recent narrow-band imaging surveys of entire clouds, discuss irradiated jets, and end with some comments concerning outflows from high-mass young stellar objects. Protostellar outflows are ideal laboratories for the exploration of the jet physics.

  12. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  13. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  14. Wind-tunnel investigation at Mach numbers from 1.90 to 2.86 of a canard-controlled missile with ram-air-jet spoiler roll control. [in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1978-01-01

    The efficacy of using a ram-air-jet spoiler roll control device on a typical canard-controlled missile configuration was investigated. For roll control comparisons, conventional aileron controls on the tail fins were also tested. The results indicate that the roll control of the ram-air-jet spoiler tail fins at the highest free-stream Mach number compared favorably with that of the conventional 11-70 area-ratio tail fin ailerons, each deflected 10 deg. The roll control of the tail fin ailerons decreased while that of the ram-air-jet spoiler increased with free-stream Mach number. The addition of the ram-air-jet spoiler tail fins or flow-through tip chord nacelles on the tail fins resulted in only small changes in basic missile longitudinal stability. The axial force coefficient of the operating ram-air-jet spoiler is significantly larger than that of conventional ailerons and results primarily from the total pressure behind a normal shock in front of the nacelle inlets.

  15. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  16. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  17. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  18. Film cooling: case of double rows of staggered jets.

    PubMed

    Dorignac, E; Vullierme, J J; Noirault, P; Foucault, E; Bousgarbiès, J L

    2001-05-01

    An experimental investigation of film cooling of a wall in a case of double rows of staggered hot jets (65 degrees C) in an ambient air flow. The wall is heated at a temperature value between the one of the jets and the one of the main flow. Experiments have been carried out for different injection rates, the main flow velocity is maintained at 32 m/s. Association of the measures of temperature profiles by cold wire and the measures of wall temperature by infrared thermography allows us to describe the behaviour of the flows and to propose the best injection which assures a good cooling of the plate. PMID:11460645

  19. Aeroacoustics of hot jets

    NASA Astrophysics Data System (ADS)

    Viswanathan, K.

    2004-10-01

    A systematic study has been undertaken to quantify the effect of jet temperature on the noise radiated by subsonic jets. Nozzles of different diameters were tested to uncover the effects of Reynolds number. All the tests were carried out at Boeing's Low Speed Aeroacoustic Facility, with simultaneous measurement of thrust and noise. It is concluded that the change in spectral shape at high jet temperatures, normally attributed to the contribution from dipoles, is due to Reynolds number effects and not dipoles. This effect has not been identified before. A critical value of the Reynolds number that would need to be maintained to avoid the effects associated with low Reynolds number has been estimated to be {˜}400 000. It is well-known that large-scale structures are the dominant generators of noise in the peak radiation direction for high-speed jets. Experimental evidence is presented that shows the spectral shape at angles close to the jet axis from unheated low subsonic jets to be the same as from heated supersonic jets. A possible mechanism for the observed trend is proposed. When a subsonic jet is heated with the Mach number held constant, there is a broadening of the angular sector in which peak radiation occurs. Furthermore, there is a broadening of the spectral peak. Similar trends have been observed at supersonic Mach numbers. The spectral shapes in the forward quadrant and in the near-normal angles from unheated and heated subsonic jets also conform to the universal shape obtained from supersonic jet data. Just as for unheated jets, the peak frequency at angles close to the jet axis is independent of jet velocity as long as the acoustic Mach number is less than unity. The extensive database generated in the current test programme is intended to provide test cases with high-quality data that could be used for the evaluation of theoretical/semi-theoretical jet noise prediction methodologies.

  20. Pulling Results Out of Thin Air: Four Years of Ozone and Greenhouse Gas Measurements by the Alpha Jet Atmospheric Experiment (AJAX)

    NASA Technical Reports Server (NTRS)

    Yates, Emma

    2015-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) has been measuring atmospheric ozone, carbon dioxide, methane and meteorological parameters from near the surface to 8000 m since January 2011. The main goals are to study photochemical ozone production and the impacts of extreme events on western US air quality, provide data to support satellite observations and aid in the quantification of emission sources e.g. wildfires, urban outflow, diary and oil and gas. The aircraft is based at Moffett Field and flies multiple times a month to sample vertical profiles at selected sites in California and Nevada, providing long-term data records at these sites. AJAX is also uniquely positioned to launch with short notice sampling flights in rapid response to extreme events e.g. the 2013 Yosemite Rim fire. This talk will focus on the impacts of vertical transport on surface air quality, and investigation of emission sources from diaries and wildfires.