Sample records for air kerma measurements

  1. SU-D-209-01: Can Fluoroscopic Air-Kerma Rates Be Reliably Measured with Solid-State Meters?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, C; Thai, L; Wagner, L

    Purpose: Ionization chambers remain the standard for calibration of air-kerma rate measuring devices. Despite their strong energy-dependent response, solid state radiation detectors are increasingly used, primarily due to their efficiency in making standardized measurements. To test the reliability of these devices in measuring air-kerma rates, we compared ion chambers measurements with solid-state measurements for various mobile fluoroscopes operated at different beam qualities and air-kerma rates. Methods: Six mobile fluoroscopes (GE OEC models 9800 and 9900) were used to generate test beams. Using various field sizes and dose rate controls, copper attenuators and a lead attenuator were placed at the imagemore » receptor in varying combinations to generate a range of air-kerma rates. Air-kerma rates at 30 centimeters from the image receptors were measured using two 6-cm{sup 3} ion chambers with electrometers (Radcal, models 1015 and 9015) and two with solid state detectors (Unfors Xi and Raysafe X2). No error messages occurred during measurements. However, about two months later, one solid-state device stopped working and was replaced by the manufacturer. Two out of six mobile fluoroscopic units were retested with the replacement unit. Results: Generally, solid state and ionization chambers agreed favorably well, with two exceptions. Before replacement of the detector, the Xi meter when set in the “RF High” mode deviated from ion chamber readings by factors of 2 and 10 with no message indicating error in measurement. When set in the “RF Low” mode, readings were within −4% to +3%. The replacement Xi detector displayed messages alerting the user when settings were not compatible with air-kerma rates. Conclusion: Air-kerma rates can be measured favorably well using solid-state devices, but users must be aware of the possibility that readings can be grossly in error with no discernible indication for the deviation.« less

  2. Comparison of the NIST and BIPM Medium-Energy X-Ray Air-Kerma Measurements

    PubMed Central

    Burns, D. T.; O’Brien, M.; Lamperti, P.; Boutillon, M.

    2003-01-01

    The air-kerma standards used for the measurement of medium-energy x rays were compared at the National Institute of Standards and Technology (NIST) and at the Bureau International des Poids et Mesures (BIPM). The comparison involved a series of measurements at the BIPM and the NIST using the air-kerma standards and two NIST reference-class transfer ionization standards. Reference beam qualities in the range from 60 kV to 300 kV were used. The results show the standards to be in agreement within the combined standard uncertainty of the comparison of 0.35 %. PMID:27413616

  3. Comparison of air-kerma strength determinations for HDR (192)Ir sources.

    PubMed

    Rasmussen, Brian E; Davis, Stephen D; Schmidt, Cal R; Micka, John A; Dewerd, Larry A

    2011-12-01

    To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR (192)Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the (192)Ir air-kerma calibration coefficient from the NIST air-kerma standards at (137)Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A(wall) for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. The average measurements when using the inverse N(K) interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to

  4. Air kerma strength characterization of a GZP6 Cobalt-60 brachytherapy source

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Taheri, Mojtaba; Layegh, Mohsen; Makhdoumi, Yasha; Meigooni, Ali Soleimani

    2010-01-01

    Background Task group number 40 (TG-40) of the American Association of Physicists in Medicine (AAPM) has recommended calibration of any brachytherapy source before its clinical use. GZP6 afterloading brachytherapy unit is a 60Co high dose rate (HDR) system recently being used in some of the Iranian radiotherapy centers. Aim In this study air kerma strength (AKS) of 60Co source number three of this unit was estimated by Monte Carlo simulation and in air measurements. Materials and methods Simulation was performed by employing the MCNP-4C Monte Carlo code. Self-absorption of the source core and its capsule were taken into account when calculating air kerma strength. In-air measurements were performed according to the multiple distance method; where a specially designed jig and a 0.6 cm3 Farmer type ionization chamber were used for the measurements. Monte Carlo simulation, in air measurement and GZP6 treatment planning results were compared for primary air kerma strength (as for November 8th 2005). Results Monte Carlo calculated and in air measured air kerma strength were respectively equal to 17240.01 μGym2 h−1 and 16991.83 μGym2 h−1. The value provided by the GZP6 treatment planning system (TPS) was “15355 μGym2 h−1”. Conclusion The calculated and measured AKS values are in good agreement. Calculated-TPS and measured-TPS AKS values are also in agreement within the uncertainties related to our calculation, measurements and those certified by the GZP6 manufacturer. Considering the uncertainties, the TPS value for AKS is validated by our calculations and measurements, however, it is incorporated with a large uncertainty. PMID:24376948

  5. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    NASA Astrophysics Data System (ADS)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  6. The IPEM code of practice for determination of the reference air kerma rate for HDR 192Ir brachytherapy sources based on the NPL air kerma standard

    NASA Astrophysics Data System (ADS)

    Bidmead, A. M.; Sander, T.; Locks, S. M.; Lee, C. D.; Aird, E. G. A.; Nutbrown, R. F.; Flynn, A.

    2010-06-01

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR 192Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR 192Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an 192Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, \\dot K_R (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, SK (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL 192Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  7. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Direct measurement of air kerma rate in air from CDCS J-type caesium-137 therapy sources using a Farmer ionization chamber.

    PubMed

    Poynter, A J

    2000-04-01

    A simple method for directly measuring the reference air kerma rate from J-type 137Cs sources using a Farmer 2571 chamber has been evaluated. The method is useful as an independent means of verifying manufacturers' test data.

  9. Integration of kerma-area product and cumulative air kerma determination into a skin dose tracking system for fluoroscopic imaging procedures

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin dose tracking system (DTS) that we developed provides a color-coded mapping of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures in real time. The DTS has now been modified to also calculate the kerma area product (KAP) and cumulative air kerma (CAK) for fluoroscopic interventions using data obtained in real-time from the digital bus on a Toshiba Infinix system. KAP is the integral of air kerma over the beam area and is typically measured with a large-area transmission ionization chamber incorporated into the collimator assembly. In this software, KAP is automatically determined for each x-ray pulse as the product of the air kerma/ mAs from a calibration file for the given kVp and beam filtration times the mAs per pulse times the length and width of the beam times a field nonuniformity correction factor. Field nonuniformity is primarily the result of the heel effect and the correction factor was determined from the beam profile measured using radio-chromic film. Dividing the KAP by the beam area at the interventional reference point provides the area averaged CAK. The KAP and CAK per x-ray pulse are summed after each pulse to obtain the total procedure values in real-time. The calculated KAP and CAK were compared to the values displayed by the fluoroscopy machine with excellent agreement. The DTS now is able to automatically calculate both KAP and CAK without the need for measurement by an add-on transmission ionization chamber.

  10. New National Air-Kerma-Strength Standards for 125I and 103Pd Brachytherapy Seeds

    PubMed Central

    Seltzer, Stephen M.; Lamperti, Paul J.; Loevinger, Robert; Mitch, Michael G.; Weaver, James T.; Coursey, Bert M.

    2003-01-01

    The new U.S. measurement standard for the air-kerma strength from low-energy photon-emitting brachytherapy seed sources is formally described in detail. This instrument-based standard was implemented on 1 January 1999, with its salient features and the implications of differences with the previous standard given only through a series of informal communications. The Wide-Angle Free-Air Chamber (WAFAC) is specially designed to realize air kerma from a single-seed source emitting photons with energies up to about 40 keV, and is now used to measure the wide variety of seeds used in prostate-cancer therapy that has appeared in the last few years. For the two 125I seed models that have been subject to both the old and new standards, the new standard reduces the air-kerma strength by 10.3 %. This change is mainly due to the removal of the influence on the measurement of the Ti K x rays produced in the source encapsulation, a component with no clinical significance. PMID:27413614

  11. Comparison of the NIST and NPL Air Kerma Standards Used for X-Ray Measurements Between 10 kV and 80 kV

    PubMed Central

    O’Brien, M.; Lamperti, P.; Williams, T.; Sander, T.

    2000-01-01

    A direct comparison was made between the air kerma primary standards used for the measurements of low-energy x rays at the National Institute of Standards and Technology (NIST) and the National Physical Laboratory (NPL). The comparison was conducted at the NPL using NPL reference radiation qualities between 10 kV and 80 kV. The results show the primary air-kerma standards to agree within 0.6 % of their values for beam qualities up to 80 kV. PMID:27551632

  12. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  13. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validatedmore » this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x

  14. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Davis, Stephen D.

    A miniature x-ray source has been developed by Xoft Inc. for high dose-rate brachytherapy treatments. The source is contained in a 5.4 mm diameter water-cooling catheter. The source voltage can be adjusted from 40 kV to 50 kV and the beam current is adjustable up to 300 muA. Electrons are accelerated toward a tungsten-coated anode to produce a lightly-filtered bremsstrahlung photon spectrum. The sources were initially used for early-stage breast cancer treatment using a balloon applicator. More recently, Xoft Inc. has developed vaginal and surface applicators. The miniature x-ray sources have been characterized using a modification of the American Association of Physicists in Medicine Task Group No. 43 formalism normally used for radioactive brachytherapy sources. Primary measurements of air kerma were performed using free-air ionization chambers at the University of Wisconsin (UW) and the National Institute of Standards and Technology (NIST). The measurements at UW were used to calibrate a well-type ionization chamber for clinical verification of source strength. Accurate knowledge of the emitted photon spectrum was necessary to calculate the corrections required to determine air-kerma strength, defined in vacuo. Theoretical predictions of the photon spectrum were calculated using three separate Monte Carlo codes: MCNP5, EGSnrc, and PENELOPE. Each code used different implementations of the underlying radiological physics. Benchmark studies were performed to investigate these differences in detail. The most important variation among the codes was found to be the calculation of fluorescence photon production following electron-induced vacancies in the L shell of tungsten atoms. The low-energy tungsten L-shell fluorescence photons have little clinical significance at the treatment distance, but could have a large impact on air-kerma measurements. Calculated photon spectra were compared to spectra measured with high-purity germanium spectroscopy systems at both UW and

  15. Estimation of the peak entrance surface air kerma for patients undergoing computed tomography-guided procedures.

    PubMed

    Avilés Lucas, P; Dance, D R; Castellano, I A; Vañó, E

    2005-01-01

    The purpose of this work was to develop a method for estimating the patient peak entrance surface air kerma from measurements using a pencil ionisation chamber on dosimetry phantoms exposed in a computed tomography (CT) scanner. The method described is especially relevant for CT fluoroscopy and CT perfusion procedures where the peak entrance surface air kerma is the risk-related quantity of primary concern. Pencil ionisation chamber measurements include scattered radiation, which is outside the primary radiation field, and that must be subtracted in order to derive the peak entrance surface air kerma. A Monte Carlo computer model has therefore been used to calculate correction factors, which may be applied to measurements of the CT dose index obtained using a pencil ionisation chamber in order to estimate the peak entrance surface air kerma. The calculations were made for beam widths of 5, 7, 10 and 20 mm, for seven positions of the phantom, and for the geometry of a GE HiSpeed CT/i scanner. The program was validated by comparing measurements and calculations of CTDI for various vertical positions of the phantom and by directly estimating the peak ESAK using the program. Both validations showed agreement within statistical uncertainties (standard deviation of 2.3% or less). For the GE machine, the correction factors vary by approximately 10% with slice width for a fixed phantom position, being largest for the 20 mm beam width, and at that beam width range from 0.87 when the phantom surface is at the isocentre to 1.23 when it is displaced vertically by 24 cm.

  16. Pin-photodiode array for the measurement of fan-beam energy and air kerma distributions of X-ray CT scanners.

    PubMed

    Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori

    2016-07-01

    Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Simulation evaluation of NIST air-kerma rate calibration standard for electronic brachytherapy.

    PubMed

    Hiatt, Jessica R; Rivard, Mark J; Hughes, H Grady

    2016-03-01

    Dosimetry for the model S700 50 kV electronic brachytherapy (eBT) source (Xoft, Inc., a subsidiary of iCAD, San Jose, CA) was simulated using Monte Carlo (MC) methods by Rivard et al. ["Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent x-ray source: An electronic brachytherapy source," Med. Phys. 33, 4020-4032 (2006)] and recently by Hiatt et al. ["A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model," Med. Phys. 42, 2764-2776 (2015)] with improved geometric characterization. While these studies examined the dose distribution in water, there have not previously been reports of the eBT source calibration methods beyond that recently reported by Seltzer et al. ["New national air-kerma standard for low-energy electronic brachytherapy sources," J. Res. Natl. Inst. Stand. Technol. 119, 554-574 (2014)]. Therefore, the motivation for the current study was to provide an independent determination of air-kerma rate at 50 cm in airair(d=50 cm) using MC methods for the model S700 eBT source. Using CAD information provided by the vendor and disassembled sources, an MC model was created for the S700 eBT source. Simulations were run using the mcnp6 radiation transport code for the NIST Lamperti air ionization chamber according to specifications by Boutillon et al. ["Comparison of exposure standards in the 10-50 kV x-ray region," Metrologia 5, 1-11 (1969)], in air without the Lamperti chamber, and in vacuum without the Lamperti chamber. K̇air(d=50 cm) was determined using the *F4 tally with NIST values for the mass energy-absorption coefficients for air. Photon spectra were evaluated over 2 π azimuthal sampling for polar angles of 0° ≤ θ ≤ 180° every 1°. Volume averaging was averted through tight radial binning. Photon energy spectra were determined over all polar angles in both air and vacuum using

  18. Well-ionization chamber response relative to NIST air-kerma strength standard for prostate brachytherapy seeds.

    PubMed

    Mitch, M G; Zimmerman, B E; Lamperti, P J; Seltzer, S M; Coursey, B M

    2000-10-01

    The response of well-ionization chambers to the emissions of 103Pd and 125I radioactive seed sources used in prostate cancer brachytherapy has been measured. Calibration factors relating chamber response (current or dial setting) to measured air-kerma strength have been determined for seeds from nine manufacturers, each with different designs. Variations in well-ionization chamber response relative to measured air-kerma strength have been observed because of differences in the emitted energy spectrum due to both the radionuclide support material (125I seeds) and the mass ratio of 103Pd to 102Pd (103Pd seeds). Obtaining accurate results from quality assurance measurements using well-ionization chambers at a therapy clinic requires knowledge of such differences in chamber response as a function of seed design.

  19. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D; McEwen, M; Shen, H

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC wasmore » benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.« less

  20. Monte Carlo simulations in CT for the study of the surface air kerma and energy imparted to phantoms of varying size and position

    NASA Astrophysics Data System (ADS)

    Avilés Lucas, P.; Dance, D. R.; Castellano, I. A.; Vañó, E.

    2004-04-01

    A Monte Carlo computational model of CT has been developed and used to investigate the effect of various physical factors on the surface air kerma length product, the peak surface air kerma, the air kerma length product within a phantom and the energy imparted. The factors investigated were the bow-tie filter and the size, shape and position of a phantom which simulates the patient. The calculations show that the surface air kerma length product and the maximum surface air kerma are mainly dependent on phantom position and decrease along the vertical axis of the CT plane as the phantom surface moves away from the isocentre along this axis. As a result, measurements using standard body dosimetry phantoms may underestimate the skin dose for real patients. This result is specially important for CT fluoroscopic procedures: for an adult patient the peak skin dose can be 37% higher than that estimated with a standard measurement on the body AAPM (American Association of Physicists in Medicine) phantom. The results also show that the energy imparted to a phantom is mainly influenced by phantom size and is nearly independent of phantom position (within 3%) and shape (up to 5% variation). However, variations of up to 30% were found for the air kerma to regions within the AAPM body phantom when it is moved vertically. This highlights the importance of calculating doses to organs taking into account their size and position within the gantry.

  1. APMP key comparison for the measurement of air kerma for 60Co (APMP.RI(I)-K1.1)

    NASA Astrophysics Data System (ADS)

    Webb, D. V.; Lee, J.-H.; Budiantari, C. T.; Laban, J.; Saito, N.; Srimanoroth, S.; Khaled, N. E.

    2016-01-01

    The results are reported for an APMP.R(I)-K1.1 comparison that extends the regional comparison of standards for air kerma APMP.R(I)-K1 to several laboratories unable to participate earlier. The comparison was conducted with the goal of supporting the relevant calibration and measurement capabilities (CMCs) planned for publication by the participant laboratories. The comparison was conducted by the pilot laboratory, the Australian Radiation Protection and Nuclear Safety (ARPANSA), Australia, supported by the Institute of Nuclear Energy Research (INER), Taiwan, in a modified ring-shaped arrangement from September 2009 to November 2010, in parallel with an APMP.R(I)-K4 comparison being piloted by the INER. The laboratories that took part in the comparison were the ARPANSA, the Centre of Technology of Radiation Safety and Metrology (PTKMR-BATAN), Indonesia, the Division of Radiation and Medical Devices (DMSC), Thailand, the INER, the National Centre for Radiation Science (NCRS), New Zealand, the National Institute for Standards (NIS), Egypt and the National Metrology Institute of Japan (NMIJ/AIST), Japan. The two primary laboratories, ARPANSA and NMIJ, were chosen as the linking laboratories. Three ionization chambers were used as transfer instruments to be calibrated in terms of air kerma in 60Co radiotherapy beams. The comparison result is based on the ratio between the air kerma calibration coefficients (NK) determined by the participants and the mean of the results of the linking laboratories. The mean comparison ratio was found to be within 0.5 % of the key comparison reference value KCRV. The largest deviation between any two comparison ratios for the three chambers in terms of air kerma was 2.0 %. An analysis of the participant uncertainty budgets enabled the calculation of degrees of equivalence (DoE) in terms of the deviations of the results and their associated uncertainties. As a result of this APMP comparison, the BIPM key comparison database (KCDB) should

  2. Seasonal variation of air kerma in the "Vulcano Porto" area (Aeolian Islands, Italy).

    PubMed

    Bellia, S; Basile, S; Brai, M; Hauser, S; Puccio, P; Rizzo, S

    2001-04-01

    Air kerma was measured in the "Vulcano Porto" area of the Vulcano Island, belonging to the Aeolian Islands, in the Mediterranean Sea. Measurements were carried out using thermoluminescence dosimeters. The relationship between observed dose values and source lithology has been assessed. Data show a seasonal variation due to weather conditions but also probably related to features of the soils, making the variation more evident.

  3. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, W. F.

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  4. Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams

    PubMed Central

    Seltzer, Stephen M.; Bergstrom, Paul M.

    2003-01-01

    Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from 60Co, 137Cs, and 192Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for 60Co beams, +0.64 % to +1.07 % (depending on the chamber) for 137Cs beams, and −0.06 % for the single chamber used in the measurement of the standardized 192Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work. PMID:27413615

  5. Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams.

    PubMed

    Seltzer, Stephen M; Bergstrom, Paul M

    2003-01-01

    Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from (60)Co, (137)Cs, and (192)Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for (60)Co beams, +0.64 % to +1.07 % (depending on the chamber) for (137)Cs beams, and -0.06 % for the single chamber used in the measurement of the standardized (192)Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work.

  6. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  7. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLorenzo, M; Wu, D; Rutel, I

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancymore » factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and

  8. Comparison of the NIST and PTB Air-Kerma Standards for Low-Energy X-Rays.

    PubMed

    O'Brien, Michelle; Bueermann, Ludwig

    2009-01-01

    A comparison has been made of the air-kerma standards for low-energy x rays at the National Institute of Standards and Technology (NIST) and the Physikalisch-Technische Bundesanstalt (PTB). The comparison involved a series of measurements at the PTB and the NIST using the air-kerma standards and two NIST reference-class transfer ionization chamber standards. Results are presented for the reference radiation beam qualities in the range from 25 kV to 50 kV for low energy x rays, including the techniques used for mammography dose traceability. The tungsten generated reference radiation qualities, between 25 kV and 50 kV used for this comparison, are new to NIST; therefore this comparison will serve as the preliminary comparison for NIST and a verification of the primary standard correction factors. The mammography comparison will repeat two previously unpublished comparisons between PTB and NIST. The results show the standards to be in reasonable agreement within the standard uncertainty of the comparison of about 0.4 %.

  9. Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range

    PubMed Central

    Burns, D. T.; Lamperti, P.; O’Brien, M.

    1999-01-01

    A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.

  10. Comparison of incident air kerma (ki) of common digital and analog radiology procedures in Kohgiluyeh and Boyer-Ahmad province

    NASA Astrophysics Data System (ADS)

    Vafapour, Hassan; Salehi, Zaker

    2018-03-01

    Introduction: Although in many developed countries, Analog radiography (AR) is replaced with digital radiography (DR) but AR is still widely used in many countries included Iran. Therefore, dosimetrically assessment of delivered dose is very important to avoid unnecessary patient dose. Materials and Methods: In this study, all imaging centers in Kohgiluyeh and Boyer-Ahmad were selected. The initial information included the mean kVp and mAs used by the personnel to perform each radiological procedure were gathered through a questionnaire. Barracuda dosimeter was then used to measure Incident air kerma (ki). Data obtained from digital radiography (DR) and analogue radiography (AR) were then analyzed and compared to each other. Results: The mean incident air kerma (ki) for five radiological procedures (chest AP&Lat, Skull AP&Lat, Lumbar spine AP&Lat, Thoracic spine AP&Lat and Pelvis) in digital devices were 0.38&1.34, 2.1&1.94, 4.99&7.83, 4.18& 6.41 and 4.33 mGy and those for analogue devices were 0.7&1.28, 3.05&3.02, 7.25&9.9, 7.125&8.36 and 5.36 mGy, respectively. Discussion and Conclusion: The use of low kVp or high mAs is one of the reasons to increase the incident air kerma (ki) in analogue methods comparing to digital methods in all procedures except the chest (in Lateral view). Also the results, surprisingly, showed that in some of the analogue methods incident air kerma (ki) was less than digital methods which is most probably because of the auto-exposure conditions.

  11. New National Air-Kerma Standard for Low-Energy Electronic Brachytherapy Sources

    PubMed Central

    Seltzer, Stephen M; O’Brien, Michelle; Mitch, Michael G

    2014-01-01

    The new primary standard for low-energy electronic brachytherapy sources for the United States is described. These miniature x-ray tubes are inserted in catheters for interstitial radiation therapy and operate at tube potentials of up to about 50 kV. The standard is based on the realization of the air kerma produced by the x-ray beam at a reference distance in air of 50 cm. PMID:26601044

  12. [Measurement of the air kerma using dosimeters embedded in an acrylic phantom in interventional radiology.].

    PubMed

    Kawabe, Atsushi; Shibuya, Koichi; Takeda, Yoshihiro

    2006-01-01

    Interventional radiology procedure guidelines and a measurement manual (IVR guidelines) have been published for the maintenance of interventional equipment with an objective of avoiding serious radiation-induced skin injuries. In the IVR guidelines, the positioning of a dosimeter at the interventional reference point is determined, whereas placement of a phantom is not specified. Therefore, the phantom is placed at any convenient location between the dosimeter and image intensifier. The space around the dosimeter reduces detection of scattered radiation. In this study, dosimeters (consisting of a parallel plate ionization chamber, glass dosimeter and OSL dosimeter) were embedded in the phantom surface to detected scattered radiation accurately. As a result, when dosimeters were embedded in the phantom surface, the air kerma was increased compared with that when dosimeters were placed on the phantom. This suggested that embedded dosimeters were able to detect scattered radiation from the phantom.

  13. Effect of fluoroscopic X-ray beam spectrum on air-kerma measurement accuracy: implications for establishing correction coefficients on interventional fluoroscopes with KAP meters.

    PubMed

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-05-08

    The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify.

  14. Evaluation of entrance surface air kerma in pediatric chest radiography

    NASA Astrophysics Data System (ADS)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J. L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-11-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior-posterior (AP) and posterior-anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0-1 y, 1-5 y, 5-10 y, and 10-15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels.

  15. Determination of the Kwall correction factor for a cylindrical ionization chamber to measure air-kerma in 60Co gamma beams.

    PubMed

    Laitano, R F; Toni, M P; Pimpinella, M; Bovi, M

    2002-07-21

    The factor Kwall to correct for photon attenuation and scatter in the wall of ionization chambers for 60Co air-kerma measurement has been traditionally determined by a procedure based on a linear extrapolation of the chamber current to zero wall thickness. Monte Carlo calculations by Rogers and Bielajew (1990 Phys. Med. Biol. 35 1065-78) provided evidence, mostly for chambers of cylindrical and spherical geometry, of appreciable deviations between the calculated values of Kwall and those obtained by the traditional extrapolation procedure. In the present work an experimental method other than the traditional extrapolation procedure was used to determine the Kwall factor. In this method the dependence of the ionization current in a cylindrical chamber was analysed as a function of an effective wall thickness in place of the physical (radial) wall thickness traditionally considered in this type of measurement. To this end the chamber wall was ideally divided into distinct regions and for each region an effective thickness to which the chamber current correlates was determined. A Monte Carlo calculation of attenuation and scatter effects in the different regions of the chamber wall was also made to compare calculation to measurement results. The Kwall values experimentally determined in this work agree within 0.2% with the Monte Carlo calculation. The agreement between these independent methods and the appreciable deviation (up to about 1%) between the results of both these methods and those obtained by the traditional extrapolation procedure support the conclusion that the two independent methods providing comparable results are correct and the traditional extrapolation procedure is likely to be wrong. The numerical results of the present study refer to a cylindrical cavity chamber like that adopted as the Italian national air-kerma standard at INMRI-ENEA (Italy). The method used in this study applies, however, to any other chamber of the same type.

  16. Effect of bedside shielding on air-kerma rates around gynecologic intracavitary brachytherapy patients containing sup 226 Ra or sup 137 Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papin, P.J.; Ramsey, M.J.; LaFontaine, R.L.

    An anthropomorphic phantom was implanted with 226Ra or 137Cs gynecologic intracavitary brachytherapy sources. Air-kerma rate measurements were taken at 10-cm increments along a horizontal plane from the side of the bed at 50 cm, 87 cm, and 136 cm heights above the floor. Five portable lead shields were placed at the head, at the foot and along one side of the bed and readings were taken again at the corresponding heights above, below and behind the shields. The readings were normalized to 100-mg Ra equivalence, and air-kerma rate curves were drawn allowing for the comparison of 226Ra and 137Cs withmore » and without lead shields. The data demonstrated that the air-kerma rates for 137Cs were reduced more than those for 226Ra with the use of the portable lead shields. There was four times the transmission with 226Ra than with 137Cs. The optimal placement was with the lateral bedside shields proximal to the head and foot closest to the bed, with the middle shield overlapping in back. The shields at the head and foot should extend out and overlap the bedside shields. The level of the sources should be positioned near the bottom of the shields. This information will provide the medical health physicist with an estimate of air-kerma rates for both 226Ra and 137Cs with and without shielding for evaluating personnel exposures as well as the effectiveness of current shielding in relation to radiation protection requirements in adjacent rooms or hallways.« less

  17. Determination of the reference air kerma rate for 192Ir brachytherapy sources and the related uncertainty.

    PubMed

    van Dijk, Eduard; Kolkman-Deurloo, Inger-Karine K; Damen, Patricia M G

    2004-10-01

    Different methods exist to determine the air kerma calibration factor of an ionization chamber for the spectrum of a 192Ir high-dose-rate (HDR) or pulsed-dose-rate (PDR) source. An analysis of two methods to obtain such a calibration factor was performed: (i) the method recommended by [Goetsch et al., Med. Phys. 18, 462-467 (1991)] and (ii) the method employed by the Dutch national standards institute NMi [Petersen et al., Report S-EI-94.01 (NMi, Delft, The Netherlands, 1994)]. This analysis showed a systematic difference on the order of 1% in the determination of the strength of 192Ir HDR and PDR sources depending on the method used for determining the air kerma calibration factor. The definitive significance of the difference between these methods can only be addressed after performing an accurate analysis of the associated uncertainties. For an NE 2561 (or equivalent) ionization chamber and an in-air jig, a typical uncertainty budget of 0.94% was found with the NMi method. The largest contribution in the type-B uncertainty is the uncertainty in the air kerma calibration factor for isotope i, N(i)k, as determined by the primary or secondary standards laboratories. This uncertainty is dominated by the uncertainties in the physical constants for the average mass-energy absorption coefficient ratio and the stopping power ratios. This means that it is not foreseeable that the standards laboratories can decrease the uncertainty in the air kerma calibration factors for ionization chambers in the short term. When the results of the determination of the 192Ir reference air kerma rates in, e.g., different institutes are compared, the uncertainties in the physical constants are the same. To compare the applied techniques, the ratio of the results can be judged by leaving out the uncertainties due to these physical constants. In that case an uncertainty budget of 0.40% (coverage factor=2) should be taken into account. Due to the differences in approach between the method

  18. Comparison of the NIST and ENEA Air Kerma Standards

    PubMed Central

    Laitano, R. F.; Lamperti, P. J.; Toni, M. P.

    1998-01-01

    A comparison was made between the National Institute of Standards and Technology (NIST) and Ente per le Nuove Tecnologie l’Energia e l’Ambiente (ENEA) air kerma standards for medium energy x rays and 60Co gamma rays. The comparison took place at ENEA in June 1994. Two different transfer chambers from NIST were used for the comparison. The measurements were made at radiation qualities similar to those used at the Bureau International des Poids et Mesures (BIPM) (generating voltages of 100 kV, 135 kV, 180 kV and 250 kV, respectively) and with 60Co gamma radiation. The transfer chamber calibration factors obtained at the NIST and at the ENEA agreed with one another to 0.03 % for 60Co gamma radiation and between 0.1 % to 0.8 % for the medium energy x-ray beam codes. PMID:28009356

  19. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or currentmore » can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure

  20. Comparison of the NIST and ENEA air kerma standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitano, R.F.; Toni, M.P.; Lamperti, P.J.

    1998-07-01

    A comparison was made between the National Institute of Standards and Technology (NIST) and Ente per le Nuov Tecnologie l`Energia e l`Ambiente (ENEA) air kerma standards for medium energy x rays and {sup 60}Co gamma rays. The comparison took place at ENEA in June 1994. Two different transfer chambers from NIST were used for the comparison. The measurements were made at radiation qualities similar to those used at the Bureau International des Poids et Mesures (BIPM) (generating voltages of 100 kV, 135 kV, 180 kV and 250 kV, respectively) and with {sup 60}Co gamma radiation. The transfer chamber calibration factorsmore » obtained at the NIST and at the ENEA agreed with one another to 0.03% for {sup 60}Co gamma radiation and between 0.1% to 0.8% for the medium energy x-ray beam codes.« less

  1. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne

    2018-02-01

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  2. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality.

    PubMed

    Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde

    2018-01-25

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  3. Comparison Between the NIST and the KEBS for the Determination of Air Kerma Calibration Coefficients for Narrow X-Ray Spectra and 137Cs Gamma-Ray Beams

    PubMed Central

    O’Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn

    2010-01-01

    Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients. PMID:27134777

  4. Comparison Between the NIST and the KEBS for the Determination of Air Kerma Calibration Coefficients for Narrow X-Ray Spectra and (137)Cs Gamma-Ray Beams.

    PubMed

    O'Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn

    2010-01-01

    Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients.

  5. SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, S; Oita, M; Narihiro, N

    2016-06-15

    Purpose: In general, the air-kerma strength (Sk) has been determined by the energy weighting the photon energy fluence and the corresponding mass-energy absorption coefficient or mass-energy transfer coefficient. Kerma is an acronym for kinetic energy released per unit mass, defined as the sum of the initial kinetic energies of all the charged particles. Monte Carlo (MC) simulations can investigate the kinetic energy of the charged particles after photo interactions and sum the energy. The Sk of {sup 192}Ir source is obtained in the full MC simulation and finally the dose rate constant Λ is determine. Methods: MC simulations were performedmore » using EGS5 with the microSelectron HDR v2 type of {sup 192}Ir source. The air-kerma rate obtained to sum the electron kinetic energy after photoelectric absorption or Compton scattering for transverse-axis distance from 1 to 120 cm with a 10 m diameter air phantom. Absorbed dose in water is simulated with a 30 cm diameter water phantom. The transport cut-off energy is 10 keV and primary photons from the source need two hundred and forty billion in the air-kerma rate and thirty billion in absorbed dose in water. Results: Sk is multiplied by the square of the distance in air-kerma rate and determined by fitting a linear function. The result of Sk is (2.7039±0.0085)*10-{sup −11} µGy m{sup 2} Bq{sup −1} s{sup −1}. Absorbed dose rate in water at 1 cm transverse-axis distance D(r{sub 0}, θ{sub 0}) is (3.0114±0.0015)*10{sup −11} cGy Bq{sup −1} s{sup −1}. Conclusion: From the results, dose rate constant Λ of the microSelectron HDR v2 type of {sup 192}Ir source is (1.1137±0.0035) cGy h{sup −1} U{sup −1} by the full MC simulations. The consensus value conΛ is (1.109±0.012) cGy h{sup −1} U{sup −1}. The result value is consistent with the consensus data conΛ.« less

  6. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  7. SU-E-I-49: Influence of Scanner Output Measurement Technique on KERMA Ratios in CT.

    PubMed

    Ogden, K; Roskopf, M; Scalzetti, E

    2012-06-01

    KERMA ratios (RK) are defined as the ratio of KERMA measured at a specific phantom location (K) to in-air isocenter CT scanner output (KCT). In this work we investigate the impact of measurement methodology on KCT values. OSL dosimeter chips were used to measure KCT for a GE VCT scanner (GE Medical Systems, Waukesha WI), using the 40 mm nominal beam width. Methods included a single point measurement at the center of the beam (1 tube rotation), and extended z-axis measurements using multiple adjacent OSL's (7.5 cm extent), with single tube rotation, multiple contiguous axial scans, and helical scans (pitch of 1.375). Measurements were made in air and on the scan table at 80 and 120 kV. Averaged single point measurements were consistent, with a mean coefficient of variation of 2.5%. For extended measurements with a single tube rotation, the mean value was equivalent to the single point measurements. For multiple contiguous axial scans, the in-air KCT values were higher than the single rotation mean value and single point measurements by 13% and 10.3% at 120 and 80 kV, respectively, and for the on-table measurements the values were 14.9% and 8.1% higher at 120 and 80 kV, respectively. The increase is due to beam overlap caused by z- axis over-beaming. Extended measurements using helical scanning were equivalent to the multiple rotation axial measurements when corrected for the helical pitch. For all methodologies, the in-air values exceeded the on- table measurements by an average of 23% and 19.4% at 80 and 120 kV, respectively. Scanner KCT values must be measured to allow organ dose estimation using published RK values. It is imperative that the KCT measurement methodology is the same as for the published values, or large errors may be introduced into the resulting organ dose estimates. © 2012 American Association of Physicists in Medicine.

  8. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharrati, Hedi

    2005-05-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations andmore » does not exceed 75% for the leakage radiation.« less

  9. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    PubMed

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.

  10. Comparison for Air Kerma from Radiation Protection Gamma-ray Beams with Brazilian Network - 2016/2017

    NASA Astrophysics Data System (ADS)

    Cabral, TS; da Silva, CNM; Potiens, MPA; Soares, CMA; Silveira, RR; Khoury, H.; Saito, V.; Fernandes, E.; Cardoso, WF; de Oliveira, HPS; Pires, MA; de Amorim, AS; Balthar, M.

    2018-03-01

    The results of the comparison involving 9 laboratories in Brazil are reported. The measured quantity was the air kerma in 137Cs and 60Co, at the level of radioprotection. The comparison was conducted by the National Laboratory Metrology of Ionizing Radiation (LNMRI/IRD) from October 2016 to March 2017. The largest deviation between the calibration coefficients was 0.8% for 137Cs and 0.7% for 60Co. This proficiency exercise proved the technical capacity of the Brazilian calibration network in radiation monitors and the results were used by some in the implementation of the standard ISO/IEC 17025.

  11. Direct calibration of a reference standard against the air kerma strength primary standard, at 192Ir HDR energy.

    PubMed

    Rajan, K N Govinda; Selvam, T Palani; Bhatt, B C; Vijayam, M; Patki, V S; Vinatha; Pendse, A M; Kannan, V

    2002-04-07

    The primary standard of low air kerma rate sources or beams, maintained at the Radiological Standards Laboratory (RSL) of the Bhabha Atomic Research Centre (BARC), is a 60 cm3 spherical graphite ionization chamber. A 192Ir HDR source was standardized at the hospital site in units of air kerma strength (AKS) using this primary standard. A 400 cm3 bakelite chamber, functioning as a reference standard at the RSL for a long period, at low air kerma rates (compared to external beam dose rates), was calibrated against the primary standard. It was seen that the primary standard and the reference standard, both being of low Z, showed roughly the same scatter response and yielded the same calibration factor for the 400 cm3 reference chamber, with or without room scatter. However, any likelihood of change in the reference chamber calibration factor would necessitate the re-transport of the primary standard to the hospital site for re-calibration. Frequent transport of the primary standard can affect the long-term stability of the primary standard, due to its movement or other extraneous causes. The calibration of the reference standard against the primary standard at the RSL, for an industrial type 192Ir source maintained at the laboratory, showed excellent agreement with the hospital calibration, making it possible to check the reference chamber calibration at RSL itself. Further calibration procedures have been developed to offer traceable calibration of the hospital well ionization chambers.

  12. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    PubMed

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Influence of ion chamber response on in-air profile measurements in megavoltage photon beams.

    PubMed

    Tonkopi, E; McEwen, M R; Walters, B R B; Kawrakow, I

    2005-09-01

    This article presents an investigation of the influence of the ion chamber response, including buildup caps, on the measurement of in-air off-axis ratio (OAR) profiles in megavoltage photon beams using Monte Carlo simulations with the EGSnrc system. Two new techniques for the calculation of OAR profiles are presented. Results of the Monte Carlo simulations are compared to measurements performed in 6, 10 and 25 MV photon beams produced by an Elekta Precise linac and shown to agree within the experimental and simulation uncertainties. Comparisons with calculated in-air kerma profiles demonstrate that using a plastic mini phantom gives more accurate air-kerma measurements than using high-Z material buildup caps and that the variation of chamber response with distance from the central axis must be taken into account.

  14. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the

  15. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners.

    PubMed

    Strom, Daniel J; Cerra, Frank

    2016-06-01

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3) a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow "pencil" beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source or b) during the traversal of a point source is a unifying concept. The "universal source strength" of air kerma rate at 1 m from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.

  16. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.; Cerra, Frank

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3)more » a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow “pencil” beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source, or b) during the traversal of a point source, is a unifying concept. The “universal source strength” of air kerma rate at a meter from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.« less

  17. Development of a phantom and a methodology for evaluation of depth kerma and kerma index for dental cone beam computed tomography.

    PubMed

    Batista, W O; Navarro, M V T; Maia, A F

    2013-12-01

    Basically, all modalities of diagnostic radiology require phantoms suitable for dosimetric evaluations. New technologies frequently arise unaccompanied of tools for dosimetric evaluations and quality control. In this study, a low-cost phantom and a consequent proposed methodology for dosimetric evaluations in cone beam computed tomography (CBCT) were presented. The developed phantom has typical dimensions of the human face, was built in polymethyl methacrylate and filled with water. Three devices with different technological concepts were evaluated and a proposed index, kerma index-height product (PKIH), was defined as an option to the use of air kerma-area product. The results of this study show relatively uniform kerma profiles for scanners with field of views (FOVs) of large diameters and non-uniform for FOVs of small diameters. With regard to the values obtained for the kerma indexes, much higher values were found for the equipment FOVs with small diameter compared with the values of the two other equipment that have larger diameters. The results indicate that (1) there is a need for special phantoms for use in CBCT, (2) the use of P(KA) in the evaluation of protocols on different equipment can lead to false interpretations and (3) the new index is a suitable alternative for the use of P(KA) in CBCT.

  18. SU-E-I-27: Estimating KERMA Area Product for CT Localizer Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogden, K; Greene-Donnelly, K; Bennett, R

    2015-06-15

    Purpose: To estimate the free-in-air KERMA-Area Product (KAP) incident on patients due to CT localizer scans for common CT exams. Methods: In-plane beam intensity profiles were measured in localizer acquisition mode using OSLs for a 64 slice MDCT scanner (Lightspeed VCT, GE Medical Systems, Waukesha WI). The z-axis beam width was measured as a function of distance from isocenter. The beam profile and width were used to calculate a weighted average air KERMA per unit mAs as a function of intercepted x-axis beam width for objects symmetric about the localizer centerline.Patient areas were measured using manually drawn regions and dividedmore » by localizer length to determine average width. Data were collected for 50 head exams (lateral localizer only), 15 head/neck exams, 50 chest exams, and 50 abdomen/pelvis exams. Mean patient widths and acquisition techniques were used to calculate the weighted average free-in-air KERMA, which was multiplied by the patient area to estimate KAP. Results: Scan technique was 120 kV tube voltage, 10 mA current, and table speed of 10 cm/s. The mean ± standard deviation values of KAP were 120 ± 11.6, 469 ± 62.6, 518 ± 45, and 763 ± 93 mGycm{sup 2} for head, head/neck, chest, and abdomen/pelvis exams, respectively. For studies with AP and lateral localizers, the AP/lateral area ratio was 1.20, 1.33, and 1.24 for the head/neck, chest, and abdomen/pelvis exams, respectively. However, the AP/lateral KAP ratios were 1.12, 1.08, and 1.07, respectively. Conclusion: Calculation of KAP in CT localizers is complicated by the non-uniform intensity profile and z-axis beam width. KAP values are similar to those for simple radiographic exams such as a chest radiograph and represent a small fraction of the x-ray exposure at CT. However, as CT doses are reduced the localizer contribution will be a more significant fraction of the total exposure.« less

  19. MO-FG-CAMPUS-IeP1-04: Kerma Area Product Calculation for Non-Uniform X-Ray Fields Using a Skin Dose Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Rudin, S

    Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  20. Key comparison BIPM.RI(I)-K5 of the air kerma standards of the ININ, Mexico and the BIPM in 137Cs gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Alvarez Romero, J. T.; De la Cruz Hernández, D.; Cabrera Vertti, M. R.; Tovar-Muñoz, V. M.

    2015-01-01

    A direct comparison of the standards for air kerma of the Instituto Nacional de Investigaciones Nucleares (ININ), Mexico, and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 137Cs radiation beam of the BIPM in February 2015. The comparison result, evaluated as a ratio of the ININ and the BIPM standards for air kerma, is 1.0048 with a combined standard uncertainty of 2.0 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.

  2. Remarks on KERMA Factors in ACE files

    NASA Astrophysics Data System (ADS)

    Konno, C.; Ochiai, K.; Takakura, K.; Sato, S.

    2014-04-01

    Some neutron KERMA factors in ACE files are negative and extremely large if nuclear data libraries do not keep energy-balance. The status of neutron KERMA factors in the official ACE file of ENDF/B-VII.1 is examined. As a result, it is found out that neutron KERMA factors of nuclei more than 200 in ENDF/B-VII.1 have some problems. Effects of the inadequate KERMA factor are also investigated, which are large for neutron heat while those are small for total (neutron + gamma) heat. Users who use only neutron KERMA factors should check if the factors are adequate or not before they use the factors.

  3. Reference air kerma rate calibration system for high dose rate Ir-192 brachytherapy sources in Taiwan

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun

    2017-11-01

    Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.

  4. Key comparison BIPM.RI(I)-K5 of the air-kerma standards of the SMU, Slovakia and the BIPM in 137Cs gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Durný, N.

    2018-01-01

    The first direct comparison of the standards for air kerma of the Slovak Institute of Metrology (SMU), Slovakia and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 137Cs radiation beam of the BIPM in June 2017. The comparison result, evaluated as a ratio of the SMU and the BIPM standards for air kerma, is 1.0051 with a combined standard uncertainty of 2.7 × 10-3. The results for an indirect comparison made at the same time are consistent with the direct results at the level of 2 parts in 104. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the SMU, Slovakia and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Durný, N.

    2018-01-01

    A key comparison of the standards for air kerma of the Slovak Institute of Metrology (SMU), Slovakia and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in June 2017. The comparison result, evaluated as a ratio of the SMU and the BIPM standards for air kerma, is 1.0042 with a combined standard uncertainty of 2.7 × 10-3. The results for an indirect comparison made at the same time are consistent with the direct results at the level of 2 parts in 104. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the MKEH, Hungary and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Machula, G.

    2018-01-01

    A comparison of the standards for air kerma of the Hungarian Trade Licensing Office (MKEH), Hungary and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in March 2016. The comparison result, evaluated as a ratio of the MKEH and the BIPM standards for air kerma, is 1.0047 with a combined standard uncertainty of 1.9 × 10-3. The results for an indirect comparison made at the same time are consistent with the direct results at the level of 2.6 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Air-kerma strength determination of a new directional (103)Pd source.

    PubMed

    Aima, Manik; Reed, Joshua L; DeWerd, Larry A; Culberson, Wesley S

    2015-12-01

    A new directional (103)Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing (103)Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active (103)Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S(K)) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S(K) to a well-type ionization chamber. S(K) measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S(K) from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S(K) with the presence of gold fluorescent energy lines. In addition to S(K) measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S(K) values for a directional source within a cylindrically symmetric measurement volume. The UW VAFAC was successfully used to measure the S(K) of four CivaDots with reproducibilities within 0.3%. Monte Carlo

  8. Air-kerma strength determination of a new directional 103Pd source

    PubMed Central

    Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.

    2015-01-01

    Purpose: A new directional 103Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing 103Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active 103Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (SK) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring SK to a well-type ionization chamber. Methods: SK measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity SK from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the mcnp 6 Monte Carlo code in order to determine SK with the presence of gold fluorescent energy lines. In addition to SK measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating SK values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the SK of four CivaDots with reproducibilities within 0.3%. Monte

  9. SU-G-IeP3-01: Better Kerma-Area-Product (KAP) Estimation Using the System Parameters in Radiography and Fluoroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; MacDougall, R

    2016-06-15

    Purpose: Accurate values for Kerma-Area-Product (KAP) are needed for patient dosimetry and quality control for exams utilizing radiographic and/or fluoroscopic imaging. The KAP measured using a typical direct KAP meter built with parallel-plate transmission ionization chamber is not precise and depends on the energy spectrum of diagnostic x-rays. This study compared the accuracy and reproducibility of KAP derived from system parameters with values measured with a direct KAP meter. Methods: IEC tolerance for displayed KAP is specified up to ± 35% above 2.5 Gy-cm{sup 2} and manufacturer’s specifications are typically ± 25%. KAP values from the direct KAP meter driftsmore » with time leading to replacement or re-calibration. More precise and consistent KAP is achievable utilizing a database of known radiation output for various system parameters. The integrated KAP meter was removed from a radiography system. A total of 48 measurements of air kerma were acquired at x-ray tube potential from 40 to 150 kVp with 10 kVp increment using ion chamber type external dosimeter at free-in-air geometry for four different types of filter combinations following the manufacturer’s service procedure. These data were used to create updated correction factors that determine air kerma computationally for given system parameters. Results of calculated KAP were evaluated against results using a calibrated ion chamber based dosimeter and a computed radiography imaging plate to measure x-ray field size. Results: The accuracy of calculated KAP from the system parameters was better within 4% deviation in all diagnostic x-ray tube potentials tested from 50 to 140 kVp. In contrast, deviations of up to 25% were measured from KAP displayed from the direct KAP meter. Conclusion: The “calculated KAP” approach provides the nominal advantage of improved accuracy and precision of displayed KAP as well as reduced cost of calibrating or replacing integrated KAP meters.« less

  10. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  11. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the IST-LPSR, Portugal and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Cardoso, J.

    2018-01-01

    A comparison of the standards for air kerma of the Instituto Superior Técnico, Laboratório de Proteção e Segurança Radiológica (IST-LPSR), Portugal and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in December 2015. The comparison result, evaluated as a ratio of the IST-LPSR and the BIPM standards for air kerma, is 1.0026 with a combined standard uncertainty of 1.7 × 10-3. The results for an indirect comparison made at the same time are consistent with the direct results at the level of 1.1 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Air-kerma strength determination of a new directional {sup 103}Pd source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aima, Manik, E-mail: aima@wisc.edu; Reed, Joshua L.; DeWerd, Larry A.

    2015-12-15

    Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normallymore » used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to

  13. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NIST, USA and the BIPM in medium-energy x-rays.

    PubMed

    Burns, D T; Kessler, C; O'Brien, M; Minniti, R

    2012-01-01

    A key comparison has been made between the air-kerma standards of the NIST, USA and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.8 parts in 10 3 , except at 250 kV where the difference is 1.5 times the standard uncertainty. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database.

  14. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NIST, USA and the BIPM in medium-energy x-rays

    PubMed Central

    Burns, D T; Kessler, C; O’Brien, M; Minniti, R

    2017-01-01

    A key comparison has been made between the air-kerma standards of the NIST, USA and the BIPM in the medium-energy x–ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.8 parts in 103, except at 250 kV where the difference is 1.5 times the standard uncertainty. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. PMID:28966399

  15. Accuracy validation of incident photon fluence on DQE for various measurement conditions and X-ray units.

    PubMed

    Haba, Tomonobu; Kondo, Shimpei; Hayashi, Daiki; Koyama, Shuji

    2013-07-01

    Detective quantum efficiency (DQE) is widely used as a comprehensive metric for X-ray image evaluation in digital X-ray units. The incident photon fluence per air kerma (SNR²(in)) is necessary for calculating the DQE. The International Electrotechnical Commission (IEC) reports the SNR²(in) under conditions of standard radiation quality, but this SNR²(in) might not be accurate as calculated from the X-ray spectra emitted by an actual X-ray tube. In this study, we evaluated the error range of the SNR²(in) presented by the IEC62220-1 report. We measured the X-ray spectra emitted by an X-ray tube under conditions of standard radiation quality of RQA5. The spectral photon fluence at each energy bin was multiplied by the photon energy and the mass energy absorption coefficient of air; then the air kerma spectrum was derived. The air kerma spectrum was integrated over the whole photon energy range to yield the total air kerma. The total photon number was then divided by the total air kerma. This value is the SNR²(in). These calculations were performed for various measurement parameters and X-ray units. The percent difference between the calculated value and the standard value of RQA5 was up to 2.9%. The error range was not negligibly small. Therefore, it is better to use the new SNR²(in) of 30694 (1/(mm(2) μGy)) than the current [Formula: see text] of 30174 (1/(mm(2) μGy)).

  16. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitch, M.

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014,more » a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of

  17. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner

    PubMed Central

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.

    2011-01-01

    Purpose: In this study, newly formulated XR-RV3 GafChromic® film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was ±7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film

  18. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner.

    PubMed

    McCabe, Bradley P; Speidel, Michael A; Pike, Tina L; Van Lysel, Michael S

    2011-04-01

    In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was +/- 7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of

  19. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media.

    PubMed

    Kumar, Sudhir; Nahum, Alan E

    2016-02-07

    Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of 'secondary bremsstrahlung' along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV 'clinical' radiotherapy qualities. Concerning depth-dependence, the 'area under the kerma, K, curve' exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the 'double counting' of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma 'liberated' in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this 'violation' amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a 'clinical' 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of  ≈51 g cm−2 for both very high and very low charged-particle transport cut-offs reveals the considerable

  20. KEY COMPARISON Comparison of the standards of air kerma of the ENEA-INMRI and the BIPM for 137Cs gamma rays

    NASA Astrophysics Data System (ADS)

    Allisy-Roberts, P. J.; Kessler, C.; Toni, M.; Bovi, M.

    2010-01-01

    A comparison of the standards of air kerma of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI) and of the Bureau International des Poids et Mesures (BIPM) was carried out in 137Cs radiation in 1998. The comparison result, updated for changes in the standards in 2003 and 2009, is 0.9927 (0.0067) and demonstrates that the ENEA-INMRI and BIPM standards are in agreement within the uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  1. A radiation quality correction factor k for well-type ionization chambers for the measurement of the reference air kerma rate of (60)Co HDR brachytherapy sources.

    PubMed

    Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike

    2015-07-01

    The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.

  2. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of airmore » kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.« less

  3. KEY COMPARISON: Final report of the SIM 60Co air-kerma comparison SIM.RI(I)-K1

    NASA Astrophysics Data System (ADS)

    Ross, C. K.; Shortt, K. R.; Saravi, M.; Meghzifene, A.; Tovar, V. M.; Barbosa, R. A.; da Silva, C. N.; Carrizales, L.; Seltzer, S. M.

    2008-01-01

    Transfer chambers were used to compare the standards for 60Co air kerma maintained by seven laboratories. Six of the laboratories are members of the Sistema Interamericano de Metrología (SIM) regional metrology organization while the seventh is the International Atomic Energy Agency (IAEA) laboratory in Vienna. The National Research Council (NRC) acted as the pilot laboratory for the comparison. Because of the participation of laboratories holding primary standards, the comparison results could be linked to the key comparison reference value maintained by the Bureau International des Poids et Mesures (BIPM). The results for all laboratories were within the expanded uncertainty (two standard deviations) of the reference value. The estimated relative standard uncertainty of the comparison between any pair of laboratories ranged from 0.5% to 1.0%. The largest discrepancy between any two laboratories was 1.0%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  4. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources.

    PubMed

    Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M

    2013-12-01

    Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce

  5. Poster — Thur Eve — 20: CTDI Measurements using a Radiochromic Film-based clinical protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintero, C.; Bekerat, H.; DeBlois, F.

    2014-08-15

    The purpose of the study was evaluating accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV-CBCT systems attached to linear accelerators. Energy dependence of Gafchromic XR-QA2 ® film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air-kerma (up to 10 cGy). Calibration curves for each beam quality were created (Film reflectance change Vs. Air-kerma in air). Film responses for same air-kerma values were compared. Film strips were placed into holesmore » of a CTDI phantom and irradiated for several clinical scanning protocols. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured and tabulated CTDIvol values were compared. Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. Measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Results presented a mean variation for the same machine and protocol of 2.6%. Variation of film response is within ±5% resulting in ±15% systematic error in dose estimation if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom, as suggested by TG- 111.« less

  6. Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.

    PubMed

    Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein

    2018-02-01

    A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In-air calibration of an HDR 192Ir brachytherapy source using therapy ion chambers.

    PubMed

    Patel, Narayan Prasad; Majumdar, Bishnu; Vijiyan, V; Hota, Pradeep K

    2005-01-01

    The Gammamed Plus 192Ir high dose rate brachytherapy sources were calibrated using the therapy level ionization chambers (0.1 and 0.6 cc) and the well-type chamber. The aim of the present study was to assess the accuracy and suitability of use of the therapy level chambers for in-air calibration of brachytherapy sources in routine clinical practice. In a calibration procedure using therapy ion chambers, the air kerma was measured at several distances from the source in a specially designed jig. The room scatter correction factor was determined by superimposition method based on the inverse square law. Various other correction factors were applied on measured air kerma values at multiple distances and mean value was taken to determine the air kerma strength of the source. The results from four sources, the overall mean deviation between measured and quoted source strength by manufacturers was found -2.04% (N = 18) for well-type chamber. The mean deviation for the 0.6 cc chamber with buildup cap was found -1.48 % (N = 19) and without buildup cap was 0.11% (N = 22). The mean deviation for the 0.1 cc chamber was found -0.24% (N = 27). Result shows that probably the excess ionization in case of 0.6 cc therapy ion chamber without buildup cap was estimated about 2.74% and 1.99% at 10 and 20 cm from the source respectively. Scattered radiation measured by the 0.1 cc and 0.6 cc chamber at 10 cm measurement distance was about 1.1% and 0.33% of the primary radiation respectively. The study concludes that the results obtained with therapy level ionization chambers were extremely reproducible and in good agreement with the results of the well-type ionization chamber and source supplier quoted value. The calibration procedure with therapy ionization chambers is equally competent and suitable for routine calibration of the brachytherapy sources.

  8. Accuracy of Spencer-Attix cavity theory and calculations of fluence correction factors for the air kerma formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Russa, D. J.; Rogers, D. W. O.

    EGSnrc calculations of ion chamber response and Spencer-Attix (SA) restricted stopping-power ratios are used to test the assumptions of the SA cavity theory and to assess the accuracy of this theory as it applies to the air kerma formalism for {sup 60}Co beams. Consistent with previous reports, the EGSnrc calculations show that the SA cavity theory, as it is normally applied, requires a correction for the perturbation of the charged particle fluence (K{sub fl}) by the presence of the cavity. The need for K{sub fl} corrections arises from the fact that the standard prescription for choosing the low-energy threshold {Delta}more » in the SA restricted stopping-power ratio consistently underestimates the values of {Delta} needed if no perturbation to the fluence is assumed. The use of fluence corrections can be avoided by appropriately choosing {Delta}, but it is not clear how {Delta} can be calculated from first principles. Values of {Delta} required to avoid K{sub fl} corrections were found to be consistently higher than {Delta} values obtained using the conventional approach and are also observed to be dependent on the composition of the wall in addition to the cavity size. Values of K{sub fl} have been calculated for many of the graphite-walled ion chambers used by the national metrology institutes around the world and found to be within 0.04% of unity in all cases, with an uncertainty of about 0.02%.« less

  9. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the

  10. Radiological investigations at the "Taiga" nuclear explosion site, part II: man-made γ-ray emitting radionuclides in the ground and the resultant kerma rate in air.

    PubMed

    Ramzaev, V; Repin, V; Medvedev, A; Khramtsov, E; Timofeeva, M; Yakovlev, V

    2012-07-01

    Samples of soil and epigeic lichens were collected from the "Taiga" peaceful nuclear explosion site (61.30°N 56.60°E, the Perm region, Russia) in 2009 and analyzed using high resolution γ-ray spectrometry. For soil samples obtained at six different plots, two products of fission ((137)Cs and (155)Eu), five products of neutron activation ((60)Co, (94)Nb, (152)Eu, (154)Eu, (207)Bi) and (241)Am have been identified and quantified. The maximal activity concentrations of (60)Co, (137)Cs, and (241)Am for the soils samples were measured as 1650, 7100, and 6800 Bq kg(-1) (d.w.), respectively. The deposit of (137)Cs for the top 20 cm of soil on the tested plots at the "Taiga" site ranged from 30 to 1020 kBq m(-2); the maximal value greatly (by almost 3 orders of magnitude) exceeded the regional background (from global fallout) level of 1.4 kBq m(-2). (137)Cs contributes approximately 57% of the total ground inventory of the man-made γ-ray emitters for the six plots tested at the "Taiga" site. The other major radionuclides -(241)Am and (60)Co, constitute around 40%. Such radionuclides as (60)Co, (137)Cs, (241)Am, and (207)Bi have also been determined for the epigeic lichens (genera Cladonia) that colonized certain areas at the ground lip produced by the "Taiga" explosion. Maximal activity concentrations (up to 80 Bq kg(-1) for (60)Co, 580 Bq kg(-1) for (137)Cs, 200 Bq kg(-1) for (241)Am, and 5 Bq kg(-1) for (207)Bi; all are given in terms of d.w.) have been detected for the lower dead section of the organisms. The air kerma rates associated with the anthropogenic sources of gamma radiation have been calculated using the data obtained from the laboratory analysis. For the six plots tested, the kerma rates ranged from 50 to 1200 nGy h(-1); on average, 51% of the dose can be attributed to (137)Cs and 45% to (60)Co. These estimates agree reasonably well with the results of the in situ measurements made during our field survey of the "Taiga" site in August

  11. SU-F-I-13: Correction Factor Computations for the NIST Ritz Free Air Chamber for Medium-Energy X Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstrom, P

    Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less

  12. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling.

    PubMed

    Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S

    2017-05-01

    In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa

  13. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    NASA Astrophysics Data System (ADS)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  14. Radiation survey on Fukushima Medical University premises about four years after the Fukushima nuclear disaster

    PubMed Central

    Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo

    2016-01-01

    Abstract This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h-1 to 0.520 μGy h-1, and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h-1, which is close to 0.04 μGy h-1, which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected. PMID:26911302

  15. Radiation survey on Fukushima Medical University premises about four years after the Fukushima nuclear disaster.

    PubMed

    Omori, Yasutaka; Wakamatsu, Hiroaki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo

    2016-06-08

    This study was conducted on the Fukushima Medical University (FMU) premises (in Fukushima City, Fukushima Prefecture) about four years after the Fukushima Daiichi Nuclear Power Plant accident. Its objectives were (1) to create a map of the ambient gamma dose rate (air-kerma rate) distribution, (2) to evaluate the air-kerma rate originating from natural radionuclides, and (3) to investigate the effects of snow cover on changes in the air-kerma rate. This man-borne survey revealed that the air-kerma rate varies widely, ranging from 0.038 μGy h(-1) to 0.520 μGy h(-1), and is higher on grass than on the other investigated surface types, such as soil, asphalt, and bricks. In this area, the mean air-kerma rate from natural radiation was evaluated to be 0.03 ± 0.01 μGy h(-1), which is close to 0.04 μGy h(-1), which was measured in central Fukushima City by a local authority.Furthermore, snowfall was found to reduce the air-kerma rate by 5%-30%. This reduction was attributed to attenuation of the primary radiation while passing through the snow cover, and the measured contribution of scattered radiation to the air-kerma rate reduction was small. The reduction rate was found to depend on the initial snow depth but to maintain a similar value for a couple of days, after the snow had partially melted and its depth had decreased. Finally, analysis of the daily dose due to external exposure received on the FMU premises revealed that no further health effects due to chronic radiation exposure at this site are to be expected.

  16. AIR KERMA TO Hp(3) CONVERSION COEFFICIENTS FOR IEC 61267 RQR X-RAY RADIATION QUALITIES: APPLICATION TO DOSE MONITORING OF THE LENS OF THE EYE IN MEDICAL DIAGNOSTICS.

    PubMed

    Principi, S; Guardiola, C; Duch, M A; Ginjaume, M

    2016-09-01

    Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.

    Purpose: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity inmore » scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was {+-}7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality

  18. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    PubMed

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  19. WE-DE-207B-09: Scatter Radiation Measurement From a Digital Breast Tomosynthesis System and Its Impact On Shielding Consideration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Li, X; Liu, B

    2016-06-15

    Purpose: To accurately measure the scatter radiation from a Hologic digital breast tomosynthesis (DBT) system and to provide updated scatter distribution to guide radiation shielding calculation for DBT rooms. Methods: A high sensitivity GOS-based linear detector was used to measure the angular distribution of scatter radiation from a Hologic Selenia Dimensions DBT system. The linear detector was calibrated for its energy response of typical DBT spectra. Following the NCRP147 approach, the measured scatter intensity was normalized by the primary beam area and primary air kerma at 1m from the scatter phantom center and presented as the scatter fraction. Direct comparisonmore » was made against Simpkin’s initial measurement. Key parameters including the phantom size, primary beam area, and kV/anode/target combination were also studied. Results: The measured scatter-to-primary-ratio and scatter fraction data closely matched with previous data from Simpkin. The measured data demonstrated the unique nonisotropic distribution of the scattered radiation around a Hologic DBT system, with two strong peaks around 25° and 160°. The majority scatter radiation (>70%) originated from the imaging detector assembly, instead of the phantom. With a workload from a previous local survey, the scatter air kerma at 1m from the phantom center for wall/door is 0.018mGy/patient, for floor is 0.164mGy/patient, and for ceiling is 0.037mGy/patient. Conclusion: Comparing to Simpkin’s previous data, the scatter air kerma from Holgoic DBT is at least two times higher. The main reasons include the harder primary beam with higher workload, added tomosynthesis acquisition, and strong small angle forward scattering. Due to the highly conservative initial assumptions, the shielding recommendation from NCRP147 is still sufficient for the Hologic DBT system given the workload from a previous local survey. With the data provided from this study, accurate shielding calculation can be performed

  20. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from

  1. MEASUREMENT OF RADIATION DOSES TO THE EYE LENS DURING ORTHOPEDIC SURGERY USING AN C-ARM X-RAY SYSTEM.

    PubMed

    Suzuki, Akira; Matsubara, Kosuke; Sasa, Yuko

    2018-04-01

    The present study aimed to determine doses delivered to the eye lenses of surgeons while using the inverted-C-arm technique and the protective effect of leaded spectacles during orthopedic surgery. The kerma in air was measured at five positions on leaded glasses positioned near the eye lens and on the neck using small optically stimulated luminescence (OSL) dosemeters. The lens equivalent dose was also measured at the neck using an OSL dosemeter. The maximum equivalent dose to the eye lens and the maximum kerma were 0.8 mSv/month and 0.66 mGy/month, respectively. The leaded glasses reduced the exposure by ~60%. Even if the surgeons are exposed to the maximum dose of X-ray radiation for 5 years, the equivalent doses to the eye lens will not exceed the present limit recommended by the ICRP.

  2. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, T

    Purpose: Since 2008 the Physikalisch-Technische Bundesanstalt (PTB) has been offering the calibration of {sup 125}I-brachytherapy sources in terms of the reference air-kerma rate (RAKR). The primary standard is a large air-filled parallel-plate extrapolation chamber. The measurement principle is based on the fact that the air-kerma rate is proportional to the increment of ionization per increment of chamber volume at chamber depths greater than the range of secondary electrons originating from the electrode x{sub 0}. Methods: Two methods for deriving the RAKR from the measured ionization charges are: (1) to determine the RAKR from the slope of the linear fit tomore » the so-called ’extrapolation curve’, the measured ionization charges Q vs. plate separations x or (2) to differentiate Q(x) and to derive the RAKR by a linear extrapolation towards zero plate separation. For both methods, correcting the measured data for all known influencing effects before the evaluation method is applied is a precondition. However, the discrepancy of their results is larger than the uncertainty given for the determination of the RAKR with both methods. Results: A new approach to derive the RAKR from the measurements is investigated as an alternative. The method was developed from the ground up, based on radiation transport theory. A conversion factor C(x{sub 1}, x{sub 2}) is applied to the difference of charges measured at the two plate separations x{sub 1} and x{sub 2}. This factor is composed of quotients of three air-kerma values calculated for different plate separations in the chamber: the air kerma Ka(0) for plate separation zero, and the mean air kermas at the plate separations x{sub 1} and x{sub 2}, respectively. The RAKR determined with method (1) yields 4.877 µGy/h, and with method (2) 4.596 µGy/h. The application of the alternative approach results in 4.810 µGy/h. Conclusion: The alternative method shall be established in the future.« less

  4. Using measured 30-150 kVp polychromatic tungsten x-ray spectra to determine ion chamber calibration factors, Nx (Gy C(-1)).

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-10-01

    Two methods for determining ion chamber calibration factors (Nx) are presented for polychromatic tungsten x-ray beams whose spectra differ from beams with known Nx. Both methods take advantage of known x-ray fluence and kerma spectral distributions. In the first method, the x-ray tube potential is unchanged and spectra of differing filtration are measured. A primary standard ion chamber with known Nx for one beam is used to calculate the x-ray fluence spectrum of a second beam. Accurate air energy absorption coefficients are applied to the x-ray fluence spectra of the second beam to calculate actual air kerma and Nx. In the second method, two beams of differing tube potential and filtration with known Nx are used to bracket a beam of unknown Nx. A heuristically derived Nx interpolation scheme based on spectral characteristics of all three beams is described. Both methods are validated. Both methods improve accuracy over the current half value layer Nx estimating technique.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Danielle; Siegbahn, Albert; Fallone, Gin

    Purpose: The BioMedical Imaging and Therapy (BMIT) beamlines at the Canadian Light Source offer the opportunity for investigating novel imaging and therapy applications of synchrotron radiation. A necessary component in advancing this research, and in progressing toward clinical applications, is the availability of accurate dosimetry that is traceable to a standards institution. However, dosimetry in this setting is challenging. These beams are typically small, non-uniform, and highly intense. This work describes air kerma rate measurements on a BMIT beamline using a free-air ionization chamber (FAC). Methods: The measurements were taken at the 05B1-1 beamline (∼8 – 100 keV) for severalmore » beam qualities with mean energies between 20.0 and 84.0 keV. The Victoreen Model 480 cylindrical FAC, with a specially fabricated 0.52 mm diameter aperture, was used to measure air kerma rates. The required correction factors were determined using a variety of methods: tabulated data, measurements, theoretical calculations and Monte Carlo simulations (EGSnrc user code egs-fac). Results: The experimental air kerma rates measured between 0.270 ± 13.6% and 312 ± 2.7% Gy/min. At lower energies (low filtration), the most impactful correction factors were those for ion recombination and for x-ray attenuation. Conclusions: These measurements marked the first absolute dosimetry performed at the BMIT beamlines. The experimental and Monte Carlo methods developed will allow air kerma rates to be measured under other experimental conditions, provide a benchmark to which other dosimeters will be compared, and provide a reference for imaging and therapy research programs on this beamline.« less

  6. Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Kobayashi, Ikuo

    2015-07-01

    For X-ray diagnosis, the proper management of the entrance skin dose (ESD) is important. Recently, a small-type optically stimulated luminescence dosimeter (nanoDot OSL dosimeter) was made commercially available by Landauer, and it is hoped that it will be used for ESD measurements in clinical settings. Our objectives in the present study were to propose a method for calibrating the ESD measured with the nanoDot OSL dosimeter and to evaluate its accuracy. The reference ESD is assumed to be based on an air kerma with consideration of a well-known back scatter factor. We examined the characteristics of the nanoDot OSL dosimeter using two experimental conditions: a free air irradiation to derive the air kerma, and a phantom experiment to determine the ESD. For evaluation of the ability to measure the ESD, a calibration curve for the nanoDot OSL dosimeter was determined in which the air kerma and/or the ESD measured with an ionization chamber were used as references. As a result, we found that the calibration curve for the air kerma was determined with an accuracy of 5 %. Furthermore, the calibration curve was applied to the ESD estimation. The accuracy of the ESD obtained was estimated to be 15 %. The origin of these uncertainties was examined based on published papers and Monte-Carlo simulation. Most of the uncertainties were caused by the systematic uncertainty of the reading system and the differences in efficiency corresponding to different X-ray energies.

  7. SU-E-T-297: Dosimetric Assessment of An Air-Filled Balloon Applicator in HDR Vaginal Cuff Brachytherapy Using the Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H; Lee, Y; Pokhrel, D

    2015-06-15

    Purpose: As an alternative to cylindrical applicators, air inflated balloon applicators have been introduced into HDR vaginal cuff brachytherapy treatment to achieve sufficient dose to vagina mucosa as well as to spare rectum and bladder. In general, TG43 formulae based treatment planning systems do not take into account tissue inhomogeneity, and air in the balloon applicator can cause higher delivered dose to mucosa than treatment plan reported. We investigated dosimetric effect of air in balloon applicator using the Monte Carlo method. Methods: The thirteen-catheter Capri applicator with a Nucletron Ir-192 seed was modeled for various balloon diameters (2cm to 3.5cm)more » using the MCNP Monte Carlo code. Ir-192 seed was placed in both central and peripheral catheters to replicate real patient situations. Existence of charged particle equilibrium (CPE) with air balloon was evaluated by comparing kerma and dose at various distances (1mm to 70mm) from surface of air-filled applicator. Also mucosa dose by an air-filled applicator was compared with by a water-filled applicator to evaluate dosimetry accuracy of planning system without tissue inhomogeneity correction. Results: Beyond 1mm from air/tissue interface, the difference between kerma and dose was within 2%. CPE (or transient CPE) condition was deemed existent, and in this region no electron transport was necessary in Monte Carlo simulations. At 1mm or less, the deviation of dose from kerma became more apparent. Increase of dose to mucosa depended on diameter of air balloon. The increment of dose to mucosa was 2.5% and 4.3% on average for 2cm and 3.5cm applicators, respectively. Conclusion: After introduction of air balloon applicator, CPE fails only at the proximity of air/tissue interface. Although dose to mucosa is increased, there is no significant dosimetric difference (<5%) between air and water filled applicators. Tissue inhomogeneity correction is not necessary for air-filled applicators.« less

  8. Monte Carlo study of a 60Co calibration field of the Dosimetry Laboratory Seibersdorf.

    PubMed

    Hranitzky, C; Stadtmann, H

    2007-01-01

    The gamma radiation fields of the reference irradiation facility of the Dosimetry Laboratory Seibersdorf with collimated beam geometry are used for calibrating radiation protection dosemeters. A close-to-reality simulation model of the facility including the complex geometry of a 60Co source was set up using the Monte Carlo code MCNP. The goal of this study is to characterise the radionuclide gamma calibration field and resulting air-kerma distributions inside the measurement hall with a total of 20 m in length. For the whole range of source-detector-distances (SDD) along the central beam axis, simulated and measured relative air-kerma values are within +/-0.6%. Influences on the accuracy of the simulation results are investigated, including e.g., source mass density effects or detector volume dependencies. A constant scatter contribution from the lead ring-collimator of approximately 1% and an increasing scatter contribution from the concrete floor for distances above 7 m are identified, resulting in a total air-kerma scatter contribution below 5%, which is in accordance to the ISO 4037-1 recommendations.

  9. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for 125I and 103Pd brachytherapy sources relative to 60Co.

    PubMed

    Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A

    2014-12-01

    To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.

  10. Characterization of a scintillating fibre detector for small animal imaging and irradiation dosimetry

    PubMed Central

    Frelin-Labalme, Anne-Marie; Ledoux, Xavier

    2017-01-01

    Objective: Small animal image-guided irradiators have recently been developed to mimic the delivery techniques of clinical radiotherapy. A dosemeter adapted to millimetric beams of medium-energy X-rays is then required. This work presents the characterization of a dosemeter prototype for this particular application. Methods: A scintillating optical fibre dosemeter (called DosiRat) has been implemented to perform real-time dose measurements with the dedicated small animal X-RAD® 225Cx (Precision X-Ray, Inc., North Branford, CT) irradiator. Its sensitivity, stem effect, stability, linearity and measurement precision were determined in large field conditions for three different beam qualities, consistent with small animal irradiation and imaging parameters. Results: DosiRat demonstrates good sensitivity and stability; excellent air kerma and air kerma rate linearity; and a good repeatability for air kerma rates >1 mGy s−1. The stem effect was found to be negligible. DosiRat showed limited precision for low air kerma rate measurements (<1 mGy s−1), typically for imaging protocols. A positive energy dependence was found that can be accounted for by calibrating the dosemeter at the needed beam qualities. Conclusion: The dosimetric performances of DosiRat are very promising. Extensive studies of DosiRat energy dependence are still required. Further developments will allow to reduce the dosemeter size to ensure millimetric beams dosimetry and perform small animal in vivo dosimetry. Advances in knowledge: Among existing point dosemeters, very few are dedicated to both medium-energy X-rays and millimetric beams. Our work demonstrated that scintillating fibre dosemeters are suitable and promising tools for real-time dose measurements in the small animal field of interest. PMID:27556813

  11. Evidence for using Monte Carlo calculated wall attenuation and scatter correction factors for three styles of graphite-walled ion chamber.

    PubMed

    McCaffrey, J P; Mainegra-Hing, E; Kawrakow, I; Shortt, K R; Rogers, D W O

    2004-06-21

    The basic equation for establishing a 60Co air-kerma standard based on a cavity ionization chamber includes a wall correction term that corrects for the attenuation and scatter of photons in the chamber wall. For over a decade, the validity of the wall correction terms determined by extrapolation methods (K(w)K(cep)) has been strongly challenged by Monte Carlo (MC) calculation methods (K(wall)). Using the linear extrapolation method with experimental data, K(w)K(cep) was determined in this study for three different styles of primary-standard-grade graphite ionization chamber: cylindrical, spherical and plane-parallel. For measurements taken with the same 60Co source, the air-kerma rates for these three chambers, determined using extrapolated K(w)K(cep) values, differed by up to 2%. The MC code 'EGSnrc' was used to calculate the values of K(wall) for these three chambers. Use of the calculated K(wall) values gave air-kerma rates that agreed within 0.3%. The accuracy of this code was affirmed by its reliability in modelling the complex structure of the response curve obtained by rotation of the non-rotationally symmetric plane-parallel chamber. These results demonstrate that the linear extrapolation technique leads to errors in the determination of air-kerma.

  12. Sci—Fri PM: Topics — 01: A monte carlo model of a miniature low-energy x-ray tube using EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, P; Seuntjens, J

    The INTRABEAM system (Carl Zeiss, Oberkochen, Germany) is a miniature x-ray generator for use in intraoperative radiotherapy and brachytherapy. The device accelerates electrons to up to 50 keV, which are then steered down an evacuated needle probe to strike a thin gold target. For accurate dosimetry of the INTRABEAM system, it is important that the photon spectrum be well understood. Measurements based on air-kerma are heavily impacted by photon spectra, particularly for low photon energies due to the large photoelectric contribution in air mass energy absorption coefficient. While low energy photons have little clinical significance at treatment depths, they maymore » have a large effect on air-kerma measurements. In this work, we have developed an EGSnrc-based monte carlo (MC) model of the Zeiss INTRABEAM system to study the source photon spectra and half-value layers (HVLs) of the bare probe and with various spherical applicators. HVLs were calculated using the analytical attenuation of air-kerma spectra. The calculated bare probe spectrum was compared with simulated and measured results taken from literature. Differences in the L-line energies of gold were found between the spectra predicted by EGSnrc and Geant4. This is due to M and N shell averaging during atomic transitions in EGSnrc. The calculated HVLs of the bare probe and spherical applicators are consistent with literature reported measured values.« less

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  17. High dose rate brachytherapy source measurement intercomparison.

    PubMed

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR 192 Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single 192 Ir source using their own equipment and local protocols. Results were compared to the 192 Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for 192 Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  18. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  19. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used...

  20. Disruptive Innovation in Air Measurement Technology: Reality ...

    EPA Pesticide Factsheets

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  1. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...

  2. Determination of the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.

    Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were usedmore » to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.« less

  3. Air-Coupled Ultrasonic Measurements in Composites

    NASA Astrophysics Data System (ADS)

    Kommareddy, V.; Peters, J. J.; Dayal, V.; Hsu, D. K.

    2004-02-01

    Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. Research of air-coupled ultrasonics, especially using capacitance and micromachined transducers, has been extensively reported in the literature. This paper reports our experience of applying piezoceramic air-coupled transducers for nondestructive evaluation of composites. The beam profiles of air-coupled piezoceramic transducers, with and without apodization, were mapped out. The transmission of air-coupled ultrasonic energy through composite plates of different thickness was measured experimentally; model calculation of the transmission coefficient, taking into account the frequency bandwidth of the transducer, agreed with the measurement results. The occurrence of diffraction phenomenon ("Poisson bright spot") while imaging flaws in composite laminates was investigated. The resolution of scanned images obtained with air-coupled transducers was investigated for different frequency, focusing, and apodization conditions.

  4. Air traffic control specialist performance measurement database.

    DOT National Transportation Integrated Search

    1999-06-01

    The Air Traffic Control Specialist (ATCS) Performance Measurement Database is a compilation of performance measures and : measurement techniques that researchers have used. It may be applicable to other human factor research related to air traffic co...

  5. Estimation of external dose by car-borne survey in Kerala, India.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.

  6. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  7. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply. Air...

  8. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surfacemore » below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.« less

  9. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurement. 91.309 Section 91.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 100 cm of the air-intake of the engine. The measurement location must be either in...

  10. MO-F-CAMPUS-I-02: Occupational Conceptus Doses From Fluoroscopically-Guided Interventional Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, J; Perisinakis, K; Solomou, G

    Purpose: The aim of this method was to provide dosimetric data on conceptus dose for the pregnant employee who participates in fluoroscopically-guided interventional procedures. Methods: Scattered air-kerma dose rates were obtained for 17 fluoroscopic projections involved in interventional procedures. These projections were simulated on an anthropomorphic phantom placed on the examination table supine. The operating theater was divided into two grids relative to the long table sides. Each grid consisted of 33 cells spaced 0.50 m apart. During the simulated exposures, at each cell, scatter air-kerma rate was measured at 110 cm from the floor i.e. at the height ofmore » the waist of the pregnant worker. Air-kerma rates were divided by the dose area product (DAP) rate of each exposure to obtain normalized data. For each projection, measurements were performed for 3 kVp and 3 filtration values i.e. for 9 different x-ray spectra. All measurements were performed by using a modern C-arm angiographic system (Siemens Axiom Artis, Siemens, Germany) and a radiation meter equipped with an ionization chamber. Results: The results consist of 153 iso-dose maps, which show the spatial distribution of DAP-normalized scattered air-kerma doses at the waist level of a pregnant worker. Conceptus dose estimation is possible using air-kerma to embryo/fetal dose conversion coefficients published in a previous study (J Cardiovasc Electrophysiol, Vol. 16, pp. 1–8, July 2005). Using these maps, occupationally exposed pregnant personnel may select a working position for a certain projection that keeps abdominal dose as low as reasonably achievable. Taking into consideration the regulatory conceptus dose limit for occupational exposure, determination of the maximum workload allowed for the pregnant personnel is also possible. Conclusion: Data produced in this work allow for the anticipation of conceptus dose and the determination of the maximum workload for a pregnant worker from any

  11. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  12. Important comments on KERMA factors and DPA cross-section data in ACE files of JENDL-4.0, JEFF-3.2 and ENDF/B-VII.1

    NASA Astrophysics Data System (ADS)

    Konno, Chikara; Tada, Kenichi; Kwon, Saerom; Ohta, Masayuki; Sato, Satoshi

    2017-09-01

    We have studied reasons of differences of KERMA factors and DPA cross-section data among nuclear data libraries. Here the KERMA factors and DPA cross-section data included in the official ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 are examined in more detail. As a result, it is newly found out that the KERMA factors and DPA cross-section data of a lot of nuclei are different among JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 and reasons of the differences are the followings: 1) large secondary particle production yield, 2) no secondary gamma data, 3) secondary gamma data in files12-15 mt = 3, 4) mt = 103-107 data without mt = 600 s-800 s data in file6. The issue 1) is considered to be due to nuclear data, while the issues 2)-4) seem to be due to NJOY. The ACE files of JENDL-4.0, ENDF/B-VII.1 and JEFF-3.2 with these problems should be revised after correcting wrong nuclear data and NJOY problems.

  13. Next Generation Air Measurement Technologies Fact Sheet

    EPA Pesticide Factsheets

    EPA is advancing lower cost and portable air measurement technology to enhance monitoring capabilities for complying with the National Ambient Air Quality Standards. The technology is providing mobile and stationary real-time measurement capabilities.

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  15. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  16. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  17. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must be...

  18. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  19. Radio Measurements of Air Showers with LOPES

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2013-02-01

    LOPES is a digital antenna array for the radio measurement of cosmic-ray air showers at energies around 1017 eV. It is triggered by the KASCADE-Grande air-shower array at the Karlsruhe Institute of Technology (KIT), Germany. Because of an absolute amplitude calibration and a sophisticated data analysis, LOPES can test models for the radio emission to an up-to-now unachieved level, thus improving our understanding of the radio emission mechanisms. Recent REAS simulations of the air-shower radio emission come closer to the measurements than any previously tested simulations. We have determined the radio-reconstruction precision of interesting air-shower parameters by comparing LOPES reconstructions to both REAS simulations and KASCADE-Grande measurements, and present our latest results for the angular resolution, the energy and the Xmax reconstruction based on the radio measurement of about 500 air showers. Although the precision of LOPES is limited by the high level of anthropogenic noise at KIT, it opens a promising perspective for next-generation radio arrays in regions with a lower ambient noise level.

  20. Experimental derivation of the fluence non-uniformity correction for air kerma near brachytherapy linear sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, E. A.; Almeida, C. E. de

    2008-07-15

    In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically formore » a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.« less

  1. Terrestrial gamma radiation baseline mapping using ultra low density sampling methods.

    PubMed

    Kleinschmidt, R; Watson, D

    2016-01-01

    Baseline terrestrial gamma radiation maps are indispensable for providing basic reference information that may be used in assessing the impact of a radiation related incident, performing epidemiological studies, remediating land contaminated with radioactive materials, assessment of land use applications and resource prospectivity. For a large land mass, such as Queensland, Australia (over 1.7 million km(2)), it is prohibitively expensive and practically difficult to undertake detailed in-situ radiometric surveys of this scale. It is proposed that an existing, ultra-low density sampling program already undertaken for the purpose of a nationwide soil survey project be utilised to develop a baseline terrestrial gamma radiation map. Geoelement data derived from the National Geochemistry Survey of Australia (NGSA) was used to construct a baseline terrestrial gamma air kerma rate map, delineated by major drainage catchments, for Queensland. Three drainage catchments (sampled at the catchment outlet) spanning low, medium and high radioelement concentrations were selected for validation of the methodology using radiometric techniques including in-situ measurements and soil sampling for high resolution gamma spectrometry, and comparative non-radiometric analysis. A Queensland mean terrestrial air kerma rate, as calculated from the NGSA outlet sediment uranium, thorium and potassium concentrations, of 49 ± 69 nGy h(-1) (n = 311, 3σ 99% confidence level) is proposed as being suitable for use as a generic terrestrial air kerma rate background range. Validation results indicate that catchment outlet measurements are representative of the range of results obtained across the catchment and that the NGSA geoelement data is suitable for calculation and mapping of terrestrial air kerma rate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  3. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  4. A fence line noble gas monitoring system for nuclear power plants.

    PubMed

    Grasty, R L; Hovgaard, J; LaMarre, J R

    2001-01-01

    A noble gas monitoring system has been installed at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(TI) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 (133Xe), xenon-135 (135Xe), argon-41 (41Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for 133Xe, 0.7 nGy for 35Xe, 3 nGy for 41Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to 133Xe, 135Xe and 41Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively.

  5. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  6. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  8. Measurement of formaldehyde in clean air

    NASA Astrophysics Data System (ADS)

    Neitzert, Volker; Seiler, Wolfgang

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Dinitrophenylhydrazine, forming 2.4-Dinitrophenylhydrazone, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4 - 5.0 ppbv and 0.2 - 1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO2, indicating anthropogenic HCHO sources which are estimated to be 6-11 × 1012g/year-1 on a global scale.

  9. Inhalation dose due to presence of 131I in air above septic tank system of an endocrinology hospital.

    PubMed

    Mietelski, J W; Grabowska, S; Nowak, T; Bogacz, J; Gaca, P; Bartyzel, M; Budzanowski, M

    2005-01-01

    We present here measurements of the 131I concentration for both: gaseous and aerosol fraction of 131I in the air above the septic tank containing wastes from medical application of this isotope. Aerosols were collected using air filters, whereas gaseous forms of iodine were trapped in KI impregnated charcoal double layer cartridge. Besides an active method (pumping of the air through system of filters) an attempt for using a passive method (charcoal traps) for monitoring of radio-iodine is described. For better characterisation of a site the external kerma was determined by means of G-M and TLD techniques as well as the activity kept in the septic tank was measured by gamma spectrometry. Results show that the activity of the aerosol fraction can be neglected compared to that of the gaseous fraction. He measured activity of air is low, on the level of 1 Bq m(-3), even during simulated failure of the ventilation system. Estimated inhalation dose for the serviceman of septic tanks is low ( approximately 10%) compared with external dose obtained by such person due to gamma radiation from the tank (on the level approximately 500 nSv h(-1)). Therefore, the concept of passive monitoring of the iodine in air was abandoned. Also estimated is the efficiency of 131I reduction by a charcoal filter of the ventilation system and 131I input to the environment by the ventilation chimney.

  10. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  11. Perfluorocarbon tracer method for air-infiltration measurements

    DOEpatents

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  12. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made either...

  17. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  18. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  19. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.

  20. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  1. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  2. Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lillo, F.; Mettivier, G., E-mail: mettivier@na.infn.it; Sarno, A.

    2016-01-15

    Purpose: This work investigates the energy response and dose-response curve determinations for XR-QA2 radiochromic film dosimetry system used for synchrotron radiation work and for quality assurance in diagnostic radiology, in the range of effective energies 18–46.5 keV. Methods: Pieces of XR-QA2 films were irradiated, in a plane transverse to the beam axis, with a monochromatic beam of energy in the range 18–40 keV at the ELETTRA synchrotron radiation facility (Trieste, Italy) and with a polychromatic beam from a laboratory x-ray tube operated at 80, 100, and 120 kV. The film calibration curve was expressed as air kerma (measured free-in-air withmore » an ionization chamber) versus the net optical reflectance change (netΔR) derived from the red channel of the RGB scanned film image. Four functional relationships (rational, linear exponential, power, and logarithm) were tested to evaluate the best curve for fitting the calibration data. The adequacy of the various fitting functions was tested by using the uncertainty analysis and by assessing the average of the absolute air kerma error calculated as the difference between calculated and delivered air kerma. The sensitivity of the film was evaluated as the ratio of the change in net reflectance to the corresponding air kerma. Results: The sensitivity of XR-QA2 films increased in the energy range 18–39 keV, with a maximum variation of about 170%, and decreased in the energy range 38–46.5 keV. The present results confirmed and extended previous findings by this and other groups, as regards the dose response of the radiochromic film XR-QA2 to monochromatic and polychromatic x-ray beams, respectively. Conclusions: The XR-QA2 radiochromic film response showed a strong dependence on beam energy for both monochromatic and polychromatic beams in the range of half value layer values from 0.55 to 6.1 mm Al and corresponding effective energies from 18 to 46.5 keV. In this range, the film response varied by 170

  3. SU-E-T-259: Development of a Primary Standard for LDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H; McEwen, M

    Purpose: The National Research Council initiated a program in 2012 to develop a primary standard to calibrate I-125 and Pd-103 sources used for LDR brachytherapy and disseminate this through calibration services to Canadian users. This will simplify procedures as Canadian cancer centres currently have to ship instruments to the US. Methods: The standard is based on a commercial version of the wide-angle free air chamber (WAFAC) pioneered by NIST. Significant enhancements were implemented to improve signal-to-noise and measurement reproducibility and eliminate electric field effects. Validation of this ionization chamber was then carried out in a low-energy X -ray beam (∼more » 31 keV) where the dose rate had been previously established using the existing NRC primary standard free-air chamber. As a final component of this initial testing, measurements were made with a set of I-125 seeds (with air kerma strength traceable to NIST). Results: Excellent agreement of the two NRC free-air chambers was obtained within the combined standard uncertainty of 0.5 %. However, it was found that the WAFAC response is very sensitive to the beam geometry (distance from the source, diameter of the beam-defining aperture, etc) and Monte Carlo calculations, carried out to evaluate these geometry corrections, have confirmed the experimental results. The results for the seed measurements indicated a precision of better than 1 % is achievable for a reasonable acquisition time and the air kerma strength agreed with the manufacturer (NIST-traceable) value within 2 %. Conclusion: The prototype primary standard for LDR brachytherapy has met accuracy target of 3 % for the determination of air kerma strength. Work is ongoing to refine operation of the device and develop the calibration protocol for clinical users, with an anticipated launch of a calibration service in late 2015.« less

  4. Measuring Air Force Contracting Customer Satisfaction

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT MEASURING AIR FORCE CONTRACTING CUSTOMER SATISFACTION ...... satisfaction elements should be included in a standardized tool that measures the level of customer satisfaction for AF Contracting’s external and

  5. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  6. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  7. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  8. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C. ...

  9. Experimental equipment for measuring of rotary air motors parameters

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil; Řeháček, Vojtěch

    In the article the construction of an experimental device for measuring the parameters of small rotary air motors is described. Further a measurement methodology and measured data processing are described. At the end of the article characteristics of the chosen air motor are presented.

  10. Intraoperative air leak measured after lobectomy is associated with postoperative duration of air leak.

    PubMed

    Brunelli, Alessandro; Salati, Michele; Pompili, Cecilia; Gentili, Paolo; Sabbatini, Armando

    2017-11-01

    To verify the association between the air leak objectively measured intraoperatively (IAL) using the ventilator and the air leak duration after pulmonary lobectomy. Prospective analysis on 111 patients submitted to pulmonary lobectomy (33 by video-assisted thoracic surgery). After resection, objective assessment of air leak (in milliliter per minute) was performed before closure of the chest by measuring the difference between a fixed inspired and expired volume, using a tidal volume of 8 ml/kg, a respiratory rate of 10 and a positive-end expiratory pressure of 5 cmH2O. A multivariable analysis was performed for identifying factors associated with duration of postoperative air leak. Average IAL was 158 ml/min (range 0-1500 ml/min). The best cut-off (receiver-operating characteristics analysis) associated with air leak longer than 5 days was 500 ml/min. Nine patients had IAL >500 ml/min (8%). They had a longer duration of postoperative air leak compared with those with a lower IAL (mean values, 10.1 days, SD 8.8 vs 1.5 days, SD 4.9 P < 0.001). The following variables remained associated with days of air leak duration after multivariable regression: left side resection (P = 0.018), upper site resection (P = 0.031) and IAL >500 ml/min (P < 0.001). The following equation estimating the days of air leak duration was generated: 1.7 + 2.4 × left side + 2.2 × upper site + 8.8 × IAL >500. The air leak measurement using the ventilator parameters after lung resection may assist in estimating the risk of postoperative prolonged air leak. An IAL > 500 ml/min may warrant the use of intraoperative preventative measures, particularly after video-assisted thoracic surgery lobectomy where a submersion test is often unreliable. © 2017 European Society of Cardiology and European Atherosclerosis Association. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Air Force Materiel Command: A Survey of Performance Measures

    DTIC Science & Technology

    2004-03-12

    AIR FORCE MATERIEL COMMAND: A SURVEY OF PERFORMANCE MEASURES THESIS Marcia Leonard, Capt...AFIT/GLM/ENS/04-10 AIR FORCE MATERIEL COMMAND: A SURVEY OF PERFORMANCE MEASURES THESIS Presented to the Faculty...SURVEY OF PERFORMANCE MEASURES Marcia Leonard, BS Capt, USAF Approved: //signed// 12 March 2004

  12. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    PubMed Central

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  13. The Aeroflex: a bicycle for mobile air quality measurements.

    PubMed

    Elen, Bart; Peters, Jan; Poppel, Martine Van; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2012-12-24

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. 

  14. Measuring Light Air Ions in a Speleotherapeutic Cave

    NASA Astrophysics Data System (ADS)

    Roubal, Z.; Bartušek, K.; Szabó, Z.; Drexler, P.; Überhuberová, J.

    2017-02-01

    The paper deals with a methodology proposed for measuring the concentration of air ions in the environment of speleotherapeutic caves, and with the implementation of the AK-UTEE-v2 ionmeter. Speleotherapy, in the context of its general definition, is the medical therapy that utilizes the climate of selected caves to treat patients with health problems such as asthma. These spaces are characterized by the presence of high air humidity and they make extreme demands on the execution of the measuring device, the Gerdien tube (GT in the following) in particular, and on the amplifier electronics. The result is an automated measuring system using a GT with low-volume air flow, enabling long-term measuring of air ion concentration and determination of spectral ion characteristics. Interesting from the instrumentation viewpoint are the GT design, active shielding, and execution of the electrometric amplifier. A specific method for the calculation of spectral ion characteristics and the mode of automatic calibration were proposed and a procedure of automatic measurement in the absence of attendants was set up. The measuring system is designed for studying and long-term monitoring of the concentration of light negative ions in dependence on climatic conditions and on the mobility of ions occurring in the cave.

  15. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  16. Femtosecond frequency comb based distance measurement in air.

    PubMed

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  17. Recent Re-Measurement of Neutron and Gamma-Ray Spectra 1080 Meters from the APRD (Army Pulse Radiation Division) Critical Facility,

    DTIC Science & Technology

    1984-01-01

    TISSUE-EQUIVALENT ION CHAMBER GM - GEIGER-MUELLER COUNTER TE-GM - DIFFERENCE BETWEEN TE AND GM DATA MICRODOSE - MICRODOSIMETRY USING 0.5" ROSSI COUNTER...KERMA 4.26+8 1979 APRO NE-213+PR NEUTRON KERMA 4.26+8 1979 WWD NE-213 NEUTRON KERMA 3.10+8 > 550 KEV 1980 DREO MICRODOSE NEUTRON KERMA 4.32+8 1979...APRD GM GAMMA KERMA 3.86+7 1979 WWD NE-213 GAMMA KERMA 4.34+7 > 450 KEV 1980 DREO MICRODOSE GAMMA KERMA 3.90+7 76 1979 APRD TE TOTAL KERMA 4.50+8 50 c.c

  18. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose

  19. SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, E; Spencer, DP; Meyer, T

    Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup

  20. Measure Guideline: Guide to Attic Air Sealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guidemore » is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.« less

  1. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  2. Calibration methodology application of kerma area product meters in situ: Preliminary results

    NASA Astrophysics Data System (ADS)

    Costa, N. A.; Potiens, M. P. A.

    2014-11-01

    The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.

  3. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  4. Air Monitoring, Measuring, and Emissions Research

    EPA Pesticide Factsheets

    Measurement research is advancing the ability to determine the composition of sources of air pollution, conduct exposure assessments, improve monitoring capabilities and support public health research.

  5. Measuring Indoor Air Quality of Hookah Lounges

    PubMed Central

    Fiala, Steven C.; Pawlak, Rebecca L.

    2012-01-01

    Many states have implemented smoke-free workplace laws to protect employees and customers from exposure to secondhand smoke. However, exemptions in these laws have allowed indoor tobacco smoking in hookah lounges to proliferate in recent years. To describe the amount of secondhand smoke in hookah lounges, we measured the indoor air quality of 10 hookah lounges in Oregon. Air quality measurements ranged from “unhealthy” to “hazardous” according to Environmental Protection Agency standards, indicating a potential health risk for patrons and employees. PMID:22994168

  6. Ambient dose equivalent and effective dose from scattered x-ray spectra in mammography for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations.

    PubMed

    Künzel, R; Herdade, S B; Costa, P R; Terini, R A; Levenhagen, R S

    2006-04-21

    In this study, scattered x-ray distributions were produced by irradiating a tissue equivalent phantom under clinical mammographic conditions by using Mo/Mo, Mo/Rh and W/Rh anode/filter combinations, for 25 and 30 kV tube voltages. Energy spectra of the scattered x-rays have been measured with a Cd(0.9)Zn(0.1)Te (CZT) detector for scattering angles between 30 degrees and 165 degrees . Measurement and correction processes have been evaluated through the comparison between the values of the half-value layer (HVL) and air kerma calculated from the corrected spectra and measured with an ionization chamber in a nonclinical x-ray system with a W/Mo anode/filter combination. The shape of the corrected x-ray spectra measured in the nonclinical system was also compared with those calculated using semi-empirical models published in the literature. Scattered x-ray spectra measured in the clinical x-ray system have been characterized through the calculation of HVL and mean photon energy. Values of the air kerma, ambient dose equivalent and effective dose have been evaluated through the corrected x-ray spectra. Mean conversion coefficients relating the air kerma to the ambient dose equivalent and to the effective dose from the scattered beams for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were also evaluated. Results show that for the scattered radiation beams the ambient dose equivalent provides an overestimate of the effective dose by a factor of about 5 in the mammography energy range. These results can be used in the control of the dose limits around a clinical unit and in the calculation of more realistic protective shielding barriers in mammography.

  7. Estimation of uncertainty in tracer gas measurement of air change rates.

    PubMed

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of <33%. Using this method, overestimation of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.

  8. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick J.; Keillor, Martin E.; ...

    2016-05-01

    Air sampling systems were deployed to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. The air samplers were positioned 100-600 meters downwind of the release point. The filters were collected immediately and analyzed in the field. Quantities for total activity collected on the air filters are reported along with additional information to compute the average or integrated air concentrations.

  9. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  10. RadShield: semiautomated shielding design using a floor plan driven graphical user interface.

    PubMed

    DeLorenzo, Matthew C; Wu, Dee H; Yang, Kai; Rutel, Isaac B

    2016-09-08

    The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not

  11. Comparison of pediatric radiation dose and vessel visibility on angiographic systems using piglets as a surrogate: antiscatter grid removal vs. lower detector air kerma settings with a grid — a preclinical investigation

    PubMed Central

    Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.

    2015-01-01

    The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297

  12. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  13. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  14. High-precision diode-laser-based temperature measurement for air refractive index compensation.

    PubMed

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppä, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement. © 2011 Optical Society of America

  15. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less

  16. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  17. Urban air quality measurements using a sensor-based system

    NASA Astrophysics Data System (ADS)

    Ródenas, Mila; Hernández, Daniel; Gómez, Tatiana; López, Ramón; Muñoz, Amalia

    2017-04-01

    Air pollution levels in urban areas have increased the interest, not only of the scientific community but also of the general public, and both at the regional and at the European level. This interest has run in parallel to the development of miniaturized sensors, which only since very recently are suitable for air quality measurements. Certainly, their small size and price allows them to be used as a network of sensors capable of providing high temporal and spatial frequency measurements to characterize an area or city and with increasing potential, under certain considerations, as a complement of conventional methods. Within the frame of the LIFE PHOTOCITYTEX project (use of photocatalytic textiles to help reducing air pollution), CEAM has developed a system to measure gaseous compounds of importance for urban air quality characterization. This system, which allows an autonomous power supply, uses commercial NO, NO2, O3 and CO2 small sensors and incorporates measurements of temperature and humidity. A first version, using XBee boards (Radiofrequency) for communications has been installed in the urban locations defined by the project (tunnel and school), permitting the long-term air quality characterization of sites in the presence of the textiles. An improved second version of the system which also comprises a sensor for measuring particles and which uses GPRS for communications, has been developed and successfully installed in the city center of Valencia. Data are sent to a central server where they can be accessed by citizens in nearly real time and online and, in general, they can be utilized in the air quality characterization, for decision-making related to decontamination (traffic regulation, photocatalytic materials, etc.), in air quality models or in mobile applications of interest for the citizens. Within this work, temporal trends obtained with this system in different urban locations will be shown, discussing the impact of the characteristics of the

  18. Air quality measurements-From rubber bands to tapping the rainbow.

    PubMed

    Hidy, George M; Mueller, Peter K; Altshuler, Samuel L; Chow, Judith C; Watson, John G

    2017-06-01

    It is axiomatic that good measurements are integral to good public policy for environmental protection. The generalized term for "measurements" includes sampling and quantitation, data integrity, documentation, network design, sponsorship, operations, archiving, and accessing for applications. Each of these components has evolved and advanced over the last 200 years as knowledge of atmospheric chemistry and physics has matured. Air quality was first detected by what people could see and smell in contaminated air. Gaseous pollutants were found to react with certain materials or chemicals, changing the color of dissolved reagents such that their light absorption at selected wavelengths could be related to both the pollutant chemistry and its concentration. Airborne particles have challenged the development of a variety of sensory devices and laboratory assays for characterization of their enormous range of physical and chemical properties. Advanced electronics made possible the sampling, concentration, and detection of gases and particles, both in situ and in laboratory analysis of collected samples. Accurate and precise measurements by these methods have made possible advanced air quality management practices that led to decreasing concentrations over time. New technologies are leading to smaller and cheaper measurement systems that can further expand and enhance current air pollution monitoring networks. Ambient air quality measurement systems have a large influence on air quality management by determining compliance, tracking trends, elucidating pollutant transport and transformation, and relating concentrations to adverse effects. These systems consist of more than just instrumentation, and involve extensive support efforts for siting, maintenance, calibration, auditing, data validation, data management and access, and data interpretation. These requirements have largely been attained for criteria pollutants regulated by National Ambient Air Quality Standards

  19. LiDAR for Air Quality Measurements

    DOT National Transportation Integrated Search

    2017-02-02

    The overall goal of this research is to investigate a unique light detection and ranging (LiDAR) technology for ambient air quality measurement of particulate matter. The ODU team has recently received a state-of-the-art elastic LiDAR from NASA Langl...

  20. Polarized radio emission from extensive air showers measured with LOFAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellart, P.; Buitink, S.; Corstanje, A.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, formore » 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.« less

  1. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Rana, V; Nagesh, S Setlur

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detectormore » was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.« less

  2. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  3. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Beavis, A W; Saunderson, J R

    2014-05-07

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  4. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Beavis, A. W.; Saunderson, J. R.

    2014-05-01

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  5. Lower cost air measurement technology – what is on the ...

    EPA Pesticide Factsheets

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  6. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  8. Laser photoacoustic sensor for air toxicity measurements

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.

    2012-06-01

    US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.

  9. Can we trust intraocular pressure measurements in eyes with intracameral air?

    PubMed

    Jóhannesson, Gauti; Lindén, Christina; Eklund, Anders; Behndig, Anders; Hallberg, Per

    2014-10-01

    To evaluate the effect of intracameral air on intraocular pressure (IOP) measurements using Goldmann applanation tonometry (GAT) and applanation resonance tonometry (ART) in an in-vitro porcine eye model. IOP was measured on thirteen freshly enucleated eyes at three reference pressures: 20, 30, and 40 mmHg. Six measurements/method were performed in a standardized order with GAT and ART respectively. Air was injected intracamerally in the same manner as during Descemet's stripping endothelial keratoplasty (DSEK) and Descemet's membrane endothelial keratoplasty (DMEK), and the measurements were repeated. Measured IOP increased significantly for both tonometry methods after air injection: 0.7 ± 2.1 mmHg for GAT and 10.6 ± 4.9 mmHg for ART. This difference was significant at each reference pressure for ART but not for GAT. Although slightly affected, this study suggests that we can trust GAT IOP-measurements in eyes with intracameral air, such as after DSEK/DMEK operations. Ultrasound-based methods such as ART should not be used.

  10. Air slab-correction for Γ-ray attenuation measurements

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh

    2017-12-01

    Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.

  11. A UAV-based active AirCore system for measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin

    2018-05-01

    We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides

  12. Comparison of different phantoms used in digital diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Bor, Dogan; Unal, Elif; Uslu, Anil

    2015-09-01

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  13. Air shower measurements with the LOPES radio antenna array

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Haungs, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPESSTAR) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  14. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    PubMed

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of <0.01 m from the face. Body surface temperature, shape and posture as well as clothing insulation have impact on the measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  15. Air data measurement system for space shuttle

    NASA Technical Reports Server (NTRS)

    Dejesus, J. C.; Sowada, D. J.; Moynihan, F. A.

    1972-01-01

    It is concluded that air data measurements of angle of attack and sideslip are needed to control the space shuttle vehicles. The basis for this conclusion, along with recommended sensor design and implementation, are described.

  16. A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics.

    PubMed

    Raylman, Raymond R; Van Kampen, Will; Stolin, Alexander V; Gong, Wenbo; Jaliparthi, Gangadhar; Martone, Peter F; Smith, Mark F; Sarment, David; Clinthorne, Neal H; Perna, Mark

    2018-04-01

    Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system

  17. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  18. Air radon equilibrium factor measurement in a Waste Water Pre-Treatment Plant

    NASA Astrophysics Data System (ADS)

    Martinez, J. E.; Juste, B.; Ortiz, J.; Martorell, S.; Verdu, G.

    2017-11-01

    We analyze in this paper a Waste Water Pre-Treatment Plant (WWTP) located at the Mediterranean coast with air radon concentration above Spanish action level (600 Bq per cubic meter). This paper presents a method for radon equilibrium determination by gamma spectrometry measuring of the radon progeny concentrations in the air, in order to estimate WWTP workers effective dose more exactly. The method is based on simultaneous sampling of air through a filter paper and alpha spectrometry measurement of radon activity concentration in the air. According to the measured radon activity concentration in the air of 368±45 Bq/m3 the equilibrium factor between radon and progenies is estimated to be F=0.27, which is in good agreement with expected values.

  19. A Tale of Two Cities - HSI-DOAS Measurements of Air Quality

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul

    2013-04-01

    Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple City

  20. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  1. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  2. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  3. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  4. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  5. Measurement of horizontal air showers with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  6. Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

    NASA Astrophysics Data System (ADS)

    Cross, Eben S.; Williams, Leah R.; Lewis, David K.; Magoon, Gregory R.; Onasch, Timothy B.; Kaminsky, Michael L.; Worsnop, Douglas R.; Jayne, John T.

    2017-09-01

    The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO] = 231 ± 116 ppb (spanning 84-1706 ppb), [NO] = 6.1 ± 11.5 ppb (spanning 0-209 ppb), [NO2] = 11.7 ± 8.3 ppb (spanning 0-71 ppb), and [O3] = 23.2 ± 12.5 ppb (spanning 0-99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature = 23.4 ± 8.5 °C, spanning 4.1 to 45.2 °C; and relative humidity = 50.1 ± 15.3 %, spanning 9.8-79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2-B43F, and Ox-B421 sensors, yielding (5 min average) root

  7. Estimation of skin entrance doses (SEDs) for common medical X-ray diagnostic examinations in India and proposed diagnostic reference levels (DRLs).

    PubMed

    Sonawane, A U; Shirva, V K; Pradhan, A S

    2010-02-01

    Skin entrance doses (SEDs) were estimated by carrying out measurements of air kerma from 101 X-ray machines installed in 45 major and selected hospitals in the country by using a silicon detector-based dose Test-O-Meter. 1209 number of air kerma measurements of diagnostic projections for adults have been analysed for seven types of common diagnostic examinations, viz. chest (AP, PA, LAT), lumbar spine (AP, LAT), thoracic spine (AP, LAT), abdomen (AP), pelvis (AP), hip joints (AP) and skull (PA, LAT) for different film-screen combinations. The values of estimated diagnostic reference levels (DRLs) (third quartile values of SEDs) were compared with guidance levels/DRLs of doses published by the IAEA-BSS-Safety Series No. 115, 1996; HPA (NRPB) (2000 and 2005), UK; CRCPD/CDRH (USA), European Commission and other national values. The values of DRLs obtained in this study are comparable with the values published by the IAEA-BSS-115 (1996); HPA (NRPB) (2000 and 2005) UK; EC and CRCPD/CDRH, USA including values obtained in previous studies in India.

  8. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    PubMed

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Measuring the radon concentration in air meting van de radonconcentratie in lucht

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aten, J.B.T.; Bierhuizen, H.W.J.; Vanhoek, L.P.

    1975-01-01

    A simple transportable apparatus for measurement of the radon concentration in the air of a workshop was developed. An air sample is sucked through a filter and the decay curve of the alpha activity is measured. The counting speed 40 min after sampling gives an indication of the radon activity. The apparatus was calibrated by analyzing an analogous decay curve obtained with a big filter and a big air sample, the activity being measured with an anti-coincidence counter. (GRA)

  10. A dosimetry study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Nafaa, Laila; de Patoul, Nathalie; Denis, Jean-Marc; Tomsej, Milan; Vynckier, Stefaan

    2003-05-01

    New codes of practice for reference dosimetry in clinical high-energy photon and electron beams have been published recently, to replace the air kerma based codes of practice that have determined the dosimetry of these beams for the past twenty years. In the present work, we compared dosimetry based on the two most widespread absorbed dose based recommendations (AAPM TG-51 and IAEA TRS-398) with two air kerma based recommendations (NCS report-5 and IAEA TRS-381). Measurements were performed in three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers. Dosimetry based on direct calibrations of all chambers in 60Co was investigated, as well as dosimetry based on cross-calibrations of plane-parallel chambers against a cylindrical chamber in a high-energy electron beam. Furthermore, 60Co perturbation factors for plane-parallel chambers were derived. It is shown that the use of 60Co calibration factors could result in deviations of more than 2% for plane-parallel chambers between the old and new codes of practice, whereas the use of cross-calibration factors, which is the first recommendation in the new codes, reduces the differences to less than 0.8% for all situations investigated here. The results thus show that neither the chamber-to-chamber variations, nor the obtained absolute dose values are significantly altered by changing from air kerma based dosimetry to absorbed dose based dosimetry when using calibration factors obtained from the Laboratory for Standard Dosimetry, Ghent, Belgium. The values of the 60Co perturbation factor for plane-parallel chambers (katt . km for the air kerma based and pwall for the absorbed dose based codes of practice) that are obtained from comparing the results based on 60Co calibrations and cross-calibrations are within the experimental uncertainties in agreement with the results from other investigators.

  11. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Technical Reports Server (NTRS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  12. A national patient dose survey and setting of reference levels for interventional radiology in Bulgaria.

    PubMed

    Zotova, R; Vassileva, J; Hristova, J; Pirinen, M; Järvinen, H

    2012-06-01

    A national study on patient dose values in interventional radiology and cardiology was performed in order to assess current practice in Bulgaria, to estimate the typical patient doses and to propose reference levels for the most common procedures. Fifteen units and more than 1,000 cases were included. Average values of the measured parameters for three procedures-coronary angiography (CA), combined procedure (CA + PCI) and lower limb arteriography (LLA)--were compared with data published in the literature. Substantial variations were observed in equipment and procedure protocols used. This resulted in variations in patient dose: air-kerma area product ranges were 4-339, 6-1,003 and 0.2-288 Gy cm(2) for CA, CA + PCI and LLA respectively. Reference levels for air kerma-area product were proposed: 40 Gy cm(2) for CA, 140 Gy cm(2) for CA + PCI and 45 Gy cm(2) for LLA. Auxiliary reference intervals were proposed for other dose-related parameters: fluoroscopy time, number of images and entrance surface air kerma rate in fluoroscopy and cine mode. There is an apparent necessity for improvement in the classification of peripheral procedures and for standardisation of the protocols applied. It is important that patient doses are routinely recorded and compared with reference levels. • Patient doses in interventional radiology are high and vary greatly • Better standardisation of procedures and techniques is needed to improve practice • Dose reference levels for most common procedures are proposed.

  13. Calibration and validation of a voxel phantom for use in the Monte Carlo modeling and optimization of x-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Dance, David R.; McVey, Graham; Sandborg, Michael P.; Persliden, Jan; Carlsson, Gudrun A.

    1999-05-01

    A Monte Carlo program has been developed to model X-ray imaging systems. It incorporates an adult voxel phantom and includes anti-scatter grid, radiographic screen and film. The program can calculate contrast and noise for a series of anatomical details. The use of measured H and D curves allows the absolute calculation of the patient entrance air kerma for a given film optical density (or vice versa). Effective dose can also be estimated. In an initial validation, the program was used to predict the optical density for exposures with plastic slabs of various thicknesses. The agreement between measurement and calculation was on average within 5%. In a second validation, a comparison was made between computer simulations and measurements for chest and lumbar spine patient radiographs. The predictions of entrance air kerma mostly fell within the range of measured values (e.g. chest PA calculated 0.15 mGy, measured 0.12 - 0.17 mGy). Good agreement was also obtained for the calculated and measured contrasts for selected anatomical details and acceptable agreement for dynamic range. It is concluded that the program provides a realistic model of the patient and imaging system. It can thus form the basis of a detailed study and optimization of X-ray imaging systems.

  14. MEASUREMENT OF FREE AIR ATOMIC BLAST PRESSURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskell, N.A.; Fava, J.A.; Brubaker, R.M.

    1958-02-14

    BS>Peak free-air overpressure versus time measurements in the 10-to-2 psi range were obtained as a function of distance directly over a nuclear burst at a low scaled height. This information was to be used to establish the points in space at which the reflected and direct shock waves merge into a single shock wave and to determine the overpressure as a function of distance for the merged wave, in support of drone-aircraft lethal-volume studies. It was also desired to obtain free air peak overpressure versus distance measurements for an atomic burst at a high altitude. Data are tabulated that weremore » obtained by deploying, from a B-29 aircraft, 10 parachute-borne instrumented canisters on each shot. The second objective was achieved by deploying 15 parachute-borne canisters from the strike aircraft on one shot. (C.H.)« less

  15. Measurement results obtained from air quality monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracowmore » area could be more intelligible.« less

  16. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  17. Measurement of low‐energy backscatter factors using GAFCHROMIC film and OSLDs

    PubMed Central

    Elson, Howard R.; Lamba, Michael A. S.

    2012-01-01

    Some of the lowest voltages used in radiotherapy are termed Grenz and superficial X‐rays of ~ 20 and ~ 100 kVp, respectively. Dosimetrically, the surface doses from these beams are calculated with the use of a free in‐air air kerma measurement combined with a backscatter factor and the appropriate ratio of mass energy absorption coefficients from the measurement material to water. Alternative tools to the standard ion chamber for measuring the BSF are GAFCHROMIC EBT2 film and optically stimulated luminescent dosimeter (OSLD) crystals made from Al2O3. The scope of this project included making three different backscatter measurements with an Xstrahl‐D3100 X‐ray unit on the Grenz ray and superficial settings. These measurements were with OSLDs, GAFCHROMIC EBT2 film, and a PTW ionization chamber. The varied measurement methods allowed for intercomparison to determine the accuracy of the results. The ion chamber measurement was the least accurate, as expected from previous experimental findings. GAFCHROMIC EBT2 film proved to be a useful tool which gave reasonable results, and Landauer OSLDs showed good results for smaller field sizes and an increasing overresponse with larger fields. The specific backscatter factors for this machine demonstrated values about 5% higher than the universal values suggested by the AAPM and IPEMB codes of practice for the 100 kVp setting. The 20 kvp measured data from both techniques showed general agreement with those found in the BJR Supplement No. 10, indicating that this unit's Grenz ray spectrum is similar to those used in previous experimental work. PACS number: 87.53.Bn PMID:23149776

  18. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  19. Measure Guideline: Guide to Attic Air Sealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to themore » work that needs to be done.« less

  20. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on {sup 12}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, M.B.; Blann, M.; Cox, L.

    1995-04-11

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on {sup 12}C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements wheremore » they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A{le}and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV.« less

  1. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  2. [Measurement of air leak volume after lung surgery using web-camera].

    PubMed

    Onuki, Takamasa; Matsumoto, T

    2005-05-01

    Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.

  3. Development and Validation of a UAV Based System for Air Pollution Measurements

    PubMed Central

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-01-01

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820

  4. Development and Validation of a UAV Based System for Air Pollution Measurements.

    PubMed

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  5. Analysis of Indoor Air Pollution of Decoration and Control Measures

    NASA Astrophysics Data System (ADS)

    Yan, Li

    2017-05-01

    Nowadays, the human health is closely related to quality of indoor air. This article analyzes the main types of pollution to indoor air and their harms to human health, and on this basis, it sets forth the prevention measures comprehensively and proposes advices to normalize industry standards.

  6. AMBIENT AIR MEASUREMENTS OF HYDROGEN PEROXIDE IN THE CALIFORNIA SOUTH COAST AIR BASIN

    EPA Science Inventory

    Hydrogen peroxide (H2O2) concentrations have been measured at two locations (Claremont and Riverside) in the California South Coast Air Basin during the months of July and August 1977. Three different analytical methods were employed: a chemiluminescent method and two colorimetri...

  7. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  8. SU-F-T-13: Transit Dose Comparisons for Co-60 and Ir-192 HDR Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimenez-Alventosa, V; Ballester, F; Vijande, J

    Purpose: The purpose of this study is to compare the transit dose due to the movement of high dose rate (HDR) Ir-192 and Co-60 sources along the transfer tube. This is performed by evaluating air-kerma differences in the vicinity of the transfer tube when both sources are moved with the same velocity from a HDR brachytherapy afterloader into a patient. Methods: Monte Carlo simulations have been performed using PENELOPE2014. mHDR-v2 and Flexisource sources have been considered. Collisional kerma has been scored. The sources were simulated within a plastic catheter located in an infinite air phantom. The movement of the seedmore » was included by displacing their positions along the connecting catheter from z=−75 cm to z=+75 cm and combining them. Backscatter from the afterloader and the patient was not considered. Since modern afterloaders like Flexitron (Elekta) or Saginova (Bebig) are able to use equally Ir-192 and Co-60 sources it was assumed that both sources are displaced with equal speed. Typical content activity values were provided by the manufacturer (460 GBq for Ir-192 and 75 GBq for Co-60). Results: 2D distributions were obtained with type-A uncertainties (k=2) less than 0.01%. From those, the air kerma ratio Co-60/Ir-192 was evaluated weighted by their corresponding activities. It was found that it varies slowly with distance (less than 10% variation) but strongly in time due to the shorter half-life of the Ir-192 (73.83 days). The maximum ratio is located close to the catheter with a value of 0.57 when both sources are installed by the manufacturer, while increasing up to 1.25 at the end of the recommended working life (90 days) of the Ir-192 source. Conclusion: Air-kerma ratios are almost constant (0.51–0.57) in the vicinity of the source. Nevertheless, air-kerma ratios increase rapidly whenever the Ir-192 is approaching the end of its life.« less

  9. Real-time eye lens dose monitoring during cerebral angiography procedures.

    PubMed

    Safari, M J; Wong, J H D; Kadir, K A A; Thorpe, N K; Cutajar, D L; Petasecca, M; Lerch, M L F; Rosenfeld, A B; Ng, K H

    2016-01-01

    To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.

  10. A new simple compact refractometer applied to measurements of air density fluctuations

    NASA Astrophysics Data System (ADS)

    Fang, H.; Juncar, P.

    1999-07-01

    We describe a new simple, compact refractometer for air refractive index measurements. It consists of a double plane-plane Fabry Perot interferometer. Both interferometers consisting of Zerodur spacers of thickness of 1 and 100 mm are illuminated independently by the same single mode laser diode. The shorter cavity allows unambiguous identification of the transmission peak of the longer one to which the laser frequency is servo-locked. The refractive index of air is obtained via a heterodyne comparison with a second laser locked to a hyperfine component of the rubidium D2 line. We obtain a resolution of order 10-10 and accuracy of a few times 10-8. The metrological characteristics of the interferometer in vacuum are presented. Initial results for refractive index measurements agree with values calculated using the revised Edlen formulas. We also describe how this refractometer is used to measure variations of the density of air and their correlation with changes of refractive index of air. The density of air is used to make buoyancy corrections when comparing mass standards of different volume. Our preliminary results indicate that the values of air density determined by refractometry agree with those calculated using the Comité International des Poids et Mesures formula, which is based on measurements of temperature, pressure, moisture content, and CO2 concentration.

  11. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    PubMed

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate

  12. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW

  13. QUALITY ASSURANCE HANDBOOK FOR AIR POLLUTION MEASUREMENT SYSTEMS: VOLUME IV - METEOROLOGICAL MEASUREMENTS (REVISED - AUGUST 1994)

    EPA Science Inventory

    Procedures on installing, acceptance testing, operating, maintaining and quality assuring three types of ground-based, upper air meteorological measurement systems are described. he limitations and uncertainties in precision and accuracy measurements associated with these systems...

  14. Jena Reference Air Set (JRAS): a multi-point scale anchor for isotope measurements of CO2 in air

    NASA Astrophysics Data System (ADS)

    Wendeberg, M.; Richter, J. M.; Rothe, M.; Brand, W. A.

    2013-03-01

    The need for a unifying scale anchor for isotopes of CO2 in air was brought to light at the 11th WMO/IAEA Meeting of Experts on Carbon Dioxide in Tokyo 2001. During discussions about persistent discrepancies in isotope measurements between the worlds leading laboratories, it was concluded that a unifying scale anchor for Vienna Pee Dee Belemnite (VPDB) of CO2 in air was desperately needed. Ten years later, at the 2011 Meeting of Experts on Carbon Dioxide in Wellington, it was recommended that the Jena Reference Air Set (JRAS) become the official scale anchor for isotope measurements of CO2 in air (Brailsford, 2012). The source of CO2 used for JRAS is two calcites. After releasing CO2 by reaction with phosphoric acid, the gases are mixed into CO2-free air. This procedure ensures both isotopic stability and longevity of the CO2. That the reference CO2 is generated from calcites and supplied as an air mixture is unique to JRAS. This is made to ensure that any measurement bias arising from the extraction procedure is eliminated. As every laboratory has its own procedure for extracting the CO2, this is of paramount importance if the local scales are to be unified with a common anchor. For a period of four years, JRAS has been evaluated through the IMECC1 program, which made it possible to distribute sets of JRAS gases to 13 laboratories worldwide. A summary of data from the six laboratories that have reported the full set of results is given here along with a description of the production and maintenance of the JRAS scale anchors. 1 IMECC refers to the EU project "Infrastructure for Measurements of the European Carbon Cycle" (http://imecc.ipsl.jussieu.fr/).

  15. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.

  16. Measurement of fatigue following 18 msw dry chamber dives breathing air or enriched air nitrox.

    PubMed

    Harris, R J D; Doolette, D J; Wilkinson, D C; Williams, D J

    2003-01-01

    Many divers report less fatigue following diving breathing oxygen rich N2-O2 mixtures compared with breathing air. In this double blinded, randomized controlled study 11 divers breathed either air or Enriched Air Nitrox 36% (oxygen 36%, nitrogen 64%) during an 18 msw (281 kPa(a)) dry chamber dive for a bottom time of 40 minutes. Two periods of exercise were performed during the dive. Divers were assessed before and after each dive using the Multidimensional Fatigue Inventory-20, a visual analogue scale, Digit Span Tests, Stroop Tests, and Divers Health Survey (DHS). Diving to 18m produced no measurable difference in fatigue, attention levels, ability to concentrate or DHS scores, following dives using either breathing gas.

  17. Measurements of acetylene in air extracted from polar ice cores

    NASA Astrophysics Data System (ADS)

    Nicewonger, M. R.; Aydin, M.; Montzka, S. A.; Saltzman, E. S.

    2016-12-01

    Acetylene (ethyne) is a non-methane hydrocarbon emitted during combustion of fossil fuels, biofuels, and biomass. The major atmospheric loss pathway of acetylene is oxidation by hydroxyl radical with a lifetime estimated at roughly two weeks. The mean annual acetylene levels over Greenland and Antarctica are 250 ppt and 20 ppt, respectively. Firn air measurements suggest atmospheric acetylene is preserved unaltered in polar snow and firn. Atmospheric reconstructions based on firn air measurements indicate acetylene levels rose significantly during the twentieth century, peaked near 1980, then declined to modern day levels. This historical trend is similar to that of other fossil fuel-derived non-methane hydrocarbons. In the preindustrial atmosphere, acetylene levels should primarily reflect emissions from biomass burning. In this study, we present the first measurements of acetylene in preindustrial air extracted from polar ice cores. Air from fluid and dry-drilled ice cores from Summit, Greenland and WAIS-Divide Antarctica is extracted using a wet-extraction technique. The ice core air is analyzed using gas chromatography and high-resolution mass spectrometry. Between 1400 to 1800 C.E., acetylene levels over Greenland and Antarctica varied between roughly 70-120 ppt and 10-30 ppt, respectively. The preindustrial Greenland acetylene levels are significantly lower than modern levels, reflecting the importance of northern hemisphere fossil fuel sources today. The preindustrial Antarctic acetylene levels are comparable to modern day levels, indicating similar emissions in the preindustrial atmosphere, likely from biomass burning. The implications of the preindustrial atmospheric acetylene records from both hemispheres will be discussed.

  18. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system.

    PubMed

    Moore, C S; Wood, T J; Avery, G; Balcam, S; Needler, L; Joshi, H; Saunderson, J R; Beavis, A W

    2016-11-07

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQ m ) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQ m and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  19. Automatic exposure control calibration and optimisation for abdomen, pelvis and lumbar spine imaging with an Agfa computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Joshi, H.; Saunderson, J. R.; Beavis, A. W.

    2016-11-01

    The use of three physical image quality metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm) have recently been examined by our group for their appropriateness in the calibration of an automatic exposure control (AEC) device for chest radiography with an Agfa computed radiography (CR) imaging system. This study uses the same methodology but investigates AEC calibration for abdomen, pelvis and spine CR imaging. AEC calibration curves were derived using a simple uniform phantom (equivalent to 20 cm water) to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated abdomen, pelvis and spine images (created from real patient CT datasets) with appropriate detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated images contained clinically realistic projected anatomy and were scored by experienced image evaluators. Constant DDI and CNR curves did not provide optimized performance but constant eNEQm and SNR did, with the latter being the preferred calibration metric given that it is easier to measure in practice. This result was consistent with the previous investigation for chest imaging with AEC devices. Medical physicists may therefore use a simple and easily accessible uniform water equivalent phantom to measure the SNR image quality metric described here when calibrating AEC devices for abdomen, pelvis and spine imaging with Agfa CR systems, in the confidence that clinical image quality will be sufficient for the required clinical task. However, to ensure appropriate levels of detector air kerma the advice of expert image evaluators must be sought.

  20. Air pulse deformation measurement: a preliminary method for noninvasive vocal fold pliability analysis.

    PubMed

    Larsson, Hans; Lindestad, P Å; Hertegård, S

    2011-01-01

    A new method, air pulse pliability measurement, is presented, with which the pliability and elasticity of the vocal folds was measured in vitro and in vivo using air pulses. The size of the mucosal movements induced by air pulse stimulation was measured with a laser-based technique. The air pulses fed via a 2-mm tubing, introduced through the working channel of a flexible endoscope. Both in vitro and in vivo tests were performed. Nine normal, vocally healthy subjects were examined by air pulse stimulations of the vocal folds, of the skin (cheek and dorsum of the hand) and of the inside of the lips. The in vitro tests showed a coefficient of variation of 5% within a range of 1-5 mm from the probe to the surface. The elasticity data showed no differences between vocal folds, lips or cheek. The hand data showed a significantly higher stiffness as compared to the other 3 measuring points (p < 0.001). The coefficient of variation was about 35% for all measuring points, but in ideal conditions on skin it was 9%. The results show that the technique allows automatic, quantitative, noninvasive vocal fold pliability measurements on awake subjects. Copyright © 2010 S. Karger AG, Basel.

  1. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is formore » inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.« less

  2. Air quality measurements in urban green areas - a case study

    NASA Astrophysics Data System (ADS)

    Kuttler, W.; Strassburger, A.

    The influence of traffic-induced pollutants (e.g. CO, NO, NO 2 and O 3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO 2 maxima only occurred in the morning. A high NO 2/NO ratio was established during weather conditions with high global radiation intensities ( K>800 W m -2), which may result in a high O 3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km 2), which were as high as 275 μg m -3 O 3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m -3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine-Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The

  3. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  4. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  5. Oculometer Measurement of Air Traffic Controller Visual Attention

    DTIC Science & Technology

    1975-02-01

    AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology

  6. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  7. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  8. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  9. Comparison and harmonization of measuring methods for air contaminants in the working environment.

    PubMed

    Leichnitz, K

    1998-09-01

    The objective of this work was to demonstrate that the measurement of air contaminants in the workplace requires a special approach. Decisive in carrying out the measuring task is the quality of the sampling strategy, including selection of the appropriate measuring method. Methods developed at a national level may be more suitable for this purpose than methods described in international standards. Measurements of air contaminants in the workplace should always be the basis for the prevention and control of occupational hazards. Such measurements, therefore, are also an essential element of risk assessment. Industrial processes and chemical agents are myriad. Each manufacturing stage may apply different conditions (e.g., batch production or continuous process, temperature, pressure) and agents (e.g. a wide variety of chemical substances): In each of these stages, different job functions may be necessary and may be subject to different exposure conditions. Distance from emission sources and physical parameters, such as rates of release, air current, meteorological variations, also have a profound influence. The measuring task in the workplace is quite different in comparison to many others (e.g., blood or soil sample analysis). Firstly, the selection of sampling time and sampling location are crucial steps in air analysis. Transportation and storage of the samples, may however, also influence measuring results; interlaboratory tests show the existing problems. Generally, in analytics, the substance to be determined remains "well covered" in its matrix during sampling, transportation and storage. In air analysis, however, the contaminant is usually "torn" from its surrounding matrix (the air) and "forced" into the sorbent, where it finds a completely new environment; reactions yielding artefacts may take place. Several international organizations have issued guidelines and standards on measuring methods for air contaminants in the working environment, such as the

  10. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  11. Status of air-shower measurements with sparse radio arrays

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2017-03-01

    This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.

  12. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  13. On the feasibility of measuring urban air pollution by wireless distributed sensor networks.

    PubMed

    Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak

    2015-01-01

    Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fetal growth and air pollution - A study on ultrasound and birth measures.

    PubMed

    Malmqvist, Ebba; Liew, Zeyan; Källén, Karin; Rignell-Hydbom, Anna; Rittner, Ralf; Rylander, Lars; Ritz, Beate

    2017-01-01

    Air pollution has been suggested to affect fetal growth, but more data is needed to assess the timing of exposure effects by using ultrasound measures. It is also important to study effects in low exposure areas to assess eventual thresholds of effects. The MAPSS (Maternal Air Pollution in Southern Sweden) cohort consists of linked registry data for around 48,000 pregnancies from an ultrasound database, birth registry and exposure data based on residential addresses. Measures of air pollution exposure were obtained through dispersion modelling with input data from an emissions database (NO x ) with high resolution (100-500m grids). Air pollution effects were assessed with linear regressions for the following endpoints; biparietal diameter, femur length, abdominal diameter and estimated fetal weight measured in late pregnancy and birth weight and head circumference measured at birth. We estimated negative effects for NO x ; in the adjusted analyses the decrease of abdominal diameter and femur length were -0.10 (-0.17, -0.03) and -0.13 (-0.17, -0.01)mm, respectively, per 10µg/m 3 increment of NO x . We also estimated an effect of NO x -exposures on birth weight by reducing birth weight by 9g per 10µg/m 3 increment of NO x . We estimated small but statistically significant effects of air pollution on late fetal and birth size and reduced fetal growth late in pregnancy in a geographic area with levels below current WHO air quality guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Measurements of formaldehyde and acetaldehyde in the urban ambient air

    NASA Astrophysics Data System (ADS)

    Salas, Louis J.; Singh, Hanwant B.

    Acetaldehyde and formaldehyde were measured in urban ambient air by analyzing their 2,4-dinitrophenylhydrazine derivatives with reverse-phase, high-performance liquid chromatography (HPLC). A series of nine short term field experiments were performed in eight cities. Concurrent formaldehyde measurements using the chromotropic-acid procedure show reasonable agreement (±30 %) between the two methods. Average summertime ambient urban formaldehyde (HCHO) concentrations of 10-20 ppb (10 -9v/v) are significantly higher than the average acetaldehyde (CH 3CHO) concentrations of 1-2 ppb. There is evidence of much reduced formaldehyde levels in winter months. Exceptionally high, absolute (8.5 ppb av.) and relative ( HCHO/CH 3CHO ~ 2 ) acetaldehyde concentrations are measured in the South Coast Air Basin of California.

  16. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  17. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  18. MEASUREMENT OF LOW LEVEL AIR TOXICS WITH MODIFIED UV DOAS

    EPA Science Inventory

    To further understand near source impacts, EPA is working to develop open-path optical techniques for spatiotemporal-resolved measurement of air pollutants. Of particular interest is near real time quantification of mobile-source generated CO, Nox and hydrocarbons measured in cl...

  19. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  20. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  1. Historical occupational trichloroethylene air concentrations based on inspection measurements from Shanghai, China.

    PubMed

    Friesen, Melissa C; Locke, Sarah J; Chen, Yu-Cheng; Coble, Joseph B; Stewart, Patricia A; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China's growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5-10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150-190 mg m(-3)). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11 mg m(-3) in 'other metal products/repair' industries to 390 mg m(-3) in 'ships/aircrafts' industries. TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  2. A new multiple air beam approach for in-process form error optical measurement

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Li, R.

    2018-07-01

    In-process measurement can provide feedback for the control of workpiece precision in terms of size, roughness and, in particular, mid-spatial frequency form error. Optical measurement methods are of the non-contact type and possess high precision, as required for in-process form error measurement. In precision machining, coolant is commonly used to reduce heat generation and thermal deformation on the workpiece surface. However, the use of coolant will induce an opaque coolant barrier if optical measurement methods are used. In this paper, a new multiple air beam approach is proposed. The new approach permits the displacement of coolant from any direction and with a large thickness, i.e. with a large amount of coolant. The model, the working principle, and the key features of the new approach are presented. Based on the proposed new approach, a new in-process form error optical measurement system is developed. The coolant removal capability and the performance of this new multiple air beam approach are assessed. The experimental results show that the workpiece surface y(x, z) can be measured successfully with standard deviation up to 0.3011 µm even under a large amount of coolant, such that the coolant thickness is 15 mm. This means a relative uncertainty of 2σ up to 4.35% and the workpiece surface is deeply immersed in the opaque coolant. The results also show that, in terms of coolant removal capability, air supply and air velocity, the proposed new approach improves by, respectively, 3.3, 1.3 and 5.3 times on the previous single air beam approach. The results demonstrate the significant improvements brought by the new multiple air beam method together with the developed measurement system.

  3. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  4. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool.

    PubMed

    Brady, S L; Kaufman, R A

    2015-05-01

    To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken from DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k air) value based on an x-ray characteristic radiation output curve; (2) scaling k air with a BSF value; and (3) correcting k air for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass-energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19-0.42 mGy for dual view chest, 0.28-1.2 mGy for AP abdomen, 0.18-0.65 mGy for LAT view skull, 0.15-0.63 mGy for dual view knee, and 0.10-0.12 mGy for bone age (left hand) examinations. A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing for digital x-ray imaging.

  5. EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants

    EPA Pesticide Factsheets

    EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.

  6. Problems in air traffic management. VII., Job training performance of air traffic control specialists - measurement, structure, and prediction.

    DOT National Transportation Integrated Search

    1965-07-01

    A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....

  7. Exposure chamber measurements of mass transfer and partitioning at the plant/air interface.

    PubMed

    Maddalena, Randy L; McKone, Thomas E; Kado, Norman Y

    2002-08-15

    Dynamic measures of air and vegetation concentrations in an exposure chamber and a two-box mass balance model are used to quantify factors that control the rate and extent of chemical partitioning between vegetation and the atmosphere. A continuous stirred flow-through exposure chamber was used to investigate the gas-phase transfer of pollutants between air and plants. A probabilistic two-compartment mass balance model of plant/air exchange within the exposure chamber was developed and used with measured concentrations from the chamber to simultaneously evaluate partitioning (Kpa), overall mass transfer across the plant/air interface (Upa), and loss rates in the atmosphere (Ra) and aboveground vegetation (Rp). The approach is demonstrated using mature Capsicum annuum (bell pepper) plants exposed to phenanthrene (PH), anthracene (AN), fluoranthene (FL) and pyrene (PY). Measured values of log Kpa (V[air]/V[fresh plant]) were 5.7, 5.7, 6.0, and 6.2 for PH, AN, FL, and PY, respectively. Values of Upa (m d(-1)) under the conditions of this study ranged from 42 for PH to 119 for FL. After correcting for wall effects, the estimated reaction half-lives in air were 3, 9, and 25 h for AN, FL and PY. Reaction half-lives in the plant compartment were 17, 6, 17, and 5 d for PH, AN, FL, and PY, respectively. The combined use of exposure chamber measurements and models provides a robust tool for simultaneously measuring several different transfer factors that are important for modeling the uptake of pollutants into vegetation.

  8. Low-Cost Sensor Units for Measuring Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.

    2010-12-01

    Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.

  9. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  10. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  11. Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.

    PubMed

    Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D

    2012-09-04

    In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.

  12. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  13. Determination of effective doses in image-guided radiation therapy system

    NASA Astrophysics Data System (ADS)

    Pyone, Y. Y.; Suriyapee, S.; Sanghangthum, T.; Oonsiri, S.; Tawonwong, T.

    2016-03-01

    The organ and effective doses in image-guided radiotherapy system are determined in this study. For 2D imaging, incident air kerma (Ki) was measured by 6cc ionization chamber with Accu-Pro dosimeter. The entrance surface air kerma (ESAK) was calculated by multiplying Ki with backscatter factor. The effective dose was calculated by multiplying ESAK with conversion coefficient. For 3D imaging, computed tomography/cone-beam dose index (CTDI/CBDI) measurements were performed by using 100mm pencil ionization chamber with Accu-Pro dosimeter. The dose index in air and in CTDI phantom from planning CT and cone- beam CT were measured. Then, effective dose was calculated by ImPACT software. The effective doses from 2D conventional simulator for anteroposterior and lateral projections were 01 and 0.02mSv for head, 0.15 and 0.16mSv for thorax, 0.22 and 0.21mSv for pelvis, respectively. The effective doses from 3D, planning CT and CBCT, were 3.3 and 0.1mSv for head, 13 and 2.4mSv for thorax and 7.2 and 4.9mSv for pelvis, respectively. Based on 30 fractions of treatment course, total effective dose (3D CT, 2D setup verification and 6 times CBCT) of head, thorax and pelvis were 3.93, 27.71 and 37.03mSv, respectively. Therefore, IGRT should be administered with significant parameters to reduce the dose.

  14. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  15. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  16. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  17. Continuous measurement of air-water gas exchange by underwater eddy covariance

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  18. Air Quality in Megacities: Lessons Learned from Mexico City Field Measurements

    NASA Astrophysics Data System (ADS)

    Molina, L. T.

    2014-12-01

    More than half of the world's population now lives in urban areas because of the opportunities for better jobs, access to city services, cultural and educational activities, and a desire for more stimulating human interaction. At the same time, many of these urban centers are expanding rapidly, giving rise to the phenomenon of megacities. In recent decades air pollution has become not only one of the most important environmental problems of megacities, but also presents serious consequences to human health and ecosystems and economic costs to society. Although the progress to date in combating air pollution problems in developed and some developing world megacities has been impressive, many challenges remain including the need to improve air quality while simultaneously mitigating climate change. This talk will present the results and the lessons learned from field measurements conducted in Mexico City Metropolitan Area - one of the world's largest megacities - over the past decade. While each city has its own unique circumstances, the need for an integrated assessment approach in addressing complex environmental problems is the same. There is no single strategy in solving air pollution problems in megacities; a mix of policy measures based on sound scientific findings will be necessary to improve air quality, protect public health, and mitigate climate change.

  19. Measuring PM and related air pollutants using low-cost ...

    EPA Pesticide Factsheets

    Emerging air quality sensors may play a key role in better characterizing levels of air pollution in a variety of settings There are a wide range of low-cost (< $500 US) sensors on the market, but few have been characterized. If accurate, this new generation of inexpensive sensors can potentially allow larger fleets of monitors to be deployed to better study the spatial and temporal variability of pollutants. The small size and light weight of these sensors also allows for the possibility of wearable or drone applications. Sensor networks will very likely play a key role in future estimates of human health impacts of pollutants, in particular particulate matter (PM), and will allow for the better characterization of pollutant sources and source regions.We will present measurements from an assortment of sensors, costing $20-$700, that have been used to measure air pollution in the US, India, and China with a focus on estimating PM concentrations. Their performance has been evaluated in these very different settings with low concentrations seen in the US (up to approximately 20 ug m-3) and much higher concentrations measured in India and China (up to approximately 300 ug m-3). Based on these studies the optimal concentration ranges of these sensors have been determined. Used in conjunction with data from a carbon dioxide sensor, emissions factors were estimated in some of the locations. In addition temperature and humidity sensors can be used to calculate c

  20. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    PubMed

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  1. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    PubMed

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  2. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    PubMed

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  3. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  4. Measurement of Civil Engineering Customer Satisfaction in Tactical Air Command: A Prototype Evaluation Program.

    DTIC Science & Technology

    1986-09-01

    customers . The article states that in response to a White House Office of Consumer Affairs study and with the wide use of minicomputers: Companies are...D-A174 l16 MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SRTISFACTIbN 1/ IN TACTICAL AIR CO (U) AIR FORCE INST OF TECH ...... RIGHT-PATTERSON AFB ON...BUREAU OF STANDARDS- 1963-A_ . -_- ’II I-F MEASUREMENT OF CIVIL ENGINEERING CUSTOMER SATISFACTION IN TACTICAL AIR COMMAND: A PROTOTYPE EVALUATION PROGRAM

  5. New measurements of cosmic ray air showers with the digital radio interferometer LOPES

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2011-08-01

    LOPES is a digital radio interferometer which measures the radio emission of extensive cosmic ray air showers. It mainly consists of 30 dipole antennas installed in co-location with KASCADE-Grande at the Karlsruhe Institute of Technology (KIT) in Germany. KASCADE-Grande measures the secondary air shower particles at ground. Whenever KASCADE-Grande detects a high-energy cosmic ray event (≳1016 eV), it triggers LOPES which then digitally records the radio signal in the frequency band from 40 to 80 MHz. Using interferometric methods, LOPES is able to successfully detect air shower induced radio pulses, even in the noisy environment at the KIT. In the present studies, a considerable progress in understanding the radio emission mechanism is shown: The latest version of the "radio emission in air shower" simulation program, REAS3, seems to be the first Monte Carlo tool which is able to reproduce the magnitude and slope of most of the measured lateral distributions.

  6. Skin dosimetry of patients during interventional cardiology procedures in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Sukupova, Lucie; Novak, Leos

    2008-01-01

    The aim of the study is to determine distribution of air kerma-area product, fluoro time and number of frames values for the two most frequent procedures in the interventional cardiology, to reconstruct skin dose distributions for some patients undergoing coronarography and percutaneous transluminal coronary angioplasty procedures. Patient dose data were obtained from X-ray unit dose monitoring software report from one hospital and the reconstructions were performed in MATLAB. Dependence of maximum skin dose on air kerma-area product, fluoro time and number of frames was determined to assess trigger levels of these quantities, which can indicate possible exceeding of the 2 Gy skin dose threshold.

  7. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  8. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  9. On the measurement of guided wavefields via air-coupled ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.

    2015-03-01

    Guided wavefields are now routinely measured with scanning laser vibrometers for both characterization of guided wave propagation and damage assessment. However, these measurements are usually time-consuming, particularly for imaging of large areas, primarily because of the degree of signal averaging required to reduce incoherent noise. A scanned air-coupled transducer is an alternative wavefield acquisition method that is based upon recording the very small amplitude pressure waves that leak into air from the out-of-plane motion of the guided wavefield. Air-coupled methods are attractive because they are not sensitive to small variations in surface optical reflectivity and special surface preparations are thus not necessary. In addition, not as much averaging is needed, making the acquisition process much faster. Unlike laser vibrometry, the recorded signals are not a direct measure of the wave motion, but experiments have shown that the acquired wavefields resemble those obtained from laser-based systems. For the work presented here, wavefield data were recorded with both methods for the same aluminum plate and composite panel specimens. Data are qualitatively compared in several domains to assess differences in temporal characteristics and modal content. Although signals are not identical, it is shown that the air-coupled transducer data exhibits similar modal content to that of the laser vibrometry data and may provide a reasonable alternative for some applications.

  10. Measurements of air entrainment by vertical plunging liquid jets

    NASA Astrophysics Data System (ADS)

    El Hammoumi, M.; Achard, J. L.; Davoust, L.

    2002-06-01

    This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling.

  11. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    NASA Astrophysics Data System (ADS)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  12. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  13. Air Combat Maneuvering Performance Measurement

    DTIC Science & Technology

    1979-09-01

    John C. Reed Flying Training Division, Air rorce Human Resources Laboratory September 1979 NOTICE When-IU.S. Government drawings,, speci1fication,s, or...Technol’ogy Departmenit CommandeO,, ’Naval’ Trainin 7 Eqfuipieht Center A rdre_, Human Rsuce Ua~~tr <FGOVERNMENT RIGHTS IN dATfASThTEMENT’.- RoproddVctioh tff...91361 1 1231206.. . SCONTROLLING OFFICE NAME AND ADDRESS 12.82EI3ORLATE.) HQ Air Force Human Resources Laboratory (AFSC) V Stbpi 979J . /- Brooks Air

  14. Commissioning of a well type chamber for HDR and LDR brachytherapy applications: a review of methodology and outcomes.

    PubMed

    Mukwada, Godfrey; Neveri, Gabor; Alkhatib, Zaid; Waterhouse, David K; Ebert, Martin

    2016-03-01

    For safe and accurate dose delivery in brachytherapy, associated equipment is subject to commissioning and ongoing quality assurance (QA). Many centres depend on the use of a well-type chamber ('well chamber') for performing brachytherapy dosimetry. Documentation of well chamber commissioning is scarce despite the important role the chamber plays in the whole brachytherapy QA process. An extensive and structured commissioning of the HDR 1000 plus well chamber (Standard Imaging Inc, Middleton WI) for HDR and LDR dosimetry was undertaken at Sir Charles Gairdner Hospital. The methodology and outcomes of this commissioning is documented and presented as a guideline to others involved in brachytherapy. The commissioning tests described include mechanical integrity, leakage current, directional dependence, response, length of uniform response, the influence of insert holders, ion collection efficiency, polarity effect, accuracy of measured air kerma strength (S(K)) or reference air kerma rate (K(R)) and baseline setting (for ongoing constancy checks). For the HDR 1000 plus well chamber, some of the insert holders modify the response curve. The measured sweet length was 2.5 cm which is within 0.5% of that specified by the manufacturer. Correction for polarity was negligible (0.9999) and ion recombination was small (0.9994). Directional dependence was small (less than 0.2%) and leakage current was negligible. The measured K(R) for (192)Ir agreed within 0.11% compared with a second well chamber of similar model and was within 0.5% of that determined via a free-in-air measurement method. Routine constancy checks over a year agreed with the baseline within 0.4%.

  15. Synergistic use of MODIS cloud products and AIRS radiance measurements for retrieval of cloud parameters

    NASA Astrophysics Data System (ADS)

    Li, J.; Menzel, W.; Sun, F.; Schmit, T.

    2003-12-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.

  16. CT radiation profile width measurement using CR imaging plate raw data

    PubMed Central

    Yang, Chang‐Ying Joseph

    2015-01-01

    This technical note demonstrates computed tomography (CT) radiation profile measurement using computed radiography (CR) imaging plate raw data showing it is possible to perform the CT collimation width measurement using a single scan without saturating the imaging plate. Previously described methods require careful adjustments to the CR reader settings in order to avoid signal clipping in the CR processed image. CT radiation profile measurements were taken as part of routine quality control on 14 CT scanners from four vendors. CR cassettes were placed on the CT scanner bed, raised to isocenter, and leveled. Axial scans were taken at all available collimations, advancing the cassette for each scan. The CR plates were processed and raw CR data were analyzed using MATLAB scripts to measure collimation widths. The raw data approach was compared with previously established methodology. The quality control analysis scripts are released as open source using creative commons licensing. A log‐linear relationship was found between raw pixel value and air kerma, and raw data collimation width measurements were in agreement with CR‐processed, bit‐reduced data, using previously described methodology. The raw data approach, with intrinsically wider dynamic range, allows improved measurement flexibility and precision. As a result, we demonstrate a methodology for CT collimation width measurements using a single CT scan and without the need for CR scanning parameter adjustments which is more convenient for routine quality control work. PACS numbers: 87.57.Q‐, 87.59.bd, 87.57.uq PMID:26699559

  17. An acoustic thermometer for air refractive index estimation in long distance interferometric measurements

    NASA Astrophysics Data System (ADS)

    Pisani, Marco; Astrua, Milena; Zucco, Massimo

    2018-02-01

    We present a method to measure the temperature along the path of an optical interferometer based on the propagation of acoustic waves. It exploits the high sensitivity of the speed of sound to air temperature. In particular, it takes advantage of a technique where the generation of acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light into an electronic signal used as a reference, while the incoming acoustic waves are focused on a microphone and generate the measuring signal. Under this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. A comparison with traditional temperature sensors highlighted the limit of the latter in the case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate for the interferometric distance measurements due to air temperature variations has been demonstrated to the level of 0.1 °C corresponding to 10-7 on the refractive index of air. We applied the method indoor for distances up to 27 m, outdoor at 78 m and finally tested the acoustic thermometer over a distance of 182 m.

  18. Eye lens dosimetry in interventional cardiology: results of staff dose measurements and link to patient dose levels.

    PubMed

    Antic, V; Ciraj-Bjelac, O; Rehani, M; Aleksandric, S; Arandjic, D; Ostojic, M

    2013-01-01

    Workers involved in interventional cardiology procedures receive high eye lens dose if protection is not used. Currently, there is no suitable method for routine use for the measurement of eye dose. Since most angiography machines are equipped with suitable patient dosemeters, deriving factors linking staff eye doses to the patient doses can be helpful. In this study the patient kerma-area product, cumulative dose at an interventional reference point and eye dose in terms of Hp(3) of the cardiologists, nurses and radiographers for interventional cardiology procedures have been measured. Correlations between the patient dose and the staff eye dose were obtained. The mean eye dose was 121 µSv for the first operator, 33 µSv for the second operator/nurse and 12 µSv for radiographer. Normalised eye lens doses per unit kerma-area product were 0.94 µSv Gy⁻¹ cm⁻² for the first operator, 0.33 µSv Gy⁻¹ cm⁻² for the second operator/nurse and 0.16 µSv Gy⁻¹ cm⁻² for radiographers. Statistical analysis indicated that there is a weak but significant (p < 0.01) correlation between the eye dose and the kerma-area product for all three staff categories. These values are based on a local practice and may provide useful reference for other studies for validation and for wider utilisation in assessing the eye dose using patient dose values.

  19. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  20. Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins.

    PubMed

    Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A; Jedermann, Reiner; Gottschalk, Klaus

    2018-02-13

    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0-1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.

  1. Human factors measurement for future air traffic control systems.

    PubMed

    Langan-Fox, Janice; Sankey, Michael J; Canty, James M

    2009-10-01

    This article provides a critical review of research pertaining to the measurement of human factors (HF) issues in current and future air traffic control (ATC). Growing worldwide air traffic demands call for a radical departure from current ATC systems. Future systems will have a fundamental impact on the roles and responsibilities of ATC officers (ATCOs). Valid and reliable methods of assessing HF issues associated with these changes, such as a potential increase (or decrease) in workload, are of utmost importance for advancing theory and for designing systems, procedures, and training. We outline major aviation changes and how these relate to five key HF issues in ATC. Measures are outlined, compared, and evaluated and are followed by guidelines for assessing these issues in the ATC domain. Recommendations for future research are presented. A review of the literature suggests that situational awareness and workload have been widely researched and assessed using a variety of measures, but researchers have neglected the areas of trust, stress, and boredom. We make recommendations for use of particular measures and the construction of new measures. It is predicted that, given the changing role of ATCOs and profound future airspace requirements and configurations, issues of stress, trust, and boredom will become more significant. Researchers should develop and/or refine existing measures of all five key HF issues to assess their impact on ATCO performance. Furthermore, these issues should be considered in a holistic manner. The current article provides an evaluation of research and measures used in HF research on ATC that will aid research and ATC measurement.

  2. [Study on the acquiring data time and intervals for measuring performance of air cleaner on formaldehyde].

    PubMed

    Tang, Zhigang; Wang, Guifang; Xu, Dongqun; Han, Keqin; Li, Yunpu; Zhang, Aijun; Dong, Xiaoyan

    2004-09-01

    The measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde were provided. The natural decay measurement and formaldehyde removal measurement were conducted in 1.5 m3 and 30 m3 test chamber. The natural decay rate was determined by acquiring formaldehyde concentration data at 15 minute intervals for 2.5 hours. The measured decay rate was determined by acquiring formaldehyde concentration data at 5 minute intervals for 1.2 hours. When the wind power of air cleaner is smaller than 30 m3/h or measuring performance of no wind power air clearing product, the 1.5 m3 test chamber can be used. Both the natural decay rate and the measured decay rate are determined by acquiring formaldehyde concentration data at 8 minute intervals for 64 minutes. There were different measuring time and measuring intervals to evaluate different type of air cleaner performance to remove formaldehyde.

  3. A new test chamber to measure material emissions under controlled air velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortoli, M. de; Ghezzi, E.; Knoeppel, H.

    1999-05-15

    A new 20-L glass chamber for the determination of VOC emissions from construction materials and consumer products under controlled air velocity and turbulence is described. Profiles of air velocity and turbulence, obtained with precisely positioned hot wire anemometric probes, show that the velocity field is homogeneous and that air velocity is tightly controlled by the fan rotation speed; this overcomes the problem of selecting representative positions to measure air velocity above a test specimen. First tests on material emissions show that the influence of air velocity on the emission rate of VOCs is negligible for sources limited by internal diffusionmore » and strong for sources limited by evaporation. In a velocity interval from 0.15 to 0.30 m s{sup {minus}1}, an emission rate increase of 50% has been observed for pure n-decane and 1,4-dichlorobenzene and of 30% for 1,2-propanediol from a water-based paint. In contrast, no measurable influence of turbulence could be observed during vaporization of 1,4-dichlorobenzene within a 3-fold turbulence interval. Investigations still underway show that the chamber has a high recovery for the heavier VOC (TXIB), even at low concentrations.« less

  4. An analysis of influenza prevention measures from air travellers' perspective.

    PubMed

    Chou, P-F

    2014-09-01

    The influenza A virus is easily transmitted through airborne saliva droplets disseminated by unprotected coughing or sneezing, particularly in a crowded, enclosed space. The purpose of this study was to analyse the knowledge, attitudes and practices of air travellers regarding influenza A preventive measures and to examine any significant differences in perceptions among different types of traveller groups. This study used a 5-point Likert scale questionnaire and surveyed 1684 passengers at Taoyuan International Airport in Taiwan. The frequencies, mean score and ranking of descriptive analyses were used to evaluate respondents' demographic profiles. t-Test, one-way analysis of variance and Scheffe post hoc analyses were used to evaluate the relationship among knowledge, attitudes and practices, and respondents' characteristics. There were significant differences in the knowledge, attitudes and practices measures among groups with different types of trip purposes and among occupation groups. Most passengers expressed common knowledge regarding influenza A; however, their attitudes and their degree of perception were not consistent with their prevention practices. This research is limited because it only examined surveyed air travellers in Taiwan. Air travellers could benefit greatly if the government and airlines were to implement a health policy that includes education on the importance of influenza prevention measures, such as frequent hand washing, to citizens. Nurses could be involved in this important health promotion activity. Schools should implement a health education policy to communicate the importance of prevention measures. Nurses can consider how they can be involved in emphasizing the importance of prevention and health promotion regarding this. Airlines should also include basic preventive measures as a component of flight attendant training. © 2014 International Council of Nurses.

  5. A new ultrasonic temperature measurement system for air conditioners in automobiles

    NASA Astrophysics Data System (ADS)

    Liao, Teh-Lu; Tsai, Wen-Yuan; Huang, Chih-Feng

    2004-02-01

    This paper presents a microcomputer-based ultrasonic temperature sensor system to measure the temperature of an air conditioner (AC) in an automobile. It uses the ultrasonic measurement of the changes in the speed of sound in the air to determine the temperature of the environmental air. The changes in the speed of sound are calculated by combining time-of-flight (TOF) and phase shift techniques. This method can work in a wider range than using phase shift alone and is more accurate than the TOF scheme. In the proposed system, we use 40 ± 2 kHz ultrasonic transducers and adopt a single-pass operation. An 89c51 single-chip microcomputer-based binary frequency shift-keyed (BFSK) signal generator and phase detector are designed to record and calculate the TOF, phase shift of the two frequencies and temperature. These data are then sent to either an LCD display or to a PC for calibration and examination. Experimental results show that the proposed measurement system has a high accuracy of ± 0.4 °C from 0 to 80 °C and can reflect the temperature change within 100 ms.

  6. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    EPA Science Inventory

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  7. HUMAN EXPOSURE MEASUREMENTS OF AIR TOXICS

    EPA Science Inventory

    EPA's air toxics program is moving toward a risk-based focus. The framework for such a focus was laid out in the National Air Toxics Program: Integrated Urban Strategy which included the requirement for EPA to conduct a National-Scale Air Toxics Assessment (NATA) of human expos...

  8. Characterization of the PTW SourceCheck ionization chamber with the Valencia lodgment for (125)I seed verification.

    PubMed

    Tornero-López, Ana M; Torres Del Río, Julia; Ruiz, Carmen; Perez-Calatayud, Jose; Guirado, Damián; Lallena, Antonio M

    2015-12-01

    In brachytherapy using (125)I seed implants, a verification of the air kerma strength of the sources used is required. Typically, between 40 and 100 seeds are implanted. Checking all of them is unaffordable, especially when seeds are disposed in sterile cartridges. Recently, a new procedure allowing the accomplishment of the international recommendations has been proposed for the seedSelectron system of Elekta Brachytherapy. In this procedure, the SourceCheck ionization chamber is used with a special lodgment (Valencia lodgment) that allows to measure up to 10 seeds simultaneously. In this work we analyze this procedure, showing the feasibility of the approximations required for its application, as well as the effect of the additional dependence with the air density that shows the chamber model used. Uncertainty calculations and the verification of the approximation needed to obtain a calibration factor for the Valencia lodgment are carried out. The results of the present work show that the chamber dependence with the air density is the same whether the Valencia lodgment is used or not. On the contrary, the chamber response profile is influenced by the presence of the lodgment. The determination of this profile requires various measurements due to the nonnegligible variability found between different experiments. If it is considered, the uncertainty in the determination of the air-kerma strength increases from 0.5% to 1%. Otherwise, a systematic additional uncertainty of 1% would occur. This could be relevant for the comparison between user and manufacturer measurements that is mandatory in the case studied here. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Measurement of absolute regional lung air volumes from near-field x-ray speckles.

    PubMed

    Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J

    2013-11-18

    Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration.

  10. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  11. NUCLEAR HEATING IN LIF DOSEMETERS IN A FUSION NEUTRON FIELD, TRIAL OF DIRECT COMPARISON OF EXPERIMENTAL AND SIMULATED RESULTS.

    PubMed

    Pohorecki, Wladyslaw; Obryk, Barbara

    2017-09-29

    The results of nuclear heating measured by means of thermoluminescent dosemeters (TLD-LiF) in a Cu block irradiated by 14 MeV neutrons are presented. The integral Cu experiment relevant for verification of copper nuclear data at neutron energies characteristic for fusion facilities was performed in the ENEA FNG Laboratory at Frascati. Five types of TLDs were used: highly photon sensitive LiF:Mg,Cu,P (MCP-N), 7LiF:Mg,Cu,P (MCP-7) and standard, lower sensitivity LiF:Mg,Ti (MTS-N), 7LiF:Mg,Ti (MTS-7) and 6LiF:Mg,Ti (MTS-6). Calibration of the detectors was performed with gamma rays in terms of air-kerma (10 mGy of 137Cs air-kerma). Nuclear heating in the Cu block was also calculated with the use of MCNP transport code Nuclear heating in Cu and air in TLD's positions was calculated as well. The nuclear heating contribution from all simulated by MCNP6 code particles including protons, deuterons, alphas tritons and heavier ions produced by the neutron interactions were calculated. A trial of the direct comparison between experimental results and results of simulation was performed. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Air Leakage Measurements in Navy Family Housing Units at Norfolk, Virginia.

    DTIC Science & Technology

    1983-04-01

    80-4233), Prepared for Naval Construction Battalion Center (1980). 17. Lagus, P.L., "Air Leakage Measurements in Support of the Johns Manville Corporation...in the Advanced Energy Utilization Test Bed, Pt. Hueneme, California," Systems, Science and Software Report (SSS-R-78-3533), Prepared for Johns ... Manville Corporation (1978). 18. Weidt, J.L., J. Weidt, S. Selkowitz, "Field Air Leakage of Newly Installed Residential Windows," Proceedings of ASHRAE

  13. Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins

    PubMed Central

    Geyer, Martin; Praeger, Ulrike; Scaar, Holger; Neuwald, Daniel A.; Gottschalk, Klaus

    2018-01-01

    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room. PMID:29438339

  14. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    ERIC Educational Resources Information Center

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  15. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    PubMed

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.

  16. Identification and influence of spatio-temporal outliers in urban air quality measurements.

    PubMed

    O'Leary, Brendan; Reiners, John J; Xu, Xiaohong; Lemke, Lawrence D

    2016-12-15

    Forty eight potential outliers in air pollution measurements taken simultaneously in Detroit, Michigan, USA and Windsor, Ontario, Canada in 2008 and 2009 were identified using four independent methods: box plots, variogram clouds, difference maps, and the Local Moran's I statistic. These methods were subsequently used in combination to reduce and select a final set of 13 outliers for nitrogen dioxide (NO 2 ), volatile organic compounds (VOCs), total benzene, toluene, ethyl benzene, and xylene (BTEX), and particulate matter in two size fractions (PM 2.5 and PM 10 ). The selected outliers were excluded from the measurement datasets and used to revise air pollution models. In addition, a set of temporally-scaled air pollution models was generated using time series measurements from community air quality monitors, with and without the selected outliers. The influence of outlier exclusion on associations with asthma exacerbation rates aggregated at a postal zone scale in both cities was evaluated. Results demonstrate that the inclusion or exclusion of outliers influences the strength of observed associations between intraurban air quality and asthma exacerbation in both cities. The box plot, variogram cloud, and difference map methods largely determined the final list of outliers, due to the high degree of conformity among their results. The Moran's I approach was not useful for outlier identification in the datasets studied. Removing outliers changed the spatial distribution of modeled concentration values and derivative exposure estimates averaged over postal zones. Overall, associations between air pollution and acute asthma exacerbation rates were weaker with outliers removed, but improved with the addition of temporal information. Decreases in statistically significant associations between air pollution and asthma resulted, in part, from smaller pollutant concentration ranges used for linear regression. Nevertheless, the practice of identifying outliers through

  17. Pediatric patient and staff dose measurements in barium meal fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Porto, L. E.; Ledesma, J. A.; Nascimento, E. X.; Legnani, A.; Andrade, M. E. A.; Khoury, H. J.

    2015-11-01

    This study investigates patient and staff dose measurements in pediatric barium meal series fluoroscopic procedures. It aims to analyze radiographic techniques, measure the air kerma-area product (PKA), and estimate the staff's eye lens, thyroid and hands equivalent doses. The procedures of 41 patients were studied, and PKA values were calculated using LiF:Mg,Ti thermoluminescent dosimeters (TLDs) positioned at the center of the patient's upper chest. Furthermore, LiF:Mg,Cu,P TLDs were used to estimate the equivalent doses. The results showed a discrepancy in the radiographic techniques when compared to the European Commission recommendations. Half of the results of the analyzed literature presented lower PKA and dose reference level values than the present study. The staff's equivalent doses strongly depends on the distance from the beam. A 55-cm distance can be considered satisfactory. However, a distance decrease of ~20% leads to, at least, two times higher equivalent doses. For eye lenses this dose is significantly greater than the annual limit set by the International Commission on Radiological Protection. In addition, the occupational doses were found to be much higher than in the literature. Changing the used radiographic techniques to the ones recommended by the European Communities, it is expected to achieve lower PKA values ​​and occupational doses.

  18. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  19. AirSWOT Measurements of Water Surface Elevations and Hydraulic Gradients over the Yukon Flats, Alaska

    NASA Astrophysics Data System (ADS)

    Pitcher, L. H.; Pavelsky, T.; Smith, L. C.; Moller, D.; Altenau, E. H.; Lion, C.; Bertram, M.; Cooley, S. W.

    2017-12-01

    AirSWOT is an airborne, Ka-band synthetic aperture radar interferometer (InSAR) intended to quantify surface water fluxes by mapping water surface elevations (WSE). AirSWOT will also serve as a calibration/validation tool for the Surface Water and Ocean Topography (SWOT) satellite mission (scheduled for launch in 2021). The hydrology objectives for AirSWOT and SWOT are to measure WSE with accuracies sufficient to estimate hydrologic fluxes in lakes, wetlands and rivers. However, current understanding of the performance of these related though not identical instruments when applied to complex river-lake-wetland fluvial environments remains predominantly theoretical. We present AirSWOT data acquired 15-June-2015 over the Yukon Flats, Alaska, USA, together with in situ field surveys, to assess the accuracy of AirSWOT WSE measurements in lakes and rivers. We use these data to demonstrate that AirSWOT can be used to estimate large-scale hydraulic gradients across wetland complexes. Finally, we present key lessons learned from this AirSWOT analysis for consideration in future campaigns, including: maximizing swath overlap for spatial averaging to minimize uncertainty as well as orienting flight paths parallel to river flow directions to reduce along track aircraft drift for neighboring flight paths. We conclude that spatially dense AirSWOT measurements of river and lake WSEs can improve geospatial understanding of surface water hydrology and fluvial processes.

  20. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  1. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  2. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  3. A novel radiation protection device based on tungsten functional paper for application in interventional radiology.

    PubMed

    Monzen, Hajime; Tamura, Mikoto; Shimomura, Kohei; Onishi, Yuichi; Nakayama, Shinichi; Fujimoto, Takahiro; Matsumoto, Kenji; Hanaoka, Kohei; Kamomae, Takeshi

    2017-05-01

    Tungsten functional paper (TFP), which contains 80% tungsten by weight, has radiation-shielding properties. We investigated the use of TFP for the protection of operators during interventional or therapeutic angiography. The air kerma rate of scattered radiation from a simulated patient was measured, with and without TFP, using a water-equivalent phantom and fixed C-arm fluoroscopy. Measurements were taken at the level of the operator's eye, chest, waist, and knee, with a variable number of TFP sheets used for shielding. A Monte Carlo simulation was also utilized to analyze the dose rate delivered with and without the TFP shielding. In cine mode, when the number of TFP sheets was varied through 1, 2, 3, 5, and 10, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.9%, 29.9%, 41.6%, 50.4%, and 56.2%; at chest level, 25.3%, 33.1%, 34.9%, 46.1%, and 44.3%; at waist level, 45.1%, 57.0%, 64.4%, 70.7%, and 75.2%; and at knee level, 2.1%, 2.2%, 2.1%, 2.1%, and 2.1%. In fluoroscopy mode, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.8%, 30.3%, 34.8%, 51.1%, and 58.5%; at chest level, 25.8%, 33.4%, 35.5%, 45.2%, and 44.4%; at waist level, 44.6%, 56.8%, 64.7%, 71.7%, and 77.2%; and at knee level, 2.2%, 0.0%, 2.2%, 2.8%, and 2.5%. The TFP paper exhibited good radiation-shielding properties against the scattered radiation encountered in clinical settings, and was shown to have potential application in decreasing the radiation exposure to the operator during interventional radiology. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  4. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  5. A double Gerdien instrument for simultaneous bipolar air conductivity measurements on balloon platforms.

    PubMed

    Nicoll, K A; Harrison, R G

    2008-08-01

    A bipolar air conductivity instrument is described for use with a standard disposable meteorological radiosonde package. It is intended to provide electrical measurements at cloud boundaries, where the ratio of the bipolar air conductivities is affected by the presence of charged particles. The sensors are two identical Gerdien-type electrodes, which, through a voltage decay method, measure positive and negative air conductivities simultaneously. Voltage decay provides a thermally stable approach and a novel low current leakage electrometer switch is described which initiates the decay sequence. The radiosonde supplies power and telemetry, as well as measuring simultaneous meteorological data. A test flight using a tethered balloon determined positive (sigma(+)) and negative (sigma(-)) conductivities of sigma(+)=2.77+/-0.2 fS m(-1) and sigma(-)=2.82+/-0.2 fS m(-1), respectively, at 400 m aloft, with sigma(+)sigma(-)=0.98+/-0.04.

  6. SU-E-I-19: CTDI Values for All Protocols: Using the Ratio of the DLP Measured in CTDI Phantoms to the Measured Air Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raterman, G; Gauntt, D

    2014-06-01

    Purpose: To propose a method other than CTDI phantom measurements for routine CT dosimetry QA. This consists of taking a series of air exposure measurements and calculating a factor for converting from this exposure measurement to the protocol's associated head or body CTDI value using DLP. The data presented are the ratios of phantom DLP to air exposure ratios for different scanners, as well as error in the displayed CTDI. Methods: For each scanner, the CTDI is measured at all available tube voltages using both the head and body phantoms. Then, the exposure is measured using a pencil chamber inmore » air at isocenter. A ratio of phantom DLP to exposure in air for a given protocol may be calculated and used for converting a simple air dose measurement to a head or body CTDI value. For our routine QA, the exposure in air for different collimations, mAs, and kVp is measured, and displayed CTDI is recorded. Therefore, the ratio calculated may convert these exposures to CTDI values that may then be compared to the displayed CTDI for a large range of acquisition parameter combinations. Results: It was found that all scanners tend to have a ratio factor that slightly increases with kVp. Also, Philips scanners appear to have less of a dependence on kVp; whereas, GE scanners have a lower ratio at lower kVp. The use of air exposure times the DLP conversion yielded CTDI values that were less than 10% different from the displayed CTDI on several scanners. Conclusion: This method may be used as a primary method for CT dosimetry QA. As a result of the ease of measurement, a dosimetry metric specific to that scanner may be calculated for a wide variety of CT protocols, which could also be used to monitor display CTDI value accuracy.« less

  7. SU-F-T-05: Dosimetric Evaluation and Validation of Newlydeveloped Well Chamber for Use in the Calibration of Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saminathan, S; Godson, H; Ponmalar, R

    2016-06-15

    Purpose: To evaluate the dosimetric characteristics of newly developed well type ionization chamber and to validate the results with the commercially available calibrated well chambers that are being used for the calibration of brachytherapy sources. Methods: The newly developed well type ionization chamber (BDS 1000) has been designed for the convenient use in brachytherapy which is open to atmospheric condition. The chamber has a volume of 240 cm3 and weight of 2.5 Kg. The calibration of the radioactive source with activities from 0.01 mCi to 20 Ci can be carried out using this chamber. The dosimetric parameters such as leakagemore » current, stability, scattering effect, ion collection efficiency, reference air kerma rate and nominal response with energy were carried out with the BDS 1000 well type ion chamber. The evaluated dosimetric characteristics of BDS1000 well chamber were validated with two other commercially available well chambers (HDR 1000 plus and BTC/3007). Results: The measured leakage current observed was negligible for the newly developed BDS 1000 well type ion chamber. The ion collection efficiency was close to 1 and the response of the chamber was found to be very stable. The determined sweet spot was at 42 mm from bottom of the chamber insert. The reference air kerma rate was found to be 4.634 × 105 Gym2hr-1A-1 for the BDS 1000 well chamber. The overall dosimetric characteristics of BDS 1000 well chamber was in good agreement with the dosimetric properties of other two well chambers. Conclusion: The dosimetric study shows that the newly developed BDS 1000 well type ionization chamber is high sensitive and reliable chamber for reference air kerma strength calibration. The results obtained confirm that this chamber can be used for the calibration of HDR and LDR brachytherapy sources.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmun

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energymore » response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy

  9. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    PubMed

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  10. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    PubMed

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  11. Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air

    NASA Astrophysics Data System (ADS)

    Thalman, Ryan; Zarzana, Kyle J.; Tolbert, Margaret A.; Volkamer, Rainer

    2014-11-01

    Knowledge about Rayleigh scattering cross sections is relevant to predictions about radiative transfer in the atmosphere, and needed to calibrate the reflectivity of mirrors that are used in high-finesse optical cavities to measure atmospheric trace gases and aerosols. In this work we have measured the absolute Rayleigh scattering cross-section of nitrogen at 405.8 and 532.2 nm using cavity ring-down spectroscopy (CRDS). Further, multi-spectral measurements of the scattering cross-sections of argon, oxygen and air are presented relative to that of nitrogen from 350 to 660 nm using Broadband Cavity Enhanced Spectroscopy (BBCES). The reported measurements agree with refractive index based theory within 0.2±0.4%, and have an absolute accuracy of better than 1.3%. Our measurements expand the spectral range over which Rayleigh scattering cross section measurements of argon, oxygen and air are available at near-ultraviolet wavelengths. The expressions used to represent the Rayleigh scattering cross-section in the literature are evaluated to assess how uncertainties affect quantities measured by cavity enhanced absorption spectroscopic (CEAS) techniques. We conclude that Rayleigh scattering cross sections calculated from theory provide accurate data within very low error bounds, and are suited well to calibrate CEAS measurements of atmospheric trace gases and aerosols.

  12. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  13. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  14. Next-generation air measurement technologies | Science ...

    EPA Pesticide Factsheets

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  15. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  16. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, S. L., E-mail: samuel.brady@stjude.org; Kaufman, R. A., E-mail: robert.kaufman@stjude.org

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken frommore » DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k{sub air}) value based on an x-ray characteristic radiation output curve; (2) scaling k{sub air} with a BSF value; and (3) correcting k{sub air} for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass–energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. Results: ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19–0.42 mGy for dual view chest, 0.28–1.2 mGy for AP abdomen, 0.18–0.65 mGy for LAT view skull, 0.15–0.63 mGy for dual view knee, and 0.10–0.12 mGy for bone age (left hand) examinations. Conclusions: A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing

  17. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  18. Measurement of acetates in air using differential ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Zajiczek, Żaneta; Maziejuk, Mirosław

    2017-11-01

    Volatile organic compounds are one of the most important group of air pollutants. Potential health and environmental problems resulting from their emission prompted the requirement for monitoring these species. It motivates development of new measurement techniques which are fast, cost effective, reliable and field deployable. One of novel approaches is ion mobility spectrometry. It dwells on ion separation in electric field, based on differences in ion mobility. Many variants of this method are developed. In this wok, differential ion mobility spectrometry (DMS) was considered in respect of acetate measurements in air. It was demonstrated that DMS offers linear response to methyl, ethyl, propyl and butyl acetate in concentration range from 0.3 ppm to 7 ppm. Positive ions spectrum has to be utilised for this purpose. We showed that fragments of DMS spectrum which secure linearity are compound-specific. The obtained results are promising from the application point of view.

  19. The MUMBA campaign: measurements of urban, marine and biogenic air

    NASA Astrophysics Data System (ADS)

    Paton-Walsh, Clare; Guérette, Élise-Andrée; Kubistin, Dagmar; Humphries, Ruhi; Wilson, Stephen R.; Dominick, Doreena; Galbally, Ian; Buchholz, Rebecca; Bhujel, Mahendra; Chambers, Scott; Cheng, Min; Cope, Martin; Davy, Perry; Emmerson, Kathryn; Griffith, David W. T.; Griffiths, Alan; Keywood, Melita; Lawson, Sarah; Molloy, Suzie; Rea, Géraldine; Selleck, Paul; Shi, Xue; Simmons, Jack; Velazco, Voltaire

    2017-06-01

    The Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign took place in Wollongong, New South Wales (a small coastal city approximately 80 km south of Sydney, Australia) from 21 December 2012 to 15 February 2013. Like many Australian cities, Wollongong is surrounded by dense eucalyptus forest, so the urban airshed is heavily influenced by biogenic emissions. Instruments were deployed during MUMBA to measure the gaseous and aerosol composition of the atmosphere with the aim of providing a detailed characterisation of the complex environment of the ocean-forest-urban interface that could be used to test the skill of atmospheric models. The gases measured included ozone, oxides of nitrogen, carbon monoxide, carbon dioxide, methane and many of the most abundant volatile organic compounds. The aerosol characterisation included total particle counts above 3 nm, total cloud condensation nuclei counts, mass concentration, number concentration size distribution, aerosol chemical analyses and elemental analysis.The campaign captured varied meteorological conditions, including two extreme heat events, providing a potentially valuable test for models of future air quality in a warmer climate. There was also an episode when the site sampled clean marine air for many hours, providing a useful additional measure of the background concentrations of these trace gases within this poorly sampled region of the globe. In this paper we describe the campaign, the meteorology and the resulting observations of atmospheric composition in general terms in order to equip the reader with a sufficient understanding of the Wollongong regional influences to use the MUMBA datasets as a case study for testing a chemical transport model. The data are available from PANGAEA (http://doi.pangaea.de/10.1594/PANGAEA.871982).

  20. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-08-01

    A stochastic model of the processes involved in the measurement of the activity of the 222 Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the 222 Rn decay products concentrations in the air are realistically evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Radtke, J; Micka, J

    Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm {sup 10} {sup 3}Pd sources each containing four regions of variable {sup 103}Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using amore » well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable {sup 103}Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the {sup 103}Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity

  2. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  3. Applying large datasets to developing a better understanding of air leakage measurement in homes

    DOE PAGES

    Walker, I. S.; Sherman, M. H.; Joh, J.; ...

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions needmore » to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.« less

  4. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools.

    PubMed

    Sá, Juliana P; Branco, Pedro T B S; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2017-05-31

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO₂, CO, NO₂, O₃, CH₂O, total volatile organic compounds (VOC), PM₁, PM 2.5 , PM 10 , Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM 2.5 , PM 10 , CO₂ and CH₂O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO₂. However, mitigation measures were not always sufficient to decrease the pollutants' concentrations till values considered safe to protect human health.

  5. Challenges and Opportunities for Using Crowd-Sourced Air Pollution Measurements for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Dong, C.; Janechek, N. J.; Bryngelson, N.; Schultz, P.; Heimbinder, M.

    2017-12-01

    As part of the CLE4R air quality education project, the University of Iowa has been working with AirBeam low-cost consumer-grade fine particulate matter (PM2.5) sensors in educational and outreach settings, both in K-12 environments and in informal settings such as science days and technology fairs. Users are attracted to the AirBeam device, in part, because of the easy creation of crowd-sourced maps of air pollution. With over 1000 AirBeam devices in use, extensive measurements are now available at aircasting.org. The AirBeam sensor is a portable, low-cost sensor which measures light scattering due to aerosols as a single bin converting the detected signal to a particle count and uses a calibration fit to estimate particle mass. The AirBeam is able to detect particle sizes of 0.5 - 2.5 µm, concentrations up to 400 µg m-3, and with a time resolution of 1 s. A corresponding Android device is used to visualize, record, and upload measured data to a community website (aircasting.org) that maps the spatial and temporal resolved data. The non-profit vendor's website constructs crowdsourced maps of air quality, environmental, and meteorological variables. As of April 1st, 2017, through the CLE4R project, 109 people had used the AirBeam sensors for educational purposes, for a total of 271 person hours. In the poster, we will explain the outreach that was done, and share best practices for education and outreach using consumer-grade PM sensors. Strengths and needed improvements to the technology for these outreach, education, and classroom uses will also be detailed. Sources of particles that can be artificially generated for educational use, including authentic smoke, spray smoke, and various dust sources will be enumerated. For use in K-12 classrooms, requirements for robust startup, operation, and ease-of-use are high. Mapping of concentrations is a desirable attribute but adds additional sources of failure to the hardware-software system used for education/outreach.

  6. Measurement of the Muon Content of Air Showers with IceTop

    NASA Astrophysics Data System (ADS)

    Gonzalez, JG; IceCube Collaboration

    2016-05-01

    IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.

  7. Quantifying the effect of air quality control measures during the 2010 Commonwealth Games at Delhi, India

    NASA Astrophysics Data System (ADS)

    Beig, Gufran; Chate, Dilip M.; Ghude, Sachin. D.; Mahajan, A. S.; Srinivas, R.; Ali, K.; Sahu, S. K.; Parkhi, N.; Surendran, D.; Trimbake, H. R.

    2013-12-01

    In 2010, the XIX Commonwealth Games (CWG-2010) were held in India for the first time at Delhi and involved 71 commonwealth nations and dependencies with more than 6000 athletes participating in 272 events. This was the largest international multi-sport event to be staged in India and strict emission controls were imposed during the games in order to ensure improved air quality for the participating athletes as a significant portion of the population in Delhi is regularly exposed to elevated levels of pollution. The air quality control measures ranged from vehicular and traffic controls to relocation of factories and reduction of power plant emissions. In order to understand the effects of these policy induced control measures, a network of air quality and weather monitoring stations was set-up across different areas in Delhi under the Government of India's System of Air quality Forecasting And Research (SAFAR) project. Simultaneous measurements of aerosols, reactive trace gases (e.g. NOx, O3, CO) and meteorological parameters were made before, during and after CWG-2010. Contrary to expectations, the emission controls implemented were not sufficient to reduce the pollutants, instead in some cases, causing an increase. The measured pollutants regularly exceeded the National Ambient Air Quality limits over the games period. The reasons for this increase are attributed to an underestimation of the required control measures, which resulted in inadequate planning. The results indicate that any future air quality control measures need to be well planned and strictly imposed in order to improve the air quality in Delhi, which affects a large population and is deteriorating rapidly. Thus, the presence of systematic high resolution data and realistic emission inventories through networks such as SAFAR will be directly useful for the future.

  8. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  9. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    EPA Science Inventory

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  10. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    PubMed

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.

  11. Simultaneous measurements of radar reflectivity and refractive index spectra in clear air convection.

    NASA Technical Reports Server (NTRS)

    Konrad, T. G.; Robison, F. L.

    1972-01-01

    Simultaneous measurements of radar reflectivity and radio refractive index at several altitudes in clear air convection have been made. The experimental data were compared with the theoretical relationship which relates the reflectivity to the refractivity spectrum. The agreement between the measurements and the theory is excellent and shows that the radar returns in clear air are the result of, and can be quantitatively described as being from, fine-scale refractivity fluctuations due to turbulent mixing. Further, the data give strong support to the -5/3 spectral decay of the refractivity spectrum in the inertial subrange.

  12. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  13. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  14. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  15. Junge relationships in measurement data for cyclic siloxanes in air.

    PubMed

    MacLeod, Matthew; Kierkegaard, Amelie; Genualdi, Susie; Harner, Tom; Scheringer, Martin

    2013-10-01

    In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements. The second dataset consists of measurements of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and D5 made simultaneously at 12 sites in the Global Atmospheric Passive Sampling (GAPS) network that shows a Junge relationship in the spatial variability of the three cVMS congeners. We use the Junge relationship for the GAPS dataset to estimate atmospheric lifetimes of dodecamethylcyclohexasiloxane (D6), 8:2-fluorotelomer alcohol and trichlorinated biphenyls that are within a factor of 3 of estimates based on degradation rate constants for reaction with hydroxyl radical determined in laboratory studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. [Validation of measurement methods and estimation of uncertainty of measurement of chemical agents in the air at workstations].

    PubMed

    Dobecki, Marek

    2012-01-01

    This paper reviews the requirements for measurement methods of chemical agents in the air at workstations. European standards, which have a status of Polish standards, comprise some requirements and information on sampling strategy, measuring techniques, type of samplers, sampling pumps and methods of occupational exposure evaluation at a given technological process. Measurement methods, including air sampling and analytical procedure in a laboratory, should be appropriately validated before intended use. In the validation process, selected methods are tested and budget of uncertainty is set up. The validation procedure that should be implemented in the laboratory together with suitable statistical tools and major components of uncertainity to be taken into consideration, were presented in this paper. Methods of quality control, including sampling and laboratory analyses were discussed. Relative expanded uncertainty for each measurement expressed as a percentage, should not exceed the limit of values set depending on the type of occupational exposure (short-term or long-term) and the magnitude of exposure to chemical agents in the work environment.

  17. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  18. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  19. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools

    PubMed Central

    Sá, Juliana P.; Branco, Pedro T. B. S.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2017-01-01

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO2, CO, NO2, O3, CH2O, total volatile organic compounds (VOC), PM1, PM2.5, PM10, Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM2.5, PM10, CO2 and CH2O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO2. However, mitigation measures were not always sufficient to decrease the pollutants’ concentrations till values considered safe to protect human health. PMID:28561795

  20. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the currentmore » as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.« less

  1. Toward coordinated space-based air quality, carbon cycle, and ecosystem measurements to quantify air quality-ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.

    2016-12-01

    Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. Process-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to air quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for air quality-ecosystem interactions while also meeting the needs of the individual Air Quality, Carbon Cycle, and Ecosystems communities.

  2. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  3. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement-The Promise and the Current Reality.

    PubMed

    Broday, David M

    2017-10-02

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  4. Trajectories of thermospheric air parcels flowing over Alaska, reconstructed from ground-based wind measurements

    NASA Astrophysics Data System (ADS)

    Dhadly, Manbharat; Conde, Mark

    2017-06-01

    It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.

  5. Dosimetry in x-ray-based breast imaging

    PubMed Central

    Dance, David R; Sechopoulos, Ioannis

    2016-01-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable. PMID:27617767

  6. Dosimetry in x-ray-based breast imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  7. Measuring the muon content of air showers with IceTop

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier G.

    2015-08-01

    IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  8. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Franich, R; Taylor, M

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less

  9. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    PubMed

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. A measurement of time-averaged aerosol optical depth using air-showers observed in stereo by HiRes

    NASA Astrophysics Data System (ADS)

    High Resolution Fly'S Eye Collaboration; Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Belov, K.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Cannon, C. T.; Cao, Z.; Connolly, B. M.; Fedorova, Y.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Manago, N.; Mannel, E. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Reil, K.; Roberts, M. D.; Schnetzer, S. R.; Seman, M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2006-03-01

    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper, we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly’s Eye over a four year span.

  11. Measurement of the radon diffusion through a nylon foil for different air humidities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While themore » left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.« less

  12. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study

    PubMed Central

    Rosen, Laura; Zucker, David; Hovell, Melbourne; Brown, Nili; Ram, Amit; Myers, Vicki

    2015-01-01

    Tobacco smoke air pollution (TSAP) measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM2.5 during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM2.5 levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM2.5 feedback (with Sidepak or Dylos monitor) was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring. PMID:26633440

  13. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  14. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  15. Comparison of MODIS-derived land surface temperature with air temperature measurements

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2017-09-01

    Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.

  16. Quantitative dermal measurements following treatment with AirGent.

    PubMed

    Kobus, Kazimierz F; Dydymski, Tomasz

    2010-09-01

    As an alternative to other minimally-invasive approaches to facial rejuvenation, enhancement and treatment of the dermis with a compressed air molecule of hyaluronic acid (HA) is a promising method in that it lacks some of the drawbacks of other procedures. The novelty of these systems, one of which is tested in this study, is based on the supposition that jet lateral dispersion of HA produces both instant dermal augmentation and specific wound-healing processes, leading to its long-term dermal thickening. The authors report on the efficacy and safety of the AirGent system (PerfAction, Rehovot, Israel), which is a renewal system designed to initiate a wound-healing process in the dermal layer. It is a computer-guided system that delivers treatment through compressed air molecules of HA to the dermal layer of the skin. The authors treated 20 patients (a total of 105 treatment sessions) with the AirGent system between May 2008 and November 2008. Each patient received three treatments at three- to four-week intervals. Each patient's skin thickness was measured with ultrasonography pretreatment, immediately after each session, and at six months posttreatment. Seven days after the last procedure, an increase in skin thickness was observed in all patients. The most significant differences were noted in the upper lip area, where the thickness had increased by an average of 1.3 mm. Six months after the last session, an increase in skin thickness was still noted in most patients, at which time the biggest difference was noted around the eyes, where the skin remained thicker by an average of 0.77 mm over baseline. According to the results of the Global Improvement Assessment questionnaire, at the six-month follow-up to evaluate their satisfaction with the long-term results, at least 59.9% of patients still noted at least a slight improvement in their appearance. Although a small group of patients and a relatively short period of observation limit the scope of our conclusions

  17. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  18. Surface acoustic wave transducer used for determination of the dew point in measurements of air relative humidity

    NASA Astrophysics Data System (ADS)

    Golebiowski, Jacek

    1995-06-01

    The devices to the measurement of air relative humidity with the surface acoustic wave transducers were presented. The relative humidity of air were measured by the determination of the dew point. The results of the investigations that were carried out were described and discussed.

  19. Methods and measurements in real-time air traffic control system simulation.

    DOT National Transportation Integrated Search

    1983-04-01

    The major purpose of this work was to asses dynamic simulation of air traffic control systems as a technique for evaluating such systems in a statistically sound and objective manner. A large set of customarily used measures based on the system missi...

  20. Calculating osmotic pressure of glucose solutions according to ASOG model and measuring it with air humidity osmometry.

    PubMed

    Wei, Guocui; Zhan, Tingting; Zhan, Xiancheng; Yu, Lan; Wang, Xiaolan; Tan, Xiaoying; Li, Chengrong

    2016-09-01

    The osmotic pressure of glucose solution at a wide concentration range was calculated using ASOG model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with the well-established freezing point osmometry and ASOG model calculations at low concentrations and with only ASOG model calculations at high concentrations where no standard experimental method could serve as a reference for comparison. Results indicate that air humidity osmometry measurements are comparable to ASOG model calculations at a wide concentration range, while at low concentrations freezing point osmometry measurements provide better comparability with ASOG model calculations.

  1. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle

    EPA Science Inventory

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  2. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  3. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  4. Density Measurements in Air by Optically Exciting the Cordes Bands of I2

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Exton, Reginald J.

    2000-01-01

    We describe an optical method based on laser-induced fluorescence for obtaining instantaneous measurements of density along a line in low-density air seeded with I2. The Cordes bands of I2 (D(sup 1)sigma(sup +, sub u)) left arrow X(sup 1)sigma(sup +, sub g)) are excited with a tunable ArF excimer laser. air densities in the range (0.1-6.5) x 10(exp 17) cm(exp -3) are measured over 295-583 K using the density-dependent emission ratio of two emission bands of I2; the 340 nm bands and the diffuse-structured McLennan bands near 320 nm.

  5. Comparison of air-charged and water-filled urodynamic pressure measurement catheters.

    PubMed

    Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S

    2011-03-01

    Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.

  6. The use of ultrasound measurements in environmental epidemiological studies of air pollution and fetal growth

    PubMed Central

    Smarr, Melissa M.; Vadillo-Ortega, Felipe; Castillo-Castrejon, Marisol; O’Neill, Marie S.

    2015-01-01

    Purpose of review Recently, several international research groups have suggested that studies about environmental contaminants and adverse pregnancy outcomes should be designed to elucidate potential underlying biological mechanisms. The purpose of this review is to examine the epidemiological studies addressing maternal exposure to air pollutants and fetal growth during gestation as assessed by ultrasound measurements. Recent findings The six studies published to date found that exposure to certain ambient air pollutants during pregnancy is negatively associated with the growth rates and average attained size of fetal parameters belonging to the growth profile. Fetal parameters may respond to maternal air pollution exposures uniquely, and this response may vary by pollutant and timing of gestational exposure. Current literature suggests that mean changes in head circumference, abdominal circumference, femur length, and biparietal diameter are negatively associated with early-pregnancy exposures to ambient and vehicle-related air pollution. Summary The use of more longitudinal studies, employing ultrasound measures to assess fetal outcomes, may assist with the better understanding of mechanisms responsible for air pollution-related pregnancy outcomes. PMID:23399571

  7. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  8. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 06: Investigation of an absorbed dose to water formalism for a miniature low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter; Seuntjens, Jan

    Purpose: We present a formalism for calculating the absorbed dose to water from a miniature x-ray source (The INTRABEAM system, Carl Zeiss), using a parallel-plate ionization chamber calibrated in terms of air-kerma. Monte Carlo calculations were performed to derive a chamber conversion factor (C{sub Q}) from reference air-kerma to dose to water for the INTRABEAM. C{sub Q} was investigated as a function of depth in water, and compared with the manufacturer’s reported value. The effect of chamber air cavity dimension tolerance was also investigated. Methods: Air-kerma (A{sub k}) from a reference beam was calculated using the EGSnrc user code cavity.more » Using egs-chamber, a model of a PTW 34013 parallel-plate ionization chamber was created according to manufacturer specifications. The dose to the chamber air cavity (D{sub gas}) was simulated both in-air (with reference beam) and in-water (with INTRABEAM source). Dose to a small water voxel (D{sub w}) was also calculated. C{sub Q} was derived from these quantities. Results: C{sub Q} was found to vary by up to 15% (1.30 vs 1.11) between chamber dimension extremes. The agreement between chamber C{sub Q} was found to improve with increasing depth in water. However, in all cases investigated, C{sub Q} was larger than the manufacturer reported value of 1.054. Conclusions: Our results show that cavity dimension tolerance has a significant effect on C{sub Q}, with differences as large as 15%. In all cases considered, C{sub Q} was found to be larger than the reported value of 1.054. This suggests that the recommended calculation underestimates the dose to water.« less

  9. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  10. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  11. [The effect of the ventilation rate on air particle and air microbe concentration in operating rooms with conventional ventilation. 1. Measurement without surgical activity].

    PubMed

    Kruppa, B; Rüden, H

    1993-05-01

    The question was if a reduction of airborne particles and bacteria in conventionally (turbulently), ventilated operating theatres in comparison to Laminar-Airflow (LAF) operating theatres does occur at high air-exchange-rates. Within the framework of energy consumption measures the influence of air-exchange-rates on airborne particle and bacteria concentrations was determined in two identical operating theatres with conventional ventilation (wall diffusor panel) at the air-exchange-rates 7.5, 10, 15 and 20/h without surgical activity. This was established by means of the statistical procedure of analysis of variance. Especially for the comparison of the air-exchange-rates 7.5 and 15/h statistical differences were found for airborne particle concentrations in supply and ambient air. Concerning airborne bacteria concentrations no differences were found among the various air-exchange-rates. Explanation of variance is quite high for non-viable particles (supply air: 37%, ambient air: 81%) but negligible for viable particles (bacteria) with values below 15%.

  12. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    PubMed

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  13. Are the measurements of water-filled and air-charged catheters the same in urodynamics?

    PubMed

    Digesu, G Alessandro; Derpapas, Alexandros; Robshaw, Penny; Vijaya, Gopalan; Hendricken, Caroline; Khullar, Vik

    2014-01-01

    The aim of our study was to compare air-charged and water-filled catheters simultaneously in the measurement of the intravesical, abdominal and detrusor pressure during urodynamic investigations. Consecutive women with lower urinary tract symptoms, referred for urodynamics were prospectively studied. Readings of intravesical pressure (p(ves)), abdominal pressure (p(abd)) and detrusor pressure (p(det)), recorded by both the air-charged and water-filled catheters, were displayed simultaneously and compared at the end of filling, on standing, on sitting prior to voiding and at the maximum involuntary detrusor contraction. The signals (pressures) recorded by both types of catheter were compared using the Bland-Altman plot and paired samples t test. Twenty women with a mean age of 49 (range 36-72) were recruited. One patient with normal urodynamics was excluded in view of the poor quality trace. At each of the four comparison points, the air-charged catheters consistently produced higher mean pressures than the water-filled catheters. There were wide variations in the difference between the readings produced by the two types of catheter. Pressures measured using air-charged catheters are not comparable with water-filled catheters and are therefore not interchangeable. Caution must be used when comparing urodynamic parameters using air-charged and water-filled catheters.

  14. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants.

    PubMed

    Baurès, Estelle; Blanchard, Olivier; Mercier, Fabien; Surget, Emilie; le Cann, Pierre; Rivier, Alexandre; Gangneux, Jean-Pierre; Florentin, Arnaud

    2018-06-09

    In addition to being influenced by the environment, the indoor air pollution in hospitals may be associated with specific compounds emitted from various products used, health care activities and building materials. This study has enabled assessment of the chemical and microbiological concentrations of indoor air in two French hospitals. Based on an integrated approach, the methodology defined aims to measure concentrations of a wide range of chemical compounds (>50 volatile and semi-volatile organic compounds), particle concentrations (PM 10 and PM 2.5 ), microorganisms (fungi, bacteria and viruses) and ambient parameters (temperature, relative humidity, pressure and carbon dioxide). Chemical and microbiological air concentrations were measured during two campaigns (winter and summer) and across seven rooms (for spatial variability). The results have shown that indoor air contains a complex mixture of chemical, physical and microbiological compounds. Concentrations in the same order of magnitude were found in both hospitals. Compared to dwelling indoor air, our study shows low, at least equivalent, contamination for non-hospital specific parameters (aldehydes, limonene, phthalates, aromatic hydrocarbons), which is related to ventilation efficiency. Chemical compounds retrieved at the highest concentration and frequencies are due to healthcare activities, for example alcohol - most commonly ethanol - and hand rubbing (median concentration: ethanol 245.7 μg/m 3 and isopropanol 13.6 μg/m 3 ); toluene and staining in parasitology (highest median concentration in Nancy laboratory: 2.1 μg/m 3 )). Copyright © 2018. Published by Elsevier B.V.

  15. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly.

  16. Chapter 22: Compressed Air Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Benton, Nathanael; Burns, Patrick

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: High-efficiency/variable speed drive (VSD) compressormore » replacing modulating, load/unload, or constant-speed compressor; and Compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.« less

  17. Comparison of air space measurement imaged by CT, small-animal CT, and hyperpolarized Xe MRI

    NASA Astrophysics Data System (ADS)

    Madani, Aniseh; White, Steven; Santyr, Giles; Cunningham, Ian

    2005-04-01

    Lung disease is the third leading cause of death in the western world. Lung air volume measurements are thought to be early indicators of lung disease and markers in pharmaceutical research. The purpose of this work is to develop a lung phantom for assessing and comparing the quantitative accuracy of hyperpolarized xenon 129 magnetic resonance imaging (HP 129Xe MRI), conventional computed tomography (HRCT), and highresolution small-animal CT (μCT) in measuring lung gas volumes. We developed a lung phantom consisting of solid cellulose acetate spheres (1, 2, 3, 4 and 5 mm diameter) uniformly packed in circulated air or HP 129Xe gas. Air volume is estimated based on simple thresholding algorithm. Truth is calculated from the sphere diameters and validated using μCT. While this phantom is not anthropomorphic, it enables us to directly measure air space volume and compare these imaging methods as a function of sphere diameter for the first time. HP 129Xe MRI requires partial volume analysis to distinguish regions with and without 129Xe gas and results are within %5 of truth but settling of the heavy 129Xe gas complicates this analysis. Conventional CT demonstrated partial-volume artifacts for the 1mm spheres. μCT gives the most accurate air-volume results. Conventional CT and HP 129Xe MRI give similar results although non-uniform densities of 129Xe require more sophisticated algorithms than simple thresholding. The threshold required to give the true air volume in both HRCT and μCT, varies with sphere diameters calling into question the validity of thresholding method.

  18. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.

    PubMed

    Davie-Martin, Cleo L; Hageman, Kimberly J; Chin, Yu-Ping; Rougé, Valentin; Fujita, Yuki

    2015-09-01

    Soil-air partition coefficient (Ksoil-air) values are often employed to investigate the fate of organic contaminants in soils; however, these values have not been measured for many compounds of interest, including semivolatile current-use pesticides. Moreover, predictive equations for estimating Ksoil-air values for pesticides (other than the organochlorine pesticides) have not been robustly developed, due to a lack of measured data. In this work, a solid-phase fugacity meter was used to measure the Ksoil-air values of 22 semivolatile current- and historic-use pesticides and their degradation products. Ksoil-air values were determined for two soils (semiarid and volcanic) under a range of environmentally relevant temperature (10-30 °C) and relative humidity (30-100%) conditions, such that 943 Ksoil-air measurements were made. Measured values were used to derive a predictive equation for pesticide Ksoil-air values based on temperature, relative humidity, soil organic carbon content, and pesticide-specific octanol-air partition coefficients. Pesticide volatilization losses from soil, calculated with the newly derived Ksoil-air predictive equation and a previously described pesticide volatilization model, were compared to previous results and showed that the choice of Ksoil-air predictive equation mainly affected the more-volatile pesticides and that the way in which relative humidity was accounted for was the most critical difference.

  19. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    NASA Astrophysics Data System (ADS)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  20. Measuring the Operational Readiness of an Air Force Network Warfare Squadron

    DTIC Science & Technology

    2008-06-01

    Abstract As part of its unit activation, the 315th Network Warfare Squadron (NWS) needed to measure and report its progression of unit readiness...NWS unit readiness should be measured and reported by SORTS Category Levels (C-Level) to support wartime missions, not by IOC and FOC milestones...This paper reviews SORTS computations and provides a case study of a notional Air Force NWS to propose that any new cyber squadron should report

  1. PROCEEDINGS OF THE 1992 EPA/AWMA INTERNATIONAL SYMPOSIUM MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS

    EPA Science Inventory

    The 1992 USEPA/AWMA International Symposium Measurement of Toxic and Related Air Pollutants was held in Durham, NC on May 4-9, 1992. his yearly symposium is sponsored by the Atmospheric Research and Exposure Assessment Laboratory and the Air & Waste Management Association. he tec...

  2. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    NASA Astrophysics Data System (ADS)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  3. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  4. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  5. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  6. Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study.

    PubMed

    Hansel, Nadia N; Paulin, Laura M; Gassett, Amanda J; Peng, Roger D; Alexis, Neil; Fan, Vincent S; Bleecker, Eugene; Bowler, Russell; Comellas, Alejandro P; Dransfield, Mark; Han, MeiLan K; Kim, Victor; Krishnan, Jerry A; Pirozzi, Cheryl; Cooper, Christopher B; Martinez, Fernando; Woodruff, Prescott G; Breysse, Patrick J; Barr, R Graham; Kaufman, Joel D

    2017-01-01

    Population-based epidemiological evidence suggests that exposure to ambient air pollutants increases hospitalisations and mortality from chronic obstructive pulmonary disease (COPD), but less is known about the impact of exposure to air pollutants on patient-reported outcomes, morbidity and progression of COPD. The Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) Air Pollution Study (SPIROMICS AIR) was initiated in 2013 to investigate the relation between individual-level estimates of short-term and long-term air pollution exposures, day-to-day symptom variability and disease progression in individuals with COPD. SPIROMICS AIR builds on a multicentre study of smokers with COPD, supplementing it with state-of-the-art air pollution exposure assessments of fine particulate matter, oxides of nitrogen, ozone, sulfur dioxide and black carbon. In the parent study, approximately 3000 smokers with and without airflow obstruction are being followed for up to 3 years for the identification of intermediate biomarkers which predict disease progression. Subcohorts undergo daily symptom monitoring using comprehensive daily diaries. The air monitoring and modelling methods employed in SPIROMICS AIR will provide estimates of individual exposure that incorporate residence-specific infiltration characteristics and participant-specific time-activity patterns. The overarching study aim is to understand the health effects of short-term and long-term exposures to air pollution on COPD morbidity, including exacerbation risk, patient-reported outcomes and disease progression. The institutional review boards of all the participating institutions approved the study protocols. The results of the trial will be presented at national and international meetings and published in peer-reviewed journals.

  7. Air quality measurements and monitoring network in the Republic of Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinman, A.; Lyulko, J.; Dubrovskaja, R.

    1996-12-31

    The territory of Latvia is covered with a wide environmental monitoring network, that falls under 2 main categories: (1) regional network featuring the region and involved in international monitoring programs, including EMEP, GAW, IM; (2) state network providing for local pollution monitoring of the atmosphere (19 posts), precipitation (5 station) and radioactivity (46 station). In 1994, measurements were made at 20 stationary posts located in Daugavpils (2), Jekabpils (2), Jurmala, (2), Liepaja (2), Nigrande (1), Olaine (1), Rezekne (1), Riga (5), Valn-dera (2), Ventspils (2). This atmospheric air observation network covers mostly towns densely populated with industrial objects and othermore » pollutant emitting sources. Thus, the observation programs encompass measurements of pollutants that have higher concentrations in the ambient air. Results indicate that the annual pollution dynamics are closely connected with concentration fluctuations in the seasons. The sulfur dioxide and nitrogen dioxide concentrations increased during the heating season in Jekabpils, Jurmala and Valmiera, i.e., in the town that have many small heating installations. The data obtained allow to trace a dependence of measurement values upon the location of the observational posts vis-a-vis the pollutant emitting sources.« less

  8. Characterization of the nanoDot OSLD dosimeter in CT.

    PubMed

    Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F

    2015-04-01

    The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more

  9. Characterization of the nanoDot OSLD dosimeter in CT

    PubMed Central

    Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.

    2015-01-01

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due

  10. Characterization of the nanoDot OSLD dosimeter in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030

    Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly

  11. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  12. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  13. A heterodyne refractometer for air index of refraction and air density measurements

    NASA Astrophysics Data System (ADS)

    Fang, H.; Picard, A.; Juncar, P.

    2002-04-01

    We briefly describe a heterodyne refractometer developed at the BIPM in collaboration with the BNM/INM conservatory. The heart of the refractometer, a double Fabry-Perot interferometer, is placed inside the balance case of a very sensitive 1 kg mass comparator, the FB2 balance. Comparisons between methods using refractometry and the NPL revised Edlén formulas, carried out for a period of nine months, yielded a difference in air index of refraction of 4×10-8 with a standard deviation of 1×10-8. The variation of air index of refraction was about 1.5×10-5 during the study. Precise determinations of the short-term and long-term stability of the Fabry-Perot cavity, made of Zerodur, were also achieved. For monitoring air density, results obtained with the refractometry method were compared with those deduced from two other methods: the CIPM formula for the density of moist air and the use of buoyancy artifacts. The response characteristics for the three determinations were comparable and the agreement among the air density determinations was within 1×10-5 kg m-3.

  14. Adaptation of a military FTS to civilian air toxics measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J.R.; Dorval, R.K.

    1994-12-31

    In many ways, the military problem of chemical agent detection is similar to the civilian problem of toxic and related air pollutants detection. A recent program to design a next generation Fourier transform spectrometer (FTS) based chemical agent detection system has been funded by the US Army. This program has resulted in an FTS system that has a number of characteristics that make it suitable for applications to the civilian measurement problem. Low power, low weight, and small size lead to low installation, operating and maintenance costs. Innovative use of diode lasers in place of HeNe reference sources leads tomore » long lifetimes and high reliability. Absolute scan position servos allow for highly efficient offset scanning. This paper will relate the performance of this system to present air monitoring requirements.« less

  15. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  16. Device and method for measuring the energy content of hot and humid air streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, H. N.; Girod, G. F.; Kent, A. C.

    1985-12-24

    a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.

  17. Examining the Spatial Frequency Components of a Digital Dental Detector

    NASA Astrophysics Data System (ADS)

    Anastasiou, A.; Michail, C.; Koukou, V.; Martini, N.; Bakas, A.; Papastamati, F.; Maragkaki, P.; Lavdas, L.; Fountos, G.; Valais, I.; Kalyvas, N.

    2017-11-01

    Digital X-ray detectors are widely used in dental radiography. The scope of this work is the examination of the spatial frequency component of a dedicated dental CMOS detector. A commercially available SCHICK CDR CMOS detector was irradiated at a Del Medical Eureka X-ray system at 60kVp and 70kVp. The irradiation setup included images of an edge, for Modulation Transfer Function (MTF) calculation. The air-KERMA was measured with an RTI PIRANHA X-ray multimeter. The images were evaluated in ‘for presentation’ format with the use of ImageJ software. The linear range of the detector was found in the range 13μGy-183μGy at 60 kVp and 18μGy-180μGy at 70 kVp. By inspecting the MTF curves it was found that MTF(6lp/mm)60kVp=0.29 and MTF(6lp/mm)70kVp=0.25. The inspection of the Normalized Noise Power Spetrum (NNPS) showed similar low noise components. Our results indicate that this detector presents comparable performance at both kVp, although its X-ray response (pixel value vs air KERMA) was not equal to previously published results, for the same detector type.

  18. Dose assessment in contrast enhanced digital mammography using simple phantoms simulating standard model breasts.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; Veldkamp, W J H; Dance, D R

    2015-01-07

    Slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE) slabs are used to simulate standard model breasts for the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT). These phantoms are optimized for the energy spectra used in DM and DBT, which normally have a lower average energy than used in contrast enhanced digital mammography (CEDM). In this study we have investigated whether these phantoms can be used for the evaluation of AGD with the high energy x-ray spectra used in CEDM. For this purpose the calculated values of the incident air kerma for dosimetry phantoms and standard model breasts were compared in a zero degree projection with the use of an anti scatter grid. It was found that the difference in incident air kerma compared to standard model breasts ranges between -10% to +4% for PMMA slabs and between 6% and 15% for PMMA-PE slabs. The estimated systematic error in the measured AGD for both sets of phantoms were considered to be sufficiently small for the evaluation of AGD in quality control procedures for CEDM. However, the systematic error can be substantial if AGD values from different phantoms are compared.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Prinzio, Renato; Almeida, Carlos Eduardo de; Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian Nationalmore » Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.« less

  20. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  1. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    NASA Astrophysics Data System (ADS)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the

  2. Problems in air traffic management. V., Identification and potential aptitude test measures for selection of tower air traffic controller trainees.

    DOT National Transportation Integrated Search

    1965-07-01

    A study of over 200 Terminal Air Traffic Control Specialists indicated that their training performance could be well predicted by a composite of four aptitude tests measuring: numerical ability, non-verbal abstract reasoning, ability to solve simplif...

  3. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.

    2012-12-15

    Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotationalmore » temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.« less

  4. Real-Time Geospatial Data Viewer (RETIGO): Web-Based Tool for Researchers and Citizen Scientists to Explore their Air Measurements

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data re...

  5. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  6. Calibration and Validation of Aqua AIRS and AMSU Measurements using COSMIC Global Positioning System Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Ho, S. P.; Peng, L.

    2015-12-01

    On board NASA Aqua satellite, the hyper-spectral infrared sounding from Atmospheric Infrared Sounder (AIRS) is the first of a new generation of operational remote sensors for upwelling atmospheric emission that provide excellent temperature and water vapor retrievals at middle atmosphere, which has significant impacts on short-term numerical weather forecasts. Also on board NASA Aqua satellite, Advanced Microwave Sounding Unit (AMSU) measurements provide the all weather temperature and water vapor profiles which are used as the first guess for AIRS inversion algorithm. However, due to lack of absolute on orbit calibration, both AIRS and AMSU also exhibit biases in retrieving atmospheric temperatures and moistures when compared with in situ measurements. These retrieval biases have diverse and complex dependencies on the temperature/moisture being measured, the season and geographical location, surface conditions, and sensor temperature, which is difficult to quantify. The purpose of this study is to demonstrate the usefulness of Global Positioning System (GPS) Radio Occultation (RO) data to serve as a climate calibration observatory in orbit to calibrate and validate AIRS and AMSU measurements. In this study, we use COSMIC RO data to simulate AMSU and AIRS brightness temperatures for the lower stratosphere (TLS) and compare them to AMSU TLS and those of AIRS brightness temperatures at the same height. Our analysis shows that because RO data do not contain mission-dependent biases and orbit drift errors, and are not affected by on-orbit heating and cooling of the satellite component, they are very useful to identify the AMSU time/location dependent biases for different NOAA missions and possible long term drift of the AIRS retrieved temperatures.

  7. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  8. Sensitivity, stability, and precision of quantitative Ns-LIBS-based fuel-air-ratio measurements for methane-air flames at 1-11 bar.

    PubMed

    Hsu, Paul S; Gragston, Mark; Wu, Yue; Zhang, Zhili; Patnaik, Anil K; Kiefer, Johannes; Roy, Sukesh; Gord, James R

    2016-10-01

    Nanosecond laser-induced breakdown spectroscopy (ns-LIBS) is employed for quantitative local fuel-air (F/A) ratio (i.e., ratio of actual fuel-to-oxidizer mass over ratio of fuel-to-oxidizer mass at stoichiometry, measurements in well-characterized methane-air flames at pressures of 1-11 bar). We selected nitrogen and hydrogen atomic-emission lines at 568 nm and 656 nm, respectively, to establish a correlation between the line intensities and the F/A ratio. We have investigated the effects of laser-pulse energy, camera gate delay, and pressure on the sensitivity, stability, and precision of the quantitative ns-LIBS F/A ratio measurements. We determined the optimal laser energy and camera gate delay for each pressure condition and found that measurement stability and precision are degraded with an increase in pressure. We have identified primary limitations of the F/A ratio measurement employing ns-LIBS at elevated pressures as instabilities caused by the higher density laser-induced plasma and the presence of the higher level of soot. Potential improvements are suggested.

  9. Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities.

    PubMed

    Ambrožič, K; Žerovnik, G; Snoj, L

    2017-12-01

    The JSI TRIGA Mark II, IJS research reactor is equipped with numerous irradiation positions, where samples can be irradiated by neutrons and γ-rays. Irradiation position selection is based on its properties, such as physical size and accessibility, as well as neutron and γ-ray spectra, flux and dose intensities. This paper presents an overview on the neutron and γ-ray fluxes, spectra and dose intensities calculations using Monte Carlo MCNP software and ENDF/B-VII.0 nuclear data libraries. The dose-rates are presented in terms of ambient dose equivalents, air kerma, and silicon dose equivalent. At full reactor power the neutron ambient dose equivalent ranges from 5.5×10 3 Svh -1 to 6×10 6 Svh -1 , silicon dose equivalent from 6×10 2 Gy/h si to 3×10 5 Gy/h si , and neutron air kerma from 4.3×10 3 Gyh -1 to 2×10 5 Gyh -1 . Ratio of fast (1MeVair kerma range 3.1×10 3 Gyh -1 to 2.9×10 5 Gyh -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements.

    PubMed

    Wen, Dazhi; Kuang, Yuanwen; Zhou, Guoyi

    2004-01-01

    Air pollution has been of a major problem in the Pearl River Delta of south China, particularly during the last two decades. Emissions of air pollutants from industries have already led to damages in natural communities and environments in a wide range of the Delta area. Leaf parameters such as chlorophyll fluorescence, leaf area (LA), dry weight (DW) and leaf mass per area (LMA) had once been used as specific indexes of environmental stress. This study aims to determine in situ if the daily variation of chlorophyll fluorescence and other ecophysiological parameters in five seedlings of three woody species, Ilex rotunda, Ficus microcarpa and Machilus chinensis, could be used alone or in combination with other measurements for sensitivity indexes to make diagnoses under air pollution stress and, hence, to choose the correct tree species for urban afforestation in the Delta area. Five seedlings of each species were transplanted in pot containers after their acclimation under shadowing conditions. Chlorophyll fluorescence measurements were made in situ by a portable fluorometer (OS-30, Opti-sciences, U.S.A). Ten random samples of leaves were picked from each species for LA measurements by area-meter (CI-203, CID, Inc., U.S.A). DW was determined after the leaf samples were dried to a constant weight at 65 degrees C. LMA was calculated as the ratio of DW/LA. Leaf N content was analyzed according to the Kjeldhal method, and the extraction of pigments was carried out according Lin et al. The daily mean Fv/Fm (Fv is the variable fluorescence and Fm is the maximum fluorescence) analysis showed that Ilex rotunda and Ficus microcarpa were more highly resistant to pollution stress, followed by Machilus chinensis, implying that the efficiency of photosystem II in I. rotunda was less affected by air pollutants than the other two species. Little difference in daily change of Fv/Fm in I. rotunda between the polluted and the clean site was also observed. However, a relatively large

  11. Shielding properties of lead-free protective clothing and their impact on radiation doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlattl, Helmut; Zankl, Maria; Eder, Heinrich

    2007-11-15

    The shielding properties of two different lead-free materials--tin and a compound of 80% tin and 20% bismuth--for protective clothing are compared with those of lead for three typical x-ray spectra generated at tube voltages of 60, 75, and 120 kV. Three different quantities were used to compare the shielding capability of the different materials: (1) Air-kerma attenuation factors in narrow-beam geometry, (2) air-kerma attenuation factors in broad-beam geometry, and (3) ratios of organ and effective doses in the human body for a whole-body irradiation with a parallel beam directed frontally at the body. The thicknesses of tin (0.45 mm) andmore » the tin/bismuth compound (0.41 mm) to be compared against lead correspond to a lead equivalence value of 0.35 mm for the 75 kV spectrum. The narrow-beam attenuation factors for 0.45 mm tin are 54% and 32% lower than those for 0.35 mm lead for 60 and 120 kV; those for 0.41 mm tin/bismuth are 12% and 32% lower, respectively. The decrease of the broad-beam air-kerma attenuation factors compared to lead is 74%, 46%, and 41% for tin and 42%, 26%, and 33% for tin/bismuth and the spectra at 60, 75, and 120 kV, respectively. Therefore, it is recommended that the characterization of the shielding potential of a material should be done by measurements in broad-beam geometry. Since the secondary radiation that is mainly responsible for the shielding reduction in broad-beam geometry is of low penetrability, only more superficially located organs receive significantly enhanced doses. The increase for the dose to the glandular breast tissue (female) compared to being shielded by lead is 143%, 37%, and 45% when shielded by tin, and 35%, 15%, and 39% when shielded by tin/bismuth for 60, 75, and 120 kV, respectively. The effective dose rises by 60%, 6%, and 38% for tin, and 14%, 3% and, 35% for tin/bismuth shielding, respectively.« less

  12. TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jallow, N; Sechopoulos, I

    2016-06-15

    Purpose: To investigate patient average glandular dose (AGD) characteristics of diagnostic mammography. Methods: The techniques used to image 14420 patients who received diagnostic work up mammography from October 2008 to December 2014 at one academic hospital were retrospectively collected. The most common diagnostic views and the techniques used for each according to compressed breast thickness were determined. For all techniques, 1st half value layer and air kerma output per tube current-exposure time product were measured; then the incident air kerma for each acquisition was calculated. The values for normalized glandular dose (DgN) were obtained with a validated Monte Carlo simulationmore » of mammographic acquisition. The mono-energetic DgN results were combined according to relative fluence using the TASMICS model to obtain DgN coefficients for each spectrum. The spectral DgN and calculated incident air kerma were used to estimate AGD of patients with breast thickness ranging from 2 to 8 cm. Results: The most common views utilized during diagnostic mammography were magnification craniocaudal (24%), magnification mediolateral (19%), spot craniocaudal (28%), and spot mediolateral oblique (24%). The AGD increased with increasing breast thickness for both the magnification and spot views. The AGD for a 5.5 cm thick breast was approximately 6.8 mGy and 2.2 mGy for the magnification and spot views, respectively. The AGD ranged from 3.6 mGy to 6.8 mGy for the magnification views and from 1.0 mGy to 3.1 mGy for spot views. The difference in AGD between the two magnification views or the two spot views was not significant. Conclusion: These results provide information on breast dose to which screening recalled women are exposed to. In addition to understanding the dose used for common clinical imaging tests, this data could be used when comparing use of mammography for diagnostic workup to other potential modalities, such as breast tomosynthesis and breast CT.« less

  13. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  14. Validation of minicams for measuring concentrations of chemical agent in environmental air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menton, R.G.; Hayes, T.L.; Chou, Y.L.

    1993-05-13

    Environmental monitoring for chemical agents is necessary to ensure that notification and appropriate action will be taken in the, event that there is a release exceeding control limits of such agents into the workplace outside of engineering controls. Prior to implementing new analytical procedures for environmental monitoring, precision and accuracy (PA) tests are conducted to ensure that an agent monitoring system performs according to specified accuracy, precision, and sensitivity requirements. This testing not only establishes the accuracy and precision of the method, but also determines what factors can affect the method's performance. Performance measures that are particularly important in agentmore » monitoring include the Detection Limit (DL), Decision Limit (DC), Found Action Level (FAL), and the Target Action Level (TAL). PA experiments were performed at Battelle's Medical Research and Evaluation Facility (MREF) to validate the use of the miniature chemical agent monitoring system (MINICAMs) for measuring environmental air concentrations of sulfur mustard (HD). This presentation discusses the experimental and statistical approaches for characterizing the performance of MINICAMS for measuring HD in air.« less

  15. Effect of dibenzopyrene measurement on assessing air quality in Beijing air and possible implications for human health.

    PubMed

    Layshock, Julie; Simonich, Staci Massey; Anderson, Kim A

    2010-12-01

    Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics. Summertime ΣPAHs on PM was 14.6 ± 29(PM 1.5), 0.88 ± 0.49(PM 1.5-7.2) and 0.29 ± 0.076(PM 7.2) ng m(-3) air while wintertime concentrations were 493 ± 206(PM 1.5), 26.7 ± 14(PM 1.5-7.2) and 5.3 ± 2.5(PM 7.2) ng m(-3) air. Greater than 90% of the carcinogenic PAHs were concentrated on PM(1.5). Dibenzopyrene isomers made up a significant portion (∼30%) of the total carcinogenic PAH load during the winter. To our knowledge, this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter. Lifetime risk calculations indicated that 1 out of 10,000 to over 6 out of 100 Beijing residents may have an increased risk of lung cancer due to PAH concentration. Over half of the lifetime risk was attributed to Σdibenzopyrenes. The World Health Organization and Chinese daily PM(10) standard was exceeded on each day of the study, however, PAH limits were only exceeded during the winter. The outcomes of the air pollution metrics were highly dependent on the individual PAHs measured and seasonal variation.

  16. New method to measure the attenuation of hadrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-07-01

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  17. OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantification (GMAP-REQ) and OTM33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-Direct Assessment (GMAP-REQ-DA)

    EPA Science Inventory

    Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...

  18. Effects of air pollution on human health and practical measures for prevention in Iran

    PubMed Central

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  19. Effects of air pollution on human health and practical measures for prevention in Iran.

    PubMed

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  20. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  1. Measurements of Background and Polluted Air in Rural Regions of Rwanda

    NASA Astrophysics Data System (ADS)

    DeWitt, L.; Gasore, J.; Prinn, R. G.; Potter, K. E.

    2015-12-01

    Rwanda, a mountainous nation in Equatorial East Africa, is one of the least-urbanized nations in Africa. The majority of the population are subsistence farmers, and major sources of air pollution (e.g., particulates, greenhouse gases) in Rwanda include agricultural burning and cookstoves in rural areas, and older diesel vehicles and mototaxis in cities. Currently, initiatives to supply efficient cookstoves, development of cleaner-burning fuel from recycled agricultural waste, and new regulations on vehicle emissions and importation are underway. These initiatives seek to help Rwanda grow in the greenest way possible, to mitigate negative health and climate effects of development; however, little ambient data on air quality is available in different regions of Rwanda for a baseline study before and benefits study after these initiatives. The Rwanda Climate Observatory, located on the summit of Mt. Mugogo (-1.5833°, 29.5667°), a 2.5 km peak, has recently begun measurements of black carbon (BC) aerosol concentration and O3 and CO gas concentrations. BC measurements were performed with a 7-wavelength Magee Scientific aethalometer and the aethalometer model was used to calculate the influence of fossil fuel and biomass burning sources on BC concentrations. CO and O3 measurements were used in conjunction with BC aerosol data, and HYSPLIT back trajectories were also used to help discriminate between periods of heavy burning and periods of regional influence from traffic and general cookfire emissions. Since Mt. Mugogo is in a rural area, this station captures a snapshot of regional background pollution away from high anthropogenic influence. The nearby households and fields also allow case studies of household and crop burning during localized events and help quanitfy potential daily exposure to particulates and climate-forcing emissions in remote areas of this developing country. We will present time series of the BC, O3, CO and insolation measurements at Mt. Mugogo

  2. Air Temperature Distribution Measurement Using Asynchronous-Type Sound Probe

    NASA Astrophysics Data System (ADS)

    Katano, Yosuke; Wakatsuki, Naoto; Mizutani, Koichi

    2009-07-01

    In conventional temperature measurement using a sound probe, the operation beginnings of two acoustic sensors must be completely synchronized to measure time of flight (TOF), tf, because the precision of synchronization determines TOF measurement accuracy. A wireless local area network (LAN) is convenient for constructing a sensing grid; however, it causes a fluctuation in the delay of millisecond order. Therefore, it cannot provide sufficient precision for synchronizing acoustic sensors. In previous studies, synchronization was achieved by a trigger line using a coaxial cable; however, the cable reduces the flexibility of a wireless sensing grid especially in larger-scale measurement. In this study, an asynchronous-type sound probe is devised to compensate for the effect of the delay of millisecond order caused by the network. The validity of the probe was examined, and the air temperature distribution was measured using this means. A matrix method is employed to obtain the distribution. Similar results were observed using both asynchronous-type sound probes and thermocouples. This shows the validity of the use of a sensing grid with an asynchronous-type sound probe for temperature distribution measurement even if the trigger line is omitted.

  3. Air method measurements of apple vessel length distributions with improved apparatus and theory

    Treesearch

    Shabtal Cohen; John Bennink; Mel Tyree

    2003-01-01

    Studies showing that rootstock dwarfing potential is related to plant hydraulic conductance led to the hypothesis that xylem properties are also related. Vessel length distribution and other properties of apple wood from a series of varieties were measured using the 'air method' in order to test this hypothesis. Apparatus was built to measure and monitor...

  4. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  5. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  6. The measurement of carbon monoxide and methane in the national capital air quality control region. III - Correlation interferometer results

    NASA Technical Reports Server (NTRS)

    Goldstein, H. W.; Bortner, M. H.; Grenda, R. N.; Dick, R.; Lebel, P. J.; Lamontagne, R. A.

    1976-01-01

    Two types of experiments were performed with a correlation interferometer on-board a Bell Jet Ranger 206 Helicopter. The first consisted of simultaneous ground- and air-truth measurements as the instrumented helicopter passed over the Cheverly site. The second consisted of several measurement flights in and around the national capital air quality control region (Washington, D.C.). The correlation interferometer data, the infrared Fourier spectrometer data, and the integrated altitude sampling data showed agreement within the errors of the individual measurements. High values for CO were found from the D.C. flight data to be reproducible and concentrated in areas of stop-and-go traffic. It is concluded, that pollutants at low altitudes are detectable from an air-borne platform by remote correlation interferometry and that the correlation interferometer measurements agree with ground- and air-truth data.

  7. Modified Perfluorocarbon Tracer Method for Measuring Effective Multizone Air Exchange Rates

    PubMed Central

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-01-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents’ level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS2) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min−1; and 0.20, 0.17, and 0.26 μg m−3, respectively. PMID:20948928

  8. Modified perfluorocarbon tracer method for measuring effective multizone air exchange rates.

    PubMed

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-09-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.

  9. Technical Note: An investigation of polarity effects for wide-angle free-air chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross,

    2016-07-15

    Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identifiedmore » with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface

  10. Measurement of high altitude air quality using aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  11. Measurement of high-altitude air quality using aircraft.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  12. New image-processing and noise-reduction software reduces radiation dose during complex endovascular procedures.

    PubMed

    Kirkwood, Melissa L; Guild, Jeffrey B; Arbique, Gary M; Tsai, Shirling; Modrall, J Gregory; Anderson, Jon A; Rectenwald, John; Timaran, Carlos

    2016-11-01

    A new proprietary image-processing system known as AlluraClarity, developed by Philips Healthcare (Best, The Netherlands) for radiation-based interventional procedures, claims to lower radiation dose while preserving image quality using noise-reduction algorithms. This study determined whether the surgeon and patient radiation dose during complex endovascular procedures (CEPs) is decreased after the implementation of this new operating system. Radiation dose to operators, procedure type, reference air kerma, kerma area product, and patient body mass index were recorded during CEPs on two Philips Allura FD 20 fluoroscopy systems with and without Clarity. Operator dose during CEPs was measured using optically stimulable, luminescent nanoDot (Landauer Inc, Glenwood, Ill) detectors placed outside the lead apron at the left upper chest position. nanoDots were read using a microStar ii (Landauer Inc) medical dosimetry system. For the CEPs in the Clarity group, the radiation dose to surgeons was also measured by the DoseAware (Philips Healthcare) personal dosimetry system. Side-by-side measurements of DoseAware and nanoDots allowed for cross-calibration between systems. Operator effective dose was determined using a modified Niklason algorithm. To control for patient size and case complexity, the average fluoroscopy dose rate and the dose per radiographic frame were adjusted for body mass index differences and then compared between the groups with and without Clarity by procedure. Additional factors, for example, physician practice patterns, that may have affected operator dose were inferred by comparing the ratio of the operator dose to procedural kerma area product with and without Clarity. A one-sided Wilcoxon rank sum test was used to compare groups for radiation doses, reference air kermas, and operating practices for each procedure type. The analysis included 234 CEPs; 95 performed without Clarity and 139 with Clarity. Practice patterns of operators during

  13. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    ERIC Educational Resources Information Center

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  14. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodes, C.; Sheldon, L.; Whitaker, D.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrationsmore » of benzene, MTBE, and formaldehyde ranged from 3--22 {micro}g/m{sup 3}, 3--90 {micro}g/m{sup 3}, and 0---22 {micro}g/m{sup 3}, respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 {micro}g/m{sup 3} and 6--22 {micro}g/m{sup 3}, respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels.« less

  15. Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model

    NASA Astrophysics Data System (ADS)

    D'Elia, I.; Bencardino, M.; Ciancarella, L.; Contaldi, M.; Vialetto, G.

    2009-12-01

    The Italian Air Quality legislation underwent sweeping changes with the implementation of the 1996 European Air Quality Framework Directive when the Italian administrative Regions were entrusted with air quality management tasks. The most recent Regional Air Quality Management Plans (AQMPs) highlighted the importance of Non-Technical Measures (NTMs), in addition to Technical Measures (TMs), in meeting environmental targets. The aim of the present work is to compile a list of all the TMs and NTMs taken into account in the Italian Regional AQMPs and to give in the target year, 2010, an estimation of SO 2, NO x and PM 10 emission reductions, of PM 10 concentration and of the health impact of PM 2.5 concentrations in terms of Life Expectancy Reduction. In order to do that, RAINS-Italy, as part of the National Integrated Modeling system for International Negotiation on atmospheric pollution (MINNI), has been applied. The management of TMs and NTMs inside RAINS have often obliged both the introduction of exogenous driving force scenarios and the control strategy modification. This has inspired a revision of the many NTM definitions and a clear choice of the definition adopted. It was finally highlighted that only few TMs and NTMs implemented in the AQMPs represent effective measures in reaching the environmental targets.

  16. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  17. The use of new GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water phantom.

    PubMed

    Chiu-Tsao, Sou-Tung; Medich, David; Munro, John

    2008-08-01

    Radiochromic film dosimetry has been extensively used for intravascular brachytherapy applications for near field within 1 cm from the sources. With the recent introduction of new model of radiochromic films, GAFCHROMIC EBT, with higher sensitivity than earlier models, it is promising to extend the distances out to 5 cm for low dose rate (LDR) source dosimetry. In this study, the use of new model GAFCHROMIC EBT film for 125I seed dosimetry in Solid Water was evaluated for radial distances from 0.06 cm out to 5 cm. A multiple film technique was employed for four 125I seeds (Implant Sciences model 3500) with NIST traceable air kerma strengths. Each experimental film was positioned in contact with a 125I seed in a Solid Water phantom. The products of the air kerma strength and exposure time ranged from 8 to 3158 U-h, with the initial air kerma strength of 6 U in a series of 25 experiments. A set of 25 calibration films each was sequentially exposed to one 125I seed at about 0.58 cm distance for doses from 0.1 to 33 Gy. A CCD camera based microdensitometer, with interchangeable green (520 nm) and red (665 nm) light boxes, was used to scan all the films with 0.2 mm pixel resolution. The dose to each 125I calibration film center was calculated using the air kerma strength of the seed (incorporating decay), exposure time, distance from seed center to film center, and TG43U1S1 recommended dosimetric parameters. Based on the established calibration curve, dose conversion from net optical density was achieved for each light source. The dose rate constant was determined as 0.991 cGy U(-1)h(-1) (+/-6.9%) and 1.014 cGy U(-1)h(-1) (+/-6.8%) from films scanned using green and red light sources, respectively. The difference between these two values was within the uncertainty of the measurement. Radial dose function and 2D anisotropy function were also determined. The results obtained using the two light sources corroborated each other. We found good agreement with the TG43U1S1

  18. Measurement of radio emission from extensive air showers with LOPES

    NASA Astrophysics Data System (ADS)

    Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Ender, M.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2011-02-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPESstar and new methods are explored to realize a radio self-trigger algorithm in real time.

  19. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  20. Rotational coherent anti-stokes Raman spectroscopy measurements in a rotating cavity with axial throughflow of cooling air: oxygen concentration measurements.

    PubMed

    Black, J D; Long, C A

    1992-07-20

    In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.

  1. Preparation and analysis of zero gases for the measurement of trace VOCs in air monitoring

    NASA Astrophysics Data System (ADS)

    Englert, Jennifer; Claude, Anja; Demichelis, Alessia; Persijn, Stefan; Baldan, Annarita; Li, Jianrong; Plass-Duelmer, Christian; Michl, Katja; Tensing, Erasmus; Wortman, Rina; Ghorafi, Yousra; Lecuna, Maricarmen; Sassi, Guido; Sassi, Maria Paola; Kubistin, Dagmar

    2018-06-01

    Air quality observations are performed globally to monitor the status of the atmosphere and its level of pollution and to assess mitigation strategies. Regulations of air quality monitoring programmes in various countries demand high-precision measurements for harmful substances often at low trace concentrations. These requirements can only be achieved by using high-quality calibration gases including high-purity zero gas. For volatile organic compound (VOC) observations, zero gas is defined as being hydrocarbon-free and can be, for example, purified air, nitrogen or helium. It is essential for the characterisation of the measurement devices and procedures, for instrument operation as well as for calibrations. Two commercial and one self-built gas purifiers were tested for their VOC removal efficiency following a standardised procedure. The tested gas purifiers included one adsorption cartridge with an inorganic media and two types of metal catalysts. A large range of VOCs were investigated, including the most abundant species typically measured at air monitoring stations. Both catalysts were able to remove a large range of VOCs whilst the tested adsorption cartridge was not suitable to remove light compounds up to C4. Memory effects occurred for the adsorption cartridge when exposed to higher concentration. This study emphasises the importance of explicitly examining a gas purifier for its intended application before applying it in the field.

  2. Lateral distribution of the radio signal in extensive air showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Asch, T.; Badea, A. F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2010-01-01

    The antenna array LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. The coincident measurements allow us to reconstruct the electric field strength at observation level in dependence of general EAS parameters. In the present work, the lateral distribution of the radio signal in air showers is studied in detail. It is found that the lateral distributions of the electric field strengths in individual EAS can be described by an exponential function. For about 20% of the events a flattening towards the shower axis is observed, preferentially for showers with large inclination angle. The estimated scale parameters R0, describing the slope of the lateral profiles range between 100 and 200 m. No evidence for a direct correlation of R0 with shower parameters like azimuth angle, geomagnetic angle, or primary energy can be found. This indicates that the lateral profile is an intrinsic property of the radio emission during the shower development which makes the radio detection technique suitable for large scale applications.

  3. Air quality and ventilation fan control based on aerosol measurement in the bi-directional undersea Bømlafjord tunnel.

    PubMed

    Indrehus, Oddny; Aralt, Tor Tybring

    2005-04-01

    Aerosol, NO and CO concentration, temperature, air humidity, air flow and number of running ventilation fans were measured by continuous analysers every minute for a whole week for six different one-week periods spread over ten months in 2001 and 2002 at measuring stations in the 7860 m long tunnel. The ventilation control system was mainly based on aerosol measurements taken by optical scatter sensors. The ventilation turned out to be satisfactory according to Norwegian air quality standards for road tunnels; however, there was some uncertainty concerning the NO2 levels. The air humidity and temperature inside the tunnel were highly influenced by the outside metrological conditions. Statistical models for NO concentration were developed and tested; correlations between predicted and measured NO were 0.81 for a partial least squares regression (PLS1) model based on CO and aerosol, and 0.77 for a linear regression model based only on aerosol. Hence, the ventilation control system should not solely be based on aerosol measurements. Since NO2 is the hazardous polluter, modelling NO2 concentration rather than NO should be preferred in any further optimising of the ventilation control.

  4. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  5. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...

  6. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...

  7. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  8. Measuring the speed of sound in air using smartphone applications

    NASA Astrophysics Data System (ADS)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  9. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  10. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2016-02-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  11. EPA True NO2 ground site measurements ?? multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites ,GeoTASO NO2 Vertical Column

    EPA Pesticide Factsheets

    EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).

  12. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France.

    PubMed

    Etard, Cécile; Bigand, Emeline; Salvat, Cécile; Vidal, Vincent; Beregi, Jean Paul; Hornbeck, Amaury; Greffier, Joël

    2017-10-01

    A national retrospective survey on patient doses was performed by the French Society of Medical physicists to assess reference levels (RLs) in interventional radiology as required by the European Directive 2013/59/Euratom. Fifteen interventional procedures in neuroradiology, vascular radiology and osteoarticular procedures were analysed. Kerma area product (KAP), fluoroscopy time (FT), reference air kerma and number of images were recorded for 10 to 30 patients per procedure. RLs were calculated as the 3rd quartiles of the distributions. Results on 4600 procedures from 36 departments confirmed the large variability in patient dose for the same procedure. RLs were proposed for the four dosimetric estimators and the 15 procedures. RLs in terms of KAP and FT were 90 Gm.cm 2 and 11 mins for cerebral angiography, 35 Gy.cm 2 and 16 mins for biliary drainage, 75 Gy.cm 2 and 6 mins for lower limbs arteriography and 70 Gy.cm 2 and 11 mins for vertebroplasty. For these four procedures, RLs were defined according to the complexity of the procedure. For all the procedures, the results were lower than most of those already published. This study reports RLs in interventional radiology based on a national survey. Continual evolution of practices and technologies requires regular updates of RLs. • Delivered dose in interventional radiology depends on procedure, practice and patient. • National RLs are proposed for 15 interventional procedures. • Reference levels (RLs) are useful to benchmark practices and optimize protocols. • RLs are proposed for kerma area product, air kerma, fluoroscopy time and number of images. • RLs should be adapted to the procedure complexity and updated regularly.

  13. The measurement of carbon monoxide and methane in the National Capital Air Quality Control Region. I - Measurement systems

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Lamontagne, R. A.; Goldstein, H. W.

    1976-01-01

    The Carbon Monoxide Pollution Experiment (COPE) and the National Capital Air Quality Control Region (NCAQCR) undertook a series of measurements of atmospheric CO and CH4 to determine the accuracy of the airborne COPE Correlation Interfer4meter. The device, a modified Michelson interferometer, measures the atmospheric column density of CO and CH4 at 2.3 microns with tropospheric measurement sensitivities of 70 and 10 PPB, respectively. Data for evaluating the remote measurements included atmospheric column density measurements at a ground truth site using a van-mounted infrared Fourier spectrometer; continuous ground level gas chromatographic measurements; and chromatographic data from atmospheric grab samples collected by aircraft and at ground locations. The instruments and sampling techniques used in the experiment are described in detail.

  14. Assessment of near-source air pollution at a fine spatial scale utilizing a mobile measurement platform approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...

  15. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  16. HP-25 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The report should be useful to persons concerned with Air Pollution Measurement Studies of Stationary Industrial Sources. It gives detailed descriptions of 22 separate programs, written specifically for the Hewlett Packard Model HP-25 manually programmable pocket calculator. Each...

  17. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter

    NASA Astrophysics Data System (ADS)

    Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur

    2010-01-01

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  18. In situ gamma-spectrometry several years after deposition of radiocesium. II. Peak-to-valley method.

    PubMed

    Gering, F; Hillmann, U; Jacob, P; Fehrenbacher, G

    1998-12-01

    A new method is introduced for deriving radiocesium soil contaminations and kerma rates in air from in situ gamma-ray spectrometric measurements. The approach makes use of additional information about gamma-ray attenuation given by the peak-to-valley ratio, which is the ratio of the count rates for primary and forward scattered photons. In situ measurements are evaluated by comparing the experimental data with the results of Monte Carlo simulations of photon transport and detector response. The influence of photons emitted by natural radionuclides on the calculation of the peak-to-valley ratio is carefully analysed. The new method has been applied to several post-Chernobyl measurements and the results agreed well with those of soil sampling.

  19. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    PubMed

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  20. HP-65 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The handbook is intended for persons concerned with air pollution measurement studies of stationary industrial sources. It gives detailed descriptions of 22 different programs written specifically for the Hewlett Packard Model HP-65 card-programmable pocket calculator. For each p...