Science.gov

Sample records for air kerma measurements

  1. Comparison of the NIST and BIPM Medium-Energy X-Ray Air-Kerma Measurements

    PubMed Central

    Burns, D. T.; O’Brien, M.; Lamperti, P.; Boutillon, M.

    2003-01-01

    The air-kerma standards used for the measurement of medium-energy x rays were compared at the National Institute of Standards and Technology (NIST) and at the Bureau International des Poids et Mesures (BIPM). The comparison involved a series of measurements at the BIPM and the NIST using the air-kerma standards and two NIST reference-class transfer ionization standards. Reference beam qualities in the range from 60 kV to 300 kV were used. The results show the standards to be in agreement within the combined standard uncertainty of the comparison of 0.35 %.

  2. Large-angle ionization chambers for brachytherapy air-kerma-strength measurements

    NASA Astrophysics Data System (ADS)

    Culberson, Wesley S.

    's improved seed holder, a derivative technique and variable apertures are shown to be more accurate methods to determine the desired unit, air-kerma strength. The results of the measurements presented in this thesis support a new methodology for extrapolating measurements with variable apertures to an infinitely small aperture size. This is more accurate than relying on Monte Carlo calculations, since the measurements are of actual sources, not theoretical models.

  3. NaI(Tl) scintillator detectors stripping procedure for air kerma measurements of diagnostic X-ray beams

    NASA Astrophysics Data System (ADS)

    Oliveira, L. S. R.; Conti, C. C.; Amorim, A. S.; Balthar, M. C. V.

    2013-03-01

    Air kerma is an essential quantity for the calibration of national standards used in diagnostic radiology and the measurement of operating parameters used in radiation protection. Its measurement within the appropriate limits of accuracy, uncertainty and reproducibility is important for the characterization and control of the radiation field for the dosimetry of the patients submitted to diagnostic radiology and, also, for the assessment of the system which produces radiological images. Only the incident beam must be considered for the calculation of the air kerma. Therefore, for energy spectrum, counts apart the total energy deposition in the detector must be subtracted. It is necessary to establish a procedure to sort out the different contributions to the original spectrum and remove the counts representing scattered photons in the detector's materials, partial energy deposition due to the interactions in the detector active volume and, also, the escape peaks contributions. The main goal of this work is to present spectrum stripping procedure, using the MCNP Monte Carlo computer code, for NaI(Tl) scintillation detectors to calculate the air kerma due to an X-ray beam usually used in medical radiology. The comparison between the spectrum before stripping procedure against the reference value showed a discrepancy of more than 63%, while the comparison with the same spectrum after the stripping procedure showed a discrepancy of less than 0.2%.

  4. Air kerma rate constants for radionuclides.

    PubMed

    Wasserman, H; Groenewald, W

    1988-01-01

    Conversion to SI units requires that the exposure rate constant which was usually quoted in R.h-1.mCi-1.cm2 be replaced by the air kerma rate constant with units m2.Gy.Bq-1.s-1. The conversion factor is derived and air kerma rate constants for 30 radionuclides used in nuclear medicine and brachytherapy are listed. A table for calculation of air kerma rates for other radionuclides is also given. To calculate absorbed dose to tissue, the air kerma rate has to be multiplied by approximately 1.1. A dose equivalent rate constant is thus listed which allows direct calculation of dose equivalent rate to soft tissue without resorting to exposure rate constants tabulated in the special units R.m2.mCi-1.h-1 which should no longer be used. PMID:3208786

  5. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  6. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. PMID:22128353

  7. COOMET regional comparison of national measurement standards of air kerma for 137Cs γ radiation at protection level

    NASA Astrophysics Data System (ADS)

    Büermann, L.; Oborin, A. V.; Milevsky, V. S.; Walwyn Salas, G.; Sukhishvili, S.; Ginga, I.; Ivanov, R.; Gudelis, A.; Gomola, I.

    2014-01-01

    Results are presented of the COOMET supplementary comparison of the national measurement standards for air kerma in 137Cs γ radiation at protection level (~10 mGy/h). Ten National Metrology Institutes from the COOMET organization and the International Atomic Energy Agency participated in this COOMET project no. 445. The PTB acted as pilot laboratory. Two of the participants, the SMU (Slovakia) and the NSC-'IM' (Ukraine) participated in the measurements but did not submit a valid report of results. The comparison reference value (CRV) was obtained as the mean result of the PTB and the VNIIM, both of which had previously taken part in the key comparison BIPM-RI(I)-K5. The degree of equivalence with the CRV was evaluated. The results were consistent within the relative standard uncertainties of the comparison ranging from 0.28% to 1.3% and deviated from the CRV by less than 1%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Comparison of 192Ir air kerma calibration coefficients derived at ARPANSA using the interpolation method and at the National Physical Laboratory using a direct measurement.

    PubMed

    Butler, D; Haworth, A; Sander, T; Todd, S

    2008-12-01

    The reference air kerma rate from 192Ir High Dose Rate (HDR) brachytherapy sources can be measured using a suitably calibrated Farmer chamber and an appropriate in-air calibration jig. When a primary standard for 192Ir gamma rays is available, a calibration coefficient for the chamber and jig combination can be determined directly. In Australia, due to the absence of such a standard, the chamber must be calibrated by interpolation of the response in 60Co and in a kilovoltage x-ray beam. Corrections for the effect of the jig, scatter and beam non-uniformity must then be measured or calculated before the reference air kerma rate can be determined. We compare the air-kerma calibration coefficient of a PTW 30010 PMMA/A1 Farmer chamber (referred to as Farmer chamber throughout this report) obtained from the 192Ir primary standard at the National Physical Laboratory in the UK with the corresponding coefficient obtained by interpolating Australian calibrations using 60Co and 250 kV x-rays and determining suitable correction factors. The resulting chamber/jig calibration coefficients differ by 0.2% which is well within the combined standard uncertainties of 1.2% and 0.6% reported by ARPANSA and NPL respectively. PMID:19239060

  9. Effect of fluoroscopic X-ray beam spectrum on air-kerma measurement accuracy: implications for establishing correction coefficients on interventional fluoroscopes with KAP meters.

    PubMed

    Wunderle, Kevin A; Rakowski, Joseph T; Dong, Frank F

    2016-01-01

    The first goal of this study was to investigate the accuracy of the displayed reference plane air kerma (Ka,r) or air kerma-area product (Pk,a) over a broad spectrum of X-ray beam qualities on clinically used interventional fluoroscopes incorporating air kerma-area product meters (KAP meters) to measure X-ray output. The second goal was to investigate the accuracy of a correction coefficient (CC) determined at a single beam quality and applied to the measured Ka,r over a broad spectrum of beam qualities. Eleven state-of-the-art interventional fluoroscopes were evaluated, consisting of eight Siemens Artis zee and Artis Q systems and three Philips Allura FD systems. A separate calibrated 60 cc ionization chamber (external chamber) was used to determine the accuracy of the KAP meter over a broad range of clinically used beam qualities. For typical adult beam qualities, applying a single CC deter-mined at 100 kVp with copper (Cu) in the beam resulted in a deviation of < 5% due to beam quality variation. This result indicates that applying a CC determined using The American Association of Physicists in Medicine Task Group 190 protocol or a similar protocol provides very good accuracy as compared to the allowed ± 35% deviation of the KAP meter in this limited beam quality range. For interventional fluoroscopes dedicated to or routinely used to perform pediatric interventions, using a CC established with a low kVp (~ 55-60 kVp) and large amount of Cu filtration (~ 0.6-0.9 mm) may result in greater accuracy as compared to using the 100 kVp values. KAP meter responses indicate that fluoroscope vendors are likely normalizing or otherwise influencing the KAP meter output data. Although this may provide improved accuracy in some instances, there is the potential for large discrete errors to occur, and these errors may be difficult to identify. PMID:27167287

  10. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    SciTech Connect

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  11. Evaluation of entrance surface air kerma from exposure index in computed radiography

    NASA Astrophysics Data System (ADS)

    Costa, A. M.; Pelegrino, M. S.

    2014-11-01

    The aim of this study was to establish an indirect method to calculate the values of entrance surface air kerma in patients undergoing diagnostic examinations in X-ray systems with computed radiography based on the exposure index. The entrance surface air kerma values were compared with values obtained also indirectly based on measurements of X-ray tube output. The mean±standard deviation (1σ) and third quartile for entrance surface air kerma calculated from the exposure index were 2.1±1.0 mGy and 3.0 mGy, respectively. For entrance surface air kerma based on measurements of the X-ray tube output, the mean±standard deviation (1σ) and third quartile were respectively 3.1±1.9 mGy and 5.5 mGy. The observed values of entrance surface air kerma are smaller than the reference level adopted in Brazil (10 mGy). The results obtained with both methods were similar when taking into account the estimated uncertainties in the determination of air kerma values, although the reproducibility of the determinations based on the exposure index is better.

  12. Comparison of the NIST and BIPM Air-Kerma Standards for Measurements in the Low-Energy X-Ray Range

    PubMed Central

    Burns, D. T.; Lamperti, P.; O’Brien, M.

    1999-01-01

    A direct comparison was made between the air-kerma standards used for the measurement of low-energy x rays at the National Institute of Standards and Technology (NIST) and the Bureau International des Poids et Mesures (BIPM). The comparison was carried out at the BIPM using the BIPM reference beam qualities in the range from 10 kV to 100 kV. The results show the standards to be in agreement to around 0.5 % at reference beam qualities up to 50 kV and at 100 kV. The result at the 80 kV beam quality is less favorable, with agreement at the 1 % level.

  13. Air kerma based dosimetry calibration for the Leksell Gamma Knife

    SciTech Connect

    Meltsner, Sheridan Griffin; DeWerd, Larry A.

    2009-02-15

    No accepted official protocol exists for the dosimetry of the Leksell Gamma Knife registered (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 individual {sup 60}Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This article proposes an air kerma based dosimetry protocol using either an in-air or in-acrylic phantom measurement to determine the absorbed dose rate of fields of the 18 mm helmet of a GK unit. A small-volume air ionization chamber was used to make measurements at the physical isocenter of three GK units. The absorbed dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with {sup 60}Co-based teletherapy machines. This experimentally determined absorbed dose rate was compared to the treatment planning system (TPS) absorbed dose rate. The TPS used with the GK unit is Leksell GammaPlan. The TPS absorbed dose rate at the time of treatment is the absorbed dose rate determined by the physicist at the time of machine commissioning decay corrected to the treatment date. The TPS absorbed dose rate is defined as absorbed dose rate to water at the isocenter of a water phantom with a radius of 8 cm. Measurements were performed on model B and C Gamma Knife units. The absorbed dose rate to water for the 18 mm helmet determined using air-kerma based calculations is consistently between 1.5% and 2.9% higher than the absorbed dose rate provided by the TPS. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were also made with the same ionization chamber in a spherical acrylic phantom for comparison. This methodology will allow further development of calibration methods appropriate for the

  14. Comparison of the NIST and ENEA air kerma standards

    SciTech Connect

    Laitano, R.F.; Toni, M.P.; Lamperti, P.J.

    1998-07-01

    A comparison was made between the National Institute of Standards and Technology (NIST) and Ente per le Nuov Tecnologie l`Energia e l`Ambiente (ENEA) air kerma standards for medium energy x rays and {sup 60}Co gamma rays. The comparison took place at ENEA in June 1994. Two different transfer chambers from NIST were used for the comparison. The measurements were made at radiation qualities similar to those used at the Bureau International des Poids et Mesures (BIPM) (generating voltages of 100 kV, 135 kV, 180 kV and 250 kV, respectively) and with {sup 60}Co gamma radiation. The transfer chamber calibration factors obtained at the NIST and at the ENEA agreed with one another to 0.03% for {sup 60}Co gamma radiation and between 0.1% to 0.8% for the medium energy x-ray beam codes.

  15. Attenuation effects on the kerma rates in air after cesium depositions on grasslands.

    PubMed

    Jacob, P; Meckbach, R; Paretzke, H G; Likhtarev, I; Los, I; Kovgan, L; Komarikov, I

    1994-01-01

    Since the reactor accident of Chernobyl, cesium depth profiles and nuclide-specific kerma rates in air have been determined for various grassland sites in south Bavaria and in Ukraine. The sites are described by soil characteristics, annual precipitation, distance from release point, mode of deposition, and activity per unit area. The effects of surface roughness and migration of cesium into the soil on the kerma rate in air over grasslands was determined by two methods. The kerma rates in air obtained by the evaluations of in situ gamma-ray spectrometry results and of measured activity distributions in the soil showed only negligible differences for the observation period of 6 years after deposition. For the sites in Ukraine the kerma rate in air per activity per unit area was found to be systematically 40% higher than in Bavaria. The results from Bavaria on the attenuation of the kerma rate and a data set, including experiences from the weapons test fallout, are analytically approximated as a function of time up to 25 years after deposition. PMID:7809371

  16. KEY COMPARISON: COOMET.RI(I)-K1 comparison of national measurement standards of air kerma for 60Co γ radiation

    NASA Astrophysics Data System (ADS)

    Büermann, L.; Oborin, A. V.; Dobrovosky, J.; Milevsky, V. S.; Walwyn Salas, G.; Lapenas, A.

    2009-01-01

    Results are presented of the COOMET key comparison of the national measurement standards of air kerma for 60Co γ radiation. Participants of the comparison were PTB (Germany, pilot institute), VNIIM (Russia), SMU (Slovakia), BelGIM (Belarus), CPHR (Cuba) and RMTC (Latvia). PTB, VNIIM and SMU had previously taken part in a key comparison with the Bureau International de Poids et Mesures (BIPM) and operated as link laboratories in order to evaluate the degree of equivalence of the participants' results with the key comparison reference value. These data form the basis of the results entered into the BIPM key comparison database for comparison COOMET.RI(I)-K1. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  17. KEY COMPARISON: APMP/TCRI key comparison report of measurement of air kerma for medium-energy x-rays (APMP.RI(I)-K3)

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hwang, W. S.; Kotler, L. H.; Webb, D. V.; Büermann, L.; Burns, D. T.; Takeyeddin, M.; Shaha, V. V.; Srimanoroth, S.; Meghzifene, A.; Hah, S. H.; Chun, K. J.; Kadni, T. B.; Takata, N.; Msimang, Z.

    2008-01-01

    The APMP/TCRI Dosimetry Working Group performed the APMP.RI(I)-K3 key comparison of measurement of air kerma for medium-energy x-rays (100 kV to 250 kV) between 2000 and 2003. In total, 11 institutes took part in the comparison, among which 8 were APMP member laboratories. Two commercial cavity ionization chambers were used as transfer instruments and circulated among the participants. All the participants established the 100 kV, 135 kV, 180 kV and 250 kV x-ray beam qualities equivalent to those of the BIPM. The results showed that the maximum difference between the participants and the BIPM in the medium-energy x ray range, evaluated using the comparison data of the linking laboratories ARPANSA and PTB, is less than 1.4%. The degrees of equivalence between the participants are presented and this comparison confirms the calibration capabilities of the participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  18. Air kerma strength characterization of a GZP6 Cobalt-60 brachytherapy source

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Taheri, Mojtaba; Layegh, Mohsen; Makhdoumi, Yasha; Meigooni, Ali Soleimani

    2010-01-01

    Background Task group number 40 (TG-40) of the American Association of Physicists in Medicine (AAPM) has recommended calibration of any brachytherapy source before its clinical use. GZP6 afterloading brachytherapy unit is a 60Co high dose rate (HDR) system recently being used in some of the Iranian radiotherapy centers. Aim In this study air kerma strength (AKS) of 60Co source number three of this unit was estimated by Monte Carlo simulation and in air measurements. Materials and methods Simulation was performed by employing the MCNP-4C Monte Carlo code. Self-absorption of the source core and its capsule were taken into account when calculating air kerma strength. In-air measurements were performed according to the multiple distance method; where a specially designed jig and a 0.6 cm3 Farmer type ionization chamber were used for the measurements. Monte Carlo simulation, in air measurement and GZP6 treatment planning results were compared for primary air kerma strength (as for November 8th 2005). Results Monte Carlo calculated and in air measured air kerma strength were respectively equal to 17240.01 μGym2 h−1 and 16991.83 μGym2 h−1. The value provided by the GZP6 treatment planning system (TPS) was “15355 μGym2 h−1”. Conclusion The calculated and measured AKS values are in good agreement. Calculated-TPS and measured-TPS AKS values are also in agreement within the uncertainties related to our calculation, measurements and those certified by the GZP6 manufacturer. Considering the uncertainties, the TPS value for AKS is validated by our calculations and measurements, however, it is incorporated with a large uncertainty. PMID:24376948

  19. Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Hourdakis, C. J.; Csete, I.; Daures, J.; Jarvinen, H.; Mihailescu, L.-C.; Sochor, V.; Novak, L.; Pedersen, M.; Kosunen, A.; Toroi, P.; Denoziere, M.; Büermann, L.; Megzifene, A.; Einarsson, G.; Ferrari, P.; dePooter, J.; Bjerke, H.; Brodecki, M.; Cardoso, J.; Bercea, S.; Ciraj-Bjelac, O.; Compel, J.; Glavič-Cindro, D.; Ginjaume, M.; Persson, L.; Grindborg, J.-E.

    2015-01-01

    The EURAMET #1177 project, identified as EURAMET RI(I) - S9 comparison, was the first EURAMET wide scale supplementary comparison in the field of diagnostic radiology for air kerma area product, PKA, and air kerma, K. It was conducted with the goal of testing the measurement and calibration capabilities for PKA and K, as well as of supporting the relevant CMCs of the participating laboratories. Two commercial KAP meters and an ionization chamber were selected as transfer instruments and circulated between the 22 European participants. The measurements were performed from April 2011 until July 2012. The stability and the performance of the transfer instruments were tested by the pilot laboratory (IRCL/GAEC-EIM) and few other laboratories as well. The test results revealed that the energy (radiation quality), Q, irradiation area, A, and air kerma rate, dot K dependences of response of the transfer KAP meters influence the comparison of the results when different measurement conditions were pertained and therefore, appropriate correction factors were obtained and applied to the reported calibration results of the laboratories, when necessary. The comparison reference values (CRVs) for each instrument were determined as the weighted mean of the calibration coefficients of the three participating primary laboratories. The relative standard uncertainty of the CRVs were in the range of (0.4 - 1.6)% depending on the transfer instruments and beam qualities. The comparison result as the ratio of the corrected calibration coefficient of participant and the respective CRV, and its uncertainty were calculated for all beam qualities and transfer instruments. The informative degrees of equivalence (DoE) were calculated for the refrence RQR 5 beam quality. In case of air kema area product measurements the results for the RADCAL PDC KAP meter were used. The 216 KAP meter calibration results of the two different transfer instruments in terms of air kerma area product were consistent

  20. Final report on APMP.RI(I)-K1: APMP/TCRI key comparison report of measurement of air kerma for 60Co gamma-rays

    NASA Astrophysics Data System (ADS)

    Chun, K. J.; Butler, D. J.; Webb, D.; Mahant, A. K.; Meghzifene, A.; Lee, J. H.; Hah, S. H.; Kadni, T. B.; Zhang, Y.; Kurosawa, T.; Msimang, Z. L. M.; Caseria, E. S.

    2013-01-01

    The APMP.RI(I)-K1 key comparison of the measurement standards of air kerma for 60Co gamma-rays was undertaken by the APMP/TCRI Dosimetry Working Group between 2004 and 2006, coordinated by the Korean Research Institute of Standards and Science (KRISS). In total, 10 institutes took part in the comparison, among which 7 were APMP member laboratories. Three Farmer-type commercial cavity chambers were used as transfer chambers and circulated among the participants. All the participants carried out their measurements according to the guidelines for the comparison established by the KRISS with the cooperation of the ARPANSA. For each transfer chamber, an NMI calibration coefficient was obtained and a ratio derived by dividing by the average result from the linking laboratories, ARPANSA and NMIJ. The APMP comparison reference value for each chamber was calculated as the mean of the NMI-determined calibration coefficients divided by the average result from the linking laboratories. The results showed that the maximum difference between the APMP linked ratio of a participating NMI and the APMP reference value was 1.76%. The measured ratios of the calibration coefficient RNMI, BIPM between the participating NMI and the BIPM via the link laboratories for the transfer chambers were obtained. The maximum expanded uncertainty of RNMI, BIPM for any participating laboratory was 2.0%. The degree of equivalence of each participating laboratory with respect to the key comparison reference value was also evaluated. The expanded uncertainty of the difference between the results ranged from 0.5% to 1.2%. The pair-wise degree of equivalence between each pair of laboratories was also obtained and the largest difference of the expanded uncertainty of the difference for any pair-wise degree of equivalence was within the expanded uncertainty of the measurement for the pair of laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that

  1. Comparison of air kerma measurements for tungsten anode based mammography x-ray beam qualities (EURAMET.RI(I)-S4.1)

    NASA Astrophysics Data System (ADS)

    Csete, I.; Büermann, L.; Gomola, I.

    2016-01-01

    A comparison of the air kerma standards for x-radiation qualities used in mammography was performed between the PTB and the IAEA. Two reference-class ionization chamber types Radcal RC6M and Magna A650 of the IAEA and tungsten anode based beam qualities with Mo and Al external filtrations (W+Mo, W+Al) established at both laboratories were selected for the comparison. The calibration coefficients, NK_air, were determined for the transfer chambers at the PTB in May 2015 and before and after this at the IAEA Dosimetry Laboratory. The results show good agreement, to be well within the 0.55 % standard uncertainty of the comparison. Correction factors to determine NK_air for these beam qualities based on calibration in RQR-M mammography beam qualities, established according to the IEC 61267 standard, were also calculated for the Radcal RC6M, 10X5-6M, and Magna A650 types of chambers. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Evaluation of entrance surface air kerma in pediatric chest radiography

    NASA Astrophysics Data System (ADS)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J. L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-11-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior-posterior (AP) and posterior-anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0-1 y, 1-5 y, 5-10 y, and 10-15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels.

  3. New National Air-Kerma-Strength Standards for 125I and 103Pd Brachytherapy Seeds

    PubMed Central

    Seltzer, Stephen M.; Lamperti, Paul J.; Loevinger, Robert; Mitch, Michael G.; Weaver, James T.; Coursey, Bert M.

    2003-01-01

    The new U.S. measurement standard for the air-kerma strength from low-energy photon-emitting brachytherapy seed sources is formally described in detail. This instrument-based standard was implemented on 1 January 1999, with its salient features and the implications of differences with the previous standard given only through a series of informal communications. The Wide-Angle Free-Air Chamber (WAFAC) is specially designed to realize air kerma from a single-seed source emitting photons with energies up to about 40 keV, and is now used to measure the wide variety of seeds used in prostate-cancer therapy that has appeared in the last few years. For the two 125I seed models that have been subject to both the old and new standards, the new standard reduces the air-kerma strength by 10.3 %. This change is mainly due to the removal of the influence on the measurement of the Ti K x rays produced in the source encapsulation, a component with no clinical significance.

  4. The air-kerma rate constant of 192Ir.

    PubMed

    Ninković, M M; Raiĉevìć, J J

    1993-01-01

    The air-kerma rate constant gamma delta (and its precursors), as one of the basic radiation characteristics of 192Ir, was determined by many authors. Analysis of accessible data on this quantity led us to the conclusion that published data strongly disagree. That is the reason we calculated this quantity on the basis of our and many other authors' gamma-ray spectral data and the latest data for mass energy-transfer coefficients for air. In this way, a value was obtained for gamma delta of 30.0 +/- 0.9 a Gy m2 s-1 Bq-1 for an unshielded 192Ir source and 27.8 +/- 0.9 a Gy m2s -1Bq-1 for a standard packaged radioactive source taking into account attenuation of gamma rays in the platinum source wall. PMID:8416220

  5. Comparison of air-kerma strength determinations for HDR {sup 192}Ir sources

    SciTech Connect

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A.

    2011-12-15

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) {sup 192}Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR {sup 192}Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the {sup 192}Ir air-kerma calibration coefficient from the NIST air-kerma standards at {sup 137}Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A{sub wall} for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N{sub K} interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well

  6. Comparison of air kerma measurements between the PTB and the IAEA for x-radiation qualities used in general diagnostic radiology and mammography

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Gomola, Igor; Girzikowsky, Reinhard

    2013-01-01

    A comparison of the air kerma standards for x-radiation qualities used in general diagnostic radiology and mammography, identified as EURAMET.RI(I)-S10 (EURAMET project #1221), was performed between the PTB and the IAEA. Two spherical and two parallel-plate reference-class ionization chambers of the IAEA and 12 beam qualities standardized in the IEC standard 61267:2005 plus 7 additional standard beam qualities established at both laboratories were selected for the comparison. The calibration coefficients were determined for the transfer chambers at the PTB in September 2012 and before and after this at the IAEA Dosimetry Laboratory. The results show the calibration coefficients of both laboratories to be in good agreement within the standard uncertainty of the comparison of about 0.47%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. Integration of kerma-area product and cumulative air kerma determination into a skin dose tracking system for fluoroscopic imaging procedures

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin dose tracking system (DTS) that we developed provides a color-coded mapping of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures in real time. The DTS has now been modified to also calculate the kerma area product (KAP) and cumulative air kerma (CAK) for fluoroscopic interventions using data obtained in real-time from the digital bus on a Toshiba Infinix system. KAP is the integral of air kerma over the beam area and is typically measured with a large-area transmission ionization chamber incorporated into the collimator assembly. In this software, KAP is automatically determined for each x-ray pulse as the product of the air kerma/ mAs from a calibration file for the given kVp and beam filtration times the mAs per pulse times the length and width of the beam times a field nonuniformity correction factor. Field nonuniformity is primarily the result of the heel effect and the correction factor was determined from the beam profile measured using radio-chromic film. Dividing the KAP by the beam area at the interventional reference point provides the area averaged CAK. The KAP and CAK per x-ray pulse are summed after each pulse to obtain the total procedure values in real-time. The calculated KAP and CAK were compared to the values displayed by the fluoroscopy machine with excellent agreement. The DTS now is able to automatically calculate both KAP and CAK without the need for measurement by an add-on transmission ionization chamber.

  8. Air-kerma strength determination of a miniature x-ray source for brachytherapy applications

    NASA Astrophysics Data System (ADS)

    Davis, Stephen D.

    A miniature x-ray source has been developed by Xoft Inc. for high dose-rate brachytherapy treatments. The source is contained in a 5.4 mm diameter water-cooling catheter. The source voltage can be adjusted from 40 kV to 50 kV and the beam current is adjustable up to 300 muA. Electrons are accelerated toward a tungsten-coated anode to produce a lightly-filtered bremsstrahlung photon spectrum. The sources were initially used for early-stage breast cancer treatment using a balloon applicator. More recently, Xoft Inc. has developed vaginal and surface applicators. The miniature x-ray sources have been characterized using a modification of the American Association of Physicists in Medicine Task Group No. 43 formalism normally used for radioactive brachytherapy sources. Primary measurements of air kerma were performed using free-air ionization chambers at the University of Wisconsin (UW) and the National Institute of Standards and Technology (NIST). The measurements at UW were used to calibrate a well-type ionization chamber for clinical verification of source strength. Accurate knowledge of the emitted photon spectrum was necessary to calculate the corrections required to determine air-kerma strength, defined in vacuo. Theoretical predictions of the photon spectrum were calculated using three separate Monte Carlo codes: MCNP5, EGSnrc, and PENELOPE. Each code used different implementations of the underlying radiological physics. Benchmark studies were performed to investigate these differences in detail. The most important variation among the codes was found to be the calculation of fluorescence photon production following electron-induced vacancies in the L shell of tungsten atoms. The low-energy tungsten L-shell fluorescence photons have little clinical significance at the treatment distance, but could have a large impact on air-kerma measurements. Calculated photon spectra were compared to spectra measured with high-purity germanium spectroscopy systems at both UW and

  9. Air kerma and absorbed dose standards for reference dosimetry in brachytherapy

    PubMed Central

    2014-01-01

    This article reviews recent developments in primary standards for the calibration of brachytherapy sources, with an emphasis on the currently most common photon-emitting radionuclides. The introduction discusses the need for reference dosimetry in brachytherapy in general. The following section focuses on the three main quantities, i.e. reference air kerma rate, air kerma strength and absorbed dose rate to water, which are currently used for the specification of brachytherapy photon sources and which can be realized with primary standards from first principles. An overview of different air kerma and absorbed dose standards, which have been independently developed by various national metrology institutes over the past two decades, is given in the next two sections. Other dosimetry techniques for brachytherapy will also be discussed. The review closes with an outlook on a possible transition from air kerma to absorbed dose to water-based calibrations for brachytherapy sources in the future. PMID:24814696

  10. Method for verifying the air kerma strength of I-125 plaques for the treatment of ocular melanoma.

    PubMed

    Zimmermann, L W; Wilkinson, D Allan

    2014-01-01

    The purpose of this work was to develop a method for easily verifying that the activity or air kerma strength of pre-assembled eye plaques, used in the treatment of ocular melanomas, agrees with the activity or air kerma strength called for in the treatment plan. A Capintec CRC-7 Dose Calibrator with its standard vial/syringe sample holder was used to measure the activity of pre-assembled COMS and Eye Physics EP917 eye plaques using IsoAid Advantage I-125 seeds. Plaque activity measurements were made by placing the plaque face up in the center of a 5 cm tall Styrofoam insert in the source holder. Activity measurements were made with the source holder rotated to four angles (0°, 90°, 180°, and 270°). The average of these four values was converted to air kerma strength and divided by the assay air kerma strength, from the NIST traceable source calibration, and decayed to the plaque measurement date, to determine a plaque calibration factor. The average of the calibration factors for each plaque type was used to establish a calibration factor for each plaque type. Several partially loaded plaque configurations were included in this study and different methods were used to determine the effects of partial loading. This verification method is easy to implement with commonly available equipment and is effective in identifying possible errors. During this two-year study, the air kerma strength of 115 eye plaques was checked and 11 possible errors were identified. PMID:25207419

  11. Establishment of air kerma reference standard for low dose rate Cs-137 brachytherapy sources.

    PubMed

    Sharma, Sunil Dutt; Kumar, Sudhir; Srinivasan, P; Chourasiya, G

    2011-01-01

    A guarded cylindrical graphite ionization chamber of nominal volume 1000 cm3 was designed and fabricated for use as a reference standard for low-dose rate 137Cs brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin's general cavity theory, as well as by the Monte Carlo simulation and validated experimentally using Amersham CDCS-J-type 137Cs reference source. In the analytical method, the N(K) was calculated for 662 keV gamma rays of 137Cs brachytherapy source. In the Monte Carlo method, the geometry of the measurement setup and physics-related input data of the 137Cs source and the surrounding material were simulated using the Monte Carlo N-Particle code. The photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficient. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber, and the N(K) was determined. The analytical and Monte Carlo values of N(K) of the cylindrical graphite ionization chamber for 137Cs brachytherapy source are in agreement within 1.07%. The deviation of analytical and Monte Carlo values from experimental values of N(K) is 0.36% and 0.72%, respectively. This agreement validates the analytical value, and establishes this chamber as a reference standard for RAKR or AKS measurement of 137Cs brachytherapy sources. PMID:22089009

  12. Reference air kerma and kerma-area product as estimators of peak skin dose for fluoroscopically guided interventions

    SciTech Connect

    Kwon, Deukwoo; Little, Mark P.; Miller, Donald L.

    2011-07-15

    Purpose: To determine more accurate regression formulas for estimating peak skin dose (PSD) from reference air kerma (RAK) or kerma-area product (KAP). Methods: After grouping of the data from 21 procedures into 13 clinically similar groups, assessments were made of optimal clustering using the Bayesian information criterion to obtain the optimal linear regressions of (log-transformed) PSD vs RAK, PSD vs KAP, and PSD vs RAK and KAP. Results: Three clusters of clinical groups were optimal in regression of PSD vs RAK, seven clusters of clinical groups were optimal in regression of PSD vs KAP, and six clusters of clinical groups were optimal in regression of PSD vs RAK and KAP. Prediction of PSD using both RAK and KAP is significantly better than prediction of PSD with either RAK or KAP alone. The regression of PSD vs RAK provided better predictions of PSD than the regression of PSD vs KAP. The partial-pooling (clustered) method yields smaller mean squared errors compared with the complete-pooling method.Conclusion: PSD distributions for interventional radiology procedures are log-normal. Estimates of PSD derived from RAK and KAP jointly are most accurate, followed closely by estimates derived from RAK alone. Estimates of PSD derived from KAP alone are the least accurate. Using a stochastic search approach, it is possible to cluster together certain dissimilar types of procedures to minimize the total error sum of squares.

  13. A new approach to the determination of air kerma using primary-standard cavity ionization chambers

    NASA Astrophysics Data System (ADS)

    Burns, D. T.

    2006-02-01

    A consistent formalism is presented using Monte Carlo calculations to determine the reference air kerma from the measured energy deposition in a primary-standard cavity ionization chamber. A global approach avoiding the use of cavity ionization theory is discussed and its limitations shown in relation to the use of the recommended value for W. The role of charged-particle equilibrium is outlined and the consequent requirements placed on the calculations are detailed. Values for correction factors are presented for the BIPM air-kerma standard for 60Co, making use of the Monte Carlo code PENELOPE, a detailed geometrical model of the BIPM 60Co source and event-by-event electron transport. While the wall correction factor kwall = 1.0012(2) is somewhat lower than the existing value, the axial non-uniformity correction kan = 1.0027(3) is significantly higher. The use of a point source in the evaluation of kan is discussed. A comparison is made of the calculated dose ratio with the Bragg-Gray and Spencer-Attix stopping-power ratios, the results indicating a preference for the Bragg-Gray approach in this particular case. A change to the recommended value for W of up to 2 parts in 103 is discussed. The uncertainties arising from the geometrical models, the use of phase-space files, the radiation transport algorithms and the underlying radiation interaction coefficients are estimated.

  14. Sampling size in the verification of manufactured-supplied air kerma strengths

    SciTech Connect

    Ramos, Luis Isaac; Martinez Monge, Rafael

    2005-11-15

    Quality control mandate that the air kerma strengths (S{sub K}) of permanent seeds be verified, this is usually done by statistics inferred from 10% of the seeds. The goal of this paper is to proposed a new sampling method in which the number of seeds to be measured will be set beforehand according to an a priori statistical level of uncertainty. The results are based on the assumption that the S{sub K} has a normal distribution. To demonstrate this, the S{sub K} of each of the seeds measured was corrected to ensure that the average S{sub K} of its sample remained the same. In this process 2030 results were collected and analyzed using a normal plot. In our opinion, the number of seeds sampled should be determined beforehand according to an a priori level of statistical uncertainty.

  15. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    SciTech Connect

    Carl, W. F.

    2015-07-30

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  16. New National Air-Kerma Standard for Low-Energy Electronic Brachytherapy Sources

    PubMed Central

    Seltzer, Stephen M; O’Brien, Michelle; Mitch, Michael G

    2014-01-01

    The new primary standard for low-energy electronic brachytherapy sources for the United States is described. These miniature x-ray tubes are inserted in catheters for interstitial radiation therapy and operate at tube potentials of up to about 50 kV. The standard is based on the realization of the air kerma produced by the x-ray beam at a reference distance in air of 50 cm. PMID:26601044

  17. Measured neutron carbon kerma factors from 14. 1 MeV to 18 MeV

    SciTech Connect

    Deluca, P.M. Jr.; Barschall, H.H.; Haight, R.C.; McDonald, J.C.

    1984-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183 +- 0.015 10/sup -8/ cGy cm/sup 2/ and 0.210 +- 0.16 10/sup -8/ cGy cm/sup 2/ at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297 +- 0.03 10/sup -8/ cGy cm/sup 2/ has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3..cap alpha..) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184 +- 0.019 10/sup 8/ cGy cm/sup 2/ in agreement with the present result. 9 refs., 4 figs., 2 tabs.

  18. Air-over-ground calculations of the neutron, prompt, and secondary-gamma free-in-air tissue kerma from the Hiroshima and Nagasaki devices

    SciTech Connect

    Pace, J.V. III; Knight, J.R.; Bartine, D.E.

    1982-01-01

    This paper reports preliminary results of the two-dimensional discrete-ordinate, calculations for the air-over-ground transport of radiation from the Hiroshima and Nagasaki weapon devices. It was found that the gamma-ray kerma dominated the total kerma for both environments.

  19. Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams

    PubMed Central

    Seltzer, Stephen M.; Bergstrom, Paul M.

    2003-01-01

    Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from 60Co, 137Cs, and 192Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for 60Co beams, +0.64 % to +1.07 % (depending on the chamber) for 137Cs beams, and −0.06 % for the single chamber used in the measurement of the standardized 192Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work.

  20. Comparison of the NIST and PTB Air-Kerma Standards for Low-Energy X-Rays

    PubMed Central

    O’Brien, Michelle; Bueermann, Ludwig

    2009-01-01

    A comparison has been made of the air-kerma standards for low-energy x rays at the National Institute of Standards and Technology (NIST) and the Physikalisch-Technische Bundesanstalt (PTB). The comparison involved a series of measurements at the PTB and the NIST using the air-kerma standards and two NIST reference-class transfer ionization chamber standards. Results are presented for the reference radiation beam qualities in the range from 25 kV to 50 kV for low energy x rays, including the techniques used for mammography dose traceability. The tungsten generated reference radiation qualities, between 25 kV and 50 kV used for this comparison, are new to NIST; therefore this comparison will serve as the preliminary comparison for NIST and a verification of the primary standard correction factors. The mammography comparison will repeat two previously unpublished comparisons between PTB and NIST. The results show the standards to be in reasonable agreement within the standard uncertainty of the comparison of about 0.4 %.

  1. Comparison of air kerma-length product measurements between the PTB and the IAEA for x-radiation qualities used in computed tomography (EURAMET.RI(I)-S12, EURAMET project #1327)

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Alikhani, Babak; Gomola, Igor

    2015-01-01

    A comparison of air kerma-length product determinations for standard radiation qualities defined for use in computed tomography was performed between the PTB and the IAEA as EURAMET project #1327, registered in the KCDB as the EURAMET.RI(I)-S12 comparison. A pencil type reference-class ionization chamber of the IAEA and the three RQT beam qualities established according to the IEC standard 61627:2005 were selected for the comparison. The calibration coefficients for the transfer chamber in terms of Gycm/C at the PTB and the IAEA using the partial irradiation method recommended in the IAEA TRS 457 were determined. The results show the calibration coefficients of both laboratories were in a very good agreement of about 0.2 % well within the estimated relative standard uncertainty of the comparison of about 0.8 %. Residual correction due to the additional aperture required for partial irradiation of pencil chambers and feasibility of the full irradiation method were also studied. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Dosimetric characteristics, air-kerma strength calibration and verification of Monte Carlo simulation for a new ytterbium-169 brachytherapy source

    SciTech Connect

    Perera, H.; Williamson, J.F.; Li, Zuofeng; Mishra, V.; Meigooni, A.S. )

    1994-03-01

    Ytterbium-169 ([sup 169]Yb) is a promising new isotope for brachytherapy with a half life of 32 days and an average photon energy of 93 KeV. It has an Ir-192-equivalent dose distribution in water but a much smaller half-value layer in lead (0.2 mm), affording improved radiation protection and customized shielding of dose-limiting anatomic structures. The goals of this study are to: (a) experimentally validate Monte Carlo photon transport dose-rate calculations for this energy range, (b) to develop a secondary air-kerma strength standard for [sup 169]Yb, and (c) to present essential treatment planning data including the transverse-axis dose-rate distribution and dose correction factors for a number of local shielding materials. Several interstitial [sup 169]Yb sources (type 6) and an experimental high dose-rate source were made available for this study. Monte Carlo photon-transport (MCPT) simulations, based upon validated geometric models of source structure, were used to calculate dose rates in water. To verify MCPT predictions, the transverse-axis dose distribution in homogeneous water medium was measured using a silicon-diode detector. For use in designing shielded applicators, heterogeneity correction factors (HCF) arising from small cylindrical heterogeneities of lead, aluminum, titanium, steel and air were measured in a water medium. Finally, to provide a sound experimental basis for comparing experimental and theoretical dose-rate distributions, the air-kerma strength of the sources was measured using a calibrated ion chamber. To eliminate the influence of measurement artifacts on the comparison of theory and measurement, simulated detector readings were compared directly to measured diode readings. The final data are presented in the format endorsed by the Interstitial Collaborative Working Group. 33 refs., 8 figs., 3 tabs.

  3. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  4. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    PubMed

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness. PMID:25222942

  5. Evaluation of conversion coefficients relating air-kerma to H*(10) using primary and transmitted x-ray spectra in the diagnostic radiology energy range.

    PubMed

    Santos, J C; Mariano, L; Tomal, A; Costa, P R

    2016-03-01

    According to the International Commission on Radiation Units and Measurements (ICRU), the relationship between effective dose and incident air-kerma is complex and depends on the attenuation of x-rays in the body. Therefore, it is not practical to use this quantity for shielding design purposes. This correlation is adopted in practical situations by using conversion coefficients calculated using validated mathematical models by the ICRU. The ambient dose equivalent, H*(10), is a quantity adopted by the IAEA for monitoring external exposure. Dose constraint levels are established in terms of H*(10), while the radiation levels in radiometric surveys are calculated by means of the measurements of air-kerma with ion chambers. The resulting measurements are converted into ambient dose equivalents by conversion factors. In the present work, an experimental study of the relationship between the air-kerma and the operational quantity ambient dose equivalent was conducted using different experimental scenarios. This study was done by measuring the primary x-ray spectra and x-ray spectra transmitted through materials used in dedicated chest radiographic facilities, using a CdTe detector. The air-kerma to ambient dose equivalent conversion coefficients were calculated from these measured spectra. The resulting values of the quantity ambient dose equivalent using these conversion coefficients are more realistic than those available in the literature, because they consider the real energy distribution of primary and transmitted x-ray beams. The maximum difference between the obtained conversion coefficients and the constant value recommended in national and international radiation protection standards is 53.4%. The conclusion based on these results is that a constant coefficient may not be adequate for deriving the ambient dose equivalent. PMID:26835613

  6. Air-kerma strength determination of a new directional {sup 103}Pd source

    SciTech Connect

    Aima, Manik Reed, Joshua L.; DeWerd, Larry A.; Culberson, Wesley S.

    2015-12-15

    Purpose: A new directional {sup 103}Pd planar source array called a CivaSheet™ has been developed by CivaTech Oncology, Inc., for potential use in low-dose-rate (LDR) brachytherapy treatments. The array consists of multiple individual polymer capsules called CivaDots, containing {sup 103}Pd and a gold shield that attenuates the radiation on one side, thus defining a hot and cold side. This novel source requires new methods to establish a source strength metric. The presence of gold material in such close proximity to the active {sup 103}Pd region causes the source spectrum to be significantly different than the energy spectra of seeds normally used in LDR brachytherapy treatments. In this investigation, the authors perform air-kerma strength (S{sub K}) measurements, develop new correction factors for these measurements based on an experimentally verified energy spectrum, and test the robustness of transferring S{sub K} to a well-type ionization chamber. Methods: S{sub K} measurements were performed with the variable-aperture free-air chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center. Subsequent measurements were then performed in a well-type ionization chamber. To realize the quantity S{sub K} from a directional source with gold material present, new methods and correction factors were considered. Updated correction factors were calculated using the MCNP 6 Monte Carlo code in order to determine S{sub K} with the presence of gold fluorescent energy lines. In addition to S{sub K} measurements, a low-energy high-purity germanium (HPGe) detector was used to experimentally verify the calculated spectrum, a sodium iodide (NaI) scintillating counter was used to verify the azimuthal and polar anisotropy, and a well-type ionization chamber was used to test the feasibility of disseminating S{sub K} values for a directional source within a cylindrically symmetric measurement volume. Results: The UW VAFAC was successfully used to measure the S

  7. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  8. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners.

    PubMed

    Strom, Daniel J; Cerra, Frank

    2016-06-01

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3) a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow "pencil" beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source or b) during the traversal of a point source is a unifying concept. The "universal source strength" of air kerma rate at 1 m from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose. PMID:27115228

  9. A conversion method of air kerma from the primary, scatter, and leakage radiations to effective dose for calculating x-ray shielding barriers in mammography

    SciTech Connect

    Kharrati, Hedi

    2005-05-01

    In this study, a new approach has been introduced for derivation of the effective dose from air kerma to calculate shielding requirements in mammography facilities. This new approach has been used to compute the conversion coefficients relating air kerma to the effective dose for the mammography reference beam series of the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency laboratories. The results show that, in all cases, the effective dose in mammography energy range is less than 25% of the incident air kerma for the primary and the scatter radiations and does not exceed 75% for the leakage radiation.

  10. Air kerma to Hp(3) conversion coefficients for a new cylinder phantom for photon reference radiation qualities.

    PubMed

    Behrens, R

    2012-09-01

    The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037. PMID:22434922

  11. Comparison of the air kerma standards of the IAEA and the BIPM in mammography x-rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Czap, L.; Csete, I.; Gomola, I.

    2013-01-01

    The Dosimetry Laboratory of the International Atomic Energy Agency (IAEA), Seibersdorf, Austria, calibrates reference standards in mammography x-ray beams for IAEA/WHO SSDL Network members (more than 80 laboratories worldwide). As a signatory of the Mutual Recognition Arrangement (CIPM MRA), the IAEA laboratory maintains a Quality Management System (QMS) complying with ISO 17025 and requires updated 'supporting evidence' for its dosimetry calibration and measurement capabilities (CMC), first published in Appendix C of the CIPM MRA key comparison database in 2007. For this purpose, an indirect comparison has been made between the air kerma standards of the IAEA and the Bureau International des Poids et Mesures (BIPM) in the mammography x-ray range from 25 kV to 35 kV, using as transfer instruments two thin-window parallel-plate ionization chambers belonging to the IAEA. The IAEA and BIPM standards for mammography x-rays are shown to be in agreement within the standard uncertainty of the comparison of 5.5 parts in 103. This agreement can be used to support the calibration and measurements capabilities of the IAEA listed in Appendix C of the key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  12. Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air

    SciTech Connect

    Rivard, Mark J.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2010-02-15

    Purpose: For a given radionuclide, there are several photon spectrum choices available to dosimetry investigators for simulating the radiation emissions from brachytherapy sources. This study examines the dosimetric influence of selecting the spectra for {sup 192}Ir, {sup 125}I, and {sup 103}Pd on the final estimations of kerma and dose. Methods: For {sup 192}Ir, {sup 125}I, and {sup 103}Pd, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of {sup 192}Ir, {sup 125}I, and {sup 103}Pd spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for {sup 192}Ir, {sup 125}I, and {sup 103}Pd, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.

  13. SU-E-P-15: Technique Factor Modulation and Reference Plane Air Kerma Rates in Response to Simulated Patient Thickness Variations for a Sample of Current Generation Fluoroscopes

    SciTech Connect

    Wunderle, K; Rakowski, J; Dong, F

    2015-06-15

    Purpose: To evaluate and compare approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. Methods: A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and spectral filtration over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within a default abdomen or body imaging protocol. Results: The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. Some vendors have made hardware advances increasing the radiation output capabilities of their fluoroscopes; this was evident in the acquisition air kerma rates. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ copper filtration in the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Conclusion: Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and provides opportunities to optimize the imaging protocols for clinical practice. The enhanced radiation output capabilities of some of the fluoroscopes may, under specific conditions, may be beneficial; however, these higher output capabilities also have the potential to lead to unnecessarily high dose rates. Therefore, all parties involved in imaging, including the clinical team, medical physicists, and imaging vendors, must work

  14. Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co

    SciTech Connect

    Snow, J. R.; Micka, J. A.; DeWerd, L. A.

    2013-04-15

    Purpose: To investigate the applicability of a wide range of microionization chambers for reference dosimetry measurements in low- and medium-energy x-ray beams. Methods: Measurements were performed with six cylindrical microchamber models, as well as one scanning chamber and two Farmer-type chambers for comparison purposes. Air-kerma calibration coefficients were determined at the University of Wisconsin Accredited Dosimetry Calibration Laboratory for each chamber for a range of low- and medium-energy x-ray beams (20-250 kVp), with effective energies ranging from 11.5 keV to 145 keV, and a {sup 60}Co beam. A low-Z proof-of-concept microchamber was developed and calibrated with and without a high-Z silver epoxy on the collecting electrode. Results: All chambers composed of low-Z materials (Z{<=} 13), including the Farmer-type chambers, the scanning chamber, and the PTW TN31014 and the proof-of-concept microchambers, exhibited air-kerma calibration coefficients with little dependence on the quality of the beam. These chambers typically exhibited variations in calibration coefficients of less than 3% with the beam quality, for medium energy beams. However, variations in air-kerma calibration coefficients of greater than 50% were measured over the range of medium-energy x-ray beams for each of the microchambers containing high-Z collecting electrodes (Z > 13). For these high-Z chambers, which include the Exradin A14SL and A16 chambers, the PTW TN31006 chamber, the IBA CC01 chamber, and the proof-of-concept chamber containing silver, the average variation in air-kerma calibration coefficients between any two calibration beams was nearly 25% over the entire range of beam qualities investigated. Conclusions: Due to the strong energy dependence observed with microchambers containing high-Z components, these chambers may not be suitable dosimeters for kilovoltage x-ray applications, as they do not meet the TG-61 requirements. It is recommended that only microchambers

  15. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  16. Assessment of protocols in cone-beam CT with symmetric and asymmetric beams usingeffective dose and air kerma-area product.

    PubMed

    Batista, Wilson Otto; Soares, Maria Rosangela; de Oliveira, Marcus V L; Maia, Ana F; Caldas, Linda V E

    2015-06-01

    This study aims to evaluate and compare protocols with similar purposes in a cone beam CT scanner using thermoluminescent dosimeter (TLD) and the air kerma-area product (PKA) as the kerma index. The measurements were performed on two protocols used to obtain an image of the maxilla-mandible using the equipment GENDEX GXCB 500: Protocol [GX1] extended diameter and asymmetric beam (14cm×8.5cm-maxilla/mandible) and protocol [GX2] symmetrical beam (8.5cm×8.5cm-maxillary/mandible). LiF dosimeters inserted into a female anthropomorphic phantom were used. For both protocols, the value of PKA was evaluated using a PTW Diamentor E2 meter and the multimeter Radcal Rapidose system. The results obtained for the effective dose/PKA were separated by protocol image. [GX1]: 44.5µSv/478mGycm(2); [GX2]: 54.8µSv/507mGycm(2). Although the ratio of the diameters (14cm/8.5cm)=1.65, the ratio of effective dose values (44.5µSv/54.8µSv)=0.81, that is, the effective dose of the protocol with extended diameter is 19% smaller. The PKA values reveal very similar results between the two protocols. For the cases where the scanner uses an asymmetric beam to obtain images with large diameters that cover the entire face, there are advantages from the point of view of reducing the exposure of patients when compared to the use of symmetrical beam and/or to FOV images with a smaller diameter. PMID:25620114

  17. Experimental derivation of the fluence non-uniformity correction for air kerma near brachytherapy linear sources

    SciTech Connect

    Vianello, E. A.; Almeida, C. E. de

    2008-07-15

    In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically for a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.

  18. Key comparison BIPM.RI(I)-K5 of the air kerma standards of the ININ, Mexico and the BIPM in 137Cs gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Alvarez Romero, J. T.; De la Cruz Hernández, D.; Cabrera Vertti, M. R.; Tovar-Muñoz, V. M.

    2015-01-01

    A direct comparison of the standards for air kerma of the Instituto Nacional de Investigaciones Nucleares (ININ), Mexico, and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 137Cs radiation beam of the BIPM in February 2015. The comparison result, evaluated as a ratio of the ININ and the BIPM standards for air kerma, is 1.0048 with a combined standard uncertainty of 2.0 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the PTB and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Allisy-Roberts, P. J.; Selbach, H. J.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate (RAKR) for 192Ir high dose rate (HDR) brachytherapy sources of the Physikalisch-Technische Bundesanstalt (PTB), Germany, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the PTB in September 2011. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the PTB and the BIPM standards for reference air kerma rate, is 1.0003 with a combined standard uncertainty of 0.0099. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NRC and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Downton, B.; Mainegra-Hing, E.

    2015-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Research Council (NRC), Canada, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the NRC in August 2014. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NRC and the BIPM standards for reference air kerma rate, is 0.9966 with a combined standard uncertainty of 0.0050. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  1. Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the NIM, China and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Wang, K.; Fan, Y.; Jin, S.; Yang, X.

    2016-01-01

    An indirect comparison of the standards for air kerma of the National Institute of Metrology (NIM), China and of the Bureau International des Poids et Mesures (BIPM) was carried out in the 60Co radiation beam of the BIPM in November 2015. The comparison result, evaluated as a ratio of the NIM and the BIPM standards for air kerma, is 0.9997 with a combined standard uncertainty of 2.7 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  2. Comparison BIPM.RI(I)-K8 of high dose-rate Ir-192 brachytherapy standards for reference air kerma rate of the NMIJ and the BIPM

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Kurosawa, T.; Mikamoto, T.

    2016-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate (HDR) brachytherapy sources of the National Metrology Institute of Japan (AIST-NMIJ), Japan, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the Japan Radioisotope Association (JRIA) in April 2015. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NMIJ and the BIPM standards for reference air kerma rate, is 1.0036 with a combined standard uncertainty of 0.0054. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Modelling the contribution of individual radionuclides to the total gamma air kerma rate for the sediments of the Ribble Estuary, NW England.

    PubMed

    Brown, J E; McDonald, P; Williams, M; Parker, A; Rae, J E

    1999-12-01

    The aim of this study was to test the performance of a published dose-rate model, investigate the contribution of individual radionuclides to the total gamma air kerma rate (GAKR) and derive external doses to man in the Ribble Estuary, NW England. GAKRs were measured and sediment cores were collected in order to determine radionuclide specific activities with depth. The latter values were used as input data for the external dose-rate model. The model has a slight tendency to over-predict the GAKR, but, on average, the model predictions fall within +/-26% of the measured value. Improvements, in the present case, might be made by accounting for core shortening and variations in soil density in the input data. The model predicted that, for exposed intertidal mud sites, a range of GAKRs between 0.011 and 0.022 microGy h(-1) was attributable to Springfields discharges alone. The contribution due to 234mPa and 234Th ranged between 20 and 60%. An excess GAKR (GAKR arising from anthropogenic emissions alone) of 0.139-0.150 microGy h(-1), used in conjunction with relevant habit-survey data (for a potential critical group) and conversion factors, yielded a dose to man of 0.029-0.031 mSv year(-1). PMID:10616780

  4. In-patient to isocenter KERMA ratios in CT

    PubMed Central

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M.

    2011-01-01

    Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom. Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma KCT at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (RK) as K/ KCT, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). RK values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median RK values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile RK values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile RK values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average RK for the 25 Rando organs at 120 kV was 0.61 ± 0.08. Average RK values in the head, chest, and abdomen showed little variation. Relative to RK values in the head, chest, and abdomen obtained at 120 kV, RK values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average RK values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in RK value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average RK value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the isocenter (free in air). Conversion from in-patient air KERMA values to tissue dose

  5. Evaluation of Wall Correction Factor of INER's Air-Kerma Primary Standard Chamber and Dose Variation by Source Displacement for HDR 192Ir Brachytherapy

    PubMed Central

    Lee, J. H.; Wang, J. N.; Huang, T. T.; Su, S. H.; Chang, B. J.; Su, C. H.; Hsu, S. M.

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) 192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the 192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR 192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR 192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity. PMID:24222907

  6. Key comparison BIPM.RI(I)-K7 of the air-kerma standards of the CMI, Czech Republic and the BIPM in mammography x-rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Roger, P.; Sochor, V.

    2016-01-01

    A first key comparison has been made between the air-kerma standards of the CMI, Czech Republic and the BIPM in mammography x-ray beams. The results show the standards to be in agreement at the level of the standard uncertainty for the comparison of 3.5 parts in 103. The results for an indirect comparison made at the same time are consistent with the direct results at the level of 1 part in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. KEY COMPARISON Comparison of the standards of air kerma of the ENEA-INMRI and the BIPM for 137Cs gamma rays

    NASA Astrophysics Data System (ADS)

    Allisy-Roberts, P. J.; Kessler, C.; Toni, M.; Bovi, M.

    2010-01-01

    A comparison of the standards of air kerma of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI) and of the Bureau International des Poids et Mesures (BIPM) was carried out in 137Cs radiation in 1998. The comparison result, updated for changes in the standards in 2003 and 2009, is 0.9927 (0.0067) and demonstrates that the ENEA-INMRI and BIPM standards are in agreement within the uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  8. Key comparison BIPM.RI(I)-K7 of the air-kerma standards of the ENEA-INMRI, Italy and the BIPM in mammography x-rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D.; Roger, P.; Toni, M. P.; Pinto, M.; Bovi, M.; Cappadozzi, G.; Silvestri, C.

    2015-01-01

    A first key comparison has been made between the air-kerma standards of the ENEA-INMRI, Italy and the BIPM in mammography x-ray beams. The results show the standards to be in agreement at the level of the standard uncertainty for the comparison of 4.8 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NMIJ, Japan and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Tanaka, T.; Kurosawa, T.; Saito, N.

    2016-01-01

    A key comparison has been made between the air-kerma standards of the NMIJ, Japan and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.1 parts in 103. A trend is evident in the results for the different radiation qualities. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the NRC, Canada and the BIPM in medium-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Mainegra-Hing, E.; Shen, H.; McEwen, M. R.

    2016-01-01

    A key comparison has been made between the air-kerma standards of the NRC, Canada and the BIPM in the medium-energy x-ray range. The results show the standards to be in agreement at the level of the standard uncertainty of the comparison of 3.3 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. DS02 fluence spectra for neutrons and gamma rays at Hiroshima and Nagasaki with fluence-to-kerma coefficients and transmission factors for sample measurements.

    PubMed

    Egbert, Stephen D; Kerr, George D; Cullings, Harry M

    2007-11-01

    Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose. PMID:17643260

  12. In-patient to isocenter KERMA ratios in CT

    SciTech Connect

    Huda, Walter; Ogden, Kent M.; Lavallee, Robert L.; Roskopf, Marsha L.; Scalzetti, Ernest M.

    2011-10-15

    Purpose: To estimate in-patient KERMA for specific organs in computed tomography (CT) scanning using ratios to isocenter free-in-air KERMA obtained using a Rando phantom.Method: A CT scan of an anthropomorphic phantom results in an air KERMA K at a selected phantom location and air kerma K{sub CT} at the CT scanner isocenter when the scan is repeated in the absence of the phantom. The authors define the KERMA ratio (R{sub K}) as K/ K{sub CT}, which were experimentally determined in a Male Rando Phantom using lithium fluoride chips (TLD-100). R{sub K} values were obtained for a total of 400 individual point locations, as well as for 25 individual organs of interest in CT dosimetry. CT examinations of Rando were performed on a GE LightSpeed Ultra scanner operated at 80 kV, 120 kV, and 140 kV, as well as a Siemens Sensation 16 operated at 120 kV. Results: At 120 kV, median R{sub K} values for the GE and Siemens scanners were 0.60 and 0.64, respectively. The 10th percentile R{sub K} values ranged from 0.34 at 80 kV to 0.54 at 140 kV, and the 90th percentile R{sub K} values ranged from 0.64 at 80 kV to 0.78 at 140 kV. The average R{sub K} for the 25 Rando organs at 120 kV was 0.61 {+-} 0.08. Average R{sub K} values in the head, chest, and abdomen showed little variation. Relative to R{sub K} values in the head, chest, and abdomen obtained at 120 kV, R{sub K} values were about 12% lower in the pelvis and about 58% higher in the cervical spine region. Average R{sub K} values were about 6% higher on the Siemens Sensation 16 scanner than the GE LightSpeed Ultra. Reducing the x-ray tube voltage from 120 kV to 80 kV resulted in an average reduction in R{sub K} value of 34%, whereas increasing the x-ray tube voltage to 140 kV increased the average R{sub K} value by 9%. Conclusions: In-patient to isocenter relative KERMA values in Rando phantom can be used to estimate organ doses in similar sized adults undergoing CT examinations from easily measured air KERMA values at the

  13. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays

    NASA Astrophysics Data System (ADS)

    Perichon, N.; Rapp, B.; Denoziere, M.; Daures, J.; Ostrowsky, A.; Bordy, J.-M.

    2013-05-01

    Nowadays, the absorbed dose to water for kilovoltage x-ray beams is determined from standards in terms of air-kerma by application of international dosimetry protocols. New standards in terms of absorbed dose to water has just been established for these beams at the LNE-LNHB, using water calorimetry, at a depth of 2 cm in water in accordance with protocols. The aim of this study is to compare these new standards in terms of absorbed dose to water, to the dose values calculated from the application of four international protocols based on air-kerma standards (IAEA TRS-277, AAPM TG-61, IPEMB and NCS-10). The acceleration potentials of the six beams studied are between 80 and 300 kV with half-value layers between 3.01 mm of aluminum and 3.40 mm of copper. A difference between the two methods smaller than 2.1% was reported. The standard uncertainty of water calorimetry being below 0.8%, and the one associated with the values from protocols being around 2.5%, the results are in good agreement. The calibration coefficients of some ionization chambers in terms of absorbed dose to water, established by application of calorimetry and air-kerma based dosimetry protocols, were also compared. The best agreement with the calibration coefficients established by water calorimetry was found for those established with the AAPM TG-61 protocol.

  14. Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms.

    PubMed

    Maehata, Itsumi; Hayashi, Hiroaki; Kimoto, Natsumi; Takegami, Kazuki; Okino, Hiroki; Kanazawa, Yuki; Tominaga, Masahide

    2016-07-01

    We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %. PMID:26994011

  15. Neutron kerma factors and water equivalence of some tissue substitutes.

    PubMed

    Singh, V P; Badiger, N M; Vega-Carrillo, Hector Rene

    2015-09-01

    The Kerma factors and Kerma relative to the air and water of 24 compounds that are used as tissue substitutes were calculated for neutron energies ranging from 2.53×10(-8) to 29 MeV. The Kerma ratios of the tissue substitutes relative to air and water were calculated. The water equivalence of the selected tissue substitutes was observed above neutron energies of 100 eV. The Kerma ratio relative to the air for poly-vinylidene fluoride and Teflon were nearest to unity at very low energy (up to 1 eV) and above 63 eV, respectively. It was found that the natural rubber was a water-equivalent tissue substitute compound. The results of the Kerma factors in our investigation show good agreement with those published in ICRU-44. We found that at higher neutron energies, the Kerma factors and Kerma ratios of the selected tissue substitute compounds were approximately the same, but though the differences were large for energies below 100 eV. PMID:26073270

  16. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  17. Photon extremity absorbed dose and kerma conversion coefficients for calibration geometries.

    PubMed

    Veinot, K G; Hertel, N E

    2007-02-01

    Absorbed dose and dose equivalent conversion coefficients are routinely used in personnel dosimetry programs. These conversion coefficients can be applied to particle fluences or to measured air kerma values to determine appropriate operational monitoring quantities such as the ambient dose equivalent or personal dose equivalent for a specific geometry. For personnel directly handling materials, the absorbed dose to the extremities is of concern. This work presents photon conversion coefficients for two extremity calibration geometries using finger and wrist/arm phantoms described in HPS N13.32. These conversion coefficients have been calculated as a function of photon energy in terms of the kerma and the absorbed dose using Monte Carlo techniques and the calibration geometries specified in HPS N13.32. Additionally, kerma and absorbed dose conversion coefficients for commonly used x-ray spectra and calibration source fields are presented. The kerma values calculated in this work for the x-ray spectra and calibration sources compare well to those listed in HPS N13.32. The absorbed dose values, however, differ significantly for higher energy photons because charged particle equilibrium conditions have not been satisfied for the shallow depth. Thus, the air-kerma-to-dose and exposure-to-dose conversion coefficients for Cs and Co listed in HPS N13.32 overestimate the absorbed dose to the extremities. Applying the conversion coefficients listed in HPS N13.32 for Cs, for example, would result in an overestimate of absorbed dose of 62% for the finger phantom and 55% for the wrist phantom. PMID:17220720

  18. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  19. Key comparison BIPM.RI(I)-K2 of the air-kerma standards of the CMI, Czech Republic and the BIPM in low-energy x-rays

    NASA Astrophysics Data System (ADS)

    Burns, D. T.; Kessler, C.; Sochor, V.

    2016-01-01

    A key comparison has been made between the air-kerma standards of the CMI, Czech Republic and the BIPM in the low-energy x-ray range. The results show the standards to be in agreement at around the level of the standard uncertainty of the comparison of 3.5 parts in 103. The results are analysed and presented in terms of degrees of equivalence, suitable for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Remarks on KERMA Factors in ACE files

    NASA Astrophysics Data System (ADS)

    Konno, C.; Ochiai, K.; Takakura, K.; Sato, S.

    2014-04-01

    Some neutron KERMA factors in ACE files are negative and extremely large if nuclear data libraries do not keep energy-balance. The status of neutron KERMA factors in the official ACE file of ENDF/B-VII.1 is examined. As a result, it is found out that neutron KERMA factors of nuclei more than 200 in ENDF/B-VII.1 have some problems. Effects of the inadequate KERMA factor are also investigated, which are large for neutron heat while those are small for total (neutron + gamma) heat. Users who use only neutron KERMA factors should check if the factors are adequate or not before they use the factors.

  1. Comparison of conversion coefficients for equivalent dose in terms of air kerma using a sitting and standing female adult voxel simulators exposure to photons in antero-posterior irradiation geometry

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. R.; Galeano, D. C.; Carvalho Júnior, A. B.; Hunt, J.

    2014-02-01

    Due to the difficulty in implementing invasive techniques for calculations of dose for some exposure scenarios, computational simulators have been created to represent as realistically as possible the structures of the human body and through radiation transport simulations to obtain conversion coefficients (CCs) to estimate dose. In most published papers simulators are implemented in the standing posture and this may not describe a real scenario of exposure. In this work we developed exposure scenarios in the Visual Monte Carlo (VMC) code using a female simulator in standing and sitting postures. The simulator was irradiated in the antero-posterior (AP) geometry by a plane source of monoenergetic photons with energy from 10 keV to 2 MeV. The conversion coefficients for equivalent dose in terms of air kerma (HT/Kair) were calculated for both scenarios and compared. The results show that the percentage difference of CCs for the organs of the head and thorax was not significant (less than 5%) since the anatomic position of the organs is the same in both postures. The percentage difference is more significant to the ovaries (71% for photon energy of 20 keV), to the bladder (39% at 60 keV) and to the uterus (37% at 100 keV) due to different processes of radiation interactions in the legs of the simulator when its posture is changed. For organs and tissues that are distributed throughout the entire body, such as bone (21% at 100 keV) and muscle (30% at 80 keV) the percentage difference of CCs reflects a reduction of interaction of photons with the legs of the simulator. Therefore, the calculation of conversion coefficients using simulators in the sitting posture is relevant for a more accurate dose estimation in real exposures to radiation.

  2. Comparison of measured and calculated air-transported radiation from a fast unshielded nuclear reactor. Technical report

    SciTech Connect

    Robitaille, H.A.; Hoffarth, B.E.

    1980-12-01

    Neutron and gamma-ray spectra have been measured at various distances up to 1100 metres from the fast-neutron reactor of the U.S. Army Pulse Radiation Division (Materiel Testing Directorate, Aberdeen Proving Ground, Md.) The spectra were obtained at a height of two metres above the air-ground interface and are compared to previous measurements performed by two other research laboratories, and also to the results of theoretical predictions based on two-dimensional discrete-ordinates transport theory. Integral quantities such as partial and total radiation kermas are generally in good agreement, however the theoretical calculations tend to predict somewhat softer neutron spectra than are observed experimentally.

  3. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  4. SU-E-I-27: Estimating KERMA Area Product for CT Localizer Images

    SciTech Connect

    Ogden, K; Greene-Donnelly, K; Bennett, R; Thorpe, M

    2015-06-15

    Purpose: To estimate the free-in-air KERMA-Area Product (KAP) incident on patients due to CT localizer scans for common CT exams. Methods: In-plane beam intensity profiles were measured in localizer acquisition mode using OSLs for a 64 slice MDCT scanner (Lightspeed VCT, GE Medical Systems, Waukesha WI). The z-axis beam width was measured as a function of distance from isocenter. The beam profile and width were used to calculate a weighted average air KERMA per unit mAs as a function of intercepted x-axis beam width for objects symmetric about the localizer centerline.Patient areas were measured using manually drawn regions and divided by localizer length to determine average width. Data were collected for 50 head exams (lateral localizer only), 15 head/neck exams, 50 chest exams, and 50 abdomen/pelvis exams. Mean patient widths and acquisition techniques were used to calculate the weighted average free-in-air KERMA, which was multiplied by the patient area to estimate KAP. Results: Scan technique was 120 kV tube voltage, 10 mA current, and table speed of 10 cm/s. The mean ± standard deviation values of KAP were 120 ± 11.6, 469 ± 62.6, 518 ± 45, and 763 ± 93 mGycm{sup 2} for head, head/neck, chest, and abdomen/pelvis exams, respectively. For studies with AP and lateral localizers, the AP/lateral area ratio was 1.20, 1.33, and 1.24 for the head/neck, chest, and abdomen/pelvis exams, respectively. However, the AP/lateral KAP ratios were 1.12, 1.08, and 1.07, respectively. Conclusion: Calculation of KAP in CT localizers is complicated by the non-uniform intensity profile and z-axis beam width. KAP values are similar to those for simple radiographic exams such as a chest radiograph and represent a small fraction of the x-ray exposure at CT. However, as CT doses are reduced the localizer contribution will be a more significant fraction of the total exposure.

  5. Air brake-dynamometer accurately measures torque

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Air brake-dynamometer assembly combines the principles of the air turbine and the air pump to apply braking torque. The assembly absorbs and measures power outputs of rotating machinery over a wide range of shaft speeds. It can also be used as an air turbine.

  6. INCORPORATING MEASUREMENT UNCERTAINTY INTO AIR QUALITY EVALUATIONS

    EPA Science Inventory

    Decisions on air quality problems must often be made on the basis of existing ambient air quality data. One consideration in such situations is how to accomodate the uncertainty associated with these measurements. Measurement error is often stated in terms of a single measurement...

  7. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  8. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen dioxide, carbon…

  9. Measuring Air Density in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Calzà, G.; Gratton, L. M.; López-Arias, T.; Oss, S.

    2010-03-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion—buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the measurement, and the reason for the choice of the procedure, among others. One of the most widespread approaches makes use of rubber balloons. Such an approach can be misleading if attention is not paid to the effect of the buoyant force on the balloon, exerted by the surrounding air. Air is weightless in an environment full of it. While this fact can usually be neglected in daily, nontechnical weight measurements, it is not the case when we are interested in the weight of air itself. A sketch such as the one depicted in Fig. 1 is often presented in elementary science textbooks, as a demonstration that air has weight. A search of the Internet will reveal that this misleading approach is often presented as the simplest one for this kind of measurement at an elementary level and represents one among other common misconceptions that can be found in K-6 science textbooks as discussed, for instance, in Ref. 2. For a more detailed description of the flaws inherent to the measurement of air's weight with a rubber balloon, see Ref. 3. In this paper we will describe two procedures to measure the density of air: weighing a PET bottle and a vacuum rigid container. There are other interesting ways to estimate the weight of air; see, for instance, the experiment of Zhu and Se-yuen using carbon dioxide and Archimedes' principle.4 We emphasize the experimental implications and the physical reasons for the accuracy and conceptual correctness of each method. It is important not to undervalue the importance of both simplicity and reliability for any experimental measurement made in a didactic context.

  10. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown. PMID:15047764

  11. The Measurement of Air Speed in Airplanes

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1937-01-01

    Various methods of measuring the air speed of airplanes are described. Particular emphasis is placed on the procedure required to obtain precise measurements of speed by the use of the suspended Pitot-static head or the suspended static head. Typical calibration curves for service installations of Pitot-static heads are shown and the relation between errors in air speed and corresponding errors in observed altitude for such installations is discussed. There is included a brief discussion of various speed-course methods of measuring speed.

  12. Photon and neutron kerma coefficients for polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    El-Khayatt, A. M.; Vega-Carrillo, Hector Rene

    2015-08-01

    Neutron and gamma ray kerma coefficients were calculated for 17 3D dosimeters, for the neutron and gamma ray energy ranges extend from 2.53×10-8 to 29 MeV and from 1.0×10-3 to 20 MeV, respectively. The calculated kermas given here for discrete energies and the kerma coefficients are referred to as "point-wise data". Curves of gamma ray kermas showed slight dips at about 60 keV for most 3D dosimeters. Also, a noticeable departure between thermal and epithermal neutrons kerma sets for water and polymers has been observed. Finally, the obtained results could be useful for dose estimation in the studied 3D dosimeters.

  13. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  14. Air-coupled ultrasonic measurements in composites

    NASA Astrophysics Data System (ADS)

    Kommareddy, Vamshi; Peters, John J.; Hsu, David K.

    2005-04-01

    Air-coupled ultrasound is a non-contact technique and has clear advantages over water-coupled testing. This work aims at gaining quantitative understanding of the principles underlining air-coupled ultrasonic measurement. The transmission of air-coupled ultrasonic energy through a plate is measured experimentally; model calculation of the transmission coefficient, taking into account the real transducer characteristics, is compared with the experimental results. The occurrence of "Poisson bright spot" in the flaw images of thin laminates and honeycomb composites were investigated; A qualitative comparison with a model based on the Fresnel's wave theory of light is discussed. Through transmission C-scans at 120 and 400 kHz using focused transmitter and receiver were studied.

  15. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  16. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  17. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  18. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  19. Laser photoacoustic sensor for air toxicity measurements

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, C. Kumar N.

    2012-06-01

    US EPA's Clean Air Act lists 187 hazardous air pollutants (HAP) or airborne toxics that are considered especially harmful to health, and hence the measurement of their concentration is of great importance. Numerous sensor systems have been reported for measuring these toxic gases and vapors. However, most of these sensors are specific to a single gas or able to measure only a few of them. Thus a sensor capable of measuring many of the toxic gases simultaneously is desirable. Laser photoacoustic spectroscopy (LPAS) sensors have the potential for true broadband measurement when used in conjunction with one or more widely tunable laser sources. An LPAS gas analyzer equipped with a continuous wave, room temperature IR Quantum Cascade Laser tunable over the wavelength range of 9.4 μm to 9.7 μm was used for continuous real-time measurements of multiple gases/chemical components. An external cavity grating tuner was used to generate several (75) narrow line output wavelengths to conduct photoacoustic absorption measurements of gas mixtures. We have measured various HAPs such as Benzene, Formaldehyde, and Acetaldehyde in the presence of atmospheric interferents water vapor, and carbon dioxide. Using the preliminary spectral pattern recognition algorithm, we have shown our ability to measure all these chemical compounds simultaneously in under 3 minutes. Sensitivity levels of a few part-per-billion (ppb) were achieved with several of the measured compounds with the preliminary laboratory system.

  20. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  1. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  3. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  4. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  5. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  6. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air supply. Air that has had its absolute humidity altered is considered humidity- conditioned air. For...

  7. Amine Measurements in Boreal Forest Air

    NASA Astrophysics Data System (ADS)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  8. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  10. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  11. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  12. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  13. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  14. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  16. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  17. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  18. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  19. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  20. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  1. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  2. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  3. Kerbside DOAS measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Ling, Hong; Legelli, Stefan; Münkel, Christoph; Emeis, Stefan

    2014-10-01

    Emission sources as well as wind speed and direction and MLH are important factors which influence high air pollutant concentrations. This is generally known (Schäfer et al., 2006) but the detailed understanding of processes directing certain air pollutant concentrations like HCHO is not complete. To study these processes a long-term campaign in Augsburg, Germany, was performed since March 2012. The concentrations of NO, NO2, O3 and HCHO, which were measured with a DOAS from OPSIS across a main traffic road and a nearby park area, are analysed. A ceilometer CL31 from Vaisala which is an eye-safe commercial mini-lidar system is applied to detect layering of the lower atmosphere continuously. Special software for this ceilometer with MATLAB provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. Meteorological data were measured by a ground-based weather station at the measurement site as well as taken from monitoring data archives of the German National Meteorological Service (DWD), which are measured by radiosondes (Oberschleißheim). Correlation analyses are applied to show the coupling of temporal variations of NO, NO2, O3 and HCHO concentrations with temperature, mixing layer height and wind speed. HCHO which is emitted from both anthropogenic and biogenic sources is studied especially.

  4. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake and cooling air measurements. 92.108 Section 92.108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.108 Intake and cooling air measurements....

  5. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air supply...

  6. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  7. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  8. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  10. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  11. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  12. Direct measurement of clarinet air column oscillations

    NASA Astrophysics Data System (ADS)

    Jones, Jesse; Rogers, Chris; French, Chris

    2003-10-01

    The internal oscillation of a clarinet air column has been directly measured through the implementation of hot-wire anemometry. By taking a series of measurements down the centerline of the bore, velocity and pressure modal shapes of individual harmonics are separated, measured, and plotted. Finally, composite averaged power spectra of the internal oscillation are presented and compared to acoustic measurements acquired outside the clarinet. In many cases, the even harmonics of the internal oscillation dominate over the power found in the odd harmonics. This contradicts the classic model of the clarinet as a cylindrical pipe closed at one end and open at the other (where only odd harmonics are produced). Further, the data from the direct velocity measurements also contradict the externally acquired acoustic data, where odd harmonics generally dominate for the lowest 5-9 harmonics. Thus the clarinet, in theory and practice, is generally considered incapable of generating strong even harmonics. In this research, however, it is seen that dominate even harmonics are generated, but the energy for these frequencies is largely trapped inside the clarinet, whereas the energy associated with the odd harmonics is released to the ambient. [This research was conducted with the support of Selmer Musical Instruments.

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  15. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  16. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  17. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  18. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  19. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  20. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  1. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  2. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  3. HUMAN EXPOSURE MEASUREMENTS OF AIR TOXICS

    EPA Science Inventory

    EPA's air toxics program is moving toward a risk-based focus. The framework for such a focus was laid out in the National Air Toxics Program: Integrated Urban Strategy which included the requirement for EPA to conduct a National-Scale Air Toxics Assessment (NATA) of human expos...

  4. Neutron and Gamma-Ray Kerma Factors Based on LLNL Nuclear Data Files.

    1991-07-08

    Version 00 Kerma factors are used extensively in biomedical applications. Specifically, neutron kerma factors are used in determining heating in materials of interest from neutron-induced reactions in fission or fusion power applications.

  5. Measuring Concentrations of Particulate 140La in the Air.

    PubMed

    Okada, Colin E; Kernan, Warnick; Keillor, Martin; Kirkham, Randy; Sorom, Rich D; Van Etten, Don M

    2016-05-01

    Air sampling systems were deployed to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device Field Trials. The air samplers were positioned 100-600 m downwind of the release point. The filters were collected immediately and analyzed in a field laboratory. Quantities for total activity collected on the air filters are reported along with additional information to compute the average or integrated air concentrations. PMID:27023029

  6. Air density measurement with a falling A4 sheet

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Ivan V.; Oladyshkina, Anastasia A.

    2016-09-01

    We propose a simple experiment on the air density measurement which does not require any special equipment: just an A4 sheet of paper, a stopwatch and a ruler. The discussed method uses the most basic air resistance model.

  7. Acoustic method for measuring air temperature and humidity in rooms

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2014-05-01

    A method is proposed to determine air temperature and humidity in rooms with a system of sound sources and receivers, making it possible to find the sound velocity and reverberation time. Nomograms for determining the air temperature and relative air humidity are constructed from the found sound velocity and time reverberation values. The required accuracy of measuring these parameters is estimated.

  8. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... during the test. Overall measurement accuracy must be ±2 percent of full-scale value of the measurement... full-scale value. The Administrator must be advised of the method used prior to testing. (2... measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air....

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  12. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  14. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  15. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  16. Air quality measurements from the Fresno Supersite.

    PubMed

    Watson, J G; Chow, J C; Bowen, J L; Lowenthal, D H; Hering, S; Ouchida, P; Oslund, W

    2000-08-01

    The Fresno Supersite intends to 1) evaluate non-routine monitoring methods, establishing their comparability with existing methods and their applicability to air quality planning, exposure assessment, and health effects studies; 2) provide a better understanding of aerosol characteristics, behavior, and sources to assist regulatory agencies in developing standards and strategies that protect public health; and 3) support studies that evaluate relationships between aerosol properties, co-factors, and observed health end-points. Supersite observables include in-situ, continuous, short-duration measurements of 1) PM2.5, PM10, and coarse (PM10 minus PM2.5) mass; 2) PM2.5 SO4(-2), NO3-, carbon, light absorption, and light extinction; 3) numbers of particles in discrete size bins ranging from 0.01 to approximately 10 microns; 4) criteria pollutant gases (O3, CO, NOx); 5) reactive gases (NO2, NOy, HNO3, peroxyacetyl nitrate [PAN], NH3); and 6) single particle characterization by time-of-flight mass spectrometry. Field sampling and laboratory analysis are applied for gaseous and particulate organic compounds (light hydrocarbons, heavy hydrocarbons, carbonyls, polycyclic aromatic hydrocarbons [PAH], and other semi-volatiles), and PM2.5 mass, elements, ions, and carbon. Observables common to other Supersites are 1) daily PM2.5 24-hr average mass with Federal Reference Method (FRM) samplers; 2) continuous hourly and 5-min average PM2.5 and PM10 mass with beta attenuation monitors (BAM) and tapered element oscillating microbalances (TEOM); 3) PM2.5 chemical speciation with a U.S. Environmental Protection Agency (EPA) speciation monitor and protocol; 4) coarse particle mass by dichotomous sampler and difference between PM10 and PM2.5 BAM and TEOM measurements; 5) coarse particle chemical composition; and 6) high sensitivity and time resolution scalar and vector wind speed, wind direction, temperature, relative humidity, barometric pressure, and solar radiation. The Fresno

  17. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner

    PubMed Central

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.

    2011-01-01

    Purpose: In this study, newly formulated XR-RV3 GafChromic® film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was ±7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film

  18. Perfluorocarbon tracer method for air-infiltration measurements

    DOEpatents

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  19. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  20. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  1. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  2. Crowdsourcing urban air temperature measurements using smartphones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Crowdsourced data from cell phone battery temperature sensors could be used to contribute to improved real-time, high-resolution air temperature estimates in urban areas, a new study shows. Temperature observations in cities are in some cases currently limited to a few weather stations, but there are millions of smartphone users in many cities. The batteries in cell phones have temperature sensors to avoid damage to the phone.

  3. New Focus: method for measuring vinyl chloride in air

    SciTech Connect

    Not Available

    1987-05-01

    This note discusses a recently released standard entitled Method for the Measurement of Vinyl Chloride in Air (CAN3-Z223.25-M86). It is one in a series of Canadian Standard Association standards on the measurement of pollutants in air. This unique document provides a standardized method of sampling and analysis that may be used for the measurement of vinyl chloride in air over a concentration range of 0.01 to 2600 mg/mT under standard atmospheric conditions. The methodology includes calibration requirements, sampling procedures (the collection of samples in a gas bag or a sorbent tube), quantitative gas chromatographic analysis, and series of calculations. It is the first published document that standardizes the method of measurement of vinyl chloride in air and specifies a concentration range that applies to industrial hygiene and ambient air applications.

  4. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  5. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  6. Proton dose calculation based on in-air fluence measurements.

    PubMed

    Schaffner, Barbara

    2008-03-21

    Proton dose calculation algorithms--as well as photon and electron algorithms--are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and-to a lesser extent-design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques. PMID:18367787

  7. Proton dose calculation based on in-air fluence measurements

    NASA Astrophysics Data System (ADS)

    Schaffner, Barbara

    2008-03-01

    Proton dose calculation algorithms—as well as photon and electron algorithms—are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and—to a lesser extent—design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques.

  8. AMBIENT MEASUREMENT METHODS AND PROPERTIES OF THE 189 CLEAN AIR ACT HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Measurement methods for the 189 Hazardous Air Pollutants (HAPS) designated in Title III of the 1990 Clean Air Act Amendments are either identified or suggested for all but 10 of the compounds. n extensive list of chemical and physical properties are developed for all compounds. u...

  9. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  10. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  11. New evaluated kerma factor library from ENDF/B-V data

    SciTech Connect

    Farawila, Y.M.; Maynard, C.W.

    1989-01-01

    The problem addressed in this paper is the accurate evaluation of neutron fluence-to-kerma (kinetic energy released in materials) factors from microscopic nuclear data. Accurate kerma factors are necessary for calculating the local heat generation in materials subject to neutron irradiation, such as shields and fusion reactor blankets. The new algorithms developed for this purpose combine in a consistent manner the two basic methods for computing kerma factors, namely, reaction kinematics and direct energy balance. These algorithms are implemented in the code KAOS-V (kerma and other stuff), which was used as the main evaluating tool to construct the nuclear response function library KAOS/LIB-V.

  12. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  13. Measuring In-Air and Underwater Hearing in Seabirds.

    PubMed

    Crowell, Sara C

    2016-01-01

    Electrophysiological methods were used to measure the in-air hearing of 10 species of seabirds. There are currently no measures of the underwater hearing abilities of diving birds. In preparation for constructing a behavioral audiogram both in-air and underwater hearing, several species of diving ducks were raised. Because there is a considerable amount of literature on bird hearing in air, the technical setup and training methods were modeled on similar studies, with modifications to address the nature of the underwater sound field and the difficulty of the task for the birds. PMID:26611081

  14. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  15. Utilization of lasers for air data measurements

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    1991-05-01

    The operating principles of the ALEV3 three axis laser Doppler anemometer, which was designed for flight tests with the A-320 and A-340 aircraft, are depicted. If mounted on the aircraft center of gravity, the ALEV-3 allows true flight velocity in three directions and angles of attack and sideslip to be directly measured with a very good accuracy, in particular flight areas such as limit buffeting, stall, high Mach numbers, or sideslip flights. Aircraft parameter estimation, calculation, and calibration results are presented. The accuracies of velocity, static pressure and aerodynamic angle measurements were compared with classical anemometers precisions. Flight tests results of the ALEV-1 one axis laser anemometer for A-320 are given as a reference.

  16. Identification and influence of spatial outliers in air quality measurements

    NASA Astrophysics Data System (ADS)

    O'Leary, B. F.; Lemke, L. D.

    2015-12-01

    The heterogeneous nature of urban air complicates the analysis of spatial and temporal variability in air quality measurements. Evaluation of potentially inaccurate measurements (i.e., outliers) poses particularly difficult challenges in extensive air quality datasets with multiple measurements distributed in time and space. This study investigated the identification and impact of outliers in measurements of NO­2, BTEX, PM2.5, and PM10 in the contiguous Detroit, Michigan, USA and Windsor, Ontario, Canada international airshed. Measurements were taken at 100 locations during September 2008 and June 2009 and modeled at a 300m by 300m scale resolution. The objective was to determine if outliers were present and, if so, to quantify the magnitude of their impact on modeled spatial pollution distributions. The study built upon previous investigations by the Geospatial Determinants of Health Outcomes Consortium that examined relationships between air pollutant distributions and asthma exacerbations in the Detroit and Windsor airshed. Four independent approaches were initially employed to identify potential outliers: boxplots, variogram clouds, difference maps, and the Local Moran's I statistic. Potential outliers were subsequently reevaluated for consistency among methods and individually assessed to select a final set of outliers. The impact of excluding individual outliers was subsequently determined by revising the spatially variable air pollution models and recalculating associations between air contaminant concentrations and asthma exacerbations in Detroit and Windsor in 2008. For the pollutants examined, revised associations revealed weaker correlations with spatial outliers removed. Nevertheless, the approach employed improves the model integrity by increasing our understanding of the spatial variability of air pollution in the built environment and providing additional insights into the association between acute asthma exacerbations and air pollution.

  17. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  18. New calculations of neutron kerma coefficients and dose equivalent.

    PubMed

    Liu, Zhenzhou; Chen, Jinxiang

    2008-06-01

    For neutron energies ranging from 1 keV to 20 MeV, the kerma coefficients for elements H, C, N, O, light water, and ICRU tissue were deduced respectively from microscopic cross sections and Monte Carlo simulation (MCNP code). The results are consistent within admitted uncertainties with values evaluated by an international group (Chadwick et al 1999 Med. Phys. 26 974-91). The ambient dose equivalent generated in the ISO-recommended neutron field for an Am-Be neutron source (ISO 8529-1: 2001(E)) was obtained from the kerma coefficients and Monte Carlo calculation. In addition, it was calculated directly by multiplying the neutron fluence by the fluence-to-ambient dose conversion coefficients recommended by ICRP (ICRP 1996 ICRP Publication 74 (Oxford: Pergamon)). The two results agree well with each other. The main feature of this work is our Monte Carlo simulation design and the treatments differing from the work of others in the calculation of neutron energy transfer in non-elastic processes. PMID:18495982

  19. MEASUREMENT OF LOW LEVEL AIR TOXICS WITH MODIFIED UV DOAS

    EPA Science Inventory

    To further understand near source impacts, EPA is working to develop open-path optical techniques for spatiotemporal-resolved measurement of air pollutants. Of particular interest is near real time quantification of mobile-source generated CO, Nox and hydrocarbons measured in cl...

  20. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  1. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    PubMed Central

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  2. The Aeroflex: a bicycle for mobile air quality measurements.

    PubMed

    Elen, Bart; Peters, Jan; Poppel, Martine Van; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification.  PMID:23262484

  3. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  4. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.

    PubMed

    Pignol, J P; Slabbert, J

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,alpha) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends. PMID:11233567

  5. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  6. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  7. Indoor air quality. [Health hazards due to energy conservation measures

    SciTech Connect

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed.

  8. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  9. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  10. QUALITY ASSURANCE HANDBOOK FOR AIR POLLUTION MEASUREMENT SYSTEMS: VOLUME IV - METEOROLOGICAL MEASUREMENTS (REVISED - AUGUST 1994)

    EPA Science Inventory

    Procedures on installing, acceptance testing, operating, maintaining and quality assuring three types of ground-based, upper air meteorological measurement systems are described. he limitations and uncertainties in precision and accuracy measurements associated with these systems...

  11. FMPS measurement of nanoparticle pollutant in office air

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqin; Lin, Jianzhong; Yu, Mingzhou

    2010-08-01

    Fast Mobility Particle Sizer (FMPS) is an electrical mobility instrument used to measure the nanoparticle number concentration and size distribution in an office environment. Actual measurements indicate the distributions of ultrafine particle number and size in office air are inhomogeneous in space. The nonaparticle size is bimodal and log-normally distribution in an office environment when only people activities are considered. The traffic pollutant in the outdoor including the automobile tail gas and the dust will change the particles size distribution and enhance the particle number concentration those of indoor air. It can also be seen from the results that the laser printer releases a large number of nanoparticles, especially around 80nm in diameter in the printing process. The laser printer may be the mainly ultrafine particle source in the office air.

  12. TECHNIQUE FOR MEASURING REDUCED FORMS OF SULFUR IN AMBIENT AIR

    EPA Science Inventory

    A new technique for measuring low concentrations of volatile sulfur compounds in ambient air is discussed. The technique consists of preconcentration of sulfur compounds by chemisorption on gold metal coated sand or gold foil surface followed by thermal desorption, separation, an...

  13. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  14. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  15. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  16. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  17. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  18. AMBIENT AIR MEASUREMENTS OF HYDROGEN PEROXIDE IN THE CALIFORNIA SOUTH COAST AIR BASIN

    EPA Science Inventory

    Hydrogen peroxide (H2O2) concentrations have been measured at two locations (Claremont and Riverside) in the California South Coast Air Basin during the months of July and August 1977. Three different analytical methods were employed: a chemiluminescent method and two colorimetri...

  19. Front surface thermal property measurements of air plasma spray coatings

    SciTech Connect

    Bennett, Ted; Kakuda, Tyler; Kulkarni, Anand

    2009-04-15

    A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

  20. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  1. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhir; Nahum, Alan E.

    2016-02-01

    Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of ‘secondary bremsstrahlung’ along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV ‘clinical’ radiotherapy qualities. Concerning depth-dependence, the ‘area under the kerma, K, curve’ exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the ‘double counting’ of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma ‘liberated’ in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this ‘violation’ amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a ‘clinical’ 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of  ≈51 g cm-2 for both very high and very low charged-particle transport cut

  2. Air shower measurements with the LOPES radio antenna array

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Haungs, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is set up at the location of the KASCADE-Grande extensive air shower experiment in Karlsruhe, Germany and aims to measure and investigate radio pulses from extensive air showers. Since radio waves suffer very little attenuation, radio measurements allow the detection of very distant or highly inclined showers. These waves can be recorded day and night, and provide a bolometric measure of the leptonic shower component. LOPES is designed as a digital radio interferometer using high bandwidths and fast data processing and profits from the reconstructed air shower observables of KASCADE-Grande. The LOPES antennas are absolutely amplitude calibrated allowing to reconstruct the electric field strength which can be compared with predictions from detailed Monte-Carlo simulations. We report about the analysis of correlations present in the radio signals measured by the LOPES 30 antenna array. Additionally, LOPES operates antennas of a different type (LOPESSTAR) which are optimized for an application at the Pierre Auger Observatory. Status, recent results of the data analysis and further perspectives of LOPES and the possible large scale application of this new detection technique are discussed.

  3. Air quality measurements in urban green areas - a case study

    NASA Astrophysics Data System (ADS)

    Kuttler, W.; Strassburger, A.

    The influence of traffic-induced pollutants (e.g. CO, NO, NO 2 and O 3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO 2 maxima only occurred in the morning. A high NO 2/NO ratio was established during weather conditions with high global radiation intensities ( K>800 W m -2), which may result in a high O 3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km 2), which were as high as 275 μg m -3 O 3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m -3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine-Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The

  4. Turbulence measurements in axisymmetric jets of air and helium

    NASA Astrophysics Data System (ADS)

    Panchapakesan, N. R.

    Turbulent axisymmetric jets of air helium with the same nozzle momentum flux were studied experimentally using hot-wire probes. An X-wire hot-wire probe was used in the air jet and a composite probe consisting of an X-wire and an interference probe of the Way-Libby type was used in the helium jet to measure the helium concentration and two velocity components. Moments of turbulent fluctuations, up to fourth order, were calculated to characterize turbulent transport in the jet and to evaluate current models for triple moments that occur in the Reynolds stress equation. In the air jet, the momentum flux across the jet was found to be within +/- 5 percent of the nozzle input and the integral of the radial diffusive flux of the turbulent kinetic energy across the jet was found to be close to zero indicating consistency of measurements with the equations of motion. The fourth moments were very well described in terms of the second moments by the quasi-Gaussian approximation across the entire jet. Profiles of third moments were found to be significantly different from earlier measurements - (u(v exp 2)) (u(w exp 2)) and ((u exp 2)v) were found to be negative near the axis of the jet. The measurements in the helium jet were in the intermediate region between the non-buoyant jet and the plume regions. The helium mass flux across the jet was found to be within +/- 0 percent of the nozzle input. The far field behavior was in accord with the expected plume scalings. The near field behavior of the mean velocity along the axis of the jet follows the scaling expressed by the effective diameter but the mean concentration decay has a different density ratio dependence. The radical profiles of mean velocity and concentration indicate a turbulent Schmidt number of 0.7, the same as for passive scalars in round jets. Turbulent intensity of axial velocity fluctuations was significantly higher than that observed in the air jet while the radial and azimuthal intensities are virtually

  5. Measuring Density Of Air By Ultraviolet Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1992-01-01

    Report presents theoretical and experimental studies directed toward development of optoelectronic instrument to measure density of air at altitudes from 50 to 90 km and possibly beyond. Instrument mounted in Space Shuttle orbiter and operated during reentry into atmosphere. Data gathered by instrument needed because density of upper atmosphere highly variable in space and time and this variability affects aerodynamic behavior and trajectory of reentering Shuttle. Variations in density also meteorologically significant.

  6. Measuring the speed of sound in air using smartphone applications

    NASA Astrophysics Data System (ADS)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  7. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  8. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  9. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-01

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air. PMID:25844542

  10. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Evaluated cross section libraries and kerma factors for neutrons up to 100 MeV on {sup 16}O and {sup 14}N

    SciTech Connect

    Chadwick, M.B.; Young, P.G.

    1995-07-01

    We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.

  13. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  14. Bias in air sampling techniques used to measure inhalation exposure.

    PubMed

    Cohen, B S; Harley, N H; Lippmann, M

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and "mini hi-volume" samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. We conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages. PMID:6720582

  15. Bias in air sampling techniques used to measure inhalation exposure

    SciTech Connect

    Cohen, B.S.; Harley, N.H.; Lippmann, M.

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and mini hi-volume samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. The authors conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  16. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  17. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  18. Monte Carlo evaluation of kerma in an HDR brachytherapy bunker.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F; Casal, E; Crispin, V; Puchades, V; León, A; Verdú, G

    2004-12-21

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater. PMID:15724543

  19. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  20. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  1. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    SciTech Connect

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT; JEFFCOATE, C.S.

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the current as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.

  2. 13c Measurements On Air of Small Ice Samples

    NASA Astrophysics Data System (ADS)

    Eyer, M.; Leuenberger, M.

    We have developed a new method for 13C analysis for very small air amounts of less than 0.5 cc STP, corresponding to less than 10 gram of ice. It is based on the needle-crasher technique, which we routinely use for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at ­100°C. This sampled air is then carried by a high helium flux through a modified Precon system of Thermo-Finnigan to separate CO2 from the air and to inject the pure CO2 gas in a low helium stream via an open split device to a Delta Plus XL mass spectrometer. The overall precision based on replicates of standard air is significantly better than 0.1 for a single analysis and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. We have used this new method for investigations on polar ice cores. The 13C measurements are important for climate reconstructions, e.g. to reconstruct the evolution and its variability in the terrestrial and oceanic carbon sinks and to identify natural variations in the marine carbon cycle. During the industrialization atmospheric 13C decreased by about -2, mainly due to the anthropogenic release of biogenic CO2 by fossil fuel burning. Reconstructions of carbon and oxygen cycles of Joos at al. [1999] using a double deconvolution method show that between 1930 and 1950 the net terrestrial release is changing to a net terrestrial uptake of CO2. A highly resolved 13C dataset of this time window would replenish the documentation of this behaviour. Further, it would be interesting to compare such data with O2/N2 measurements, known as an other partitioning tool for carbon sources and sinks. At the EGS 2002 we will present a highly resolved 13C record from Antarctic ice covering this time period.

  3. Seine estuary modelling and AirSWOT measurements validation

    NASA Astrophysics Data System (ADS)

    Chevalier, Laetitia; Lyard, Florent; Laignel, Benoit

    2013-04-01

    In the context of global climate change, knowing water fluxes and storage, from the global scale to the local scale, is a crucial issue. The future satellite SWOT (Surface Water and Ocean Topography) mission, dedicated to the surface water observation, is proposed to meet this challenge. SWOT main payload will be a Ka-band Radar Interferometer (KaRIn). To validate this new kind of measurements, preparatory airborne campaigns (called AirSWOT) are currently being designed. AirSWOT will carry an interferometer similar to Karin: Kaspar-Ka-band SWOT Phenomenology Airborne Radar. Some campaigns are planned in France in 2014. During these campaigns, the plane will fly over the Seine River basin, especially to observe its estuary, the upstream river main channel (to quantify river-aquifer exchange) and some wetlands. The present work objective is to validate the ability of AirSWOT and SWOT, using a Seine estuary hydrodynamic modelling. In this context, field measurements will be collected by different teams such as GIP (Public Interest Group) Seine Aval, the GPMR (Rouen Seaport), SHOM (Hydrographic and Oceanographic Service of the Navy), the IFREMER (French Research Institute for Sea Exploitation), Mercator-Ocean, LEGOS (Laboratory of Space Study in Geophysics and Oceanography), ADES (Data Access Groundwater) ... . These datasets will be used first to validate locally AirSWOT measurements, and then to improve a hydrodynamic simulations (using tidal boundary conditions, river and groundwater inflows ...) for AirSWOT data 2D validation. This modelling will also be used to estimate the benefit of the future SWOT mission for mid-latitude river hydrology. To do this modelling,the TUGOm barotropic model (Toulouse Unstructured Grid Ocean model 2D) is used. Preliminary simulations have been performed by first modelling and then combining to different regions: first the Seine River and its estuarine area and secondly the English Channel. These two simulations h are currently being

  4. Measurement of Temporal Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Rantanen, E.M.

    2009-01-01

    Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.

  5. Ambient air measurements of monoterpenes, oxygenated terpenes, and sesquiterpenes

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.; Goldstein, A. H.

    2007-12-01

    Chemical ozone loss within the forest canopy and the presence of biogenic VOC (BVOC) oxidation products in and above the canopy indirectly suggest the presence of very reactive BVOCs at Blodgett Forest. As a part of the 2007 BEARPEX campaign at this coniferous forest in the Sierra Nevada Mountains of California (1300 m elevation, 38.90° N, 120.63° W,), we quantified ambient concentrations of terpenes using a modified in-situ gas chromatograph with a mass spectrometer and a flame ionization detector (GC-MS-FID). The range of terpenes observed in ambient air matched enclosure based measurements of branch level emissions. To our knowledge, these observations represent the first quantification of the oxygenated monoterpene methyl chavicol and various sesquiterpenes in ambient air. Details of the instrument modifications, diurnal profiles of the terpenes, and comparison to branch level emissions will be presented.

  6. Ambient measurement methods and properties of the 189 Clean Air Act hazardous air pollutants. Final report

    SciTech Connect

    Kelly, T.J.; Mukund, R.; Gordon, S.M.; Hays, M.J.

    1994-03-01

    Measurement methods for the 189 Hazardous Air Pollutants (HAPs) designated in Title III of the 1990 Clean Air Act Amendments are either identified or suggested for all but 10 of the compounds. An extensive list of chemical and physical properties are provided for all compounds. Suggestions for methods development of compounds with no written references are based on the similarity of these chemical and physical properties to other of the HAPs. For 126 of the HAPs, established and documented methods were found; for 53 other HAPs, methods were identified having need for further development; and for 10 HAPs, either no methods or methods requiring extensive development were found. The primary recommendation of the study is that method development be focussed on the 53 HAPs for which additional development is expected to result in reliable methods.

  7. Continuous measurement of gaseous pollutants in Buenos Aires city

    NASA Astrophysics Data System (ADS)

    Bogo, Horacio; Martín Negri, R.; San Román, Enrique

    Data on CO, NO, NO 2 and O 3 concentrations measured in Buenos Aires city using a continuous monitoring station are reported. This is the first systematic study of this kind carried out in the city, which is, together with its surroundings, the third more populated in Latin America. Measurements were performed during 12 months in one of the principal avenues near downtown. Results indicate that vehicular traffic is the principal source of CO and NO x. The concentration of O 3 is generally quite low and results from the mixing of clean air masses with exhaust gases containing high amounts of NO. The monthly averages of CO and NO decrease from Winter to Summer in correlation with the increase of the mean wind speed and average temperature. These results are compared with previous measurements on the spatial distribution of NO 2 in the whole city using passive diffusion tubes and with the concentration of CO, which is being continuously registered since several years in the downtown area. Measurements performed at a green, windy, low traffic area beneath the La Plata river are also shown.

  8. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  9. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  10. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  11. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    SciTech Connect

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  12. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  13. A guide for upper-air reference measurements

    NASA Astrophysics Data System (ADS)

    Immler, F.; Dykema, J.; Gardiner, T.; Whiteman, D. N.; Thorne, P. W.; Vömel, H.

    2010-04-01

    The accurate monitoring of climate change imposes strict requirements upon observing systems, in particular regarding measurement accuracy and long-term stability. Currently available data records of the essential climate variables (temperature-T, geopotential-p, humidity-RH, wind, and cloud properties) in the upper-air generally fail to fulfill such requirements. This raises serious issues about the ability to detect, quantify and understand recent climate changes and their causes. GCOS is currently implementing a Reference Upper-Air Network (GRUAN) in order to fill this major void within the global observing system. As part of the GRUAN implementation plan we provide herein fundamental guidelines for establishing and maintaining reference quality atmospheric observations which are based on principal concepts of metrology, in particular traceability. It is argued that the detailed analysis of the uncertainty budget of a measurement technique is the critical step for achieving this goal. As we will demonstrate with an example, detailed knowledge of the calibration procedures and data processing algorithms are required for determining the uncertainty of each individual data point. Of particular importance is the careful assessment of the uncertainties introduced by correction schemes adjusting for systematic effects.

  14. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  15. Projection moire interferometry measurements of micro air vehicle wings

    NASA Astrophysics Data System (ADS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-11-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat's wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  16. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  17. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  18. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    ERIC Educational Resources Information Center

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  19. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  20. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  1. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  2. Measuring important parameters for air-sea heat exchange

    NASA Astrophysics Data System (ADS)

    Garbe, Christoph; Schimpf, Uwe; Jaehne, Bernd

    2002-03-01

    The heat transfer between the ocean and the atmosphere is one of the most important parameters governing the global climate. Important parameters include the heat transfer velocity and the net heat flux as well as parameters of the underlying transport model. However, the net heat flux is hard to measure since processes take place in the thermal boundary layer, that is the topmost layer of the ocean less than 1 mm thick. Current techniques rely on three independent measurements of the constituent fluxes, the sensible heat flux, latent heat flux and radiative flux. They depend on indirect measurements of meteorological parameters and rely on a combination of data from different sensors using a number of heuristic assumptions. High relative errors and the need for long temporal averaging reduce the practicability of these techniques. In this paper a novel technique is presented that circumvents these drawbacks by directly measuring the net heat flux across the air-water interface with a single low-NETD infrared camera. A newly developed digital image processing technique allows to simultaneously estimating the surface velocity field and parameters of the temporal temperature change. In particular, this technique allows estimating the total derivative of the temperature with respect to time from a sequence of infrared images, together with error bounds on the estimates. This derivative can be used to compute the heat flux density and the heat transfer velocity, as well as the probability density function of the underlying surface renewal model. It is also possible to estimate the bulk-skin temperature difference given rise to by the net heat flux. Our technique has been successfully used in both laboratory measurements in the Heidelberg Aeolotron, as well as in field measurements in the equatorial pacific during the NOAA GasExII experiment this spring. The data show that heat flux measurements to an accuracy of better than 5% on a time scale of seconds are feasible.

  3. Air quality performed with satellite measurement within the QUITSAT project

    NASA Astrophysics Data System (ADS)

    Masieri, Samuele; Petritoli, Andrea; Premuda, Margarita; Kostadinov, Ivan; Bortoli, Daniele; Ravegnani, Fabrizio; Giovanelli, Giorgio

    Ground pollutants monitoring, using satellite observation, represents an interesting and high potential approach to air quality that could be inserted into Global monitoring systems. The QUITSAT Italian pilot project (air QUality with Integration of ground based and SAtellite measurements and chemical Transport and multiphase model), funded by the Italian Space Agency (ASI), proposes a new approach producing some interesting results in this frame. The approach focuses in the integration of the satellite observations (ENVISAT/SCIAMACHY and AURA/OMI) with the outputs of the GAMES (Gas Aerosol Modelling Evaluation System) chemical transport model, to provide the evaluation of the tropospheric profiles of some atmo-spheric compounds such as NO2 , O3 , HCHO and SO2 . This activity appears to be very useful to retrieve the surface concentration of trace gases from tropospheric columns of atmospheric compounds obtained with satellite instrumentation. The comparison with the in situ analyzer network over the Po' Valley shows a good correlation between the two data set. The corre-spondence can be improved taking into account also concentration gradients between different stations, classifying the ground base stations according to their rural or urban characteristics and considering the general orography of the ground. Results and methodology are presented and discussed.

  4. Indoor air quality measurements in 38 Pacific Northwest commercial buildings

    SciTech Connect

    Turk, B.H.; Brown, J.T.; Geisling-Sobotka, K.; Froehlich, D.A.; Grimsrud, D.T.; Harrison, J.; Revzan, K.L.

    1986-06-01

    A Bonneville Power Administration-funded study monitored ventilation rates and a variety of indoor air pollutants in 38 Pacific Northwest commercial buildings. The buildings ranged in age from 6 months to 90 years, in size from 864 to 34,280 m/sup 2/, and occupancy from 25 to 2500 people. Building average formaldehyde (HCHO) concentrations were below the 20 ppB detection limit in 48% of the buildings. Nitrogen dioxide (NO/sub 2/) concentration averages ranged from 5 ppB to 43 ppB and were lower than outdoor concentrations in 8 of 13 buildings. At only one site, an elementary school classroom, did carbon dioxide (CO/sub 2/) exceed 1000 ppM. Radon (Rn) levels were elevated in one building with an average concentration of 7.4 pCiL/sup -1/. Respirable particles (RSP) concentrations in smoking areas in 32 buildings had a geometric mean of 44 ..mu..g m/sup -3/ and ranged up to 308 ..mu..g m/sup -3/ at one site. In non-smoking areas the geometric mean RSP was 15 ..mu..g m/sup -3/. Outside air ventilation rates did not appear to be the single dominant parameter in determining indoor pollutant concentrations. Measured pollutant concentrations in 2 ''complaint'' buildings were below accepted guidelines. The cause of the complaints was not identified.

  5. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  6. Methodology to apportion ambient air measurements to investigate potential effects on air quality near waste incinerators

    SciTech Connect

    Mukerjee, S.; Fox, D.L.; Stevens, R.K.; Shy, C.M.; Vescio, N.

    1993-01-01

    Ambient air samples at four sites located near two incinerators (a biomedical waste and a municipal incinerator) in the vicinity of Charlotte, North Carolina were acquired as part of a health effects study that is examining potential, short-term, lung dysfunctions associated with incinerator and other source emissions. Ambient monitoring was performed for one month intervals at a treatment and control community site for each of the two incinerator locations. Twelve-hour ambient samples were acquired by means of a Versatile Air Pollution Sampler (VAPS) which enabled sampling for fine (< 2.5 micrometers) and coarse (2.5 - 10 micrometers) particulate matter, acid-gases by diffusion sampling and fine carbon sampling on quartz filters. X-ray Fluorescence Spectroscopy (XRF) was used on the coarse and fine particulate filters to measure metals while Ion Chromatography (IC) analyzed acid gases. The Chemical Mass Balance Receptor Model (CMB) was then used on the average ambient data from each wind vector to apportion the contribution of ambient pollutants which were attributable to the sources of interest from a given wind direction.

  7. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  8. Species measurements in a hypersonic, hydrogen-air, combustion wake

    SciTech Connect

    Skinner, K.A.; Stalker, R.J.

    1996-09-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  9. Measurement of total reduced sulfur compounds in ambient air

    SciTech Connect

    McQuaker, N.R.; Rajala, G.E.; Pengilly, D.

    1986-05-01

    Methods for the determination of total reduced sulfur (TRS) compounds in the ambient air based on coulometric detection (Philips Model PW 9700 analyzer) and thermal oxidation followed by detection using pulsed fluorescence (Teco Model 43 analyzer) have been evaluated. Analytical response factors, relative to H/sub 2/S, were determined for both the individual TRS compounds and compounds such as terpenes and carbonyl sulfide that may be a potential source of interference. The results for COS and terpenes indicate that in a typical monitoring situation normally encountered concentrations of these compounds are not expected to cause significant measurement bias. The results for the individual TRS compounds indicate that while variations in TRS composition are not a factor in assessing measurement bias for the thermal oxidation/pulsed fluorescence method, they are a factor for the Philips coulometric method; i.e., increasing positive measurement bias maybe introduced as the TRS composition shifts toward relatively less H/sub 2/S. Philips-Teco comparison data collected at a single site in the vicinity of three operating kraft pupil mills are compatible with these expectations. 8 references, 1 figure, 3 tables.

  10. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  11. Calculated photon KERMA factors based on the LLNL EGDL (Evaluated Gamma-Ray Data Library) data file

    SciTech Connect

    Howerton, R.J.

    1986-10-10

    Photon (Gamma-Ray) KERMA factors calculated from the LLNL EGDL (Evaluated Gamma-Ray Data Library) file are tabulated for the elements from Z=1 to Z=30 and for 15 composite materials. The KERMA factors are presented for 191 energy groups over the incident photon energy range from 100 eV to 100 MeV. 3 refs.

  12. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  13. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  14. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Harrison, W.H.; Rubin, L.A.

    1992-05-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low- pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) {open_quotes}Cableless{close_quotes} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  15. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  16. Measurements and analysis of air quality in Islamabad, Pakistan

    NASA Astrophysics Data System (ADS)

    Rasheed, Anjum; Aneja, Viney P.; Aiyyer, Anantha; Rafique, Uzaira

    2014-06-01

    Ambient air quality of Islamabad, Pakistan, reveals that annual average mass concentration of particulate matter (PM2.5) (˜45 to ˜95 µg m-3) and nitric oxide (NO) (˜41 to ˜120 µg m-3) exceeds the Pakistan's National Environmental Quality Standards (NEQS). The annual ozone (O3) concentration is within the permissible limits; however, some of the hourly concentration exceeds the NEQS mostly during the summer months. Correlation studies suggest that carbon monoxide (CO) has a significant (p-value ≤ 0.01) positive correlation with NO and NOy'; whereas, with O3, a significant (p-value ≤ 0.01) negative correlation is observed. The regression analysis estimates the background CO concentration to be ˜300 to ˜600 ppbv in Islamabad. The higher ratio of CO/NO (˜10) suggests that mobile sources are the major contributor to NO concentration. On the other hand, the ratio analysis of sulfur dioxide (SO2)/NO for Islamabad (˜0.011) indicates that the point sources are contributing to SO2 in the city. NO and SO2 correlation indicates contribution of direct sulfur emission sources. Ratios of [CO] to [NO] and [SO2] to [NO], based on ambient air quality measurements, provide a test for emission inventories. The ratios of these pollutants in the available Islamabad emission inventories are consistent with ambient values for these pollutants. The correlation of PM2.5 and NO suggests that a fraction of secondary PM2.5 is produced by chemical conversion of NO into nitrates. The regional background O3 concentration for Islamabad has been determined to be ˜31 ppbv. This study suggests that there is an increase in O3 concentration with increases in photochemical conversion of NO to reservoir NOy' species.

  17. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  18. Mobile system for on-road measurements of air pollutants

    NASA Astrophysics Data System (ADS)

    Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar

    2010-04-01

    The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.

  19. Air shower arrival directions measured at Buckland Park

    NASA Technical Reports Server (NTRS)

    Gerhardy, P. R.; Prescott, J. R.; Protheroe, R. J.; Clay, R. W.; Patterson, J. R.; Gregory, A. G.

    1985-01-01

    The Buckland Park air shower array was operated for 3 years from 1979 to 1981 particularly for the study of anisotropies in the region of the knee of the size spectrum. The array which has been described in detail elsewhere was situated at a latitude of 35 S and had an effective size threshold of approx 3 x 10 to the 5th power particles (approx 3 x 10 to the 15th power Ev for vertical showers). A number of results from this experiment have already been published including anisotropy analyses (Gerhardy and Clay, 1983) and searches for very high energy gamma ray sources. The final distribution of measured shower arrival directions are presented here. These 1.3 x 10 to the 5th power events were selected as indicated in detail in Gerhardy and Clay (1983) and were essentially those events with well measured arrival directions. They are the same data set used in the above reference but no complete sky map has previously been presented.

  20. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  1. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  2. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  3. MEASUREMENT OF HYDROPEROXIDES DURING THE TEXAS 2000 AIR QUALITY STUDY.

    SciTech Connect

    ZHENG,J.; ALAOUIE,A.; WEINSTEIN-LLOYD,J.B.; SPRINGSTON,S.R.; NUNNERMACKER,L.J.; LEE,Y.N.; BRECHTEL,F.; KLEINMAN,L.; DAUM,P.

    2002-01-17

    Hydroperoxides are important atmospheric oxidants. They are responsible for most of the oxidation of aqueous-phase SO{sub 2} to sulfate in the northeastern United States, resulting in the formation of acid precipitation and visibility-reducing sulfate aerosol (Penkett et al., 1979; Lind et al., 1987; Madronich and Calvert, 1990; Tanner and Schorran, 1995). Atmospheric hydrogen peroxide (H{sub 2}O{sub 2} or HP) is produced by the self-reaction of hydroperoxyl radicals (HO{sub 2}); higher organic peroxides are produced by reaction of HO{sub 2} with alkylperoxyl radicals (RO{sub 2}). Peroxyl radicals, along with OH, are chain carriers in the complex photochemical process that produces tropospheric ozone. Thus, concentrations of peroxides and their free radical precursors depend on solar intensity and ambient concentrations of water vapor, ozone, NO{sub x} (NO + NO{sub 2}), and VOCs (volatile organic compounds). Several investigators have demonstrated that HP and hydroxymethyl hydroperoxide (HOCH2 OOH or HMHP) also may be formed when ozone reacts with alkenes in moist air (Becker et al., 1990; Hewitt and Kok, 1991; Gaeb et al., 1995). Peroxides are the expected sink for peroxyl radicals when concentrations of NO are low. Otherwise, these radicals react with NO to form NO{sub 2}. Under high NO{sub x} conditions, NO{sub z} (oxidation products of NO and NO{sub 2}) becomes the principal radical sink. Therefore, formation rates of peroxides relative to NO{sub z} provide information about the history of an air mass and the expected sensitivity of ozone production to reduced emissions (Kleinman et al., 1997; Sillman, 1995; 1997). Through photolysis and reaction with OH, peroxides also act as a radical source; thus, reliable peroxide measurements are necessary for calculating ozone production rates. In this paper, we will summarize peroxide observations at the Williams Tower, and aboard the U.S. Department of Energy G-1 research aircraft in Houston, TX, during August and

  4. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  5. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  6. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  7. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    ERIC Educational Resources Information Center

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  8. Elucidating inequality in Nubia: an examination of entheseal changes at Kerma (Sudan).

    PubMed

    Schrader, Sarah A

    2015-02-01

    Located 10 km south of the Third Cataract of the Nile River, the ancient city of Kerma was once capital to the second largest state in Africa. The Eastern Cemetery at Kerma (∼4 km east of city center) encompasses 80+ hectares and was used over a period of 1,500 years (3,200-1,500 BC). Excavated in the early 20th century by George Reisner, the cemetery contained an estimated 20,000-40,000 individuals. Reisner classified these burials into multiple categories, including chiefs and human sacrifices, based on burial position and grave goods. This study investigates the skeletal embodiment of social inequality by examining variation in entheseal severity between the Kerma burial classifications. Seventeen entheses were examined using the Hawkey and Merbs (1995) scoring method (n = 205 individuals); age, sex, and body size variables were considered by employing Mann-Whitney U tests and partial Spearman's correlations. This analysis suggests that significant differences in entheseal changes existed between select burial types. Specifically, "corridor sacrifices" had significantly higher rates of entheseal changes while "chiefs" and "subsidiary burials" had similar entheseal changes; furthermore, within these burial categories, males had higher entheseal scores despite body size controls. The elevated entheseal changes in the sacrificial burials may be due to an intensive agro-pastoral lifestyle or other demanding forms of manual labor. In conclusion, the disparity of entheseal markers between burial subgroups at Kerma might reflect a degree of social inequality within this state level society. This bioarchaeological research informs our understanding of socially-defined categories of persons as well as everyday life in Ancient Kerma. PMID:25327628

  9. A comparison between objective and subjective image quality measurements for a full field digital mammography system.

    PubMed

    Marshall, N W

    2006-05-21

    This paper presents pre-sampling modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) results for an amorphous selenium (a-Se) full field digital mammography system. MTF was calculated from the image of an angled 0.5 mm thick Cu edge, acquired without additional beam filtration. NNPS data were acquired at detector air-kerma levels ranging from 9.1 microGy to 331 microGy, using a standard mammography x-ray spectrum of 28 kV, Mo/Mo target/filter combination and 4 cm of PMMA additional filtration. Prior to NNPS estimation, the image statistics were assessed using a variance image. This method was able to easily identify a detector artefact and should prove useful in routine quality assurance (QA) measurements. Detector DQE, calculated from the NNPS and MTF data, dropped to 0.3 for low detector air-kerma settings but reached an approximately constant value of 0.6 above 50 microGy at the detector. Subjective image quality data were also obtained at these detector air-kerma settings using the CDMAM contrast-detail (c-d) test object. The c-d data reflected the trend seen in DQE, with threshold contrast increasing at low detector air-kerma values. The c-d data were then compared against predictions made using two established models, the Rose model and a standard signal detection theory model. Using DQE(0), the Rose model gave results within approximately 15% on average for all the detector air-kerma values studied and for detail diameters down to 0.2 mm. Similar agreement was also found between the measured c-d data and the signal detection theory results, which were calculated using an ideal human visual response function and a system magnification of unity. The use of full spatial frequency DQE improved the agreement between the calculated and observer results for detail sizes below 0.13 mm. PMID:16675862

  10. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  11. Poster — Thur Eve — 20: CTDI Measurements using a Radiochromic Film-based clinical protocol

    SciTech Connect

    Quintero, C.; Bekerat, H.; DeBlois, F.; Tomic, N.; Devic, S.; Seuntjens, J.

    2014-08-15

    The purpose of the study was evaluating accuracy and reproducibility of a radiochromic film-based protocol to measure computer tomography dose index (CTDI) as a part of annual QA on CT scanners and kV-CBCT systems attached to linear accelerators. Energy dependence of Gafchromic XR-QA2 ® film model was tested over imaging beam qualities (50 – 140 kVp). Film pieces were irradiated in air to known values of air-kerma (up to 10 cGy). Calibration curves for each beam quality were created (Film reflectance change Vs. Air-kerma in air). Film responses for same air-kerma values were compared. Film strips were placed into holes of a CTDI phantom and irradiated for several clinical scanning protocols. Film reflectance change was converted into dose to water and used to calculate CTDIvol values. Measured and tabulated CTDIvol values were compared. Average variations of ±5.2% in the mean film reflectance change were observed in the energy range of 80 to 140 keV, and 11.1% between 50 and 140 keV. Measured CTDI values were in average 10% lower than tabulated CTDI values for CT-simulators, and 44% higher for CBCT systems. Results presented a mean variation for the same machine and protocol of 2.6%. Variation of film response is within ±5% resulting in ±15% systematic error in dose estimation if a single calibration curve is used. Relatively large discrepancy between measured and tabulated CTDI values strongly support the trend towards replacing CTDI value with equilibrium dose measurement in the center of cylindrical phantom, as suggested by TG- 111.

  12. Estimation of uncertainty in tracer gas measurement of air change rates.

    PubMed

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of <33%. Using this method, overestimation of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements. PMID:21318005

  13. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  14. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  15. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  16. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  17. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.

    PubMed

    Mayser, Matthias J; Bohn, Holger F; Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m(2) depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  18. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  19. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  20. MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS - 1993

    EPA Science Inventory

    A joint conference cosponsored for the eighth year by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 3-7, 1993. he four day technica...

  1. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  2. Jena Reference Air Set (JRAS): a multi-point scale anchor for isotope measurements of CO2 in air

    NASA Astrophysics Data System (ADS)

    Wendeberg, M.; Richter, J. M.; Rothe, M.; Brand, W. A.

    2013-03-01

    The need for a unifying scale anchor for isotopes of CO2 in air was brought to light at the 11th WMO/IAEA Meeting of Experts on Carbon Dioxide in Tokyo 2001. During discussions about persistent discrepancies in isotope measurements between the worlds leading laboratories, it was concluded that a unifying scale anchor for Vienna Pee Dee Belemnite (VPDB) of CO2 in air was desperately needed. Ten years later, at the 2011 Meeting of Experts on Carbon Dioxide in Wellington, it was recommended that the Jena Reference Air Set (JRAS) become the official scale anchor for isotope measurements of CO2 in air (Brailsford, 2012). The source of CO2 used for JRAS is two calcites. After releasing CO2 by reaction with phosphoric acid, the gases are mixed into CO2-free air. This procedure ensures both isotopic stability and longevity of the CO2. That the reference CO2 is generated from calcites and supplied as an air mixture is unique to JRAS. This is made to ensure that any measurement bias arising from the extraction procedure is eliminated. As every laboratory has its own procedure for extracting the CO2, this is of paramount importance if the local scales are to be unified with a common anchor. For a period of four years, JRAS has been evaluated through the IMECC1 program, which made it possible to distribute sets of JRAS gases to 13 laboratories worldwide. A summary of data from the six laboratories that have reported the full set of results is given here along with a description of the production and maintenance of the JRAS scale anchors. 1 IMECC refers to the EU project "Infrastructure for Measurements of the European Carbon Cycle" (http://imecc.ipsl.jussieu.fr/).

  3. Calculated neutron KERMA factors based on the LLNL ENDL data file. Volume 27

    SciTech Connect

    Howerton, R.J.

    1986-01-01

    Neutron KERMA factors calculated from the LLNL ENDL data file are tabulated for 15 composite materials and for the isotopes or elements in the ENDL file from Z = 1 to Z = 29. The incident neutron energies range from 1.882 x 10/sup -5/ to 20. MeV for the composite materials and from 1.30 x 10/sup -9/ to 20. MeV for the isotopes and elements.

  4. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  5. Assessing Climate Impacts on Air Pollution from Models and Measurements

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  6. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  7. Spatial and temporal variability of SWIR air glow measurements

    NASA Astrophysics Data System (ADS)

    Dayton, David; Allen, Jeff; Gonglewski, John; Myers, Mike; Fertig, Gregory; Nolasco, Rudy; Maia, Francisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band between 0.9 and 1.7 μm wave length. This has been demonstrated as an effective illumination source for night time imaging applications. It addition it has been shown that observation of the spatial and temporal variations of the illumination can be used to characterize atmospheric tidal wave actions in the air glow region. These spatiotemporal variations manifest themselves as traveling wave patterns whose period and velocity are related to the wind velocity at 85 km as well as the turbulence induced by atmospheric vertical instabilities. We are interested in studying these phenomena for a variety of reasons. First they can give an insight into upper atmospheric physics, second we would like to understand the variations in order to determine if air glow can be used as a reliable illumination source for night time terrestrial imaging. To that end we have been collecting data on ground irradiance from air glow over the past six months at a site on the island of Kauai. The purpose of this paper is to discuss some initial analysis of this data.

  8. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  9. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  10. Wind estimation using air data probe measurements to evaluate meteorological measurements made during Space Shuttle entries

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Findlay, J. T.; Compton, H. R.

    1982-01-01

    Deterministic and weighted least squares methods for obtaining estimates of the horizontal winds encountered during the Shuttle entry phase are described. The estimates are based on in situ Air Data System (ADS) measurements of angle-of-attack, side-slip angle and true airspeed, in conjunction with inertial trajectory parameters obtained from the post flight trajectory reconstruction. Accuracies in the wind estimates obtained from each method are assessed using both theoretical arguments and flight results. Comparisons of derived winds with meteorological measurements taken during the first three Shuttle entries have demonstrated: (1) the usefulness of the wind estimators for evaluating meteorological measurements below 50 kft, and (2) the potential for adequate wind determinations in the absence of independent wind measurements. Comparisons of STS-3 flight-derived L/D versus predicted values from the LaRC aerodynamic data base are presented from 50 kft to touchdown. These results exemplify the importance of such determinations to enhance the ongoing Shuttle aerodynamic and aerothermodynamic research.

  11. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly. PMID:23636622

  12. Measure Guideline. Air Sealing Mechanical Closets in Slab-on-Grade Homes

    SciTech Connect

    Dickson, Bruce

    2012-02-01

    This measure guideline describes two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  13. Measure Guideline: Air Sealing Mechanical Closets in Slab-On-Grade Homes

    SciTech Connect

    Dickson, B.

    2012-02-01

    This measure guideline describes covers two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  14. Measurement of creepage distance and air clearance: differences between different professionals

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, Aline; Takachi Moriya, Henrique; Cortez, Tiago; Moraes, José Carlos T. B.

    2016-07-01

    The standard IEC/ISO 60601-1:2005 specifies general requirements for measuring creepage distance and air clearance for medical electrical equipment. Four experienced professionals were asked to measure creepage distances and air clearance in three different segments of an acrylic body of proof. The results were compared and the found differences were discussed in order to discover the misinterpretations of the standard requirements. After a final consensus between the professionals, the distances were measured again to obtain the final results.

  15. ANALYSIS OF MEASUREMENT UNCERTAINTIES IN THE NULLING TEST FOR AIR LEAKAGE FROM RESIDENTIAL DUCTS.

    SciTech Connect

    ANDREWS,J.W.

    2001-04-01

    An analysis of measurement uncertainties in a recently proposed method of measuring air leakage in residential duct systems has been carried out. The uncertainties in supply and return leakage rates are expressed in terms of the value of the envelope leakage flow coefficient and the uncertainties in measured pressures and air flow rates. Results of the analysis are compared with data published by two research groups.

  16. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of full-scale value of the measurement device for all modes except the idle mode. For the idle mode, the measurement accuracy must be ±five percent or less of the full-scale value. The...

  17. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  18. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  19. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  20. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  1. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  2. PROCEEDINGS OF THE 1992 EPA/AWMA INTERNATIONAL SYMPOSIUM MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS

    EPA Science Inventory

    The 1992 USEPA/AWMA International Symposium Measurement of Toxic and Related Air Pollutants was held in Durham, NC on May 4-9, 1992. his yearly symposium is sponsored by the Atmospheric Research and Exposure Assessment Laboratory and the Air & Waste Management Association. he tec...

  3. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  4. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  5. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  6. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  7. Measurement-While-Drilling (MWD) development for air drilling

    SciTech Connect

    Harrison, W.A.; Rubin, L.A.

    1993-12-31

    When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

  8. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  9. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  10. On the measurement of stationary electric fields in air

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  11. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  12. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  13. Measurement of air refractive index based on surface plasmon resonance and phase detection.

    PubMed

    Chen, Qianghua; Luo, Huifu; Wang, Sumei; Wang, Feng

    2012-07-15

    A method for refractive index of air measurement is presented based on surface plasmon resonance (SPR) and phase detection using a dual-frequency laser interferometer. Theoretical analyses indicate that the phase-difference variation of the measurement signal versus the reference signal is linear with refractive index of air (RIA) fluctuation, and the calculation formula of RIA is derived. The structure design of the self-adaptive SPR sensor greatly reduces the measurement error resulting from the incident angle shift and improves the sensitivity. The experiments show that measurement uncertainty of 10(-6) order has been achieved when phase detection precision is 0.1°. The phenomenon of sudden phase variation during air pumping and air filling, which is caused by temperature fluctuation, is discussed. PMID:22825177

  14. HP-25 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The report should be useful to persons concerned with Air Pollution Measurement Studies of Stationary Industrial Sources. It gives detailed descriptions of 22 separate programs, written specifically for the Hewlett Packard Model HP-25 manually programmable pocket calculator. Each...

  15. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  16. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  17. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  18. Time-of-Flight Measurement of Sound Speed in Air

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    This paper describes a set of simple experiments with a very low cost using a notebook as a measuring instrument without external hardware. The major purpose is to provide demonstration experiments for schools with very low budgets. (Contains 6 figures.)

  19. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating range during the test. Overall measurement accuracy must be ±2 percent of full-scale value of the... percent or less of the full-scale value. The Administrator must be advised of the method used prior...

  20. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  1. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  2. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  3. Module for measurement of CO2 concentration in exhaled air

    NASA Astrophysics Data System (ADS)

    Puton, Jaroslaw; Palko, Tadeusz; Knap, Andrzej; Jasek, Krzysztof; Siodlowski, Boguslaw

    2003-09-01

    The objective of this work consists in working out of a detection module for capnography (carbon dioxide concentration measurement in anaesthesiology and intensive care). The principle of operation of the module consists of the NDIR method. The basic assumption for construction of this model was using of directly modulated thermal IR source in it. A few models of IR sources were worked out. Their heaters were made from thick platinum layers and foil. Limits of modulation frequency for IR sources were greater than 30 Hz. The detection module consists of an optical part, analogue electronics and microprocessor system with a suitable program. The time dependent concentration of CO2, end tidal concentration of CO2, mean concentration of N2O and breath frequency are output values of the detection module. Measurements are executed 30 times per second. The accuracy of CO2 concentration measurement equals to 5%.

  4. Hydrogen cyanide in ambient air near a gold heap leach field: Measured vs. modeled concentrations

    NASA Astrophysics Data System (ADS)

    Orloff, Kenneth G.; Kaplan, Brian; Kowalski, Peter

    To extract gold from low-grade ores, a solution of sodium cyanide is trickled over pads of crushed ore. During this operation, small quantities of hydrogen cyanide gas may escape to the ambient air. To assess these emissions, we collected air samples at monitoring stations located on opposite sides of a gold heap leach field at distances ranging from 1100 to 1500 ft from the center of the field. Hydrogen cyanide was detected in 6 of 18 ambient air samples at concentrations ranging from 0.26 to 1.86 parts per billion (ppb). Ambient air samples collected at residential properties located within 2600 ft of the leach field did not contain detectable concentrations of cyanide (detection level of 0.2 ppb). We used site-specific data and two steady-state air dispersion models, ISCST3 and AERMOD, to predict ambient air concentrations of cyanide at the sampling points. The ISCST3 model over-predicted the measured 8-h concentrations of hydrogen cyanide by a factor of 2.4, on average, and the AERMOD model under-predicted the air concentrations of hydrogen cyanide by a factor of 0.76, on average. The major sources of uncertainty in the model predictions were the complex terrain of the area and the uncertainty in the emission rates of cyanide from the leach field. The measured and predicted concentrations of cyanide in the air samples were not at levels that would pose a human health hazard for acute or chronic exposures.

  5. Thickness and air voids measurement on asphalt concrete pavements using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Dhakal, Sharad Raj

    Layer thickness and air voids are important parameters in quality assurance of newly paved hot mix asphalt (HMA) pavements. A non-destructive testing (NDT) technique was used to collect layer thickness information. The thicknesses estimated by the technique were compared with core thicknesses. Ground penetrating radar (GPR) system with air coupled antennas was used for on-site pavement data collection. Two application softwares - RADAN and ROAD DOCTOR - were used to process the field data for estimating layer thicknesses and air voids along the scanned pavements. 150 mm diameter cores taken from random locations on the pavements were tested in the laboratory to determine layer thickness and air voids. Statistical analyses were conducted to compare thicknesses and generate a regression equation relating air voids and dielectric constant of the pavement material. No significant differences were found between thickness estimates from RADAN and ROAD DOCTOR softwares when compared to the core measurements. However, RADAN and ROAD DOCTOR results are marginally significantly different from each other. ROAD DOCTOR software was used to generate air voids for the pavements scanned. Laboratory results from cores were utilized to determine calibration factors for the air voids -- dielectric equation. A relationship between air voids and dielectric constant is presented. It is concluded that GPR system with air coupled antennas used alongside a reduced core testing has a potential for quality control of newly paved hot mixed asphalt pavements.

  6. Determination of needed parameters for measuring temperature fields in air by thermography

    NASA Astrophysics Data System (ADS)

    Pešek, Martin; Pavelek, Milan

    2012-04-01

    The aim of this article is the parameters determination of equipment for measuring temperature fields in air using an infrared camera. This method is based on the visualization of temperature fields in an auxiliary material, which is inserted into the non-isothermal air flow. The accuracy of air temperature measurement (or of surface temperature of supplies) by this method depends especially on (except for parameters of infrared camera) the determination of the static and the dynamic qualities of auxiliary material. The emissivity of support material is the static quality and the dynamic quality is time constant. Support materials with a high emissivity and a low time constant are suitable for the measurement. The high value of emissivity results in a higher measurement sensitivity and the radiation temperature independence. In this article the emissivity of examined kinds of auxiliary materials (papers and textiles) is determined by temperature measuring of heated samples by a calibrated thermocouple and by thermography, with the emissivity setting on the camera to 1 and with the homogeneous radiation temperature. Time constants are determined by a step change of air temperature in the surrounding of auxiliary material. The time constant depends mainly on heat transfer by the convection from the air into the auxiliary material. That is why the effect of air temperature is examined in this article (or a temperature difference towards the environmental temperature) and the flow velocity on the time constant with various types of auxiliary materials. The obtained results allow to define the conditions for using the method of measurement of temperature fields in air during various heating and air conditioning applications.

  7. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  8. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  9. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  10. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  11. Mid-stratospheric measurements of CO2, CH4, and CO using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Newberger, T.; Sweeney, C.; Andrews, A. E.; Tans, P. P.

    2011-12-01

    AirCore, a long tube descending from a high altitude with one end open and the other closed, has been demonstrated to be a reliable, cost-effective sampling system for CO2 and CH4 measurements. Previous studies show that vertical profiles from the ground level up to ~ 20 km (~ 40 mbar) can be achieved during a balloon flight. The ceiling of the profile is restricted mainly by the diffusion of air in the AirCore and the resolution of the analyzer used for the analysis. Here air with an extremely high CO mixing ratio (~ 10 ppm) has been employed as the initial fill air in the AirCore. This high CO fill gas is used as a label to track the mixing between sampled air and fill air at the top of the profile thus providing the ability to retrieve full profiles for CO2 and CH4 up to the balloon's ceiling height of ~ 30 km (~ 11 mbar). Stratospheric measurements of CO lack agreement among previous studies, (i.e. cryogenic sampling, in-situ measurements, and remote sensing) due to difficulties that are inherent to the various techniques and possibly due to latitudinal and seasonal variations that could not be represented by the available sparse observations. Efforts to collect an accurate profile of stratospheric CO using the AirCore, are complicated by the reaction of CO and O3 in the coil, which is particular important for stratospheric air with high O3. To remove the influence of O3 on the CO measurements from AirCore, we have investigated three O3 scrubbers: 1) Manganese dioxide (MnO2); 2) Sodium Sulfite (Na2SO3); 3) Sodium thiosulfate (Na2S2O3). Laboratory tests reveal that Sodium thiosulfate is the best choice as it has sufficient capacity to absorb O3 and does not impact measurements of CO2 and CH4. We will show experimental results from both aircraft and balloon flights. Regular ongoing stratospheric profiles of CO2, CH4, and CO are necessary to improve and validate total column measurements by remote sensing techniques, such as FTS and satellite. Such measurements

  12. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  13. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  14. Quality control measurements for digital x-ray detectors.

    PubMed

    Marshall, N W; Mackenzie, A; Honey, I D

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and

  15. Quality control measurements for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Mackenzie, A.; Honey, I. D.

    2011-02-01

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm-1 ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10-5 mm2 (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm-1, with a maximum cov of 10% at 2.9 mm-1, while the average DQE was 0.56 at 0.5 mm-1 for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in

  16. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  17. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  18. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  19. Measurements of air pollution emission factors for marine transportation

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Balzani Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Pintér Csordás, A.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2012-12-01

    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The intercept of the regression line, 0.5 × 1016 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  20. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  1. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  2. Evaluation of Air Capture Ratio of Scramjet Inlet by Multi-Point Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Mitani, Tohru; Sakuranaka, Noboru; Izumikawa, Muneo; Watanabe, Syuichi; Masuya, Goro

    A method to evaluate aerodynamic performances of scramjet engines by using multi-probe rakes was proposed. The aerodynamic tests were carried out under Mach 4 flight conditions. The Pitot and static pressures were measured at 250 points in the cross sectional area of the engine exit by the rakes. Local mass flux and thrust function were evaluated from the pressure measurement at each point and integrations of these values enabled to obtain the mass flow rate and the stream thrust at the engine exit. The air capture ratios were independently measured by the rakes and a conventional choked flowmeter. The air capture ratios measured by these two methods agreed within 2%. It was found that the rakes enabled to measure the air capture ratio more simply than the flowmeter. Additionally, the effect of boundary layer ingestion to an internal drag was investigated by the rakes. The decrease of air capture ratio measured by the rakes showed that the ingested boundary layers were separated in the inlet. The pressure drag of inlet increased by the separation and the pressure thrust decreased by the decrease of air capture ratio. As a result, the internal drag increased when the forebody boundary layer was ingested.

  3. Roadside air quality and implications for control measures: A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ai, Z. T.; Mak, C. M.; Lee, H. C.

    2016-07-01

    Traffic related air pollution is one of major environmental issues in densely populated urban areas including Hong Kong. A series of control measures has been implemented by Hong Kong government to cut traffic related air pollutants, including retrofitting the Euro II and Euro III buses with selective catalytic reduction (SCR) devices to lower nitrogen dioxide (NO2) emissions. In order to reveal the real-life roadside air quality and evaluate the effectiveness of the control measures, this study first analyzed the recent six-year data regarding concentrations of pollutants typically associated with traffic recorded in two governmental roadside monitoring stations and second conducted on-site measurements of concentration of pollutants at pedestrian level near five selected roads. Given that there is a possibility of ammonia leakage as a secondary pollutant from SCR devices, a special attention was paid to the measurements of ammonia level in bus stations and along roadsides. Important influencing factors, such as traffic intensity, street configuration and season, were analyzed. Control measures implemented by the government are effective to decrease the traffic emissions. In 2014, only NO2 cannot achieve the annual air quality objective of Hong Kong. However, it is important to find that particulate matters, rather than NO2, post potentially a short-term exposure risk to passengers and pedestrians. Based on the findings of this study, specific control measures are suggested, which are intended to further improve the roadside air quality.

  4. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests.

    PubMed

    Cederwall, R T; Ricker, Y E; Cederwall, P L; Homan, D N; Anspaugh, L R

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches. PMID:2211113

  5. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests

    SciTech Connect

    Cederwall, R.T.; Ricker, Y.E.; Cederwall, P.L.; Homan, D.N.; Anspaugh, L.R. )

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches.

  6. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    A method for making density measurements in a compressible flow by using off resonance laser induced fluorescence is studied. The seed molecule chosen for study is the iodine molecule which is excited with the 514.5 nm line of the argon ion laser whose output is frequency tuned, by as much as 3 GHz, relative to a strong iodine transition using an intracavity etalon. The theory which was developed to analyze the effect will be used in conjunction with two experiments being conducted to further study the method an acoustic resonance tube in which controlled perturbations about a uniform state are produced, and a small supersonic jet in which the conditions of the flow vary widely from point to point.

  7. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  8. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ

    NASA Astrophysics Data System (ADS)

    Olson, Mira Stone; Tillman, Fred D.; Choi, Jee-Won; Smith, James A.

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10 -14 to 10 -9 m 2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3×10 -13 m 2 from land surface to a 0.6-m depth and 3.8×10 -10 m 2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2×10 -9 to 1.5×10 -9 m 2, and ranged from 3.6×10 -9 to 6.8×10 -9 m 2 in the lower layer, assuming an upper cap permeability of 6.0×10 -14 m 2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3×10 -14 m 2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit was achieved

  9. Measurement of absolute regional lung air volumes from near-field x-ray speckles.

    PubMed

    Leong, Andrew F T; Paganin, David M; Hooper, Stuart B; Siew, Melissa L; Kitchen, Marcus J

    2013-11-18

    Propagation-based phase contrast x-ray (PBX) imaging yields high contrast images of the lung where airways that overlap in projection coherently scatter the x-rays, giving rise to a speckled intensity due to interference effects. Our previous works have shown that total and regional changes in lung air volumes can be accurately measured from two-dimensional (2D) absorption or phase contrast images when the subject is immersed in a water-filled container. In this paper we demonstrate how the phase contrast speckle patterns can be used to directly measure absolute regional lung air volumes from 2D PBX images without the need for a water-filled container. We justify this technique analytically and via simulation using the transport-of-intensity equation and calibrate the technique using our existing methods for measuring lung air volume. Finally, we show the full capabilities of this technique for measuring regional differences in lung aeration. PMID:24514306

  10. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  11. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  12. An ultrasonic air temperature measurement system with self-correction function for humidity

    NASA Astrophysics Data System (ADS)

    Tsai, Wen-Yuan; Chen, Hsin-Chieh; Liao, Teh-Lu

    2005-02-01

    This paper proposes an ultrasonic measurement system for air temperature with high accuracy and instant response. It can measure the average temperature of the environmental air by detecting the changes of the speed of the ultrasound in the air. The changes of speed of sound are computed from combining variations of time-of-flight (TOF) from a binary frequency shift-keyed (BFSK) ultrasonic signal and phase shift from continuous waves [11]. In addition, another proposed technique for the ultrasonic air temperature measurement is the self-correction functionality within a highly humid environment. It utilizes a relative humidity/water vapour sensor and applies the theory of how sound speed changes in a humid environment. The proposed new ultrasonic air temperature measurement has the capability of self-correction for the environment variable of humidity. Especially under the operational environment with high fluctuations of various humidity levels, the proposed system can accurately self-correct the errors on the conventional ultrasonic thermometer caused by the changing density of the vapours in the air. Including the high humidity effect, a proof-of-concept experiment demonstrates that in dry air (relative humidity, RH = 10%) without humidity correction, it is accurate to ±0.4 °C from 0 °C to 80 °C, while in highly humid air (relative humidity, RH = 90%) with self-correction functionality, it is accurate to ±0.3 °C from 0 °C to 80 °C with 0.05% resolution and temperature changes are instantly reflected within 100 ms.

  13. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  14. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  15. Global Ammonia Distributions and Recent Trends from AIRS 13-years Measurements

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Nowak, J. B.; Dickerson, R. R.

    2015-12-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years. Validation examples using in situ measurements for AIRS NH3 will also be presented.

  16. Accurate burner air flow measurement for low NO{sub x} burners

    SciTech Connect

    Earley, D.; Penterson, C.

    1998-07-01

    In 1990, Congress enacted an amendment to the Clean Air Act that required reductions in NO{sub x} emissions through the application of low NO{sub x} burner systems on fossil fueled utility steam generators. For most of the existing steam generator population, the original burning equipment incorporated highly turbulent burners that created significant in-furnace flame interaction. Thus, the measurement and control of air flow to the individual burners was much less critical than in recent years with low NO{sub x} combustion systems. With low NO{sub x} systems, the reduction of NO{sub x} emissions, as well as minimizing flyash unburned carbon levels, is very much dependent on the ability to control the relative ratios of air and fuel on a per-burner basis and their rate of mixing, particularly in the near burner zones. Air Monitor Corporation (AMC) and DB Riley, Inc. (DBR), and a large Midwestern electric utility have successfully developed and applied AMC's equipment to low NO{sub x} coal burners in order to enhance NO{sub x} control combustion systems. The results have improved burner optimization and provided real time continuous air flow balancing capability and the control of individual burner stoichiometries. To date, these enhancements have been applied to wall-fired low NO{sub x} systems for balancing individual burner air flows in a common windbox and to staged combustion systems. Most recently, calibration testing in a wind tunnel facility of AMC's individual burner air measurement (IBAM{trademark}) probes installed in DB Riley's low NO{sub x} CCV{reg{underscore}sign} burners has demonstrated the ability to produce reproducible and consistent air flow measurement accurate to within 5%. This paper will summarize this product development and quantify the benefits of its application to low NO{sub x} combustion systems.

  17. Improvement of air quality according to Mobile reduction measures to establish Korean Auto-oil program

    NASA Astrophysics Data System (ADS)

    Sunwoo, Y.; Jo, H.; Ma, Y.; Kim, S.; Hong, K.; Lim, Y.; Javascript:Setnextpage('sponsor')

    2011-12-01

    The mobile of NOx and PM10 emission of Korea in 2007 accounted for 42%, 23%, respectively (excluded fugitive dust). Seoul highly affected mobile emission which accounted for 46%, 49%, respectively. Korean government ,therefore, established "Special Act for improvement of air quality in Seoul metropolitan area" including mobile emission reduction measures and organized research forum including reformation of fuel and cars, risk assessment, control of greenhouse gas and assessment of air quality to establish Korean Auto-oil program This study quantitatively analyses improvement of air quality in Seoul according to the reformation of fuel and supply of DPF in Korean Auto-oil program. WRF-SMOKE-CMAQ were emploied for this study. SO2, CO, NOx, PM10 and VOCs emission are based on the INTEX-B emission inventory, NH3 were from the REAS emission inventory. Korea emission is derived by CAPSS (Clean Air Policy Support System) data. The reduction through reformation of fuel and supply of DPF is calculated by reduction ratio of air pollutants with strengthen fuel quality standard and number of car supplied DPF, refer to Metropolitan Air Quality Management Office Republic of Korea (2011) in detail. The effect of air quality is quantifiably comparing modeling results which are applied/not applied on the measures. This study will be provided basic data to establish Korean Auto-oil program through quantifying and predicting to improvement of air quality according to the mobile measures. Acknowledgement This research was supported in part by the "Assessment of risk and health benefits considering exposure characteristics of fuel" project sponsored by the Korea Automobile Environmental Association.

  18. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on {sup 12}C

    SciTech Connect

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-04-11

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on {sup 12}C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A{le}and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV.

  19. Swept source OCT with air puff chamber for corneal dynamics measurements

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Alonso-Caneiro, David; Kaluzny, Bartlomiej; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2012-03-01

    None of currently used tonometers produce estimated IOP values that are free of errors. Measurement incredibility arises from indirect measurement of corneal deformation and the fact that pressure calculations are based on population averaged parameters of anterior segment. Reliable IOP values are crucial for understanding and monitoring of number of eye pathologies e.g. glaucoma. We have combined high speed swept source OCT with air-puff chamber. System provides direct measurement of deformation of cornea and anterior surface of the lens. This paper describes in details the performance of air-puff ssOCT instrument. We present different approaches of data presentation and analysis. Changes in deformation amplitude appears to be good indicator of IOP changes. However, it seems that in order to provide accurate intraocular pressure values an additional information on corneal biomechanics is necessary. We believe that such information could be extracted from data provided by air-puff ssOCT.

  20. A Tale of Two Cities - HSI-DOAS Measurements of Air Quality

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul

    2013-04-01

    Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple City

  1. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, K. V.; Li, Jiasong; Vantipalli, S.; Manapuram, R. K.; Aglyamov, S.; Emelianov, S.; Twa, M. D.

    2013-07-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo.

  2. Measurement of air exchange rates in residential and commercial buildings in the northwest: techniques and results

    SciTech Connect

    Parker, G.B.

    1985-04-01

    In a study of air exchange rates in commercial and residential buildings, several techniques were employed to measure the air exchange: analysis of sulfur hexafluoride tracer gas decay using a portable gas chromatograph; analysis of carbon monoxide decay using a continuous infrared analyzer; analysis of nitrogen oxides decay using a continuous oxides of nitrogen analyzer; and analysis of perfluorocarbon tracer (PFT) gas using a programmable automatic sampler, and a passive capillary tube sampler. Using sulfur hexafluoride tracer gas with real-time chromatography was the most labor-intensive method, requiring constant attention for several hours; whereas, analyzing the decay of PFT tracer gas using small capillary tubes required little setup time and virtually no attention. However, the analysis of tracer gas captured by the capillary tubes was difficult and was performed using special analysis equipment. The air exchange rate measured in the commercial buildings ranged from 5 to 0.04 air changes per hour (ACH) depending on the type of heating, ventilation, and air conditioning (HVAC) system. Air exchange in the residential structures ranged from about 1 ACH to about 0.3 ACH. 6 refs., 5 tabs., 3 figs.

  3. Evaluation of the 2014 EC measurement comparison on (137)Cs in air filters.

    PubMed

    Máté, B; Sobiech-Matura, K; Altzitzoglou, T

    2016-03-01

    In 2014, the Joint Research Centre organised an interlaboratory comparison of (137)Cs measurement in air filters. This paper describes the context of the European measurement comparisons, as well as the technical implementation. Furthermore, sample treatment and measurements performed by participating laboratories are discussed and finally the evaluation of comparison results is presented. The intercomparison results are such that 71 out of the 76 laboratories (i.e. 93.4%) reported values within ±33% range of the reference value. PMID:26701658

  4. Indoor air-quality measurements in energy-efficient residential buildings

    SciTech Connect

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  5. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  6. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  7. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  8. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  9. Brookhaven air infiltration measurement system (BNL/AIMS) description and application

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W.; Cote, E.A.; Wieser, R.F.

    1983-08-01

    A unique capability to measure part-per-quadrillion concentrations of a family of perfluorocarbon tracers (PFTs) is presented. Together with our unique PFT source and passive sampler, measurement of average air exchange and infiltration rate can be determined for periods as short as 12 hours. A more expensive programmable sampler can provide information on a frequency of as little as once per minute for each of its 23 sampling tubes. The principal of AIMS is based on the applicable steady-state assumption that the average concentration (e.g., in pL/L) of a tracer vapor in a chamber (i.e., a building or room) is equal to the emission rate of the tracer source (e.g., in pL/min) divided by the air leakage or infiltration rate (e.g., in L/min). Knowing the source rate and measuring the average concentration then provides a means to calculate the air leakage rate. Extending this technique to a multichamber concept, in which a different type of PFT source is deployed in each chamber of a building, allows the calculation of not only the infiltration rates in each chamber but also the air exchange rates between chambers as well. Since both the PFT source and the passive sampler, a miniature Capillary Adsorption Tube Sampler (CATS), are about the size of a cigarette, inexpensive, and reusable, the BNL/AIMS is a very cost-effective means (if not the only means) for determining these air exchange rates.

  10. K{sub Air} and H*(10) Rate Constants for Gamma Emitters

    SciTech Connect

    Vega-Carrillo, H. R.; Juarez, R. Rodriguez; Manzanares-Acuna, E.; Davila, V. M. Hernandez; Mercado, G. A.

    2008-08-11

    Monte Carlo calculations have been carried out to estimate the Air Kerma rate constant and the Ambient dose equivalent rate constant for 139 monoenergetic photon sources. The factor that relates activity to air kerma rate or to ambient dose equivalent is useful to estimate the dose from a photon emitter source. Here 139 point-like and monoenergetic gamma-ray sources, ranging from 0.01 to 10 MeV were utilized in Monte Carlo calculations to estimate both gamma factors. These factors were utilized to calculate the air kerma-and-ambient dose equivalent rate constants for {sup 137}Cs-{sup 137m}Ba, {sup 198}Au, {sup 60}Co, and {sup 131}I, whose values were compared with those published in the literature.

  11. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  12. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  13. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  14. Ultraviolet Laser Raman Scattering for Temperature Measurement in Atmospheric Air Microdischarges

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Adams, Steven; Williamson, James; Clark, Jerry

    2011-10-01

    Vibrational Raman scattering for temperature measurement within a dc microdischarge in atmospheric pressure air has been investigated using a pulsed ultraviolet laser. The Raman signal analysis method involved monitoring Q-branch signals originating from multiple N2(X) vibrational states populated in the microdischarge. The translational temperature of N2(X) in the microdischarge was calculated using the total Raman signal intensity calibrated with room temperature air. Also, the distribution of Q-branch intensities among vibrational states allowed for direct measurement of the vibrational temperature of N2(X). Raman scattering results are compared to passive optical emission spectral analyses of the N2 second positive system from which the rotational and vibrational temperatures of the N2(C) excited state were also calculated. A comparison of the N2(X) and N2(C) temperatures derived from Raman scattering and emission spectroscopy, respectively, is presented. This work was supported by the Air Force Office of Scientific Research.

  15. Continuous atomic spectrometric measurement of ambient levels of sulfur dioxide in air by mercury displacement detection

    SciTech Connect

    Marshall, G.; Midgley, D.

    1982-08-01

    The analytical atomic spectrometric technique of mercury displacement detection has been adapted so that sulfur dioxide can be determined at natural background levels in ambient air on a continuous basis with a 90% response time of 1-2 min. Sample air is drawn into the reaction vessel containing mercury (I) ion reagent and any sulfur dioxide present reacts to form elemental mercury which is measured, after being swept out of the solution by the same flow of sample air, by a mercury vapor detector. Reagent is continuously pumped through the analyzer and the instrument is calibrated with a permeation tube calibrator. The apparatus has a linear concentration range up to 100 ppB sulfur dioxide; this is much lower than can be obtained with existing commerical instruments. The apparatus is very precise and 6, 11, and 20 ppB sulfur dioxide can be measured with coefficients of variation of 1-2%.

  16. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  17. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  18. The Reproducibility of Indoor Air Pollution (IAP) Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    PubMed Central

    Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J. C.

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC): 1400 μg m−3, resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11). PMID:25054167

  19. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  20. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  1. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  2. Ground-based infrared solar spectroscopic measurements of carbon monoxide during 1994 Measurement of Air Pollution From Space flights

    NASA Astrophysics Data System (ADS)

    Pougatchev, N. S.; Sen, B.; Steele, L. P.; Toon, G. C.; Yurganov, L. N.; Zander, R.; Zhao, Y.

    1998-08-01

    Results of the comparison of carbon monoxide ground-based infrared solar spectroscopic measurements with data obtained during 1994 Measurement of Air Pollution From Space (MAPS) flights are presented. Spectroscopic measurements were performed correlatively with April and October MAPS flights by nine research groups from Belgium, Canada, Germany, Japan, New Zealand, Russia, and the United States. Characterization of the techniques and error analysis were performed. The role of the CO a priori profile used in the retrieval was estimated. In most cases an agreement between spectroscopic and MAPS data is within estimated MAPS accuracy of +/-10%.

  3. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  4. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  5. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  6. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  7. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Erdmann, M.; Falcke, H.; Haungs, A.; Hiller, R.; Huege, T.; Krause, R.; Link, K.; Norden, M. J.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Schröder, F. G.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Weidenhaupt, K.; Wijnholds, S. J.; Anderson, J.; Bähren, L.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Schwarz, D.; Serylak, M.; Sluman, J.; Smirnov, O.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.

    2015-11-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.

  8. ATMOSPHERIC ACIDITY MEASUREMENTS DURING THE LAKE MICHIGAN URBAN AIR TOXICS STUDY

    EPA Science Inventory

    During the summer of 1991, as part of the Lake Michigan Urban Air Toxics Study (LMUATS), measurements of reactive gases and fine fraction and size-fractionated acidic aerosols were taken at two sites (South Haven, MI and aboard the research vessel, R/V Laurentian). he fine fracti...

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. CORRELATIONS OF PERSONAL EXPOSURE TO PARTICLES WITH OUTDOOR AIR MEASUREMENT: A REVIEW OF RECENT STUDIES

    EPA Science Inventory

    Epidemiological studies have found a correlation between daily mortality and particle concentrations in outdoor air as measured at a central monitoring station. These studies have been the central reason for the U.S. EPA to propose new tighter particle standards. However, perso...

  11. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  12. REGIONAL AIR POLLUTION STUDY. HIGH VOLUME FILTER MEASUREMENTS OF SUSPENDED PARTICULATE MATTER

    EPA Science Inventory

    Ten of the 25 stations making up the Regional Air Monitoring System were equipped with dichotomous samplers and high volume filter samplers for aerosol measurements. The high volume samplers collected samples every third day for 24-hour periods (0000-2400). Sample filters were re...

  13. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  14. CLEANLINESS OF COMMON AIR SAMPLING SORBENTS FOR APPLICATION TO PHENOLIC COMPOUNDS MEASUREMENT USING SUPERCRITICAL FLUID EXTRACTION

    EPA Science Inventory

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. ecently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction me...

  15. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  16. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  17. Thermometric measurements of the molecular sublayer at the air-water interface

    NASA Astrophysics Data System (ADS)

    Ward, B.; Donelan, M. A.

    2006-04-01

    A series of measurements was conducted in the Air-Sea Interaction Saltwater Tank (ASIST) to study the response of the air-water interfacial molecular sublayer under various heat flux and wind speed conditions. In-situ gradients were measured with a platinum-plated tungsten wire microthermometer, which resolved the temperature of the thermally conductive sublayer. Air-sea heat flux was controlled by changing the air-water temperature difference (ΔTAW) and the wind speed, and measurements were made for three ΔTAW regimes over a range of wind speeds. A function was fitted to the measured temperature profiles as a way of extracting the boundary layer thickness in a consistent fashion, from which the λ coefficient after Saunders (1967) was computed. This dataset returned a mean λ coefficient of 2.4 +/- 0.5, which was generally lower than previous studies, and was found to be independent of wind speed in the range of 1 to 9 ms-1.

  18. FEASIBILITY STUDY TO DEMONSTRATE APPLICABILITY OF TUNABLE INFRARED LASER EMISSION SPECTROSCOPY TECHNOLOGY TO MEASURE AIR POLLUTION

    EPA Science Inventory

    This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...

  19. Effect measure modification of blood lead-air lead slope factors.

    PubMed

    Richmond-Bryant, Jennifer; Meng, Qingyu; Cohen, Jonathan; Davis, J Allen; Svendsgaard, David; Brown, James S; Tuttle, Lauren; Hubbard, Heidi; Rice, Joann; Kirrane, Ellen; Vinikoor-Imler, Lisa; Kotchmar, Dennis; Hines, Erin; Ross, Mary

    2015-01-01

    There is abundant literature finding that susceptibility factors, including race and ethnicity, age, and housing, directly influence blood lead levels. No study has explored how susceptibility factors influence the blood lead-air lead relationship nationally. The objective is to evaluate whether susceptibility factors act as effect measure modifiers on the blood lead-air lead relationship. Participant level blood lead data from the 1999 to 2008 National Health and Nutrition Examination Survey were merged with air lead data from the US Environmental Protection Agency. Linear mixed effects models were run with and without an air lead interaction term for age group, sex, housing age, or race/ethnicity to determine whether these factors are effect measure modifiers for all ages combined and for five age brackets. Age group and race/ethnicity were determined to be effect measure modifiers in the all-age model and for some age groups. Being a child (1-5, 6-11, and 12-19 years) or of Mexican-American ethnicity increased the effect estimate. Living in older housing (built before 1950) decreased the effect estimate for all models except for the 1-5-year group, where older housing was an effect measure modifier. These results are consistent with the peer-reviewed literature of time-activity patterns, ventilation, and toxicokinetics. PMID:24961837

  20. HP-65 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The handbook is intended for persons concerned with air pollution measurement studies of stationary industrial sources. It gives detailed descriptions of 22 different programs written specifically for the Hewlett Packard Model HP-65 card-programmable pocket calculator. For each p...

  1. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  2. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter

    NASA Astrophysics Data System (ADS)

    Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur

    2010-01-01

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  3. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level alpha/beta Counter

    SciTech Connect

    Cfarku, Florinda; Bylyku, Elida; Bakiu, Erjona; Perpunja, Flamur; Deda, Antoneta; Dhoqina, Polikron

    2010-01-21

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr{sup 90}, Pu{sup 239}, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level alpha/beta Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aalpha = (0.19+-0.01) Bq/filter and Aalpha(IAEA) = (0.17+-0.009) Bq/filter; A{sub b}eta = (0.33+-0.009) Bq/filter and A{sub b}eta (IAEA) = (0.29+-0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  4. Frequency measurement of refraction index of air for high-resolution laser interferometry

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Petru, Frantisek; Matousek, Vit; Lazar, Josef

    2004-08-01

    In the work, we present a method for direct measurement of the refraction index of air. We designed two coupled glass cells (one evacuated and the other filled by atmospheric air) inserted to plan-parallel Fabry-Perot resonator (F. P. resonator). Two tunable single-frequency lasers pass laser beams through the evacuated and aired cell simultaneously. Two F.-P. resonators are built up by this way: one of them in evacuated cell and the other in the open air cell. If both lasers are tuned along the resonant modes of F.-P. resonators, an optical frequency difference between two adjacent modes can be identified for each resonator. The evacuated one will have another mode-to-mode difference than the aired resonator. With knowledge of these values we can determine the index of refraction very fast. We verified the method with using Michelson interferometer based technique where a glass cell placed to the measurement arm of the interferometer is evacuated by an oil pump. In this case Michelson interferometer monitors changes of the optical path caused by the process of evacuation. Experimental results achieved by the method will be presented.

  5. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  6. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  7. Air Quality in Megacities: Lessons Learned from Mexico City Field Measurements

    NASA Astrophysics Data System (ADS)

    Molina, L. T.

    2014-12-01

    More than half of the world's population now lives in urban areas because of the opportunities for better jobs, access to city services, cultural and educational activities, and a desire for more stimulating human interaction. At the same time, many of these urban centers are expanding rapidly, giving rise to the phenomenon of megacities. In recent decades air pollution has become not only one of the most important environmental problems of megacities, but also presents serious consequences to human health and ecosystems and economic costs to society. Although the progress to date in combating air pollution problems in developed and some developing world megacities has been impressive, many challenges remain including the need to improve air quality while simultaneously mitigating climate change. This talk will present the results and the lessons learned from field measurements conducted in Mexico City Metropolitan Area - one of the world's largest megacities - over the past decade. While each city has its own unique circumstances, the need for an integrated assessment approach in addressing complex environmental problems is the same. There is no single strategy in solving air pollution problems in megacities; a mix of policy measures based on sound scientific findings will be necessary to improve air quality, protect public health, and mitigate climate change.

  8. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  9. The measurement of carbon monoxide and methane in the National Capital Air Quality Control Region. I - Measurement systems

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Lamontagne, R. A.; Goldstein, H. W.

    1976-01-01

    The Carbon Monoxide Pollution Experiment (COPE) and the National Capital Air Quality Control Region (NCAQCR) undertook a series of measurements of atmospheric CO and CH4 to determine the accuracy of the airborne COPE Correlation Interfer4meter. The device, a modified Michelson interferometer, measures the atmospheric column density of CO and CH4 at 2.3 microns with tropospheric measurement sensitivities of 70 and 10 PPB, respectively. Data for evaluating the remote measurements included atmospheric column density measurements at a ground truth site using a van-mounted infrared Fourier spectrometer; continuous ground level gas chromatographic measurements; and chromatographic data from atmospheric grab samples collected by aircraft and at ground locations. The instruments and sampling techniques used in the experiment are described in detail.

  10. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  11. Mexico City air quality research initiative. Volume IV. Characterization and measurement

    SciTech Connect

    Mauzy, A.

    1994-04-01

    This volume describes the methods and the data gathered in an attempt to measure and characterize the meteorological factors and the concentration of different pollutants in the Mexico City Metropolitan Area. The main objective of this document was to provide input for the simulation models and to obtain information that could be used to test and improve the models` performance. Four field campaigns were conducted, as well as routine monitoring, in order to obtain a database of atmospheric dynamics and air pollution characteristics. Sections include Airborne measurements, Remote sensing measurements, and Traditional (in situ) measurements.

  12. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  13. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  14. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  15. The nature of air pollution and the methods available for measuring it

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    At present the principal sources of energy in Europe are coal and oil and fuels derived from them, and in European towns air pollution consists mainly of their combustion products. These combustion products naturally divide into two categories, gaseous and particulate, which are very different chemically and which behave very differently when they are near collecting surfaces; they therefore require very different techniques both for collecting and for estimating samples. Some methods of measurement, suitable for everyday routine use in Europe, are described; these offer a compromise between completeness and economy, and can help to give a general outline of the air pollution situation without undue complexity or prohibitive cost. PMID:14315712

  16. Instrument for measuring total alpha particle energies of alpha emitters in ambient air

    NASA Astrophysics Data System (ADS)

    Kronenberg, S.; Brucker, G. J.; Cummings, B.; Bechtel, E.; Gentner, F.; Horne, S.

    2000-11-01

    This paper describes the design, fabrication, testing and evaluation of a self-reading, carbon fiber, electrometer-type instrument. It is used for measuring the total energy of alpha particles emitted in air by progenies of 222Rn ( 218Po, 214Pb, and 214Bi), and sometimes by other types of alpha emitters (e.g. 212Pb, 238U, and 239Pu). The purpose of these measurements is to assess the energy delivered by alpha emission from these sources to the lung tissue. A sample (charged progenies attached to aerosols) is collected on filter paper from a known volume of air and placed on the instrument. The discharge rate indicates the alpha energy in MeV l -1 of air per min that is produced by the alpha emitters. The calibration procedure shows that the instrument has an energy sensitivity for alpha particles of 800.5 MeV/scale unit. The range of the readout scale is 30 units. Measurements of alpha contamination in air were made using this instrument in buildings, private homes and in a standard chamber. The value of the radon concentration in this chamber is traceable back to the US Environmental Protection Agency (EPA) and to the National Institute of Standards and Technology (NIST).

  17. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  18. Measuring air gap width of permanent magnet linear generators using search coil sensor

    NASA Astrophysics Data System (ADS)

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-01

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Ångström Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of ±0.4mm in the range of 4-9.5mm air gap. The potential for future improvements of the sensitivity is considerable.

  19. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  20. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  1. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  2. AirDyn: an instrumented model-scale helicopter for measuring unsteady aerodynamic loading in airwakes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

    2011-04-01

    This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

  3. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  4. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    SciTech Connect

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  5. New method to measure the attenuation of hadrons in extensive air showers

    SciTech Connect

    Apel, W. D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.; Oehlschlaeger, J.

    2009-07-15

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth's atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 10{sup 6} to 3x10{sup 7} GeV the attenuation length obtained increases from 170 to 210 g/cm{sup 2}. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  6. New method to measure the attenuation of hadrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-07-01

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  7. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam

    SciTech Connect

    Hummelt, J. S.; Shapiro, M. A.; Temkin, R. J.

    2012-12-15

    Temperature measurements are presented of a non-equilibrium air breakdown plasma using optical emission spectroscopy. A plasma is created with a focused 110 GHz 3 {mu}s pulse gyrotron beam in air that produces power fluxes exceeding 1 MW/cm{sup 2}. Rotational and vibrational temperatures are spectroscopically measured over a pressure range of 1-100 Torr as the gyrotron power is varied above threshold. The temperature dependence on microwave field as well as pressure is examined. Rotational temperature measurements of the plasma reveal gas temperatures in the range of 300-500 K and vibrational temperatures in the range of 4200-6200 K. The vibrational and rotational temperatures increase slowly with increasing applied microwave field over the range of microwave fields investigated.

  8. Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.

  9. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  10. Novel methods for measuring air-water interfacial area in unsaturated porous media.

    PubMed

    Brusseau, Mark L; El Ouni, Asma; Araujo, Juliana B; Zhong, Hua

    2015-05-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632

  11. NOVEL METHODS FOR MEASURING AIR-WATER INTERFACIAL AREA IN UNSATURATED POROUS MEDIA

    PubMed Central

    Brusseau, Mark L.; Ouni, Asma El; Araujo, Juliana B.; Zhong, Hua

    2015-01-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632

  12. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    NASA Astrophysics Data System (ADS)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  13. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)

    NASA Astrophysics Data System (ADS)

    Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Levinson, E.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Rühle, C.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2015-12-01

    Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties.

  14. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  15. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  16. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  17. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  18. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  19. Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Venkataramani, K. S.

    1978-01-01

    The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.

  20. Fast tomographic measurements of temperature in an air plasma cutting torch

    NASA Astrophysics Data System (ADS)

    Hlína, J.; Šonský, J.; Gruber, J.; Cressault, Y.

    2016-03-01

    Temperatures in an air plasma jet were measured using a tomographic experimental arrangement providing time-resolved scans of plasma optical radiation in the spectral band 559-601 nm from two directions. The acquired data and subsequent processing yielded time-resolved temperature distributions in measurement planes perpendicular to the plasma jet axis with a temporal resolution of 1 μs. The measurement system and evaluation methods afforded detailed information about the influence of high-frequency ripple modulation of the arc current on plasma temperature.

  1. Calculating osmotic pressure of xylitol solutions from molality according to UNIFAC model and measuring it with air humidity osmometry.

    PubMed

    Yu, Lan; Zhan, Tingting; Zhan, Xiancheng; Wei, Guocui; Tan, Xiaoying; Wang, Xiaolan; Li, Chengrong

    2014-11-01

    The osmotic pressure of xylitol solution at a wide concentration range was calculated according to the UNIFAC model and experimentally determined by our newly reported air humidity osmometry. The measurements from air humidity osmometry were compared with UNIFAC model calculations from dilute to saturated solution. Results indicate that air humidity osmometry measurements are comparable to UNIFAC model calculations at a wide concentration range by two one-sided test and multiple testing corrections. The air humidity osmometry is applicable to measure the osmotic pressure and the osmotic pressure can be calculated from the concentration. PMID:24032449

  2. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study

    PubMed Central

    Rosen, Laura; Zucker, David; Hovell, Melbourne; Brown, Nili; Ram, Amit; Myers, Vicki

    2015-01-01

    Tobacco smoke air pollution (TSAP) measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM2.5 during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM2.5 levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM2.5 feedback (with Sidepak or Dylos monitor) was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring. PMID:26633440

  3. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  4. Feasibility of Measuring Tobacco Smoke Air Pollution in Homes: Report from a Pilot Study.

    PubMed

    Rosen, Laura; Zucker, David; Hovell, Melbourne; Brown, Nili; Ram, Amit; Myers, Vicki

    2015-12-01

    Tobacco smoke air pollution (TSAP) measurement may persuade parents to adopt smoke-free homes and thereby reduce harm to children from tobacco smoke in the home. In a pilot study involving 29 smoking families, a Sidepak was used to continuously monitor home PM(2.5) during an 8-h period, Sidepak and/or Dylos monitors provided real-time feedback, and passive nicotine monitors were used to measure home air nicotine for one week. Feedback was provided to participants in the context of motivational interviews. Home PM(2.5) levels recorded by continuous monitoring were not well-accepted by participants because of the noise level. Also, graphs from continuous monitoring showed unexplained peaks, often associated with sources unrelated to indoor smoking, such as cooking, construction, or outdoor sources. This hampered delivery of a persuasive message about the relationship between home smoking and TSAP. By contrast, immediate real-time PM(2.5) feedback (with Sidepak or Dylos monitor) was feasible and provided unambiguous information; the Dylos had the additional advantages of being more economical and quieter. Air nicotine sampling was complicated by the time-lag for feedback and questions regarding shelf-life. Improvement in the science of TSAP measurement in the home environment is needed to encourage and help maintain smoke-free homes and protect vulnerable children. Recent advances in the use of mobile devices for real-time feedback are promising and warrant further development, as do accurate methods for real-time air nicotine air monitoring. PMID:26633440

  5. Understanding The Correlation of San Joaquin Air Quality Monitoring With Aerosol Optical Thickness Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ballard, M.; Newcomer, M.; Rudy, J.; Lake, S.; Sambasivam, S.; Strawa, A. W.; Schmidt, C.; Skiles, J.

    2007-12-01

    Air quality in the San Joaquin Valley (SJV) has failed to meet state and federal attainment standards for Particulate Matter (PM) for several years. Air quality agencies currently use ground monitoring sites to monitor air quality in the San Joaquin Valley. This method provides accurate information at specific points but does not provide a clear indication of what is occurring over large regions. Using measurements from satellite imagery has the potential to provide valuable air quality information in a timely manner across large regions. While previous studies show good correlations between satellite derived Aerosol Optical Thickness (AOT) and surface PM measurements on the East Coast of the United States, the data do not correlate well in the SJV. This paper compares PM2.5 ground data from the California Air Resources Board (CARB) and the Interagency Monitoring of Protected Environments (IMPROVE) sites with satellite data in an effort to understand this discrepancy. To verify satellite AOT value accuracy, ground AOT values were collected from the Aerosol Robotic Network (AERONET) and from measurements using the hand-held MicroTops II Sun Photometer field instrument. We found good correlation of the AOT values between MODIS, MISR and AERONET. However, we found poor correlations between satellite- based AOT values and PM2.5 values, and consideration of aerosol speciation did not improve the correlations. Further investigation is needed to determine the causes of the poor correlation. Acquiring detailed information on the meteorological conditions and vertical profiles of the atmosphere using ground-based LIDAR or data from CALIPSO may provide better results.

  6. In-air micro-PIGE measurement system for fluorine analysis of the tooth

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Hai, V. H.; Nomachi, M.; Sugaya, Y.; Yamamoto, H.

    2007-07-01

    An in-air micro-PIGE and micro-PIXE measurement system for fluorine analysis of tooth have been developed at the Wakasa Wan Energy Research Center. A proton microbeam is extracted through a thin silicon nitride window into the air and used to irradiate a tooth sample mounted on a sample stage set in air. Gamma-rays from a 19F(p, αγ) 16O reaction and characteristic X-rays are detected with a BGO detector and a Ge X-ray detector, simultaneously. The sample stage and beam scanner allow us to analyze the tooth sample over a range of 20 mm at maximum. Spot sizes of a proton beams in air at an energy of 2.5 MeV was 4 μm, in the case of a distance between the silicon nitride window and the sample of 0.2 mm and 13 μm in the case of 1.7 mm. Fluorine analysis was performed over an area of about 3 mm × 3 mm of the tooth sample. One- and two-dimensional distributions of fluorine and calcium were obtained successfully. Quantitative analysis was also performed using data for measurements of reference materials Ca 10(PO 4) 6(OH) 2-2 xF 2 x.

  7. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  8. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  9. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  10. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  11. The measured energy impact of air leakage on frame wall systems

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var epsilon}, is introduced as a measure of the effectiveness of a building in recovering'' heat otherwise lost (or gained) because of infiltration. Measurements show that {var epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  12. The measured energy impact of air leakage on frame wall systems. Final report

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var_epsilon}, is introduced as a measure of the effectiveness of a building in ``recovering`` heat otherwise lost (or gained) because of infiltration. Measurements show that {var_epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  13. Air infiltration and interzonal airflow measurements in research houses: Final report

    SciTech Connect

    Nagda, N.L.

    1988-08-01

    Four different but complementary methods--the tracer gas dilution method, single tracer constant concentration, passive perfluorocarbon tracers (constant release), and constant release of multiple halocarbon tracers with real-time analysis--were used to obtain detailed information on air infiltration and interzonal airflow rates in two bilevel research houses. The study included measurements of seasonal variations and differences between the houses, one of which was retrofitted in a previous EPRI study to reduce the air leakage area. Measurements showed that there had been little change in whole house infiltration rates during the 4 years since the retrofit. Differences between the houses with respect to whole house air infiltration rates were primarily the result of differences in downstairs air infiltration rates between the two houses. Zone-specific measurements indicated that downstairs infiltration rates were three to nine times higher than upstairs; infiltration rates were 30 to 60 percent lower in the downstairs of the retrofitted house than in the other house. The impact of the retrofit was also reflected by lower rates of airflow from the garage into the downstairs and from the upstairs to the attic. Airflows between the upstairs and downstairs of the houses exhibited seasonal variation due to stack effect action and operation of the central heating and cooling systems. Short-term interzonal airflow rates were as much as an order of magnitude higher than week-long average rates. Results of measurements with the different methods are also compared and discussed as they relate to advantages, limitations, and applicability of the methods in utility-sponsored measurement programs. 30 refs., 22 figs., 16 tabs.

  14. Measurements and predictions of a liquid spray from an air-assist nozzle

    NASA Technical Reports Server (NTRS)

    Bulzan, Daniel L.; Lavy, Yeshayahou; Aggarwal, Suresh K.; Chitre, Susheel

    1991-01-01

    Droplet size and gas velocity were measured in a water spray using a two-component Phase/Doppler Particle Analyzer. A complete set of measurements was obtained at axial locations from 5 to 50 cm downstream of the nozzle. The nozzle used was a simple axisymmetric air-assist nozzle. The sprays produced, using the atomizer, were extremely fine. Sauter mean diameters were less than 20 microns at all locations. Measurements were obtained for droplets ranging from 1 to 50 microns. The gas phase was seeded with micron sized droplets, and droplets having diameters of 1.4 microns and less were used to represent gas-phase properties. Measurements were compared with predictions from a multi-phase computer model. Initial conditions for the model were taken from measurements at 5 cm downstream. Predictions for both the gas phase and the droplets showed relatively good agreement with the measurements.

  15. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    PubMed

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests. PMID:26329237

  16. Dynamic measures of regional lung air volume using phase contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kitchen, M. J.; Lewis, R. A.; Morgan, M. J.; Wallace, M. J.; Siew, M. L.; Siu, K. K. W.; Habib, A.; Fouras, A.; Yagi, N.; Uesugi, K.; Hooper, S. B.

    2008-11-01

    Phase contrast x-ray imaging can provide detailed images of lung morphology with sufficient spatial resolution to observe the terminal airways (alveoli). We demonstrate that quantitative functional and anatomical imaging of lung ventilation can be achieved in vivo using two-dimensional phase contrast x-ray images with high contrast and spatial resolution (<100 µm) in near real time. Changes in lung air volume as small as 25 µL were calculated from the images of term and preterm rabbit pup lungs (n = 28) using a single-image phase retrieval algorithm. Comparisons with plethysmography and computed tomography showed that the technique provided an accurate and robust method of measuring total lung air volumes. Furthermore, regional ventilation was measured by partitioning the phase contrast images, which revealed differences in aeration for different ventilation strategies.

  17. Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Sawyer, Jordan C.; Su, Liu; Zhang, Zhili

    2016-05-01

    Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 barg by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ˜106. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initial multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.

  18. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  19. A sample holder for measuring the magnetic properties of air-sensitive compounds

    NASA Astrophysics Data System (ADS)

    Berlie, Adam; Terry, Ian; Szablewski, Marek

    2011-01-01

    A sample holder is reported which has allowed the magnetic characterization of air-sensitive compounds to be made in a Quantum Design Magnetic Properties Measurement System as a function of the applied field (0-5 T), and at temperatures ranging from 2 to 290 K. The sample holder is in the form of a specially designed tube, which is made from high purity quartz, utilizes PTFE (polytetrafluoroethylene) plugs and is reusable. This construction also offers the benefit that no heat treatment of the holder is required during sample loading, making the sample holder suitable for thermally sensitive compounds. The application of this sample holder is demonstrated for the case of Ni(cod)2 (cod = 1,5-cyclooctadiene), a compound that decomposes when exposed to air and/or heat. This material's instability has, so far, prevented the magnetic characterization of the compound, with nickel nanoparticles, a product of the decomposition, usually being measured instead.

  20. Comparison of thermal advection measurements by clear-air radar and radiosonde techniques

    SciTech Connect

    Crochet, M.; Rougier, G.; Bazile, G. Meteorologie Nationale, Trappes )

    1990-10-01

    Vertical profiles of the horizontal wind have been measured every 4 min by a clear-air radar (stratospheric-troposphere radar), and vertical profiles of temperature have been obtained every 2 hours by three radiosonde soundings in the same zone in Brittany during the Mesoscale Frontal Dynamics Project FRONTS 87 campaign. Radar thermal advection is deduced from the thermal wind equation using the measured real horizontal wind instead of the geostrophic wind. Radiosonde thermal advection is determined directly from the sounding station data sets of temperature gradients and also approximately from the thermodynamic equation by the temperature tendency. These approximations, applied during a frontal passage, show the same general features and magnitude of the thermal advection, giving a preliminary but encouraging conclusion for a possible real-time utilization of clear-air radars to monitor thermal advection and to identify its characteristic features. 6 refs.

  1. The characterization of an air pollution episode using satellite total ozone measurements

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.

    1987-01-01

    A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.

  2. Measurement of gas-phase ionic mercury(II) species in ambient air

    SciTech Connect

    Stratton, W.J.; Lindberg, S.E.

    1995-12-31

    One of the important questions in the biogeochemical cycling of mercury is the speciation of mercury in the atmosphere. Although a large fraction of Hg in ambient air is Hg(O), a small fraction is believed to be gas-phase Hg(II). This fraction is highly water-soluble and thus is important to explaining the high concentration of Hg in precipitation. We have developed a novel technique for measuring gas-phase Hg(II), using a high-flow refluxing mist chamber to trap the water-soluble Hg(II) in an aerosol mist. Measured concentrations of gas-phase Hg(II) in ambient air are generally in the range 0.05-0.1 ng/m{sup 3}, or 2-4% of the total gaseous Hg. In this talk, representative data under different atmospheric and geographic conditions will be presented, along with a summary of some of the experimental difficulties and unanswered questions.

  3. Measurements of two types of dilatational waves in an air-filled unconsolidated sand

    SciTech Connect

    Hickey, C.J.; Sabatier, J.M.

    1997-07-01

    This study consists of laboratory measurements of dilatational waves propagating through an air-filled unconsolidated sand. One excitation technique consists of a loudspeaker suspended in the air above the packing of sand. A second excitation technique uses a mechanical shaker in contact with the sand. The transmitted signals are received using microphones and geophones located at various depths within the sand. An interpretation based on measured phase speeds indicates that the transmitted energy from the suspended loudspeaker source is partitioned primarily but not exclusively into the type-II dilatational wave. This wave attenuates rapidly and is only detected at depths of less than about 15 cm for this particular sample. At the deeper depths the detected signal is associated with the type-I dilatational wave. The mechanical shaker produces only a type-I dilatational wave. Both the geophone and microphone sensors can detect both types of dilatational waves. {copyright} {ital 1997 Acoustical Society of America.}

  4. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  5. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  6. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  7. Resistance Measurements and Activation Energies Calculations of Pure and Platinum Doped Stannic Oxide Ceramics in Air

    SciTech Connect

    Ibrahim, Zuhairi; Othman, Zulkafli; Karim, Mohd Mustamam Abd; Holland, Diane

    2007-05-09

    Pure SnO2 and Pt-SnO2 ceramics were fabricated by the dry pressing method using a pressure of 40 Mpa and sintered at 1000 deg. C. Electrical resistance measurements were made using an impedance analyzer, in air and temperatures between 25 deg. C and 450 deg. C. The change in resistance in both pure and platinum-doped stannic oxide ceramics was discussed.

  8. Measurements of CFC Isotope Changes in Firn, Stratospheric and Tropospheric Air

    NASA Astrophysics Data System (ADS)

    Allin, S.; Laube, J.; Witrant, E.; Kaiser, J.; McKenna, E.; Dennis, P.; Mulvaney, R.; Capron, E.; Martinerie, P.; Blunier, T.; Schwander, J.; Fraser, P. J.; Sturges, W. T.

    2014-12-01

    The degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone. Recent studies of CFC-12 (CCl2F2) have reported strong chlorine and carbon isotope fractionations in stratospheric and tropospheric samples, respectively. The δ(37Cl) variations were attributed to isotope dependent sink reactions, similar to effects seen in nitrous oxide (N2O), whereas adjustments to manufacturing processes were used to explain the δ(13C) changes. Using air archives to measure chlorine and carbon isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant chlorine isotope fractionation in the stratosphere, in common with CFC-12. We then use a 2-box model to estimate the expected tropospheric isotope signature of these gases, based on their emissions and transport history, as well as their measured stratospheric isotope fractionation constants (ɛapp). We also present long-term δ(37Cl) and δ(13C) trends of all three CFCs, determined from background tropospheric samples from the Cape Grim air archive (1978 - 2010) and firn air samples from the Arctic (NEEM, Greenland) and Antarctica (Fletcher Promontory). These measurements are compared to our model trends, leading to an evaluation of long-term chlorine and carbon isotope changes. This study also extends the novel approach to measuring trace gas isotope ratios in small air volumes, using a single-detector gas chromatography-mass spectrometry system.

  9. Advances in Fast-response Acoustically Derived Air-temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, I.; Jacobsen, L.; Horst, T. W.; Conrad, B.

    2015-12-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity.The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  10. Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California

    PubMed Central

    Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle

    2014-01-01

    Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884

  11. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  12. Evaluating the national air toxics assessment (NATA): Comparison of predicted and measured air toxics concentrations, risks, and sources in Pittsburgh, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Logue, Jennifer M.; Small, Mitchell J.; Robinson, Allen L.

    2011-01-01

    The National Air Toxics Assessment (NATA) is an ongoing modeling effort by the Environmental Protection Agency to predict air toxics concentrations, sources, and risks at the census tract level throughout the continental United States. To evaluate NATA, archived data collected at seven sites in and around Pittsburgh, Pennsylvania were compared to 2002 NATA predictions. The sites represent 3 different source regimes (mobile dominated, industrial point source dominated, and background). The evaluation considered 49 air toxics (37 gas-phase organics, 10 metals, coke oven emissions and diesel particulate matter); NATA's performance was judged based on model-measurement comparisons of concentrations, health risks, and source contributions. On a concentration basis, NATA performance varied widely ranging from excellent for carbon tetrachloride to differences of more than a factor of 100 for low concentration chlorinated compounds. However, predicted concentrations were generally within a factor of 2 of measured values for air toxics that were estimated to be the primary cancer risk drivers; therefore NATA provided reasonable estimates of the additive cancer risks and risk ranking of air toxics. NATA performs better on average in Pittsburgh than nationwide. Comparison of source apportionment results indicates that NATA consistently underestimated concentrations of compounds emitted by large point sources as well as concentrations of chlorinated compounds, but overestimated the risks from mobile sources in Pittsburgh. Therefore, in Pittsburgh, NATA sufficiently prioritizes air toxics that drive potential cancer risks, but does not identify the sources of these priority air toxics.

  13. Megha-Tropiques/SAPHIR measurements of humidity profiles: validation with AIRS and global radiosonde network

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, K. V.; Kumar, K. K.

    2013-12-01

    The vertical profiles of humidity measured by SAPHIR (Sondeur Atmospherique du Profil d' Humidité Intropicale par Radiométrie) on-board Megha-Tropiques satellite are validated using Atmosphere Infrared Sounder (AIRS) and ground based radiosonde observations during July-September 2012. SAPHIR provides humidity profiles at six pressure layers viz., 1000-850 (level 1), 850-700 (level 2), 700-550 (level 3), 550-400 (level 4) 400-250 (level 5) and 250-100(level 6) hPa. Segregated AIRS observations over land and oceanic regions are used to assess the performance of SAPHIR quantitatively. The regression analysis over oceanic region (125° W-180° W; 30° S-30° N) reveal that the SAPHIR measurements agrees very well with the AIRS measurements at levels 3, 4, 5 and 6 with correlation coefficients 0.79, 0.88, 0.87 and 0.78 respectively. However, at level 6 SAPHIR seems to be systematically underestimating the AIRS measurements. At level 2, the agreement is reasonably good with correlation coefficient of 0.52 and at level 1 the agreement is very poor with correlation coefficient 0.17. The regression analysis over land region (10° W-30° E; 8° N-30° N) revealed an excellent correlation between AIRS and SAPHIR at all the six levels with 0.80, 0.78, 0.84, 0.84, 0.86 and 0.65 respectively. However, again at levels 5 and 6, SAPHIR seems to be underestimating the AIRS measurements. After carrying out the quantitative comparison between SAPHIR and AIRS separately over land and ocean, the ground based global radiosonde network observations of humidity profiles over three distinct geographical locations (East Asia, tropical belt of South and North America and South Pacific) are then used to further validate the SAPHIR observations as AIRS has its own limitations. The SAPHIR observations within a radius of 50 km around the radiosonde stations are averaged and then the regression analysis is carried out at the first five levels of SAPHIR. The comparison is not carried out at sixth

  14. An improved method for correction of air temperature measured using different radiation shields

    NASA Astrophysics Data System (ADS)

    Cheng, Xinghong; Su, Debin; Li, Deping; Chen, Lu; Xu, Wenjing; Yang, Meilin; Li, Yongcheng; Yue, Zhizhong; Wang, Zijing

    2014-11-01

    The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala, Finland, and HYTFZ01, Huayun Tongda Satcom, China) was studied. Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012. Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen. In most cases, the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield. The measured errors changed sharply at sunrise and sunset, and reached maxima at noon. Their diurnal variation characteristics were, naturally, related to changes in solar radiation. The relationships between the record errors, global radiation, and wind speed were nonlinear. An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05), in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively. Measurement errors were reduced significantly after correction by either method for both shields. The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method, respectively.

  15. Application of frequency combs in the measurement of the refractive index of air

    SciTech Connect

    Zhang, J.; Lu, Z. H.; Menegozzi, B.; Wang, L. J.

    2006-08-15

    We report a new method in the precision measurement of the refractive index of air using a highly unbalanced Michelson interferometer with a femtosecond optical frequency comb as the light source. Standard dry air is filled into a 30 m multipass cell, serving as the long arm of the interferometer, while a short arm acts as the reference path. Both time and frequency domain interferograms are recorded to measure the refractive index of air. The deviation of our experimental results with Edlen's formula is 1.4x10{sup -9} at 800 nm. Our experiment has a standard error of 5.2x10{sup -9} at fixed parameters (pressure and temperature). This is achieved by putting the multipass cell into a temperature-stabilized box, and also by locking the interferometer path length with a He-Ne laser. We achieved a temperature stabilization of 0.8 mK for 25 h. This corresponds to 0.4 {mu}m multipass cell length change. The locking of the He-Ne interferometer enables us to achieve 7 nm path-length change outside the multipass cell. Combined with accurate measurement of temperature and pressure, we were able to achieve an accuracy of 7.7x10{sup -9}.

  16. DIESEL TRUCK IDLING EMISSIONS - MOBILE SOURCE AIR TOXICS MEASURED AT A HOT SPOT

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Miller, Terry L.; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    Mobile Source Air Toxics (MSATs) are of growing concern due to recent studies linking health risk to residency near heavily traveled roadways. Few research studies on MSAT emissions have been performed due to several factors; those factors include: the difficulty of measuring MSATs due to their semi-volatile nature, lower relative concentration in comparison to NOx and other criteria emissions, and fewer regulations on MSATs. In this paper, measurements of MSATs at a "hot spot" of poor air quality created by a high population of idling heavy-duty trucks are presented. The study area was the Watt Road-Interstate-40/75 interchange just west of Knoxville, TN where approximately 20,000 heavy-duty trucks travel along the interstate each day and hundreds of heavy-duty trucks idle at three large truck stops near the interchange. The air quality in the local area surrounding the interchange is affected negatively by the high number of mobile sources as well as geographic and meteorological conditions; the interchange lies in a valley between two ridges which slows long range transport of pollutants especially in winter months when temperature inversion occurs frequently. Ambient air quality was measured during summer and winter months of two separate years at three sites: a site in one of the truckstops, a site near the interstate roadway, and a site on top of one of the surrounding ridges chosen as a background site for comparison. Results of criteria pollutants measured at these sites are reported in a companion paper by Miller et. al.; the results presented here include measurements of MSATs such as formaldehyde, acetaldehyde, acrolein, and other species obtained via collection on di-nitrophenyl hydrazine (DNPH) filters. Also, preliminary measurements of poly-aromatic hydrocarbons are presented. The results indicate that emissions from idling heavy-duty trucks are a primary contributor of MSATs to local air quality near areas of high static truck traffic; furthermore

  17. Measurement of air quality within storage domes in technical area 54, areas G and L

    SciTech Connect

    Anderson, E.

    1994-03-15

    The concentrations of volatile organic compounds (VOCs) and tritium inside of storage domes at TA-54 were measured to assess worker exposure and support the Area G site characterization, including the Radioactive Air Emissions Management (RAEM) program. Samples were collected at 2-3 locations within Domes 48, 49, and 153 on up to six days during the summer of 1994. Samples were collected to evaluate three scenarios: (1) normal working activities with the domes open; (2) after domes were closed overnight; and (3) after domes were closed for three days. Eight-hour integrated samples were collected and analyzed in Radian`s Austin laboratories. Tritium activities from 17.1 to 69,900 pCi/m{sup 3} were measured. About two dozen individual VOCs were identified in each sample, but most of the concentration levels were very low (e.g.; < 1 to 10 ppbv). The highest concentrations measured were bromomethane (56.5 ppbv), 1, 1,1-trichloroethane (75.4 ppbv), propane (958 ppbv), methylene chloride (1,450 ppbv), and toluene (22.8). The measured VOC concentrations were well below the action levels developed by the New Mexico Environment Department and the measured tritium concentrations were well below the DOE`s derived air concentration (DAC). The variability in concentration within a dome during a single sampling episode was small. The concentrations were about an order of magnitude (i.e., 10x) higher after the domes had been closed overnight compared with the domes when open. Closing the domes over the weekend did not result in significantly higher concentrations (e.g.; > 20%) than when the domes were closed only overnight. The data were used to generate estimated annual dome emission rates of 0.3 Ci/yr of tritium and less than 100 lbs/yr of VOCs. The measured VOC concentrations were collected during the warmest months of the year and therefore should represent worst-case air impacts.

  18. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  19. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  20. Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector

    NASA Technical Reports Server (NTRS)

    Blinge, Magnus

    2003-01-01

    This paper presents cost effective measures to reduce CO2 emissions in the air freight sector. One door-to-door transport chain is studied in detail from a Scandinavian city to a city in southern Europe. The transport chain was selected by a group of representatives from the air freight sector in order to encompass general characteristics within the sector. Three different ways of shipping air cargo are studied, i.e., by air freighter, as belly freight (in passenger aircrafts) and trucking. CO2 emissions are calculated for each part of the transport chain and its relative importance towards the total amount CO2 emitted during the whole transport chain is shown. It is confirmed that the most CO2 emitting part of the transport chain is the actual flight and that it is in the take-off and climbing phases that most fuel are burned. It is also known that the technical development of aircraft implies a reduction in fuel consumption for each new generation of aircraft. Thus, the aircraft manufacturers have an important role in this development. Having confirmed these observations, this paper focuses on other factors that significantly affects the fuel consumption. Analyzed factors are, e.g., optimization of speed and altitude, traffic management, congestion on and around the airfields, tankering, "latest acceptance time" for goods and improving the load factor. The different factors relative contribution to the total emission levels for the transport chain has been estimated.

  1. Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Robson, Matthew; Helm, Paul A.; Diamond, Miriam L.

    2011-04-01

    Polyurethane foam (PUF) passive air samplers (PAS) are a common and highly useful method of sampling persistent organic pollutants (POP) concentrations in air. PAS calibration is necessary to obtain reasonable and comparable semi-quantitative measures of air concentrations. Various methods are found in the literature concerning PAS calibration. 35 studies on PAS use and calibration are examined here, in conjunction with a study involving 10 PAS deployed concurrently in outdoor air with a low-volume air sampler in order to measure the sampling rates of PUF-PAS for polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic musks (PCMs), and polycyclic aromatic hydrocarbons (PAHs). Based on this analysis it is recommended that (1) PAS should be assumed to represent bulk rather than gas-phase compound concentrations due to the sampling of particle-bound compounds, (2) calibration of PAS sampling rates is more accurately achieved using an active low-volume air sampler rather than depuration compounds since the former measures gas- and particle-phase compounds and does so continuously over the deployment period of the PAS, and (3) homolog-specific sampling rates based on KOA groupings be used in preference to compound/congener-specific or single sampling rates.

  2. Self-Shortening Dynamics Measured along a Femtosecond Laser Filament in Air

    SciTech Connect

    Odhner, J. H.; Levis, R. J.; Romanov, D. A.

    2010-09-17

    The filamentation-induced temporal shortening of a 40 femtosecond pulse propagating in air is traced using impulsive vibrational Raman scattering and measurement of the power spectrum as a function of position along the propagation axis. The N{sub 2}, O{sub 2}, and H{sub 2}O vibrational Raman responses reveal self-shortening of pulse features to 14 fs during the first filamentation cycle and to at least 9 fs in the second cycle. Spectral measurements further demonstrate that the coherent bandwidth generated in the region from 470 to 330 nm during the self-shortening process forms the {approx}9 fs pulse.

  3. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    NASA Astrophysics Data System (ADS)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  4. High resolution kilometric range optical telemetry in air by radio frequency phase measurement.

    PubMed

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km. PMID:27475593

  5. Time of flight measurement of speed of sound in air with a computer sound card

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz

    2014-11-01

    A computer sound card and freely available audio editing software are used to measure accurately the speed of sound in air using the time-of-flight method. In addition to speed of sound measurement, inversion behaviour upon reflection from an open and closed end of a pipe is demonstrated. Also, it is demonstrated that the reflection at an open end of a pipe occurs slightly outside the pipe. The equipment needed is readily available to any student with access to a microphone, loudspeaker and computer.

  6. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    NASA Astrophysics Data System (ADS)

    Hirano, Y.; Umigishi, M.; Ishii, K.; Ogawa, H.

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  7. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  8. Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.

    2009-12-01

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and

  9. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  10. Measurement of transient force produced by a propagating arc magnetohydrodynamic plasma actuator in quiescent atmospheric air

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2015-10-01

    An experimental study was conducted on a magnetohydrodynamic plasma actuator consisting of two parallel, six inch long, copper electrodes flush mounted on an insulating ceramic plate. An electrical arc is generated by a  ∼1 kA current pulse at  ∼100 V across the electrodes. A self-induced Lorentz force drives the arc along the electrodes. The motion of the arc induces flow in the surrounding air through compression as well as entrainment, and generates a transient force, about  ∼4 ms in duration. Experiments were performed on a prototype actuator in quiescent atmospheric air to characterize the motion of the arc and the momentum transferred to the surrounding air. Measurements included transient force and total impulse generated by the actuator as well as the armature voltage and current. The arc shape and transit velocity were determined by high-speed imaging. A peak force of 0.4 N imparting an impulse of 0.68 mN-s was measured for a peak current of 1.2 kA. The force scaled with the square of the armature current and the impulse scaled linearly with the spent capacitor energy. The results provide insight into the mechanisms of body force generation and momentum transfer of a magnetohydrodynamic plasma actuator.

  11. Understanding Anthropogenic Impacts on Air Quality at Rural Locations Using High Time Resolution Particle Composition Measurements

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Lee, T.; Yu, X.; Sullivan, A.; Kreidenweis, S. M.; Malm, W.

    2006-12-01

    Many of our nation's National Parks, wilderness areas and other visually protected environments are located in regions where urban, agricultural, and other anthropogenic emissions periodically exert strong impacts on local air quality. In this presentation we will use high time resolution (15 min) measurements of particle composition to examine the frequency and magnitude of these impacts and to elucidate changes in aerosol chemistry occurring during transitions between periods of strong anthropogenic impact and periods when atmospheric composition is more strongly influenced by natural emissions and/or regional air quality. Highlights will be drawn from a series of field campaigns at locations around the U.S., including Yosemite National Park (downwind of the Central Valley of California), San Gorgonio Wilderness Area (downwind of the Los Angeles basin), Bondville, Illinois (a rural Midwestern site), Great Smoky Mountains National Park (a rural, mountain location in the polluted southeast U.S.), Brigantine National Wildlife Refuge, New Jersey (a coastal site on the U.S. eastern seaboard), and Rocky Mountain National Park, Colorado (located in the mountains west of the Colorado Front Range urban corridor). Particle composition measurements were made using a Particle Into Liquid Sampler (PILS) coupled to two on-line ion chromatographs. We will demonstrate how air quality at these locations is strongly influenced by local and regional transport phenomena and illustrate the influence of anthropogenic emissions on both fine and coarse particle concentrations and speciation.

  12. A critical analysis of air shower structure functions and size spectrum measurements with the NBU air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.

    1985-01-01

    A total of 11,000 showers in the size range 10 to the 4 to 10 to the 6 particles so far detected by the NBU air shower array has been analyzed using five different structure functions. A comparison of structure functions in terms: (1) of shower size; and (2) electron density at various core distances has been discussed to indicate the present status of structure functions in air shower analysis.

  13. Mortality reduction following the air pollution control measures during the 2010 Asian Games

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Zhang, Yonghui; Liu, Tao; Xiao, Jianpeng; Xu, Yanjun; Xu, Xiaojun; Qian, Zhenmin; Tong, Shilu; Luo, Yuan; Zeng, Weilin; Ma, Wenjun

    2014-07-01

    Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1-December 21) in 2010 with the same calendar date of baseline years (2006-2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73-0.86), 0.77 (95% CI: 0.66-0.89) and 0.68 (95% CI: 0.57-0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.

  14. Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Morelli, Eugene A.

    2012-01-01

    The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.

  15. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  16. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  17. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  18. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  19. Airborne measurements of surface layer turbulence over the ocean during cold air outbreaks

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Shien; Yeh, Eueng-Nan

    1987-01-01

    The spectral characteristics of surface layer turbulence for the near-shore cloud street regions over the Atlantic Ocean were examined using 50-m level data of airborne measurements of atmospheric turbulence spectra above the western Atlantic Ocean during cold air outbreaks. The present study, performed for the Mesoscale Air-Sea Exchange (MASEX) experiment, extends and completes the preliminary analyses of Chou and Yeh (1987). In the inertial subrange, a near 4/3 ratio was observed between velocity spectra normal to and those along the aircraft heading. A comparison of the turbulent kinetic energy budgets with those of Wyngaard and Cote (1971) and Caughey and Wyngaard (1979) data indicates that the turbulent kinetic energy in the surface layer is dissipated less in the MASEX data than in data obtained by the previous groups.

  20. Measurement of shower electrons and muons using a small air shower array

    NASA Technical Reports Server (NTRS)

    Chan, S. K.; Ng, L. K.

    1985-01-01

    A small air shower array has been used to measure the size spectrum of air showers at sea level in the size range 6.10 to the 3rd power to 10 to the 6th power. The result fitted with the power law gives an index 2.79 + or - 0.11 for the differential spectrum. Lateral distribution of electrons fitted with the well known NKG function results in an age parameter s = 1.35 for core distances less than 30m and s = 0.8 for longer core distances. Lateral distribution of muons follows the general shape of Greisen's relation but is much higher in intensity. Muon and electron densities at the same observation point are also compared.