Science.gov

Sample records for air land sea

  1. Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air-sea exchange.

    PubMed

    Zhang, Gan; Li, Jun; Cheng, Hairong; Li, Xiangdong; Xu, Weihai; Jones, Kevin C

    2007-06-01

    The South China Sea (SCS) is surrounded by developing countries in Southeast Asia, where persistent organic pollutants (POPs), such as organochlorine pesticides (OCPs), are still used legally or illegally, and are of concern. Yet little is known about the distribution of OCPs in the water and atmosphere over SCS, as well as their air-sea equilibrium status and time trends. In this study, ship-board air samples and surface seawater collected in the northern SCS between September 6 and 22, 2005 were analyzed for selected OCPs. The measured OCP concentrations in the atmosphere over the northern SCS were influenced by proximity to source regions and air mass origins. The highest atmospheric OCP concentrations were found at sampling sites adjacent to continental South China. OCPs in surface seawater showed significant spatial variations, with the highest concentration observed in a water sample from off Vietnam. The coastal currents were suggested to play a key role in the delivery of waterborne OCPs in the northern SCS. Time trend, land outflow, and air-sea exchange of selected OCPs in the SCS were investigated, by comparison of this dataset with historical data.

  2. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  3. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  4. Descriptive Epidemiology of Musculoskeletal Injuries in Naval Special Warfare Sea, Air, and Land Operators.

    PubMed

    Lovalekar, Mita; Abt, John P; Sell, Timothy C; Wood, Dallas E; Lephart, Scott M

    2016-01-01

    The purpose of this analysis was to describe medical chart reviewed musculoskeletal injuries among Naval Special Warfare Sea, Air, and Land Operators. 210 Operators volunteered (age: 28.1 ± 6.0 years, height: 1.8 ± 0.1 m, weight: 85.4 ± 9.3 kg). Musculoskeletal injury data were extracted from subjects' medical charts, and injuries that occurred during 1 year were described. Anatomic location of injury, cause of injury, activity when injury occurred, and injury type were described. The frequency of injuries was 0.025 per Operator per month. Most injuries involved the upper extremity (38.1% of injuries). Frequent anatomic sublocations for injuries were the shoulder (23.8%) and lumbopelvic region of the spine (12.7%). Lifting was the cause of 7.9% of injuries. Subjects were participating in training when 38.1% of injuries occurred and recreational activity/sports when 12.7% of injuries occurred. Frequent injury types were strain (20.6%), pain/spasm/ache (19.0%), fracture (11.1%), and sprain (11.1%). The results of this analysis underscore the need to investigate the risk factors, especially of upper extremity and physical activity related injuries, in this population of Operators. There is a scope for development of a focused, customized injury prevention program, targeting the unique injury profile of this population. PMID:26741478

  5. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  6. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  7. Sea to land transfer of anthropogenic radionuclides to the North Wales coast, Part I: external gamma radiation and radionuclide concentrations in intertidal sediments, soil and air.

    PubMed

    Bryan, S E; McDonald, P; Hill, R; Wilson, R C

    2008-01-01

    Previous projects specifically aimed at performing radiological assessments in the vicinity of North Wales, investigating the presence and transfer of radionuclides from sea to land, were in 1986 and 1989. Since then, changes have occurred in the radioactive discharges from the British Nuclear Group Sellafield site. Annual discharges of (137)Cs, (238)Pu, (239,340)Pu and (241)Am have decreased markedly whereas, up until recent years, discharges of (99)Tc have increased. It is therefore desirable to quantify current transfer processes of radionuclides in the North Wales region and thus provide an update on 15-year-old studies. A field campaign was conducted collecting soil samples from 10 inland transects and air particulates on air filters from three High Volume Air Samplers, along the northern coast of Wales at Amlwch, Bangor Pier and Flint. Complementary field data relating to external gamma dose rates were collected at the soil sites. The field data generated for (137)Cs, (238)Pu, (239,340)Pu and (241)Am were consistent with what had been reported 15 years previously. Therefore, there has been no increase in the supply of these Sellafield-derived radionuclides to the terrestrial environment of the North Wales coast. The (99)Tc data in sediments were consistent with reported values within annual monitoring programmes, however, a relatively high activity concentration was measured in one sediment sample. This site was further investigated to determine the reason why such a high value was found. At present there is no clear evidence as to why this elevated concentration should be present, but the role of seaweed and its capacity in accumulating (99)Tc and transferring it to sediment is of interest. The analysis of the field samples for (99)Tc, (137)Cs, (238)Pu, (239,240)Pu and (241)Am has provided a data set that can be used for the modelling of the transfer of anthropogenic radionuclides from sea to land and its subsequent radiological implications and is reported

  8. Remote sensing aides studies of climate and wildlife in the Arctic-on land, at sea, and in the air (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, D. C.; Durner, G. M.; Gill, R. E.; Griffith, B.; Schmutz, J. A.

    2013-12-01

    Every day a variety of remote sensing technologies collects large volumes of data that are supporting new analyses and new interpretations about how weather and climate influence the status and distribution of wildlife populations worldwide. Understanding how climate presently affects wildlife is crucial for projecting how climate change could affect wildlife in the future. This talk highlights climate-related wildlife studies by the US Geological Survey in the Arctic. The Arctic is experiencing some of the most pronounced climate changes on earth, raising concerns for species that have evolved seasonal migration strategies tuned to habitat availability and quality. On land, large herbivores such as caribou select concentrated calving areas with high abundance of rapidly growing vegetation and calf survival increases with earlier green-up and with the quantity of food available to cows at peak lactation. Geese time their migrations and reproductive efforts to coincide with optimal plant phenology and peak nutrient availability and departures from this synchrony can influence the survival of goslings. At sea, the habitats of polar bears and other sea-ice-dependent species have dramatically changed over just the past two decades. The ice pack is comprised of younger ice that melts much more extensively during summer-a trend projected to continue by all general circulation models under all but the most aggressive greenhouse gas mitigation scenarios. Studies show that by mid-century optimal polar bear habitats will be so reduced that the species may become extirpated from some regions of the Arctic. In the air, a variety of shorebird species make non-stop endurance flights between northern and southern hemispheres. The bar-tailed godwit undertakes a trans-Pacific flight between Alaska and Australasia that lasts more than seven days and spans more than 10,000 km. Studies show that godwits time their flights to coincide with favorable wind conditions, but stochastic

  9. The impact of land and sea surface variations on the Delaware sea breeze at local scales

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher P.

    The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i

  10. SeaWinds - Oceans, Land, Polar Regions

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.

    This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.

    The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.

    The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to

  11. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atlantic coastal port, including ports in the Gulf of Mexico and Caribbean Sea, must have all fins and... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  12. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic coastal port, including ports in the Gulf of Mexico and Caribbean Sea, must have all fins and... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  13. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atlantic coastal port, including ports in the Gulf of Mexico and Caribbean Sea, must have all fins and... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  14. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atlantic coastal port, including ports in the Gulf of Mexico and Caribbean Sea, must have all fins and... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. (a) Atlantic tunas. Persons that own or operate a fishing...

  15. 50 CFR 635.30 - Possession at sea and landing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic coastal port, including ports in the Gulf of Mexico and Caribbean Sea, must have all fins and... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession at sea and landing. 635.30....30 Possession at sea and landing. Link to an amendment published at 75 FR 57702, Sept. 22, 2010....

  16. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air land ocean interactions and human activities

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Chronis, G. Th; Collins, M. B.; Lykousis, V.

    2000-04-01

    zone ecosystem. Thus, the construction of dams along the routes of the main rivers has reduced dramatically the water/sediment fluxes; this caused, for example, retreat of the deltaic coastlines and seawater intrusion into the groundwater aquifers. Similarly, pollution and/or eutrophication of the nearshore marine environment have resulted from the inputs of industrial wastes, urban untreated sewage, and agricultural activities on the coastal plains. This effect is demonstrated by high levels of pollutants, nutrients, and by the increased concentrations of non-residual trace-metals within the surficial sediments. Finally, climatic changes associated with a potential rise in sea level (i.e. 30-50 cm) will threaten a substantial part of the low-lying lands of Thermaikos Gulf. Thus, systematic and thorough monitoring is needed in order to protect the coastal ecosystem; this will ensure its sustainable development and successful management, in relation to present and future socio-economic activities and climatic changes.

  17. PALEONTOLOGY: Biggest Extinction Hit Land and Sea.

    PubMed

    Kerr, R A

    2000-09-01

    Two hundred and fifty million years ago, at the end of the Permian period and the opening of the Triassic, 85% of the species in the sea vanished in a geologic moment of less than half a million years. Now from South Africa comes evidence that the Permian-Triassic extinction of land plants was equally brutal and swift. In a paper on page 1740 of this issue of Science, researchers report that rocks that started as sediments laid down in South Africa's Karoo Basin 250 million years ago tell of an abrupt switch in style of sedimentation, as if the land had been permanently stripped of the rooted plants that held it in place. But in the absence of any trace of an impact, researchers are groping for an equally far-reaching explanation.

  18. PALEONTOLOGY: Biggest Extinction Hit Land and Sea.

    PubMed

    Kerr, R A

    2000-09-01

    Two hundred and fifty million years ago, at the end of the Permian period and the opening of the Triassic, 85% of the species in the sea vanished in a geologic moment of less than half a million years. Now from South Africa comes evidence that the Permian-Triassic extinction of land plants was equally brutal and swift. In a paper on page 1740 of this issue of Science, researchers report that rocks that started as sediments laid down in South Africa's Karoo Basin 250 million years ago tell of an abrupt switch in style of sedimentation, as if the land had been permanently stripped of the rooted plants that held it in place. But in the absence of any trace of an impact, researchers are groping for an equally far-reaching explanation. PMID:17811146

  19. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  20. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  1. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  2. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  3. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  4. The role of sea spray in cleansing air pollution over ocean via cloud processes.

    PubMed

    Rosenfeld, Daniel; Lahav, Ronen; Khain, Alexander; Pinsky, Mark

    2002-09-01

    Particulate air pollution has been shown to strongly suppress precipitation from convective clouds over land. New observations show that precipitation from similar polluted clouds over oceans is much less affected, because large sea salt nuclei override the precipitation suppression effect of the large number of small pollution nuclei. Raindrops initiated by the sea salt grow by collecting small cloud droplets that form on the pollution particles, thereby cleansing the air. Therefore, sea salt helps cleanse the atmosphere of the air pollution via cloud processes. This implies that over oceans, the climatic aerosol indirect effects are significantly smaller than current estimates.

  5. Land -sea correlations: Are they realistic

    NASA Astrophysics Data System (ADS)

    Singhvi, A. K.

    2013-05-01

    Most of Land - Sea or Land - Land correlation have been and are being made assuming a synchronicity of events, processes and resulting changes, on the land and in the oceans. There is a tendency, to match the terrestrial records on the land with those from the oceans and/or ice cores and then deduce the forcing leading to a circular argument. Thus, for example it is commonplace that odd number marine isotopic stages are correlated directly with warmer, soil forming episodes. In such studies, it is implicitly assumed that analogous to marine or ice core records, the terrestrial archives are also created / accreted continuously and that the terrestrial sediment attributes behave in the same manner as the ocean or ice proxies. Based on this, identical periodicities in the response of terrestrial systems have been inferred in numerous cases and major inferences have been drawn. Further complications arise from multi-proxy data with a simplistic assumption that all proxies respond to the forcing in a synchronous manner and that the larger the number of proxies the better it is. But these multi-proxy convergences of evidence are often imposed rather than being observed. Aspects of proxy response, the threshold for proxy response, response times, and relaxation times of proxies for a given forcing are invariably ignored, imposing serious constraints on the presence or absence of correlations. Direct dating of geological archives show that spatial gradients in landform response to the same climate forcing exist and lead to differences in timing of the responses of sedimentation events. Spatial and temporal gradients arise as sedimentation on land needs a window of opportunity to create a sediment record and records are preserved partially. Therefore, terrestrial systems have a lagged response to a forcing due to thresholds and preservation. Three chronometrically constrained case studies of dryland responses to Monsoon changes, namely: 1) clear evidence of lagged Aeolian

  6. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    PubMed

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  7. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions.

    PubMed

    Rode, Karyn D; Wilson, Ryan R; Regehr, Eric V; St Martin, Michelle; Douglas, David C; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986-1995 and 2008-2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions. PMID:26580809

  8. Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions

    USGS Publications Warehouse

    Rode, Karyn D.; Wilson, Ryan R.; Regehr, Eric V.; St. Martin, Michelle; Douglas, David; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986–1995 and 2008–2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions.

  9. Increased Land Use by Chukchi Sea Polar Bears in Relation to Changing Sea Ice Conditions

    PubMed Central

    Rode, Karyn D.; Wilson, Ryan R.; Regehr, Eric V.; St. Martin, Michelle; Douglas, David C.; Olson, Jay

    2015-01-01

    Recent observations suggest that polar bears (Ursus maritimus) are increasingly using land habitats in some parts of their range, where they have minimal access to their preferred prey, likely in response to loss of their sea ice habitat associated with climatic warming. We used location data from female polar bears fit with satellite radio collars to compare land use patterns in the Chukchi Sea between two periods (1986–1995 and 2008–2013) when substantial summer sea-ice loss occurred. In both time periods, polar bears predominantly occupied sea-ice, although land was used during the summer sea-ice retreat and during the winter for maternal denning. However, the proportion of bears on land for > 7 days between August and October increased between the two periods from 20.0% to 38.9%, and the average duration on land increased by 30 days. The majority of bears that used land in the summer and for denning came to Wrangel and Herald Islands (Russia), highlighting the importance of these northernmost land habitats to Chukchi Sea polar bears. Where bears summered and denned, and how long they spent there, was related to the timing and duration of sea ice retreat. Our results are consistent with other studies supporting increased land use as a common response of polar bears to sea-ice loss. Implications of increased land use for Chukchi Sea polar bears are unclear, because a recent study observed no change in body condition or reproductive indices between the two periods considered here. This result suggests that the ecology of this region may provide a degree of resilience to sea ice loss. However, projections of continued sea ice loss suggest that polar bears in the Chukchi Sea and other parts of the Arctic may increasingly use land habitats in the future, which has the potential to increase nutritional stress and human-polar bear interactions. PMID:26580809

  10. By land, sea and air (and space): Verifying UK methane emissions at a range of scales by integrating multiple measurement platforms

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Lunt, M. F.; Ganesan, A.

    2015-12-01

    The Greenhouse gAs Uk and Global Emissions (GAUGE) programme and Department of Energy and Climate Change (DECC) network aim to quantify the magnitude and uncertainty of UK greenhouse gas (GHG) emissions at a resolution and accuracy higher than has previously been possible. The on going DECC tall tower network consists of three sites, and an eastern background site in Ireland. The GAUGE project includes instruments at two additional tall tower sites, a high-density measurement network over agricultural land in eastern England, a ferry that performs near-daily transects along the east coast of the UK, and a research aircraft that has been deployed on a campaign basis. Together with data collected by the GOSAT satellite, these data represent the GAUGE/DECC GHG measurement network that is being used to quantify UK GHG fluxes. As part of the wider GAUGE modelling efforts, we have derived methane flux estimates for the UK and northwest Europe using the UK Met Office NAME atmospheric transport model and a novel hierarchical Bayesian "trans-dimensional" inversion framework. We will show that our estimated fluxes for the UK as a whole are largely consistent between individual measurement platforms, albeit with very different uncertainties. Our novel inversion approach uses the data to objectively determine the extent to which we can further refine our national estimates to the level of large urban areas, major hotspots or larger sub-national regions. In this talk, we will outline some initial findings of the GAUGE project, tackling questions such as: At what spatial scale can we effectively derive greenhouse gas fluxes with a dense, multi-platform national network? Can we resolve individual metropolitan areas or major hotspots? What is relative impact of individual stations, platforms and network configurations on flux estimates for a country of the size of the UK? How can we effectively use multi-platform observations to cross-validate flux estimates and determine likely

  11. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  12. Land use information and air quality planning

    USGS Publications Warehouse

    Reed, Wallace E.; Lewis, John E.

    1975-01-01

    The pilot national land use information system developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has provided an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (SO2) and particulate matter. Implementation of plans to control air quality requires land use information, which, until this time, has been inadequate. The pilot system, however, provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period 1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels; (2) future annual levels of SO2, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality; and (3) for the 1971-72 winter and annual 1972 period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach.

  13. INTEGRATED COASTAL RESERVE PLANNING: MAKING THE LAND-SEA CONNECTION

    EPA Science Inventory

    Land use, watershed processes, and coastal biodiversity can be strongly coupled. Land-sea interactions are ignored, however, when selecting terrestrial and marine reserves with existing models, with the risk that reserves will fail to achieve their conservation objectives. The co...

  14. Joint Air Sea Interaction (JASIN) experiment, Northwest coast of Scotland

    NASA Technical Reports Server (NTRS)

    Businger, J. A.

    1981-01-01

    The joint air sea interaction (JASIN) experiment took place off the Northwest coast of Scotland. Sea surface and boundary layer parameters were measured. The JASIN data was used as ground truth for various sensors on the SEASAT satellite.

  15. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Air cushion landing gear applications study

    NASA Technical Reports Server (NTRS)

    Earl, T. D.

    1979-01-01

    A series of air cushion landing gear (ACLG) applications was studied and potential benefits analyzed in order to identify the most attractive of these. The selected applications are new integrated designs (not retrofits) and employ a modified design approach with improved characteristics and performance. To aid the study, a survey of potential users was made. Applications were evaluated in the light of comments received. A technology scenario is developed, with discussion of problem areas, current technology level and future needs. Feasible development timetables are suggested. It is concluded that near-term development of small-size ACLG trunks, exploration of flight effects and braking are key items. The most attractive applications are amphibious with very large cargo aircraft and small general aviation having the greatest potential.

  17. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  18. Use of MODIS Land and Sea Surface Temperatures to Initialize Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Arnold, James E. (Technical Monitor); Lapenta, William M.; Haines, Stephanie; Jedlovec, Gary; Mackaro, Scott

    2003-01-01

    As computer power continues to increase, mesoscale models are initialized at all hours of the day and continue to be run at higher and higher spatial resolutions. As a result, initializing land surface temperature can be problematic. The majority of research-based models are initialized at 00 and 12 UTC when upper air observations and reanalysis fields are available. The landsea surface temperatures are then set equal to the two-meter air temperature produced by the preprocessor analysis system. This particular procedure might be valid in the early morning hours just prior to sunrise, but it becomes less valid during the remainder of the diurnal cycle. Operational models, such as the Rapid Update Cycle run at the National Centers for Environmental Prediction (NCEP), are initialized every hour on a daily basis. This presents a unique challenge to the initial specification of the land temperature, especially during the first several hours of the solar heating cycle when land and overlying air temperatures are far from being the same. Another issue that needs to be addressed is the spatial variability of land surface temperature. By early next year, the NCEP operational Eta model will be employed at 8 km resolution. Methods to accurately specify the initial land surface temperature at such high resolution need to be explored. This paper presents the results of using data from the NASA Moderate Imaging Sensor aboard the TERRA Satellite to initialize land and sea surface temperatures within the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) 5'th generation Mesoscale Model (MM5). We have simulated a northern Gulf Coast sea breeze case to demonstrate the utility of using the MODIS data to initialize both the land and sea surface temperature fields. Model grid configurations of 12-, 4-, and l-km are employed.

  19. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  20. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  1. Oil Palm expansion over Southeast Asia: land use change and air quality

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.

    2015-12-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.

  2. A dynamical model of Kara Sea land-fast ice

    NASA Astrophysics Data System (ADS)

    Olason, Einar

    2016-05-01

    This paper introduces modifications to the traditional viscous-plastic sea-ice dynamical model, which are necessary to model land-fast ice in the Kara Sea in a realistic manner. The most important modifications are an increase in the maximum viscosity from the standard value of ζmax=>(2.5×108s>)P to ζmax=>(1013s>)P, and to use a solver for the momentum equation capable of correctly solving for small ice velocities (the limit here is set to 10-4 m/s). Given these modifications, a necessary condition for a realistic fast-ice simulation is that the yield curve give sufficient uniaxial compressive strength. This is consistent with the idea that land-fast ice in the Kara Sea forms primarily via static arching. The modified model is tested and tuned using forcing data and observations from 1997 and 1998. The results show that it is possible to model land-fast ice using this model with the modifications mentioned above. The model performs well in terms of modeled fast-ice extent, but suffers from unrealistic break-ups during the start and end of the fast-ice season. The main results are that fast ice in the Kara Sea is supported by arching of the ice, the arches footers resting on a chain of islands off shore.

  3. Protists in Arctic drift and land-fast sea ice.

    PubMed

    Comeau, André M; Philippe, Benoît; Thaler, Mary; Gosselin, Michel; Poulin, Michel; Lovejoy, Connie

    2013-04-01

    Global climate change is having profound impacts on polar ice with changes in the duration and extent of both land-fast ice and drift ice, which is part of the polar ice pack. Sea ice is a distinct habitat and the morphologically identifiable sympagic community living within sea ice can be readily distinguished from pelagic species. Sympagic metazoa and diatoms have been studied extensively since they can be identified using microscopy techniques. However, non-diatom eukaryotic cells living in ice have received much less attention despite taxa such as the dinoflagellate Polarella and the cercozoan Cryothecomonas being isolated from sea ice. Other small flagellates have also been reported, suggesting complex microbial food webs. Since smaller flagellates are fragile, often poorly preserved, and are difficult for non-experts to identify, we applied high throughput tag sequencing of the V4 region of the 18S rRNA gene to investigate the eukaryotic microbiome within the ice. The sea ice communities were diverse (190 taxa) and included many heterotrophic and mixotrophic species. Dinoflagellates (43 taxa), diatoms (29 taxa) and cercozoans (12 taxa) accounted for ~80% of the sequences. The sympagic communities living within drift ice and land-fast ice harbored taxonomically distinct communities and we highlight specific taxa of dinoflagellates and diatoms that may be indicators of land-fast and drift ice.

  4. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  5. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear is on the ground and the nose gear is about to touch down as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  6. Linking Air, Land, and Water Pollution for Effective Environmental Management

    EPA Science Inventory

    Since the passage of the National Environmental Policy Act in 1970, the U.S. Environmental Protection Agency, other federal agencies, and the states have made substantial progress in improving the Nation’s air and water quality. Traditionally, the air, land, and water pollution ...

  7. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavour, after completing a mission of almost 17 days duration in space, touches down on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995. In this photo the nose gear is still in the air as the orbiter touches down.

  8. Atlantic Air-Sea Interaction Revisited

    NASA Astrophysics Data System (ADS)

    Rodwell, M. J.

    INTRODUCTION DATA AND MODELS THE ANALYSIS METHOD ATMOSPHERIC FORCING OF NORTH ATLANTIC SEA SURFACE TEMPERATURES NORTH ATLANTIC SEA SURFACE TEMPERATURE FORCING OF THE ATMOSPHERE Observational Evidence Model Results POTENTIAL SEASONAL PREDICTABILITY BASED ON THE ATMOSPHERE GENERAL - CIRCULATION MODEL CONCLUSIONS AND DISCUSSION REFERENCES

  9. Air-sea transfer of gas phase controlled compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Bell, T. G.; Blomquist, B. W.; Fairall, C. W.; Brooks, I. M.; Nightingale, P. D.

    2016-05-01

    Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ∼30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the “zero bubble” waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.

  10. On the Global Oxygen Anomaly and Air-Sea Flux

    NASA Technical Reports Server (NTRS)

    Garcia, Hernan E.; Keeling, Ralph F.

    2001-01-01

    A new climatology of monthly air-sea oxygen fluxes throughout the ice-free surface global ocean is presented. The climatology is based on weighted linear least squares regressions using heat flux monthly anomalies for spatial and temporal interpolation of historical O2 data. The seasonal oceanic variations show that the tropical belt (20 S - 20 N) is characterized by relatively small air-sea fluxes when compared to the middle to high latitudes (40 deg - 70 deg). The largest and lowest seasonal fluxes occur during summer and winter in both hemispheres. By means of an atmospheric transport model we show that our climatology is in better agreement with the observed amplitude and phasing of the variations in atmospheric O2/N2 ratios because of seasonal air-sea exchanges at baseline stations in the Pacific Ocean than with previous air-sea O2 climatologies. Our study indicates that the component of the air-sea O2 flux that correlates with heat flux dominates the large-scale air-sea O2 exchange on seasonal timescales. The contribution of each major oceanic basin to the atmospheric observations is described. The seasonal net thermal (SNO(sub T)) and biological (SNO(sub B)) outgassing components of the flux are examined in relation to latitudinal bands, basin-wide, and hemispheric contributions. The Southern Hemisphere's SNO(sub B) (approximately 0.26 Pmol) and SNO(sub T) (approximately 0.29 Pmol) values are larger than the Northern Hemisphere's SNO(sub B) (approximately 0.15 Pmol) and SNO(sub T) (approximately 0.16 Pmol) values (1 Pmol = 10(exp 15) mol). We estimate a global extratropical carbon new production during the outgassing season of 3.7 Pg C (1 Pg = 10(exp 15) g), lower than previous estimates with air-sea O2 climatologies.

  11. Coupled Air-Sea Observations and Modeling for Better Understanding Tropical Cyclone Prediction and Predictability

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2014-12-01

    A systematic observational and modeling study is conducted to better understand the physical processes controlling air-sea interaction and their impact on tropical cyclone (TC) prediction and predictability using a fully coupled atmosphere-wave-ocean modeling system developed at the University of Miami and observations from field campaigns. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling system that is flexible to use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for ensemble forecasts that can be used for coupled atmosphere-ocean data assimilation and assessment of uncertainties in coupled model predictions. The coupled modeling system has been evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, ocean drifters and floats) collected in recent field campaigns in the Gulf of Mexico and TCs in the Atlantic and Pacific basins. This talk will provide 1) an overview of the unified air-sea interface model, 2) fully coupled atmosphere-wave-ocean model predictions of TCs and evaluation with coupled air-sea observations, and 3) results from high-resolution (1.3 km grid resolution) ensemble experiments using a stochastic kinetic energy backscatter (SKEB) perturbation method to assess the predictability and uncertainty in TC predictions.

  12. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-20

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  13. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  14. Rain drop size densities over land and over sea

    NASA Astrophysics Data System (ADS)

    Bumke, Karl

    2010-05-01

    A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the

  15. New research initiative on air sea interaction in South Africa

    SciTech Connect

    Rouault, M.; Leethorp, A.; Lutjeharms, J.R.E.

    1994-12-31

    Recent statistical results have demonstrated that the oceanic environment of Southern Africa plays a important regulating role in the climate of the subcontinent. Statistical teleconnections between oceanic temperature anomalies and precipitation over South Africa`s summer rainfall region have been demonstrated, even to the extent of being partially implicated in catastrophic floods. A research program to investigate the interaction between ocean and atmosphere in those ocean areas that have been identified as crucial to Southern Africa climate and rainfall has just started. The first step of this program was to set up a state of the art air-sea interaction measurement system aboard the antarctic research vessel S.A. Agulhas. The second step of the program was to install low cost automatic air sea interaction measurement systems on three research vessels which will provide an extensive database for air-sea interaction studies.

  16. Air cushion landing system stability study

    NASA Astrophysics Data System (ADS)

    Burton, T. D.

    1981-02-01

    An analysis of an inelastic ACLS plunge mode dynamic model is presented. The ACLS has unrestrained side elements and frozen end elements. The model exhibits unstable behavior at certain operating conditions for which the side elements are in contact with the ground. A linear analysis showed this instability to be due mainly to the altitude sensitivities of the cushion to atmosphere airflows and the attendant influence on the dynamic pressure forces on the vehicle. The model instability can be alleviated by isolating side and end elements so that they are all unrestrained and by simultaneously venting the air cushion directly to atmosphere.

  17. The air-sea transformation and diapycnal overturning circulation within the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Isachsen, P. E.; Nøst, O. A.

    2012-04-01

    Air-sea flux climatologies and reanalyzes show that the bulk of the oceanic heat and buoyancy loss over the Nordic Seas takes place over interior regions not easily accessible by the time-mean large-scale currents. Eddy transport of heat and buoyancy, from the boundary currents and into the deep basins, is thought to be a key mechanism. Here we use gridded observations, theory and a modern parametrization of eddy transport to quantify the buoyancy budget of this region. The calculations confirm that mean currents are unable to explain the air-sea transformation that takes place over the interior basins of the Nordic Seas and that eddy transport instead dominates. The parametrization of eddy transport also suggests a significant overturning cell between the eastern and western parts of the Nordic Seas. This cell is, however, unaccounted for in the remaining data sets studied here.

  18. Air-sea interactions and precipitation over the tropical oceans

    NASA Technical Reports Server (NTRS)

    Gautier, C.

    1992-01-01

    In this lecture, the author principally discusses air-sea exchanges that are relevant to climate and global problems. The processes of interest are those acting over time scales of months to decades, which in some instances are influenced by smaller-time-scale processes, down to the diurnal time scale. The repsective influence of these processes varies with regions, seasons and scales over which they occur and, because these processes are mostly nonlinear, scale interactions can be quite complex. Owing to the breadth of the topic addressed, the discussion is mostly focused on the tropical regions where air-sea interactions and precipitation processes eventually affect the entire globe. This allows a look in more detail at some air-sea processes, such as those associated with the El Nino southern oscillation (ENSO). This oscillation, which affects the climate of the entire globe, acts over periods of a year or longer and is caused, primarily, by sea surface temperature (SST) variations in the tropical Pacific. As a result, SST variability is often used as an indicator of coupled ocean-atmosphere low-frequency variability. Global or basin scale processes can uniquely be observed from space-born instruments with the coverage required. Space based techniques have been developed during the last decade which can now be used to illustrate the scientific issues presented and the presentation concludes with an overview of some Earth Observing System (EOS) capabilities for addressing air-sea interactions and hydrology issues.

  19. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The drag chute is fully deployed as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  20. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The drag chute is fully deployed in this view of the Space Shuttle Endeavour as it completes a mission of almost 17 days duration in space on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995.

  1. Climate change effects on the Baltic Sea borderland between land and sea.

    PubMed

    Strandmark, Alma; Bring, Arvid; Cousins, Sara A O; Destouni, Georgia; Kautsky, Hans; Kolb, Gundula; de la Torre-Castro, Maricela; Hambäck, Peter A

    2015-01-01

    Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.

  2. Cold air outbreaks along a non-frozen sea channel: effects of wind on snow bands

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2015-08-01

    Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east-west sea channel at 60oN (`Gulf of Finland'), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4-6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20-25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15-18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.

  3. [Distribution and air-sea fluxes of methane in the Yellow Sea and the East China Sea in the spring].

    PubMed

    Cao, Xing-Peng; Zhang, Gui-Ling; Ma, Xiao; Zhang, Guo-Ling; Liu, Su-Mei

    2013-07-01

    A survey was carried out in the Yellow Sea and the East China Sea from March 17 to April 06 of 2011. Dissolved CH4 in various depths were measured and sea-to-air fluxes were estimated. Methane concentrations in surface and bottom waters ranged between 2.39-29.67 nmol x L(-1) and 2.63-30.63 nmol x L(-1), respectively. Methane concentrations in bottom waters were slightly higher than those in surface waters, suggesting the existence of methane source in bottom waters or sediments. The horizontal distribution of dissolved CH4 showed a decrease from the river mouth to the open sea, and was influenced by the freshwater discharge and the Kuroshio intrusion. Surface methane saturations ranged from 93%-1 038%. Sea to air CH4 fluxes were (2.85 +/- 5.11) micromol x (m2 x d)(-1) (5.18 +/- 9.99) micromol x (m2 x d)(-1) respectively, calculated using the Liss and Merlivat (LM86), the Wanninkhof (W92) relationships and in situ wind speeds, and estimated emission rates of methane from the East China Sea and the Yellow Sea range from 7.05 x 10(-2) - 12.0 x 10(-2) Tg x a(-1) and 1.17 x 10(-2) - 2.20 x 10(-2) Tg x a(-1), respectively. The Yellow Sea and East China Sea are the net sources of atmospheric methane in the spring.

  4. Optimising Land-Sea Management for Inshore Coral Reefs

    PubMed Central

    Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Stevens, Tim; Henderson, Christopher J.; Maxwell, Paul S.; Tibbetts, Ian R.; Schoeman, David S.; Rissik, David; Schlacher, Thomas A.

    2016-01-01

    Management authorities seldom have the capacity to comprehensively address the full suite of anthropogenic stressors, particularly in the coastal zone where numerous threats can act simultaneously to impact reefs and other ecosystems. This situation requires tools to prioritise management interventions that result in optimum ecological outcomes under a set of constraints. Here we develop one such tool, introducing a Bayesian Belief Network to model the ecological condition of inshore coral reefs in Moreton Bay (Australia) under a range of management actions. Empirical field data was used to model a suite of possible ecological responses of coral reef assemblages to five key management actions both in the sea (e.g. expansion of reserves, mangrove & seagrass restoration, fishing restrictions) and on land (e.g. lower inputs of sediment and sewage from treatment plants). Models show that expanding marine reserves (a ‘marine action’) and reducing sediment inputs from the catchments (a ‘land action’) were the most effective investments to achieve a better status of reefs in the Bay, with both having been included in >58% of scenarios with positive outcomes, and >98% of the most effective (5th percentile) scenarios. Heightened fishing restrictions, restoring habitats, and reducing nutrient discharges from wastewater treatment plants have additional, albeit smaller effects. There was no evidence that combining individual management actions would consistently produce sizeable synergistic until after maximum investment on both marine reserves (i.e. increasing reserve extent from 31 to 62% of reefs) and sediments (i.e. rehabilitating 6350 km of waterways within catchments to reduce sediment loads by 50%) were implemented. The method presented here provides a useful tool to prioritize environmental actions in situations where multiple competing management interventions exist for coral reefs and in other systems subjected to multiple stressor from the land and the sea

  5. The influence of consecutive sea and land breeze days on the accumulation of photochemical oxidants and nitrogen oxide

    NASA Astrophysics Data System (ADS)

    Nakajima, Ko; Takahashi, Hideo

    2015-04-01

    Efforts have been made to improve the air pollution environment, in Japan, since the first photochemical smog was reported in 1970. While nitrogen oxide and non-methane hydrocarbon levels, both of which are precursors of photochemical oxidants (Ox), are tending to decrease, Ox levels are tending to increase. Local wind, such as sea and land breeze circulation, plays important roles in the production and accumulation of Ox. It has been suggested that continuous sea and land breeze circulation serves to accumulate pollutants. However, pollutant concentrations do not necessarily increase compared with the previous day even if similar weather conditions persist, such as sea and land breeze circulation. As such, the factors related to changes in the pollutant concentrations are not well understood. The purpose of this study is to analyze the accumulation and distribution of air pollutants for days in which sea and land breeze days was consecutive for two days. We chose to study sea breeze days in which a southerly wind develops in the southern Kanto plain, north of Tokyo Bay, during July and August for the years 19902012. We used principal component analysis and cluster analysis to classify the variations in pollutant concentrations. We classified sea breeze days into four groups, i.e., Group 1: days when the pollutant concentration decreased around Tokyo Bay and increased inland, Group 2: days when the concentration increased across almost the entire study region, Group 3: days when the concentration decreased inland and in southern Tokyo Bay, and Group 4: days when the concentration increased, particularly around Tokyo Bay. In Group 2, in which the pollutant concentration increased as compared with the previous day, the wind direction had clearly changed from southerly to northerly during the night of the first day and a land breeze penetrated toward the coastal area. In the other groups, wind velocity also became weaker but there was no change from sea-breeze to

  6. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  7. Air-sea feedback during coastal upwelling

    SciTech Connect

    Gallacher, P.C.

    1994-12-31

    The basic dynamics of coastal upwelling are well known. Consider a steady, curl-free, alongshore wind blowing down a coastline. This results in an Ekman divergence. If the resulting Ekman transport is offshore, coastal upwelling ensues. When this occurs, a front develops between the cold, upwelled water and the less dense offshore surface water. This front propagates offshore at a rate determined by the Ekman transport. The question is what effect does this front have on the atmosphere, and is there a feedback between the atmosphere and the ocean. The results of the FASINEX study have shown that the atmospheric boundary layer can respond dramatically to changes in the ocean surface temperature, and this may happen on small scales and quite rapidly. The author hypothesizes that an interaction can occur in which the atmospheric surface layer becomes more stable on the upwelling side of the front due the colder sea surface temperature.

  8. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  9. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  10. Distribution and air-sea fluxes of carbon dioxide on the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Pipko, I. I.; Pugach, S. P.; Repina, I. A.; Dudarev, O. V.; Charkin, A. N.; Semiletov, I. P.

    2015-12-01

    This article presents the results of long-term studies of the dynamics of carbonate parameters and air-sea carbon dioxide fluxes on the Chukchi Sea shelf during the summer. As a result of the interaction of physical and biological factors, the surface waters on the west of Chukchi Sea were undersaturated with carbon dioxide when compared with atmospheric air; the partial pressure of CO2 varied in the range from 134 to 359 μatm. The average value of CO2 flux in the Chukchi Sea per unit area varied in the range from-2.4 to-22.0 mmol /(m2 day), which is significantly higher than the average value of CO2 flux in the World Ocean. It has been estimated that the minimal mass of C absorbed by the surface of Chukchi Sea from the atmosphere during ice-free season is 13 × 1012 g; a great part of this carbon is transported to the deeper layers of sea and isolated from the atmosphere for a long period of time. The studies of the carbonate system of the Chukchi Sea, especially of its western part, will provide some new data on the fluxes of carbon dioxide in the Arctic Ocean and their changes. Our analysis can be used for an interpretation of the satellite assessment of CO2 fluxes and dissolved CO2 distribution in the upper layers of the ocean.

  11. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  12. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  13. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  14. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  15. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  16. 50 CFR 600.1204 - Shark finning; possession at sea and landing of shark fins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Shark finning; possession at sea and landing of shark fins. 600.1204 Section 600.1204 Wildlife and Fisheries FISHERY CONSERVATION AND... PROVISIONS Shark Finning § 600.1204 Shark finning; possession at sea and landing of shark fins. (a)(1)...

  17. Air-borne sound generated by sea waves.

    PubMed

    Bolin, Karl; Åbom, Mats

    2010-05-01

    This paper describes a semi-empiric model and measurements of air-borne sound generated by breaking sea waves. Measurements have been performed at the Baltic Sea. Shores with different slopes and sediment types have been investigated. Results showed that the sound pressure level increased from 60 dB at 0.4 m wave height to 78 dB at 2.0 m wave height. The 1/3 octave spectrum was dependent on the surf type. A scaling model based on the dissipated wave power and a surf similarity parameter is proposed and compared to measurements. The predictions show satisfactory agreement to the measurements.

  18. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  19. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  20. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  1. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  2. Late Holocene land- and sea-level changes in the British Isles: implications for future sea-level predictions

    NASA Astrophysics Data System (ADS)

    Gehrels, W. Roland

    2010-07-01

    Four decades of palaeosea-level research in the British Isles have produced a large dataset of age-altitude curves of postglacial sea-level changes. Patterns of late Holocene relative sea-level change reveal the persistent influence of the British/Irish Ice Sheet and the larger Scandinavian Ice Sheet on contemporary rates of vertical land movements. The Shennan and Horton (2002) map of late Holocene relative land movements has been used in future sea-level rise predictions by the United Kingdom Climate Impact Programme in their 2002 assessment (UKCIP02), but has been mistaken for a map of absolute land movements. In this paper, land-motion data for Britain are extracted from the Shennan and Horton (2002) relative sea-level data, and a new map of crustal land movements is presented which also includes Ireland. This procedure takes into account the regional 20th century sea-level rise (˜0.14 m) and the process of ocean syphoning ( i.e. a global fall in sea level of ˜0.3 mm/yr due to GIA induced ocean-floor lowering and re-distribution of ocean mass). The calculated land-motion rates also depend on the global late Holocene ice-equivalent sea-level change, given by the Intergovernmental Panel on Climate Change as 0.0-0.2 mm/yr. Accounting for these processes reduces the misfit between geological observations of vertical land motion and those independently derived from gravity-aligned Global Positioning System (AG GPS) measurements and shows that UKCIP02 has underestimated land subsidence in southern Britain and over-estimated land uplift in Scotland, both by 0.1-0.2 mm/yr. A best fit between GPS and geological estimates of land movements in Britain is achieved for a global long-term eustatic sea-level fall of ca 0.2 mm/yr, suggesting some global ice expansion in the late Holocene, rather than melt. If this is correct, uplift rates in Scotland would be lower and subsidence rates in southern Britain would be faster (by 0.4-0.5 mm/yr) than estimated by UKCIP02. More

  3. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts.

    PubMed

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  4. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  5. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  6. Dimethylsulfide air/sea gas transfer in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    De Bruyn, W. J.; Bell, T. G.; Marandino, C.; Saltzman, E. S.; Miller, S. D.; Law, C. S.; Smith, M. J.

    2012-12-01

    Air/sea dimethylsulfide (DMS) fluxes were measured by eddy correlation over the Southern Ocean (Feb/March 2012) aboard the R/V Tangaroa during the Surface Ocean Aerosol Production (SOAP) study. Atmospheric and seawater DMS were measured by atmospheric pressure chemical ionization mass spectrometry (API-CIMS). Seawater DMS was measured continuously from the ship underway system using a porous membrane equilibrator. The study included measurements inside and outside a dinoflagellate bloom of large areal extent, with seawater DMS levels ranging up to 20 nM. Horizontal wind speeds of up to 20 m/sec were encountered. Gas transfer coefficients were calculated from eddy covariance DMS flux measurements and the air-sea concentration gradient. This study represents a significant addition to the limited database of direct gas transfer measurements in the Southern Ocean.

  7. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  8. Air-Sea Interactions in CLIMODE: In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Bigorre, S.; Weller, R.

    2006-12-01

    The subtropical mode water of the North Atlantic or Eighteen Degree Water (EDW) is an important component of the oceanic circulation. Its formation and evolution are linked to fundamental aspects of the oceanic climate. A central formation process involves the subduction of surface water through air-sea interactions. Conditions for this are ideal in the Gulf Stream region when warm water interacts with cold air above, sinks and is trapped in the late winter, thereby ventilating the interior. The study program CLIvar MOde Water Dynamic Experiment (CLIMODE), sponsored by NSF, is designed to quantify and understand which processes lead to the formation and dissipation of EDW. A key component to this goal is the knowledge of buoyancy fluxes in the region of EDW formation. The Upper Ocean Processes (UOP) group deployed a 3-m discus buoy anchored in the Gulf Stream (64W, 38N) in November 2005. Oceanographic instruments collect data along the mooring line while meteorological and surface sensors are placed on the buoy and collect data every minute. Since the deployment, hourly averages of the meteorological data were transmitted through the Argos satellite system. These data were plugged in the TOGA-COARE bulk algorithm to estimate air-sea fluxes. These preliminary results are presented, while the full dataset will be analyzed after recovery of the buoy in November 2006. Heat fluxes estimates indicate high heat loss events. In December 2005, regular losses larger than 1000W/m2 occurred. These heat loss events are associated with cold air outbreaks. When the air-sea temperature gradient increases, winds also tend to increase indicating a destabilization of the boundary layer and production of turbulence, enhancing further the heat transfer. As the air-sea temperature gradient decreases in the late winter, heat loss also decreases. The SST signal is seen to modulate the heat fluxes on lower frequencies than air temperature changes. This kind of signal tends therefore to be

  9. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L.

    2012-04-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes from the ocean to the atmosphere, the amount of heat available to the tropical cyclone is predicated by the initial depth of the mixed layer and strength of the stratification level that set the level of entrainment mixing at the base of the oceanic mixed layer. For example in oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean (and sea surface temperatures) quickly which reduces the air-sea fluxes. This is an example of negative feedback from the ocean to the atmosphere. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture is available through the sea surface. When tropical cyclones move into favorable or neutral atmospheric conditions (low vertical shear, anticyclonic circulation aloft), tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina and Rita in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. These effects and possible impact on TC deepening and weakening underscores the necessity of having complete 3-D ocean measurements juxtaposed with atmospheric profiler measurements.

  10. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  11. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  12. Impacts of Atmospheric Modes of Variability on Air-Sea Heat Exchange in the Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionissios E.

    2014-05-01

    The potential impacts on Red Sea surface heat exchange of various major modes of atmospheric variability are investigated using the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis and the Objectively Analyzed Air-Sea Flux dataset (OAFlux) merged satellite+reanalysis dataset. The mode impacts on surface net heat flux are quantified by calculating the heat flux anomaly that corresponds to a unit positive value of each index for each grid point. The seasonal effects of the atmospheric forcing are investigated considering two and four typical seasons of a calendar year. Considering two seasons, the impacts are strongest during the winter-centered part of the year (October to March) mainly over the northern sub-basin. The North Atlantic Oscillation (NAO), the East Atlantic - West Russia Pattern (EAWR), and the Indian Monsoon Index (IMI) have the greatest effects. They generate negative anomalies (by definition additional ocean heat loss) of 7-12 W/m2 in the northern Red Sea basin mean net heat flux for a unit positive value of the mode index. During the summer (April to September), the signal is smaller and the East Atlantic (EA) and Multivariate ENSO Index (MEI) modes have the strongest impact which is now located in the southern Red Sea (sub-basin anomalies of 4 W/m2 for unit positive mode index, negative for EA and positive for MEI). Results obtained by analysis carried out on the traditional four-season basis reveal that indices impact peaks during the typical boreal winter (DJF) with average anomalies of 12-18 W/m2 to be found in the northern part. It is noteworthy that during the winter, the EAWR generates negative anomalies around 30 W/m2 over the most of the central Red Sea. During the spring (MAM), summer (JJA) and autumn (SON) the anomalies are considerably lower, especially during the spring when the mode impacts are negligible. Atmospheric modes have a stronger effect on air-sea heat flux over the northern

  13. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  14. Morning transition case between the land and the sea breeze regimes

    NASA Astrophysics Data System (ADS)

    Jiménez, Maria A.; Simó, Gemma; Wrenger, Burkhard; Telisman-Prtenjak, Maja; Guijarro, Jose A.; Cuxart, Joan

    2016-05-01

    An experimental field campaign took place in September 2013 near the coastline in the southeastern Campos basin in the island of Mallorca to characterize experimentally the transition between the sea and the land breezes and to further study the successful cases with the corresponding high-resolution numerical simulations. Favorable weather conditions were only found for one episode that comprised a well-formed nocturnal land breeze, followed by the morning transition to sea breeze until noon the next day, when incoming clouds switched off the breeze regime. To analyse this transition between land and sea breezes, the official network of stations is used, supplemented by a portable station close to the shore and soundings of temperature (taken by a captive balloon and remotely controlled multicopter). These data are used to check the goodness of the corresponding simulation at a horizontal resolution of 1 km. Model and observations see similarly both regimes and the transition, showing some differences in the timing and the details in the surface layer. This transient event is analyzed in terms of phases, going consecutively through land breeze, phase previous to the sea breeze, when land heating starts, but it is still colder than the sea, the preparatory phase when the land becomes warmer than the sea, and the development phase when the breeze front progresses inland.

  15. Evaluating Land-Atmosphere-Ocean-Sea Ice Interface Processes in the Regional Arctic System Model (RASM1.0)

    NASA Astrophysics Data System (ADS)

    Brunke, M.; Zeng, X.

    2015-12-01

    Earth System Models (ESMs) have problems simulating climate in the Arctic region. For instance, there continues to be a wide spread in the simulations of the interannual variability and long-term trends of sea ice in the 20th century in the Coupled Model Intercomparison Project (CMIP5) models. Thus, there is also a wide spread in the trends in sea ice decline projected for the 21st century in the CMIP5 models. Recently, the Regional Arctic System Model version 1.0 (RASM1.0) has been developed to provide improved high-resolution simulations of the Arctic atmosphere-ocean-sea ice-land system. A major baseline for the performance of RASM is its comparison with reanalysis (that provides the lateral boundary condition to drive RASM) and with the coarser-resolution ESMs. In this presentation, we will provide such a baseline with respect to the land-atmosphere-ocean-sea ice interface processes by comparing RASM with the Community Earth System Model (CESM) and three reanalysis products. First, 2-m air temperature, surface radiative and turbulent fluxes, and precipitation are compared to global datasets to assess the representation of these quantities in the models and reanalyses regionally. It is found that these quantities are generally better represented over land than over the oceans and sea ice. Then, we will further compare RASM, CESM, and reanalysis products with surface observations made at land flux towers, during northern high-latitude ship cruises over the oceans, and during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment over sea ice. In these comparisons, we will focus on both the annual and diurnal cycles. For instance, the snow versus snow-free period over land will be emphasized, because the land-atmosphere coupling mechanism differs between the two periods. The impact of radiative fluxes on the diurnal temperature errors will also be emphasized. Furthermore, our newly-developed snow depth and snow water equivalent data over several 2deg X 2

  16. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  17. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region

    USGS Publications Warehouse

    Eggleston, Jack; Pope, Jason

    2013-01-01

    The southern Chesapeake Bay region is experiencing land subsidence and rising water levels due to global sea-level rise; land subsidence and rising water levels combine to cause relative sea-level rise. Land subsidence has been observed since the 1940s in the southern Chesapeake Bay region at rates of 1.1 to 4.8 millimeters per year (mm/yr), and subsidence continues today. This land subsidence helps explain why the region has the highest rates of sea-level rise on the Atlantic Coast of the United States. Data indicate that land subsidence has been responsible for more than half the relative sea-level rise measured in the region. Land subsidence increases the risk of flooding in low-lying areas, which in turn has important economic, environmental, and human health consequences for the heavily populated and ecologically important southern Chesapeake Bay region. The aquifer system in the region has been compacted by extensive groundwater pumping in the region at rates of 1.5- to 3.7-mm/yr; this compaction accounts for more than half of observed land subsidence in the region. Glacial isostatic adjustment, or the flexing of the Earth’s crust in response to glacier formation and melting, also likely contributes to land subsidence in the region.

  18. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  19. A study of atmospheric structures using sodar in relation to land and sea breezes

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. K.; Singal, S. P.; Kapoor, Ramesh K.; Adiga, B. B.

    1980-06-01

    Simultaneous observations were made by an acoustic sounder and on a meteorological tower during the month of May 1978 at the Atomic Power Station Tarapur. The probing range of the acoustic sounder was 700 m. The meteorological tower could sense wind and temperature at various levels up to a height of 120 m. The site being close to the sea shore, the thermal environment of the lower atmosphere is controlled mostly by land and sea breeze circulations. Thermal convective structures were seen during the daytime and also at night. The frequency of plume formation and the height of the plumes were, however, low during the night. The convective boundary layer in the daytime ranged from 400 500 m while at night it was mostly under 200 m. The observation of thermals at night is explained by the presence of a naturally stable marine layer above 30 m at this site. In the morning hours, winds suddenly change their direction allowing advection of a land breeze which is responsible for the formation of surface-based shear echoes to a height of 200 m during the transition period and for the subsequent development of an elevated layer due to mixing of two different air masses. A marine layer was also seen over Tarapur for a few days during the early evening and night hours. Its height was mostly around 400 m. It may indicate the presence of a subsidence inversion at Tarapur. The need for collection of supporting meteorological data to a height of 500 m by tethered balloon or some other suitable in-situ technique is stressed.

  20. Air-Sea Interactions over Lakes on Titan

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Rafkin, Scot C. R.

    2016-10-01

    The exchange of methane between the atmosphere and surface liquid reservoirs dominates the short time-scale methanological cycle. In this study, previous two-dimensional simulations of the exchange of methane vapor, sensible heat and momentum between the atmosphere and lakes are updated with the inclusion of radiative forcing, three dimensions, and realistic coastlines. Titan's air-sea exchange in two dimensions indicated that the exchange process was self-limiting. Evaporation from lakes produced a shallow but extremely stable marine layer that suppressed turbulent exchange. Furthermore, the circulation associated with the higher buoyancy of methane-rich atmosphere over the lake was offset by the oppositely directed thermal sea breeze circulation, which muted the mean wind. Two major weaknesses of this previous work were the lack of radiative forcing and the imposition of two dimensionality, which limited the full range of dynamical solutions. Based on early theoretical studies, it was thought that magnitude of turbulent energy flux exchanges would be much larger than radiative fluxes, thereby justifying the neglect of radiation, but the two-dimensional simulations indicated that this was not a valid assumption. The dynamical limitations of two-dimensional simulations are well known. Vorticity stretching (i.e., circulation intensification through vertical motion) is not possible and it is also not possible to produce dynamically balanced gradient wind-type circulations. As well, the irregular shape of a realistic coastline cannot be expressed in two dimensions, and these realistic structures will generally induce complex convergence and divergence circulations in the atmosphere. The impact of radiative forcing and the addition of the third dimension on the air-sea exchange are presented.

  1. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  2. Air-sea interaction and surface flux in non-equilibrium sea-states

    SciTech Connect

    Levy, G.; Ek, M.; Mahrt, L.

    1994-12-31

    The wind forcing over the ocean determines the air-sea exchanges of heat, moisture and momentum which affect and drive the surface wave dynamics and the mixed layer circulation. In turn, it has been shown that wave dynamics and wave age affect ocean surface roughness and air-sea exchange processes so that the wind flow is not always in equilibrium with the ocean surface waves. This effect of wave spectrum on surface roughness has been discussed by many authors; yet it is rarely, if ever, accounted for in flux parameterization in models of the marine atmospheric boundary layer (MABL). Proper representation of these effects in both remote sensors` signal to geophysical-parameter models and in physical models of the ocean and the atmosphere on all scales is essential given the increased reliance of ocean monitoring systems on remote sea-surface sensors and the fundamental sensitivity of physical models to surface fluxes. In this paper the authors present a methodology for modeling these effects from data along with some results from data analyses of observations taken in two field experiments.

  3. Air pollutant transport in a coastal environment. Part 1: Two-dimensional simulations of sea-breeze and mountain effects

    NASA Technical Reports Server (NTRS)

    Lu, Rong; Turco, Richard P.

    1994-01-01

    Over the southern California coastal region, observations of the vertical distributions of pollutants show that maximum concentrations can occur within temperature inversion layers well above the surface. A mesoscale model is used to study the dynamical phenomena that cause such layers, including sea breezes and mountain flows, and to study the characteristics of air pollutant transport in a coastal environment capped by a temperature inversion. The mathematical and physical structure of the model is described. Two-dimensional simulations corresponding to four configurations of coastal plains and mountains are discussed. The simulations reveal that pollutant transport over a coastal plain is strongly influenced by the topographic configuration, including the height of coastal mountains and their distance from the coastline. Sea breezes induced by land-sea thermal contrasts, as well as upslope winds induced along mountain flanks, both create vertical transport that can lead to the formation of elevated pollution layers. The sea-breeze circulation generates pollution layers by undercutting the mixed layer and lofting pollutants into the stable layer. Heating of mountain slopes acts to vent pollutants above the mountain ridge during the day; during the evening, pollutants can be injected directly into the inversion layer from the decaying upslope flows. In a land-sea configuration with mountains close to the coastline, the sea breeze and heated-mountain flow are strongly coupled. In the afternoon, this interaction can produce upslope flow from which polluted air is detrained into the inversion layer as a return circulation. When the mountains lie farther inland, however, pollutants may be trapped aloft when the mixed layer stabilizes in the late afternoon. As the nocturnal boundary layer forms over the coast in the evening, polluted mixed-layer air is effectively left behind in the inversion layer. In the Los Angeles Basin, the formation mechanism for elevated

  4. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  5. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  6. Land altimetry using satellite data from the GEOSAT sea altimeter

    NASA Technical Reports Server (NTRS)

    Luft, Philip E.

    1989-01-01

    Several techniques are proposed or assessed from the GEOSAT sea altimeter, and changes are recommended in future RADAR altimeters. The first technique tried was to cross-correlate each waveform with the preceding one. Then the position giving the maximum correlation was taken as the correct placement of the new waveform in its data window. The resulting altitude profile was slightly more variable than that of the on-board tracker over flat rock (Salar de Uyuni), so apparently successive waveforms are too dissimilar to correlate. When cross-correlation failed, compensation was made for averaging. Raw waveforms are averaged in groups of 100 and it is these average waveforms which are available for ground processing. But while the 100 are being received, the window position is moved in time, at different constant rates for the first 50 and last 50. Assuming an unchanging waveform and a single window rate for the 100, first and last waveforms were obtained. Averaging their half-height arrival times gave an altitude profile similar to the median and centroid methods. The variability of this altitude profile suggests that even raw waveforms in a group of 100 may be too dissimilar to correlate. In other techniques, the pulse was judged to have arrived when one of these criteria was met: the wave amplitude meets a certain absolute threshold; wave amplitude meets a certain relative threshold; certain fraction of the area of the waveform has passed; and centroid of the waveform has passed. All methods gave altitude profiles at least as variable as the on-board tracker, and all were biased at least 0.5 meter to low altitudes, except the threshold detector. The threshold detector can be filtered spatially to resemble the on-board tracker, and perhaps it could be implemented without feedback. For operating over land, these changes are recommended in future altimeters: The window should not move while raw waveforms are being averaged; some of the raw waveforms should be

  7. A simulation study to identify the sea water depth for the presence of air waves in sea bed logging

    NASA Astrophysics Data System (ADS)

    Abdulkarim, Muhammad; Shafie, Afza; Yahya, Noorhana Binti; Razali, Radzuan; Ahmad, Wan Fatimah Wan

    2012-09-01

    Sea Bed Logging (SBL) is an offshore geophysical technique that can give information about resistivity variation beneath the seafloor. This information is crucial in offshore oil and gas exploration. However, data collected through this technique in shallow water at low frequencies is associated with a problem termed "air wave effect". The air wave effect is a phenomena resulting from Electro-Magnetic (EM) waves produced by the antenna (source) which interact with air-sea interface to generate air waves that diffuse from sea surface to the receivers. These air wave signals dominate the receivers at far offsets to the source and consequently, the refracted signal due the target is hardly distinguishable. The refracted signals from the target being masked by the airwaves can make it difficult to identify the hydrocarbon reservoir. The aim of this study is to investigate the sea water depth for the presence of air waves. Synthetic data are generated by simulating SBL environment without Hydro-Carbon (HC) target and varying the sea water depth from 1000m to 100m with the interval of 100m. The simulated distances for the source-receiver separation (offset) are divided into five ranges. The magnitude versus offset plot together with the Friedman and Wilcoxon statistical test are used to analyze the data. Results show that the air waves are present at 400m of sea water depth and below.

  8. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    ERIC Educational Resources Information Center

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are naturally more eye-catching…

  9. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  10. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  11. Air-sea gas transfer for two gases of different solubility (CO2 and O2)

    NASA Astrophysics Data System (ADS)

    Rutgersson, A.; Andersson, A.; Sahlée, E.

    2016-05-01

    At the land-based marine measuring site Östergarnsholm in the Baltic Sea, the eddy covariance technique was used to measure air-sea fluxes of carbon dioxide and oxygen. High- frequency measurements of oxygen were taken with a Microx TX3 optode using the luminescence lifetime technique. The system gives reasonable oxygen fluxes after the limited frequency response of the sensor was corrected for. For fluxes of carbon dioxide the LICOR-7500 instrument was used. Using flux data to estimate transfer velocities indicates higher transfer velocity for oxygen compared to carbon dioxide for winds above 5 m/s. There are too few data for any extensive conclusions, but a least-square fit of the data gives a cubic wind speed dependence of oxygen corresponding to k 660 = 0.074U 3 10. The more effective transfer for oxygen compared to carbon dioxide above 5 m/s is most likely due to enhanced efficiency of oxygen exchange across the surface. Oxygen has lower solubility compared with carbon dioxide and might be more influenced by near surface processes such as microscale wave breaking or sea spray.

  12. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  13. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically. PMID:22788100

  14. Energy supplies and future engines for land, sea, and air.

    PubMed

    Wilson, David Gordon

    2012-06-01

    The years 2012 and beyond seem likely to record major changes in energy use and power generation. The Japanese tsunami has resulted in large countries either scaling back or abolishing the future use of nuclear energy. The discovery of what seems like vast amounts of economically deliverable natural gas has many forecasting a rapid switch from coal- to gas-fired generating plants. On the other hand, environmentalists have strong objections to the production of natural gas and of petroleum by hydraulic fracturing from shale, or by extraction of heavy oil. They believe that global warming from the use of fossil fuels is now established beyond question. There has been rapid progress in the development of alternative energy supplies, particularly from on-shore and off-shore wind. Progress toward a viable future energy mix has been slowed by a U.S. energy policy that seems to many to be driven by politics. The author will review the history of power and energy to put all of the above in context and will look at possible future developments. He will propose what he believes to be an idealized energy policy that could result in an optimum system that would be arrived at democratically.

  15. Distributions and sea-to-air fluxes of nitrous oxide in the South China Sea and the West Philippines Sea

    NASA Astrophysics Data System (ADS)

    Tseng, Hsiao-Chun; Chen, Chen-Tung Arthur; Borges, Alberto V.; DelValls, T. Angel; Lai, Chao-Ming; Chen, Ting-Yu

    2016-09-01

    Approximately 600 water samples from the South China Sea (SCS) and 250 water samples from the West Philippines Sea (WPS) were collected during seven cruises from August 2003 to July 2007 to determine nitrous oxide (N2O) distributions between the surface and a maximum depth of 4250 m. In the SCS, the average surface N2O concentration exceeded the atmospheric equilibrium concentration (on average 132±23%); however in the WPS, the surface N2O concentration was lower than the atmospheric equilibrium concentration (on average 90±22%). The N2O concentration reached a maximum (~23 nmol L-1) in the WPS at 800-1000 m, and (~28 nmol L-1) at a shallower depth of around 600-800 m in the SCS, owing to vertical mixing and intensive upwelling in the SCS. In the SCS, the surface N2O concentration was 7.59±1.32 nmol L-1 and the calculated sea-to-air flux was 5.5±3.9 μmol m-2 d-1. The surface N2O concentration in the WPS, 5.19±1.26 nmol L-1, was lower than that in the SCS. The WPS is a sink for N2O and the calculated sea-to-air flux was -1.7±3.9 μmol m-2 d-1. The SCS emitted 19.3×106 mol d-1 N2O to the atmosphere and exported 8.5×106 mol d-1 N2O to the WPS during the wet season.

  16. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale

    SciTech Connect

    Corburn, Jason . E-mail: jtc2105@columbia.edu

    2007-03-15

    Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale.

  17. Implications of sea level rise scenarios on land use /land cover classes of the coastal zones of Cochin, India.

    PubMed

    Mani Murali, R; Dinesh Kumar, P K

    2015-01-15

    Physical responses of the coastal zones in the vicinity of Cochin, India due to sea level rise are investigated based on analysis of inundation scenarios. Quantification of potential habitat loss was made by merging the Land use/Land cover (LU/LC) prepared from the satellite imagery with the digital elevation model. Scenarios were generated for two different rates of sea level rise and responses of changes occurred were made to ascertain the vulnerability and loss in extent. LU/LC classes overlaid on 1 m and 2 m elevation showed that it was mostly covered by vegetation areas followed by water and urban zones. For the sea level rise scenarios of 1 m and 2 m, the total inundation zones were estimated to be 169.11 km(2) and 598.83 km(2) respectively using Geographic Information System (GIS). The losses of urban areas were estimated at 43 km(2) and 187 km(2) for the 1 m and 2 m sea level rise respectively which is alarming information for the most densely populated state of India. Quantitative comparison of other LU/LC classes showed significant changes under each of the inundation scenarios. The results obtained conclusively point that sea level rise scenarios will bring profound effects on the land use and land cover classes as well as on coastal landforms in the study region. Coastal inundation would leave ocean front and inland properties vulnerable. Increase in these water levels would alter the coastal drainage gradients. Reduction in these gradients would increase flooding attributable to rainstorms which could promote salt water intrusion into coastal aquifers and force water tables to rise. Changes in the coastal landforms associated with inundation generate concern in the background that the coastal region may continue to remain vulnerable in the coming decades due to population growth and development pressures.

  18. Implications of sea level rise scenarios on land use /land cover classes of the coastal zones of Cochin, India.

    PubMed

    Mani Murali, R; Dinesh Kumar, P K

    2015-01-15

    Physical responses of the coastal zones in the vicinity of Cochin, India due to sea level rise are investigated based on analysis of inundation scenarios. Quantification of potential habitat loss was made by merging the Land use/Land cover (LU/LC) prepared from the satellite imagery with the digital elevation model. Scenarios were generated for two different rates of sea level rise and responses of changes occurred were made to ascertain the vulnerability and loss in extent. LU/LC classes overlaid on 1 m and 2 m elevation showed that it was mostly covered by vegetation areas followed by water and urban zones. For the sea level rise scenarios of 1 m and 2 m, the total inundation zones were estimated to be 169.11 km(2) and 598.83 km(2) respectively using Geographic Information System (GIS). The losses of urban areas were estimated at 43 km(2) and 187 km(2) for the 1 m and 2 m sea level rise respectively which is alarming information for the most densely populated state of India. Quantitative comparison of other LU/LC classes showed significant changes under each of the inundation scenarios. The results obtained conclusively point that sea level rise scenarios will bring profound effects on the land use and land cover classes as well as on coastal landforms in the study region. Coastal inundation would leave ocean front and inland properties vulnerable. Increase in these water levels would alter the coastal drainage gradients. Reduction in these gradients would increase flooding attributable to rainstorms which could promote salt water intrusion into coastal aquifers and force water tables to rise. Changes in the coastal landforms associated with inundation generate concern in the background that the coastal region may continue to remain vulnerable in the coming decades due to population growth and development pressures. PMID:25043851

  19. ASGAMAGE, the Air-Sea Gas Exchange/MAGE experiment

    NASA Astrophysics Data System (ADS)

    Oost, Wiebe; Jacobs, Cor; Kohsiek, Wim; Goossens, Guus; van der Horn, Jaap; Sprung, Detlev; Rapsomanikis, Spyros; Kenntner, Thomas; Reiner, Thomas; Bowyer, Peter; Larsen, Søren; de Leeuw, Gerrit; Kunz, Gerard; Hall, Alan; Liss, Peter; Malin, Gill; Upstill-Goddard, Rob; Woolf, David; Graham, Angus; Nightingale, Phil; Fairall, Chris; Hare, Jeff; Dissly, Richard; Tans, Pieter; Anderson, Bob; Smith, Stu

    The ASGAMAGE project addressed the problem of the large discrepancy between the chemistry based and micrometeorological methods and aimed to determine any geophysical parameters apart from the wind speed that affect air-sea gas exchange in an effort to reduce the uncertainty in the global carbon balance. Experiments were performed in the spring and fall of 1996 at and near a research platform off the Dutch coast and two surface layer models were developed for the gas exchange process. The results gave a reduction of the difference between the two types of methods from an order of magnitude to a factor of two as well as indications for the causes of the remaining difference.

  20. Air-sea Interaction Influence on the MJO propagation

    NASA Astrophysics Data System (ADS)

    May, P. W.; Chen, S.; Doyle, J.; Flatau, M. K.; Schmidt, J. M.

    2012-12-01

    The Madden-Julian oscillation (MJO) is a multi-scale low frequency mode that influences the intraseasonal variability of weather across the globe. One of the outstanding forecast challenges is the large model errors in the MJO eastward propagation as it transitions from the Indian Ocean to the Maritime Continent. We will discuss the air-sea coupling impact on the MJO propagation using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) running in an extended forecast mode on the second CINDY/DYNAMO MJO. Preliminary comparison with uncoupled forecast indicates the effect of the full ocean coupling is to damp the westward propagating modes and retrograde the eastward propagating mode. The impacts of these changes are examined through the analysis of the model sensitivity and satellite data.

  1. Satellite observations of air-sea interaction over the Kuroshio

    NASA Astrophysics Data System (ADS)

    Xie, S.; Nonaka, M.; Hafner, J.; Liu, W. T.

    2002-12-01

    Satellite microwave measurements are analyzed, revealing robust co-variability in sea surface temperature (SST) and wind speed over the Kuroshio and its Extension (KE). Ocean hydrodynamic instabilities cause the KE to meander and result into large SST variations. Increased (reduced) wind speeds are found to be associated with warm (cold) SST anomalies. This positive SST-wind correlation in KE is confirmed by in-situ buoy measurements and is consistent with a vertical shear adjustment mechanism. Namely, an increase in SST reduces the static stability of the near-surface atmosphere, intensifying the vertical turbulence mixing and bringing fast-moving air from aloft to the sea surface. South of Japan, the Kuroshio is known to vary between nearshore and offshore paths. Both paths seem semi-permanent and can persist months to years. As the Kuroshio shifts its path, coherent wind changes are detected. In particular, winds are high south of Tokyo when the Kuroshio takes the nearshore path while they are greatly reduced when this warm current leaves the coast in the offshore path. Further upstream in the East China Sea, on the warmer flank of the Kuroshio Front, there are a zone of high wind speed and a band of raining cloud due to the region's unstable atmospheric stratification near the surface. Surface wind convergence is roughly collocated with the Kuroshio Current. By increasing the baroclinicity and condensational heating, the Kuroshio Front aids the growth of the so-called Taiwan cyclone, an important winter weather phenomenon for Japan. The positive SST-wind correlation over the strong Kuroshio Current and its extension is opposite to the negative one often observed in regions of weak currents such as south of the Aleutian low that is considered to be indicative of atmosphere-to-ocean forcing.

  2. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  3. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  4. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  5. Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part I: Past changes and future projections

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Watanabe, Masahiro; Kimoto, Masahide; Shiogama, Hideo

    2014-11-01

    Land-sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere-ocean general circulation models (GCMs) are analyzed to examine changes in land-sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land-sea SAT contrast over the Far East for 1950-2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land-sea contrast are examined in Part II.

  6. Interaction Of Mesoscale Convective Systems With The Land - Sea Breezes Along The Guinea Coast Of West Africa

    NASA Astrophysics Data System (ADS)

    Coulibaly, A.; Omotosho, B. J.; Sylla, M. B.; Fink, A. H.

    2015-12-01

    1-3 hourly METARS/SYNOP observation data of wind (speed and direction), air temperature over land, covering the period 1983-2012, were used in order to characterize land-sea breezes (LSB) over five coastline stations (Abidjan, Accra, Lomé, Cotonou and Ikeja-Lagos) in the Guinean Coast, West Africa. In additional to this, 8 years (2003-2010) sea surface temperature (SST) data from adjacent Atlantic Ocean and monthly METARS/SYNOP observation data of precipitation (1983-2012) were also used. Based on wind speed and direction, the wind roses of all months over all stations have been plotted. These wind roses reveal that, globally, the northerly winds occurred rarely for the months of February, March, and April at Cotonou (Benin Republic).This is seen for other stations (Lomé and Accra). The night/morning time northerly winds appear at all stations, except Accra where there is no northerly wind or is very weak. According to the stations basis, the period of that night/morning northerly winds varies, except in summer period (July - September), where the normal s/w monsoon winds can weaken override at all stations. Set criteria based on the diurnal reversal of wind direction, and the thermal gradient necessary to drive the wind circulation, was used to identify land-sea breeze days. On station-wide basis, sea-breezes occur, at least all period of year, but less frequent in the summer months, where the minimum value of monthly mean temperature gradient is observed for selected stations.

  7. Land Reclamation: Land from the Sea (and Other Places). Resources in Technology.

    ERIC Educational Resources Information Center

    Hadley, Fred

    1995-01-01

    This teaching resource talks about the importance of land reclamation and describes how many communities have reclaimed land for productive use. Includes a student quiz, possible student outcomes, and references. (JOW)

  8. Advances in Air-Sea Flux Measurement by Eddy Correlation

    NASA Astrophysics Data System (ADS)

    Blomquist, Byron W.; Huebert, Barry J.; Fairall, Christopher W.; Bariteau, Ludovic; Edson, James B.; Hare, Jeffrey E.; McGillis, Wade R.

    2014-09-01

    Eddy-correlation measurements of the oceanic flux are useful for the development and validation of air-sea gas exchange models and for analysis of the marine carbon cycle. Results from more than a decade of published work and from two recent field programs illustrate the principal interferences from water vapour and motion, demonstrating experimental approaches for improving measurement precision and accuracy. Water vapour cross-sensitivity is the greatest source of error for flux measurements using infrared gas analyzers, often leading to a ten-fold bias in the measured flux. Much of this error is not related to optical contamination, as previously supposed. While various correction schemes have been demonstrated, the use of an air dryer and closed-path analyzer is the most effective way to eliminate this interference. This approach also obviates density corrections described by Webb et al. (Q J R Meteorol 106:85-100, 1980). Signal lag and frequency response are a concern with closed-path systems, but periodic gas pulses at the inlet tip provide for precise determination of lag time and frequency attenuation. Flux attenuation corrections are shown to be 5 % for a cavity ring-down analyzer (CRDS) and dryer with a 60-m inlet line. The estimated flux detection limit for the CRDS analyzer and dryer is a factor of ten better than for IRGAs sampling moist air. While ship-motion interference is apparent with all analyzers tested in this study, decorrelation or regression methods are effective in removing most of this bias from IRGA measurements and may also be applicable to the CRDS.

  9. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  10. Parameterization of Sea-Spray Impact on Air-Sea Momentum and Heat Fluxes in Hurricane Prediction Models

    NASA Astrophysics Data System (ADS)

    Bao, Jian-Wen; Fairall, Chris; Michelson, Sara; Bianco, Laura

    2010-05-01

    Although it is widely recognized that sea spray under hurricane-strength winds is omnipresent in the marine surface boundary layer (MSBL), how to parameterize the effects of sea spray on the air-sea momentum and heat fluxes at hurricane-strength winds in numerical weather prediction (NWP) models still remains a subject of research. This paper focuses on how the effects of sea spray on the momentum and heat fluxes are parameterized in NWP models using the Monin-Obukhov similarity theory. In this scheme, the effects of sea spray can be considered as an additional modification to the stratification of the near surface profiles of wind, temperature and moisture in the MSBL. The overall impact of sea-spray droplets on the mean profiles of wind, temperature and moisture depends on the wind speed at the level of sea-spray generation (or wave state if available). As the wind speed increases, the droplet size increases, rendering an increase in the spray-mediated total enthalpy flux from the sea to the air and leveling off of the surface drag. When the wind is below 35 ms-1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer. When the wind is above 50 ms-1, the size of droplets is so big that they do not have enough time to evaporate that much before falling back into the sea. Furthermore, the scheme includes the physics of the suspended sea-spray droplets reducing the buoyancy of the MSBL air, therefore making the surface layer more stable. Results from testing the scheme in a numerical weather prediction model are presented along with a dynamical interpretation of the impact of sea spray on the intensification of tropical cyclones.

  11. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  12. 75 FR 66125 - Federal Land Managers' Air Quality Related Values Work Group (FLAG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... National Park Service Federal Land Managers' Air Quality Related Values Work Group (FLAG) AGENCY: National...' Air Quality Related Values Work Group (FLAG) was formed (1) to develop a more consistent and objective... their air quality related values (AQRVs); and (2) to provide State permitting authorities and...

  13. Annual and seasonal fCO2 and air-sea CO2 fluxes in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, S. K.; Chierici, M.; Counillon, F.; Omar, A.; Nondal, G.; Johannessen, T.; Olsen, A.

    2013-03-01

    The Barents Sea is the strongest CO2 sink in the Arctic region, yet estimates of the air-sea CO2 flux in this area show a large span reflecting uncertainty as well as significant variability both seasonally and regionally. Here we use a previously unpublished data set of seawater CO2 fugacity (fCO2), and map these data over the western Barents Sea through multivariable linear regressions with SeaWiFS/MODIS remote sensing and TOPAZ model data fields. We find that two algorithms are necessary in order to cover the full seasonal cycle, mainly because not all proxy variables are available for the entire year, and because variability in fCO2 is driven by different mechanisms in summer and winter. A comprehensive skill assessment indicates that there is a good overall correspondence between observations and predictions. The algorithms are also validated using two independent data sets, with good results. The gridded fCO2 fields reveal tight links between water mass distribution and fCO2 in all months, and particularly in winter. The seasonal cycle show peaks in the total air-sea CO2 influx in May and September, caused by respectively biological drawdown of CO2 and low sea ice concentration leaving a large open water area. For 2007 the annual average air-sea CO2 flux is - 48 ± 5 gC m- 2, which is comparable to previous estimates.

  14. Satellite Observation of Large Scale Changes in Climate and Land Use in the Caspian Sea Basin

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Nouri, A.; Asefi, S.; Shiklomanov, A.; Entekhabi, D.; Mohammadi, S.; Hedjazi, B.

    2012-04-01

    The Caspian Sea Basin (catchments) area occupies the vast European and Asian territory between approx. 330-580 N latitude and 300-620 E longitude. In comparison with other world great natural lakes, the Caspian Sea ranks first in watershed area (3660,000 km2) and also in a total annual rivers runoff (340 km3/year - long-term average value). The Caspian is a closed basin with the largest landlocked water body in the world in its center. As a result, the water and biogeochemical cycles over the sea and surrounding lands are intimately linked. Any changes in the hydrologic regime over land and any major shifts in land use and land ecosystem health will directly impact the overall water and energy cycle of the basin, as well as the water quality and aquatic biology of the Sea. The basin being a closed system, it can also exhibit feedback processes that reinforce excursions from normal and lead to large impacts on the surrounding regions. In this paper, we present results of the analysis of climate and vegetation observations over the past 30 years over the Caspian Sea Basin to document the changes of climate, and land use, the regional vegetation response. We focus our analysis using data from AVHRR, MODIS, QSCAT, and TRMM. The results indicate that the region has gone through major changes in land use accompanied by anomalies of temperature and rainfall that in turn has suppressed the vegetation cover and phenology. The results are corroborated by data from socio-economic changes in the region and ground observation of climate and vegetation.

  15. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    Microwave and electro-optical signal propagation over a wind-roughened sea is strongly dependent on signal interaction with the sea surface, the mean profiles of pressure (P), humidity (Q), temperature (T), wind (U) and their turbulent fluctuations (p, q, t, u). Yet, within the marine surface layer, these mechanisms are not sufficiently understood nor has satisfactory data been taken to validate propagation models, especially under conditions of high seas, high winds, and large surface gradients of Q and T. To address this deficiency, the Rough Evaporation Duct (RED) experiment was designed to provide first data for validation of meteorological, microwave, and electro-optical models in the marine surface layer for rough surface conditions including the effects of surface waves. The RED experiment was conducted offshore of the Hawaiian Island of Oahu in late summer, mid-August to mid-September, of 2001. R/P FLIP, moored about 10 km off of the NE coast of Oahu, hosted the primary meteorological sensor suites and served as a terminus for the propagation links. There were eleven scientists and engineers aboard R/P FLIP who installed instruments measuring mean and turbulent meteorological quantities, sea wave heights, directions, and kinematics, upward and downward radiance, near surface bubble generation, atmospheric particle size distributions, laser probing of the atmosphere, and sources for both microwave and electro-optic signals. In addition to R/P FLIP, two land sites were instrumented with microwave and electro-optic receivers and meteorological sensors, two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions. In all, more than 25 people from four countries, six universities, and four government agencies were directly involved with the RED experiment. While the overall outcome of the RED experiment is positive, we had a number of major and minor problems with the outfitting

  16. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  17. Improvement of the GEOS-5 AGCM upon Updating the Air-Sea Roughness Parameterization

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.

    2011-01-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  18. Improvement of the GEOS-5 AGCM upon updating the air-sea roughness parameterization

    NASA Astrophysics Data System (ADS)

    Garfinkel, C. I.; Molod, A. M.; Oman, L. D.; Song, I.-S.

    2011-09-01

    The impact of an air-sea roughness parameterization over the ocean that more closely matches recent observations of air-sea exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their air-sea roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.

  19. By Land or by Sea: The Role of Perceptual Similarity in Infants' Categorization of Animals.

    ERIC Educational Resources Information Center

    Oakes, Lisa M.; And Others

    1997-01-01

    Infants were familiarized with plastic animals from one of two categories (land or sea) that were judged similar or variable by adults. Infants were then tested with novel animals from the same or a different category. Thirteen-month-olds in the similar familiarization condition dishabituated to novel animals of a different category and, to a…

  20. Consistent estimate of ocean warming, land ice melt and sea level rise from Observations

    NASA Astrophysics Data System (ADS)

    Blazquez, Alejandro; Meyssignac, Benoît; Lemoine, Jean Michel

    2016-04-01

    Based on the sea level budget closure approach, this study investigates the consistency of observed Global Mean Sea Level (GMSL) estimates from satellite altimetry, observed Ocean Thermal Expansion (OTE) estimates from in-situ hydrographic data (based on Argo for depth above 2000m and oceanic cruises below) and GRACE observations of land water storage and land ice melt for the period January 2004 to December 2014. The consistency between these datasets is a key issue if we want to constrain missing contributions to sea level rise such as the deep ocean contribution. Numerous previous studies have addressed this question by summing up the different contributions to sea level rise and comparing it to satellite altimetry observations (see for example Llovel et al. 2015, Dieng et al. 2015). Here we propose a novel approach which consists in correcting GRACE solutions over the ocean (essentially corrections of stripes and leakage from ice caps) with mass observations deduced from the difference between satellite altimetry GMSL and in-situ hydrographic data OTE estimates. We check that the resulting GRACE corrected solutions are consistent with original GRACE estimates of the geoid spherical harmonic coefficients within error bars and we compare the resulting GRACE estimates of land water storage and land ice melt with independent results from the literature. This method provides a new mass redistribution from GRACE consistent with observations from Altimetry and OTE. We test the sensibility of this method to the deep ocean contribution and the GIA models and propose best estimates.

  1. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  2. Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea

    PubMed Central

    2013-01-01

    Introduction We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. PMID:23618554

  3. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  4. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  5. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  6. Spatial Variability of Land-Sea Carbon Exchange at a Coastal Area in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, H.; Oechel, W.; Hastings, S.

    2007-12-01

    Relatively cold and low salinity sea water of the Arctic Ocean was considered to be a sink for atmospheric CO2 (Takahashi et al., 1997) because the solubility of CO2 in seawater increases as temperature decreases, and the arctic sea water transports CO2 to greater depths. However, carbon exchange in the Arctic sea is not well evaluated yet, because available data is very limited (Semiletov et al., 2007). Also, terrestrial inflows, such as thawing permafrost and coastal erosion, also affect oceanic air-sea CO2 exchange especially in the Arctic (ACIA., 2004) creating a variety of regional carbon cycles (Semiletov et al., 2007). Our aim is to quantify an air-sea CO2 exchange of a spatially wide coastal sea area, in Barrow, Alaska and to extrapolate the future carbon cycle in response to climate change. Boat cruises for pCO2 measurements operated from July 29 to August 5, 2007. The surveyed area was mainly divided into three parts: Chukchi Sea, Beaufort Sea, and Elson Lagoon. Conductivity of sea surface (CS) and sea surface temperature (SST) were also measured together with pCO2. The result showed distinct differences in pCO2 among three areas. Average delta pCO2 (dpCO2) (a difference between an atmospheric CO2 and pCO2), CS, and SST were -114.9 ppm, 47.0 mScm-1, and 8.0 C at Chukchi Sea, -53.1 ppm, 43.5 mScm-1, and 8.9 C at Beaufort Sea, and 43.7 ppm, 41.1 mScm-1, and 9.5 C at Elson Lagoon. Relatively high dpCO2 value in the Beaufort Sea implies a large terrestrial input from Elson Lagoon where dpCO2 value is positive. This is supported by lower CS in the Beaufort Sea and Elson Laggon than in the Chukchi Sea. Sea currents from Pacific Ocean, which continuously flow through the Chukchi Sea, are thought to carry warmer water. However, SST was lower in the Chukchi Sea than in the Beaufort Sea. This may be because a prevailing wind from north east creates Ekman transport causing an upwelling along the Chukchi Sea coast and this upwelling carries deep cold water to the

  7. Fiber optic security systems for land- and sea-based applications

    NASA Astrophysics Data System (ADS)

    Crickmore, Roger I.; Nash, Phillip J.; Wooler, John P. F.

    2004-11-01

    QinetiQ have been developing security systems for land and sea applications using interferometric based fiber optic sensors. We have constructed and tested a multi-channel fiber-optic hydrophone seabed array, which is designed for maritime surveillance and harbor security applications. During a recent trial it was deployed in a coastal location for an 8 day period during which it successfully detected and tracked a wide variety of traffic. The array can be interfaced with an open architecture processing system that carries out automatic detection and tracking of targets. For land based applications we have developed a system that uses high sensitivity fiber optic accelerometers and buried fiber optic cable as sensor elements. This uses the same opto-electronic interrogator as the seabed array, so a combined land and sea security system for coastal assets could be monitored using a single interrogator.

  8. From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica

    NASA Astrophysics Data System (ADS)

    Qin, Xianyan; Sun, Liguang; Blais, Jules M.; Wang, Yuhong; Huang, Tao; Huang, Wen; Xie, Zhouqing

    2014-01-01

    In Antarctica, the marine ecosystem is dynamically interrelated with the terrestrial ecosystem. An example of the link between these two ecosystems is the biogeochemical cycle of phosphorus. Biovectors, such as penguins, transport phosphorus from sea to land, play a key role in this cycle. In this paper, we selected three colonies of penguins, the most important seabirds in Antarctica, and computed the annual quantity of phosphorus transferred from sea to land by these birds. Our results show that adult penguins from colonies at Ardley Island, the Vestfold Hills, and Ross Island could transfer phosphorus in the form of guano at up to 12 349, 167 036, and 97 841 kg/a, respectively, over their breeding period. These quantities are equivalent to an annual input of 3.96×109-1.63×1010 kg of seawater to the land of Antarctica. Finally, we discuss the impact of phosphorus on the ice-free areas of the Antarctica.

  9. Diatom vertical migration within land-fast Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Aumack, C. F.; Juhl, A. R.; Krembs, C.

    2014-11-01

    Light levels inside first-year, landfast sea ice were experimentally altered by manipulating overlying snow depths. Irradiance available for ice algae growing near the ice-bottom, and under the ice, was highly dependent on snow depths ranging from 0 to > 30 cm. Importantly, algal vertical distributions also changed under different irradiances. Under thick snow (low light), the majority of algae were found several cm above the ice-seawater interface, while progressively more were found nearer the interface at locations with thinner overlying snow (higher light). Short-term field experiments suggested that ice algae were able to reposition themselves within the ice column within 3 days after manipulating snow depths. Laboratory gliding rate measurements of a cultured ice diatom suggested that it is capable of daily cm-scale movement. Vertical migration may help ice diatoms balance opposing light and nutrient resource gradients, similar to strategies used by some benthic and pelagic algae. Moreover, when ice algae congregate near the ice-seawater interface, they may be especially susceptible to loss from the ice environment. Vertical repositioning in response to changing light dynamics may be a mechanism to optimize between vertically-opposing environmental factors and help explain the connection between melting snow cover and export of biomass from sea ice.

  10. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  11. A new Holocene relative sea-level curve for Terra Nova Bay, Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Baroni, Carlo; Hall, Brenda L.

    2004-05-01

    More than 100 radiocarbon dates of penguin guano and remains, shells and seal skin afford ages for raised beaches adjacent to Terra Nova Bay, Antarctica. These dates permit construction of a new relative sea-level curve that bears on the timing of deglaciation. Recession of the Ross Sea ice-sheet grounding line from Terra Nova Bay occurred no earlier than 7200 14C yr (8000 cal. yr) BP. Retreat along the Victoria Land coast may have been rapid, possibly contributing to eustatic sea-level rise centred at ca. 7600 cal. yr BP. The presence of a significant amount of ice remaining in the Ross Sea Embayment in Holocene time lessens the chance that Antarctica contributed significantly to meltwater pulse 1A several thousand years earlier. Copyright

  12. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  13. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  14. Landing of STS-59 Shuttle Endeavour at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occured at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes.

  15. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    NASA Astrophysics Data System (ADS)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  16. Dynamics and impacts of eddy-driven air-sea interaction in a regional air-sea coupled model for the US West Coast

    NASA Astrophysics Data System (ADS)

    Seo, H.; Miller, A. J.; Norris, J. R.

    2015-12-01

    The US West Coast coastal oceans feature energetic mesoscale eddies. The associated sea surface temperature (SST) and surface current modify the wind stress, leading to significant dynamic feedback on to the air-sea coupled system. Dynamics of the interaction and impacts on the regional coastal climate are however not well understood; this is an important research question for regional modeling studies for the coastal climate. A high-resolution (7km) SCOAR regional air-sea coupled climate model is used to investigate this question by implementing a novel model coupling technique that separates spatial scale of air-sea interaction. It allows the large-scale coupling effect to be preserved while suppressing the eddy-driven coupling via interactive spatial smoothing of SST and surface current. When the eddy-induced surface current is allowed to modify the wind stress, the eddy kinetic energy (EKE) is reduced by 42%, and this is primarily due to enhanced surface eddy drag. In contrast, the eddy-induced SST-wind coupling has little impact on the EKE. Eddies also modify the Ekman pumping; the resultant Ekman pumping velocity due to surface current attenuates the amplitude of eddies while the SST-induced Ekman pumping affects the propagation of eddies. Rectified change in time-mean SST is determined by the altered offshore temperature advection by the mean and eddy currents, but the magnitude of the mean SST change is greater with the eddy-induced current effect. The subsequent influence on the downstream winter rainfall variability on the US West Coast is stronger with the eddy-induced SST effect because of the proximity of SST anomalies to the coasts. The strong dynamical response in the coastal climate system to the eddy-driven air-sea interaction suggests that the fine-scale air-sea coupling should be better represented in the regional climate modeling studies for the coastal environments and the marine weather.

  17. Late Quaternary land-sea correlations, northern Labrador, Canada

    SciTech Connect

    Clark, P.; Josenhans, H.

    1985-01-01

    Late Quaternary glacial and postglacial units in the Torngat Mountains, northern Labrador, are correlated with units identified on the adjacent continental shelf. The late Wisconsinan Laurentide Ice Sheet drained through major valleys of the Torngat Mountains as outlet glaciers, depositing the Saglek Moraines. These are of regional extent and have been mapped from Saglek Fiord north to Noodleook Fiord. A C-14 date of 18,210 +/- 1900 BP on total organic matter (TOM) from lake sediment dammed by a segment of the Saglek Moraines is interpreted as a maximum date for deposition of the Saglek Moraine system because of possible contamination. Glacial sediments comprising the Saglek Moraines are correlated with upper till mapped in troughs and saddles on the continental shelf. Outlet glaciers depositing a late Wisconsinan unit flowed through Labrador fiords and onto the shelf at low basal shear stresses, particularly on the shelf where, although grounded, they were hydrostatically buoyed up and moved principally by sliding. A glaciomarine unit conformably overlies late Wisconsinan till on the shelf and on the land. This unit is a gravelly clayey silt, contains abundant foraminifera, and has up to 60% limestone in the pebble fraction. C-14 dates suggest deposition of this unit began ca. 10,000 BP on the shelf and 9000 BP on the land, an ended by 8000 BP. Limestone pebbles in this unit suggest a source in part from sediment-laden icebergs and pack-ice from the north. Marine deposition from ca. 8000-0 BP is characterize by basinal sedimentation.

  18. Variability of light transmission through Arctic land-fast sea ice during spring

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Petrich, C.; Hudson, S. R.; Granskog, M. A.

    2013-06-01

    The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.

  19. Variability of light transmission through Arctic land-fast sea ice during spring

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Petrich, C.; Hudson, S. R.; Granskog, M. A.

    2012-10-01

    The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along repeated (March, May, June 2010) transects under un-deformed land-fast sea ice at Barrow, Alaska. The objective was to quantify seasonal evolution and spatial variability of light transmittance through snow and sea ice. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for Chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt may cause as much spatial variability of relative light transmittance as the contrast of ponded and white ice during summer. In both instances, a spatial variability of up to three times above and below the mean was measured. In addition, we found a thirtyfold increase of light transmittance as a result of partial snowmelt. Hence, the seasonal evolution of transmittance through sea ice exceeded the spatial variability. Nevertheless, more comprehensive under-ice radiation measurements are needed for a more generalized and large-scale understanding of the under-ice energy budget for physical, biological, and geochemical applications.

  20. Ongoing land use change exacerbates tropical South American drought by sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Lee, J.; Lintner, B. R.; Boyce, C. K.; Lawrence, P.

    2011-12-01

    Observations of tropical South American precipitation over the last three decades indicate an increasing rainfall trend to the north and a decreasing trend to the south. Given that tropical South America has experienced significant land use change over the same period, it is of interest to assess the extent to which changing land use may have contributed to the precipitation trends. Simulations of the National Center for Atmospheric Research Community Atmosphere Model (NCAR CAM) analyzed here suggest a non-negligible impact of land use on this precipitation behavior. While forcing the model by imposed historical sea surface temperatures (SSTs) alone produces a plausible north-south precipitation dipole over South America, NCAR CAM substantially underestimates the magnitude of the observed southern decrease in rainfall unless forcing associated with human-induced land use change is included. The impact of land use change on simulated precipitation occurs primarily during the local dry season and in regions of relatively low annual-mean rainfall, as the incidence of very low monthly-mean accumulations (<10 mm/month) increases significantly when land use change is imposed. Land use change also contributes to the simulated temperature increase by increasing sensible heat flux from the land surface. Moving forward, continuing pressure from deforestation in tropical South America will likely increase the occurrence of significant drought beyond what would be expected by anthropogenic warming alone and in turn compound biodiversity decline from habitat loss and fragmentation.

  1. SR-71 Tail #844 Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    With distinctive heat waves trailing behind its engines, NASA Dryden Flight Research Center's SR-71A, tail number 844, lands at the Edwards AFB runway after a 1996 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  2. GPS Imaging of Global Vertical Land Motion for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Hamlington, B. D.

    2015-12-01

    Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.

  3. Aerosol-cloud-land surface interactions within tropical sea breeze convection

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2014-07-01

    In this study, the influence of aerosols, surface roughness length, soil moisture, and synergistic interactions among these factors on tropical convective rainfall focused along a sea breeze front are explored within idealized cloud-resolving modeling simulations using the Regional Atmospheric Modeling System (RAMS). The idealized RAMS domain setup is representative of the coastal Cameroon rainforest in equatorial Africa. In order to assess the potential sensitivity of sea breeze convection to increasing anthropogenic activity and deforestation occurring in such regions, 27 total simulations are performed in which combinations of enhanced aerosol concentrations, reduced surface roughness length, and reduced soil moisture are included. Both enhanced aerosols and reduced soil moisture are found to individually reduce the precipitation due to reductions in downwelling shortwave radiation and surface latent heat fluxes, respectively, while perturbations to the roughness length do not have a large impact on the precipitation. The largest soil moisture perturbations dominate the precipitation changes due to reduced low-level moisture available to the convection, but if the soil moisture perturbation is more moderate, synergistic interactions between soil moisture and aerosols enhance the sea breeze precipitation. This is found to result from evening convection that forms ahead of the sea breeze only when both effects are present. Interactions between the resulting gust fronts and the sea breeze front locally enhance convergence and therefore the rainfall. The results of this study underscore the importance of considering the aerosol-cloud-land surface system responses to perturbations in aerosol loading and land surface characteristics.

  4. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels

    PubMed Central

    Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209

  5. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  6. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  7. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  8. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  9. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  10. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  11. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  12. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  13. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  14. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    NASA Astrophysics Data System (ADS)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  15. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    PubMed

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  16. Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2002-01-01

    The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.

  17. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  18. Land use change exacerbates tropical South American drought by sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Eun; Lintner, Benjamin R.; Boyce, C. Kevin; Lawrence, Peter J.

    2011-10-01

    Observations of tropical South American precipitation over the last three decades indicate an increasing rainfall trend to the north and a decreasing trend to the south. Given that tropical South America has experienced significant land use change over the same period, it is of interest to assess the extent to which changing land use may have contributed to the precipitation trends. Simulations of the National Center for Atmospheric Research Community Atmosphere Model (NCAR CAM3) analyzed here suggest a non-negligible impact of land use on this precipitation behavior. While forcing the model by imposed historical sea surface temperatures (SSTs) alone produces a plausible north-south precipitation dipole over South America, NCAR CAM substantially underestimates the magnitude of the observed southern decrease in rainfall unless forcing associated with human-induced land use change is included. The impact of land use change on simulated precipitation occurs primarily during the local dry season and in regions of relatively low annual-mean rainfall, as the incidence of very low monthly-mean accumulations (<10 mm/month) increases significantly when land use change is imposed. Land use change also contributes to the simulated temperature increase by shifting the surface turbulent flux partitioning to favor sensible over latent heating. Moving forward, continuing pressure from deforestation in tropical South America will likely increase the occurrence of significant drought beyond what would be expected by anthropogenic warming alone and in turn compound biodiversity decline from habitat loss and fragmentation.

  19. Landing-Time-Controlled Management Of Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1988-01-01

    Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.

  20. Optic flow and sea-land orientation in the sandhopper Talitrus saltator.

    PubMed

    Ugolini, Alberto

    2014-06-15

    The problem sandhoppers face when they find themselves on the dry sand is to reach as quickly as possible the belt of moist sand near the water. In the present study, I ask whether, alongside many other orienting factors, sandhoppers use the optic flow they experience to maintain their bearing relative to the sea-land axis. Adult individuals of Talitrus saltator were released in a transparent Plexiglas bowl, horizontally placed between four walls with a pattern of vertical black and white stripes. The orientation of one pair of opposite walls was south-north, orthogonal to the sea-land axis of the home beach, whilst the second pair of walls was oriented east-west. The black and white striped pattern of opposite walls could be moved in pairs and in the same direction (speed=4.8 cm s(-1)). The results demonstrate that the optic flow sandhoppers experience when moving on the sea-land axis of their home beach influences their direction of travel and could help sandhoppers in maintaining a straight path to reach favourable ground by the shortest route.

  1. Evidence for a novel marine harmful algal bloom: Cyanotoxin (Microcystin) transfer from land to sea otters

    USGS Publications Warehouse

    Miller, Melissa A.; Kudela, Raphael M.; Mekebri, Abdu; Crane, Dave; Oates, Stori C.; Tinker, M. Timothy; Staedler, Michelle; Miller, Woutrina A.; Toy-Choutka, Sharon; Dominik, Clare; Hardin, Dane; Langlois, Gregg; Murray, Michael; Ward, Kim; Jessup, David A.

    2010-01-01

    "Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal

  2. Late Holocene sea- and land-level change on the U.S. southeastern Atlantic Coast

    USGS Publications Warehouse

    Kemp, Andrew C.; Bernhardt, Christopher E.; Horton, Benjamin P.; Kopp, Robert E.; Vane, Christopher H.; Peltier, W. Richard; Hawkes, Andrea D.; Donnelly, Jeffrey P.; Parnell, Andrew C.; Cahill, Niamh

    2015-01-01

    Late Holocene relative sea-level (RSL) reconstructions can be used to estimate rates of land-level (subsidence or uplift) change and therefore to modify global sea-level projections for regional conditions. These reconstructions also provide the long-term benchmark against which modern trends are compared and an opportunity to understand the response of sea level to past climate variability. To address a spatial absence of late Holocene data in Florida and Georgia, we reconstructed ~ 1.3 m of RSL rise in northeastern Florida (USA) during the past ~ 2600 years using plant remains and foraminifera in a dated core of high salt-marsh sediment. The reconstruction was fused with tide-gauge data from nearby Fernandina Beach, which measured 1.91 ± 0.26 mm/year of RSL rise since 1900 CE. The average rate of RSL rise prior to 1800 CE was 0.41 ± 0.08 mm/year. Assuming negligible change in global mean sea level from meltwater input/removal and thermal expansion/contraction, this sea-level history approximates net land-level (subsidence and geoid) change, principally from glacio-isostatic adjustment. Historic rates of rise commenced at 1850–1890 CE and it is virtually certain (P = 0.99) that the average rate of 20th century RSL rise in northeastern Florida was faster than during any of the preceding 26 centuries. The linearity of RSL rise in Florida is in contrast to the variability reconstructed at sites further north on the U.S. Atlantic coast and may suggest a role for ocean dynamic effects in explaining these more variable RSL reconstructions. Comparison of the difference between reconstructed rates of late Holocene RSL rise and historic trends measured by tide gauges indicates that 20th century sea-level trends along the U.S. Atlantic coast were not dominated by the characteristic spatial fingerprint of melting of the Greenland Ice Sheet.

  3. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  4. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  5. A fall land bird migration across the South China Sea from Indo-China to the Greater Sunda Islands

    USGS Publications Warehouse

    Ellis, D.H.; Kepler, A.K.; Kepler, C.B.

    1994-01-01

    We encountered 150 land birds representing 14 families along the cruise track of the Soviet Oceanographic Research Vessel AKADEMlK KOROLEV in the South China Sea. We saw most of these birds during a 3 -day period in a small area c. 350 km southeast of the southern tip of the Indo-China peninsula. These observations suggest that a significant land bird migration corridor crosses the South China Sea from Viet Nam to Borneo.

  6. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  7. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  8. Pollen evidence for late pleistocene bering land bridge environments from Norton Sound, Northeastern Bering Sea, Alaska

    USGS Publications Warehouse

    Ager, T.A.; Phillips, R.L.

    2008-01-01

    After more than half a century of paleoenvironmental investigations, disagreements persist as to the nature of vegetation type and climate of the Bering land bridge (BLB) during the late Wisconsin (Sartan) glacial interval. Few data exist from sites on the former land bridge, now submerged under the Bering and Chukchi Seas. Two hypotheses have emerged during the past decade. The first, based on pollen data from Bering Sea islands and adjacent mainlands of western Alaska and Northeast Siberia, represents the likely predominant vegetation on the Bering land bridge during full-glacial conditions: graminoid-herb-willow tundra vegetation associated with cold, dry winters and cool, dry summer climate. The second hypothesis suggests that dwarf birch-shrub-herb tundra formed a broad belt across the BLB, and that mesic vegetation was associated with cold, snowier winters and moist, cool summers. As a step towards resolving this controversy, a sediment core from Norton Sound, northeastern Bering Sea was radiocarbon dated and analyzed for pollen content. Two pollen zones were identified. The older, bracketed by radiocarbon ages of 29,500 and 11,515 14C yr BP, contains pollen assemblages composed of grass, sedge, wormwood, willow, and a variety of herb (forb) taxa. These assemblages are interpreted to represent graminoid-herb-willow tundra vegetation that developed under an arid, cool climate regime. The younger pollen zone sediments were deposited about 11,515 14C yr BP, when rising sea level had begun to flood the BLB. This younger pollen zone contains pollen of birch, willow, heaths, aquatic plants, and spores of sphagnum moss. This is interpreted to represent a Lateglacial dwarf birch-heath-willow-herb tundra vegetation, likely associated with a wetter climate with deeper winter snows, and moist, cool summers. This record supports the first hypothesis, that graminoid-herb-willow tundra vegetation extended into the lowlands of the BLB during full glacial conditions of the

  9. Changes in summer TC activity related to thermal differences between land and the sea

    NASA Astrophysics Data System (ADS)

    Choi, Ki-Seon; Kim, Baek-Jo; Cha, Yu-Mi; Kim, Hae-Dong

    2015-08-01

    This study analyzed the effects of thermal differences between land and the sea on tropical cyclone (TC) activity. To this end, northern China in which thermal ridges appear in summer in the continent east of Asia was defined as "Land" and an area of the sea where temperatures are low in the tropical and subtropical western North Pacific was defined as "Sea" to analyze the time series of thermal differences between the land and the sea over the last 62 years. Change-point analysis was applied to these time series. According to the results, a significant climate regime shift existed in 1978. That is, positive values were distributed from 1951 to 1978 (5178) and negative values were distributed from 1979 to 2012 (7912). Thereafter, average differences between the 5178 period during which positive values were apparent and the 7912 period during which negative values were apparent was analyzed. With regard to TC genesis, TCs during the 7912 period showed a tendency of being mainly formed in the northwestern quadrant of the tropical and subtropical western North Pacific, and those during the 5178 period showed a tendency of being mainly formed in the southeastern quadrant. With regard to TC movements, whereas TCs during the 7912 period showed a pattern of moving west from the Philippines toward the Indochina peninsular and southern China, those during the 5178 period showed a pattern of moving north from the far southeastern sea of the Philippines to pass the East China Sea and go toward Korea and Japan. Therefore, the TCs during the 7912 period showed a tendency of being formed and moving in regions further west than those of the TCs during the 5178 period. With regard to TC intensities during the two periods, TCs during the 5178 period were more intense. Large-scale environments that affected these changes in TC activity between the two periods were analyzed. During the 7912 period, since temperature in the continent were lower than those in the sea, anomalous

  10. Influence of sea-air interface on upward laser beam propagation

    NASA Astrophysics Data System (ADS)

    Zhou, Tian-hua; He, Yan; Zhu, Xiao-lei; Chen, Wei-biao

    2013-08-01

    The roughness of sea surface affects the optical property of the exiting upward laser, which constrains the application of the LIDAR and Laser Communication in ocean. The paper designs one pool test to study the influence of sea-air interfaces and develops a corresponding geometric optical model. It analyzes the optical property of the upward laser through the sea-air interface systematic. Results show that the roughness of wavy sea surface will affect beam spreading, pointing and scintillation when transmitting through the boundary. Further, experiment results in one water tank with man-made wave show that the incident angle and divergence angle are very important to the upward laser on the real-time and statistics change. Selecting one appropriate incident angle and divergence angle will get one stabilized performance, which is useful to the laser practical application on the marine areas.

  11. Sea Level Rise and Land Subsidence Contributions to the Signals from the Tide Gauges of China

    NASA Astrophysics Data System (ADS)

    Parker, Albert

    2016-06-01

    The tide gauges measure the local oscillations of the sea level vs. the tide gauge instrument. The tide gauge instrument is generally subjected to the general subsidence or uplift of the nearby inland, plus some additional subsidence for land compaction and other localised phenomena. The paper proposes a non-linear model of the relative sea level oscillations including a long term trend for the absolute sea level rise, another term for the subsidence of the instrument, and finally a sinusoidal approximation for the cyclic oscillations of periodicities up to decades. This non-linear model is applied to the tide gauges of China. The paper shows that the limited information available for China does not permit to infer any proper trend for the relative rates of rise, as the tide gauge records are all short or incomplete and the vertical movement of the tide gauge instruments is unassessed. The only tide gauge record of sufficient length that may be assembled for China is obtained by combining the North Point and Quarry Bay tide gauges in Hong Kong (NPQB). This NQPB composite tide gauge record is shown to have similarities with the tide gauge records of Sydney, equally in the West pacific, and San Diego, in the east Pacific, oscillating about the longer term trend mostly determined by the local subsidence. As it is very well known that China generally suffers of land subsidence, and the tide gauge installations may suffer of additional subsidence vs. the inland, it may be concluded from the analysis of the other worldwide tide gauges that the sea levels of China are very likely rising about the same amount of the subsidence of the tide gauges, with the sea level acceleration component still negligible.

  12. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  13. Decadal trends in air-sea CO2 exchange in the Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Arrigo, Kevin R.

    2016-05-01

    Highly productive Antarctic shelf systems, like the Ross Sea, play important roles in regional carbon budgets, but the drivers of local variations are poorly quantified. We assess the variability in the Ross Sea carbon cycle using a regional physical-biogeochemical model. Regionally, total partial pressure of CO2 (pCO2) increases are largely controlled by the biological pump and broadly similar to those in the offshore Southern Ocean. However, this masks substantial local variability within the Ross Sea, where interannual fluctuations in total pCO2 are driven by the biological pump and alkalinity, whereas those for anthropogenic pCO2 are related to physical processes. Overall, the high degree of spatial variability in the Ross Sea carbon cycle causes extremes in aragonite saturation that can be as large as long-term trends. Therefore, Antarctic shelf polynya systems like the Ross Sea will be strongly affected by local processes in addition to larger-scale phenomena.

  14. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  15. Between land and sea: divergent data stewardship practices in deep-sea biosphere research

    NASA Astrophysics Data System (ADS)

    Cummings, R.; Darch, P.

    2013-12-01

    Data in deep-sea biosphere research often live a double life. While the original data generated on IODP expeditions are highly structured, professionally curated, and widely shared, the downstream data practices of deep-sea biosphere laboratories are far more localized and ad hoc. These divergent data practices make it difficult to track the provenance of datasets from the cruise ships to the laboratory or to integrate IODP data with laboratory data. An in-depth study of the divergent data practices in deep-sea biosphere research allows us to: - Better understand the social and technical forces that shape data stewardship throughout the data lifecycle; - Develop policy, infrastructure, and best practices to improve data stewardship in small labs; - Track provenance of datasets from IODP cruises to labs and publications; - Create linkages between laboratory findings, cruise data, and IODP samples. In this paper, we present findings from the first year of a case study of the Center for Dark Energy Biosphere Investigations (C-DEBI), an NSF Science and Technology Center that studies life beneath the seafloor. Our methods include observation in laboratories, interviews, document analysis, and participation in scientific meetings. Our research uncovers the data stewardship norms of geologists, biologists, chemists, and hydrologists conducting multi-disciplinary research. Our research team found that data stewardship on cruises is a clearly defined task performed by an IODP curator, while downstream it is a distributed task that develops in response to local need and to the extent necessary for the immediate research team. IODP data are expensive to collect and challenging to obtain, often costing $50,000/day and requiring researchers to work twelve hours a day onboard the ships. To maximize this research investment, a highly trained IODP data curator controls data stewardship on the cruise and applies best practices such as standardized formats, proper labeling, and

  16. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  17. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  18. Air-sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Wu, Guoxiong; Guan, Yue; Liu, Yimin; Yan, Jinghui; Mao, Jiangyu

    2012-01-01

    In spring over the southern Bay of Bengal (BOB), a vortex commonly develops, followed by the Asian summer monsoon onset. An analysis of relevant data and a case study reveals that the BOB monsoon onset vortex is formed as a consequence of air-sea interaction over BOB, which is modulated by Tibetan Plateau forcing and the land-sea thermal contrast over the South Asian area during the spring season. Tibetan Plateau forcing in spring generates a prevailing cold northwesterly over India in the lower troposphere. Strong surface sensible heating is then released, forming a prominent surface cyclone with a strong southwesterly along the coastal ocean in northwestern BOB. This southwesterly induces a local offshore current and upwelling, resulting in cold sea surface temperatures (SSTs). The southwesterly, together with the near-equatorial westerly, also results in a surface anticyclone with descending air over most of BOB and a cyclone with ascending air over the southern part of BOB. In the eastern part of central BOB, where sky is clear, surface wind is weak, and ocean mixed layer is shallow, intense solar radiation and low energy loss due to weak surface latent and sensible heat fluxes act onto a thin ocean layer, resulting in the development of a unique BOB warm pool in spring. Near the surface, water vapor is transferred from northern BOB and other regions to southeastern BOB, where surface sensible heating is relatively high. The atmospheric available potential energy is generated and converted to kinetic energy, thereby resulting in vortex formation. The vortex then intensifies and moves northward, where SST is higher and surface sensible heating is stronger. Meanwhile, the zonal-mean kinetic energy is converted to eddy kinetic energy in the area east of the vortex, and the vortex turns eastward. Eventually, southwesterly sweeps over eastern BOB and merges with the subtropical westerly, leading to the onset of the Asian summer monsoon.

  19. River Export of Plastic from Land to Sea: A Global Modeling Approach

    NASA Astrophysics Data System (ADS)

    Siegfried, Max; Gabbert, Silke; Koelmans, Albert A.; Kroeze, Carolien; Löhr, Ansje; Verburg, Charlotte

    2016-04-01

    Plastic is increasingly considered a serious cause of water pollution. It is a threat to aquatic ecosystems, including rivers, coastal waters and oceans. Rivers transport considerable amounts of plastic from land to sea. The quantity and its main sources, however, are not well known. Assessing the amount of macro- and microplastic transport from river to sea is, therefore, important for understanding the dimension and the patterns of plastic pollution of aquatic ecosystems. In addition, it is crucial for assessing short- and long-term impacts caused by plastic pollution. Here we present a global modelling approach to quantify river export of plastic from land to sea. Our approach accounts for different types of plastic, including both macro- and micro-plastics. Moreover, we distinguish point sources and diffuse sources of plastic in rivers. Our modelling approach is inspired by global nutrient models, which include more than 6000 river basins. In this paper, we will present our modelling approach, as well as first model results for micro-plastic pollution in European rivers. Important sources of micro-plastics include personal care products, laundry, household dust and car tyre wear. We combine information on these sources with information on sewage management, and plastic retention during river transport for the largest European rivers. Our modelling approach may help to better understand and prevent water pollution by plastic , and at the same time serves as 'proof of concept' for future application on global scale.

  20. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  1. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  2. Modelling land-fast sea ice using a linear elastic model

    NASA Astrophysics Data System (ADS)

    Plante, Mathieu; Tremblay, Bruno

    2016-04-01

    Land-fast ice is an important component of the Arctic system, capping the coastal Arctic waters for most of the year and exerting a large influence on ocean-atmosphere heat exchanges. Yet, the accurate representation of land-fast ice in most large-scale sea ice models remains a challenge, part due to the difficult (and sometimes non-physical) parametrisation of ice fracture. In this study, a linear elastic model is developed to investigate the internal stresses induced by the wind forcing on the land-fast ice, modelled as a 2D elastic plate. The model simulates ice fracture by the implementation of a damage coefficient which causes a local reduction in internal stress. This results in a cascade propagation of damage, simulating the ice fracture that determines the position of the land-fast ice edge. The modelled land-fast ice cover is sensitive to the choice of failure criterion. The parametrised cohesion, tensile and compressive strength and the relationship with the land-fast ice stability is discussed. To estimate the large scale mechanical properties of land-fast ice, these results are compared to a set of land-fast ice break up events and ice bridge formations observed in the Siberian Arctic. These events are identified using brightness temperature imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) Terra and Aqua satellites, from which the position of the flaw lead is identifiable by the opening of polynyi adjacent to the land-fast ice edge. The shape of the land-fast ice before, during and after these events, along with the characteristic scale of the resulting ice floes, are compared to the model results to extrapolate the stress state that corresponds to these observations. The model setting that best reproduce the scale of the observed break up events is used to provide an estimation of the strength of the ice relative to the wind forcing. These results will then be used to investigate the relationship between the ice thickness and the

  3. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  4. Climatology and Real-Data Simulations of Snow Bands over the English Channel and Irish Sea during Cold-Air Outbreaks

    NASA Astrophysics Data System (ADS)

    Norris, J.; Vaughan, G.; Schultz, D. M.

    2012-04-01

    During the winters of 2009—2010 and 2010—2011, anti-cyclonic blocking over the north Atlantic led to cold, dry air being advected over the UK from the north and east, generating widespread snow depths not seen since the early 1980s. The societal and economical impacts of this snow were severe and diverse, including those on transport, industry, commerce, emergency services, and retail. The most distinctive precipitation features during these winters formed over the English Channel and Irish Sea, where convection frequently organised into bands, as diagnosed from Met Office NIMROD precipitation radar images, forming along the major axis of each body of water (hereafter, sea) when the boundary-layer flow was roughly parallel to each of those axes (hereafter, along-sea). In this study, we address the atmospheric conditions, diagnosed from soundings from suitable locations, at times when bands were observed and at times that they were not, during the cold-air outbreaks in these winters. We find that, for both seas, a band was present the majority of times that the 850-hPa flow was along-sea. We subsequently find that, of these times of along-sea flow, for both seas, 850-hPa wind speed and surface-to-850-hPa temperature difference were significantly greater when bands were present than when they were not. Real-data simulations using the Weather Research and Forecasting (WRF) model are then presented for a typical band over each sea and the model is found to be accurate in reproducing the structures observed on radar. Output from control runs for each band is compared to that in which topography, surface heat fluxes, and land-sea borders are each removed in turn in order to investigate how the low-level flow evolves to generate the observed bands.

  5. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-08-24

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components

  6. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    USGS Publications Warehouse

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-01-01

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components

  7. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  8. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  9. A local index of Maritime Continent intraseasonal variability based on rain rates over the land and sea

    NASA Astrophysics Data System (ADS)

    Vincent, C. L.; Lane, T. P.; Wheeler, M. C.

    2016-09-01

    A local index for describing intraseasonal variability over the Maritime Continent is developed. The index is based on the ratio of area-averaged rain rate over the land to that over the sea. It takes advantage of the fact that the main convective envelope of intraseasonal variability events tends to modulate the diurnal precipitation cycle over the land over the entire Maritime Continent. Lagged analysis is used to create composite intraseasonal variability events, where "day 0" is chosen according to when the normalized rain rate over the sea becomes greater than that over the land. The index identifies intraseasonal variability events associated with the Madden Julian Oscillation as well as equatorial Kelvin waves and westward propagating equatorial Rossby waves. The results suggest a similar local impact of all such events in suppressing the rain rate over land relative to that over the sea when the main convective envelope approaches.

  10. Impact of topography and land-sea distribution on east Asian paleoenvironmental patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Z. S.; Wang, H. J.; Guo, Z. T.; Jiang, D. B.

    2006-03-01

    Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat. Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records, The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000-2000 m high and the Paratethys Sea retreats to the Turan Plate.

  11. Experimental sea slicks: Their practical applications and utilization for basic studies of air-sea interactions

    NASA Astrophysics Data System (ADS)

    Hühnerfuss, Heinrich; Garrett, W. D.

    1981-01-01

    Practical applications of organic surface films added to the sea surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the sea [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the sea surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider sea surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial sea slicks at Portsmouth (England) in October of 1773. Although the sea was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.

  12. SEA in local land use planning - first experience in the Alpine States

    SciTech Connect

    Jiricka, Alexandra Proebstl, Ulrike

    2008-05-15

    In the Alpine area, planning decisions can result in far-reaching consequences because of the high sensitivity of the Alpine ecosystems. This article is based on two hypotheses: (1) The Alpine states/regions were aware of their sensitive environment and therefore recognized the necessity of introducing a comparable instrument to assess local land use planning. (2) By introducing this differentiated assessment tool, namely SEA, an increase in costs may be the consequence. However, better and more transparent planning can contribute to the enhancement of planning standards. To reveal the validity of these assumptions the legal implementation in the Alpine countries Austria, Germany, Italy and France was examined as well as first practical experience resulting from the determined procedures. The results of the implementation process in the four states were compared and discussed on the basis of selected process steps of SEA.

  13. Coastal sea level projections with improved accounting for vertical land motion

    PubMed Central

    Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy

    2015-01-01

    Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions. PMID:26526287

  14. Landing performance of an air cushion landing system installed on a 1/10-scale dynamic model on the C-8 Buffalo airplane

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.

    1973-01-01

    An experimental study was conducted to evaluate the landing behavior of a 1/10-scale dynamic model of the C-8 Buffalo airplane equipped with an air-cushion landing system (ACLS) on a variety of surfaces including both calm and rough water and a smooth hard surface. Taxi runs were made on the hard surface over several obstacles. Landings were made with the model at various pitch and roll attitudes and vertical velocities and at one nominal horizontal velocity. Data from the landings include time histories of the trunk and air-cushion pressures and accelerations at selected locations on the model.

  15. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  16. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  17. Episodic rifting of phanerozoic rocks in the victoria land basin, Western ross sea, antarctica.

    PubMed

    Cooper, A K; Davey, F J

    1985-09-13

    Multichannel seismic-reflection data show that the Victoria Land-basin, unlike other sedimentary basins in the Ross Sea, includes a rift-depression 15 to 25 kilometers wide that parallels the Transantarctic Mountains and contains up to 12 kilometers of possible Paleozoic to Holocene age sedimentary rocks. An unconformity separates the previously identified Cenozoic sedimentary section from the underlying strata of possible Mesozoic and Paleozoic age. Late Cenozoic volcanic rocks intrude into the entire section along the eastern flank of the basin. The Victoria Land basin is probably part of a more extensive rift system that has been active episodically since Paleozoic time. Inferred rifting and basin subsidence during Mesozoic and Cenozoic time may be associated with regional crustal extension and uplift of the nearby Transantarctic Mountains.

  18. A Critical Review of the Effect of Air Pollution Control Regulations on Land Use Planning

    ERIC Educational Resources Information Center

    Roberts, John J.; And Others

    1975-01-01

    Although a number of recent federal initiatives explicitly require greater coordination of land use and air quality management, viable working relationships among the planning and regulatory agencies have not been developed. The concept of emission density zoning is endorsed. (Author/BT)

  19. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  20. Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations

    EPA Science Inventory

    Abstract Land-use regression (LUR) models have emerged as a preferred methodology for estimating individual exposure to ambient air pollution in epidemiologic studies in absence of subject-specific measurements. Although there is a growing literature focused on LUR evaluation, fu...

  1. Air Conditions Close to the Ground and the Effect on Airplane Landings

    NASA Technical Reports Server (NTRS)

    Thompson, F L; Peck, W C; Beard, A P

    1935-01-01

    This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground.

  2. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Jones, Daniel; Ito, Takamitsu; Takano, Yohei; Hsu, Wei-Ching

    2014-05-01

    The exchange of carbon dioxide between the ocean and the atmosphere tends to bring near-surface waters toward equilibrium by reducing the partial pressure gradient across the air-water interface. However, the equilibration process is not instantaneous; in general there is a lag between forcing and response. The timescale of air-sea equilibration depends on several factors involving the depth of the mixed layer, temperature, salinity, wind speed, and carbonate chemistry. In this work, we use a suite of observational datasets to generate climatological and seasonal composite maps of the air-sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations, which are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally-derived air-sea gas exchange timescale with a model-derived surface residence time and a data-derived horizontal transport timescale, which allows us to define two non-dimensional metrics of gas exchange efficiency. These parameters highlight the Southern Ocean, equatorial Pacific, and North Atlantic as regions of inefficient air-sea equilibration where carbon anomalies are likely to form and persist. The efficiency parameters presented here can serve as simple tools for understanding regional air-sea disequilibrium in both observations and models. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  3. Impacts of South East Biomass Burning on local air quality in South China Sea

    NASA Astrophysics Data System (ADS)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  4. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  5. A research on analysis method of land environment big data storage based on air-earth-life

    NASA Astrophysics Data System (ADS)

    Lu, Yanling; Li, Jingwen

    2015-12-01

    Many problems of land environment in urban development, with the support of 3S technology, the research of land environment evolved into the stage of spatial-temporal scales. This paper combining space, time and attribute features in land environmental change, with elements of "air-earth-life" framework for the study of pattern, researching the analysis method of land environment big data storage due to the limitations of traditional processing method in land environment spatial-temporal data, to reflect the organic couping relationship among the multi-dimensional elements in land environment and provide the theory basis of data storage for implementing big data analysis application platform in land environment.

  6. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  7. Regulation of CO2 Air Sea Fluxes by Sediments in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley

    2016-04-01

    A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

  8. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  9. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model

    EPA Science Inventory

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...

  10. Simulation-based study of air-sea momentum fluxes nearshore

    NASA Astrophysics Data System (ADS)

    Hao, Xuanting; Shen, Lian

    2015-11-01

    Momentum fluxes at sea surface are crucial to air-sea interactions. In nearshore regions, the bathymetry variation has a significant impact on the surface wave field and complicates the momentum fluxes at water surface. In this study, we extend a high order spectral method to address wave-bottom interactions and wave modeling. From the wave simulation data, we use the Hilbert-Huang transform to quantify the properties of the wave spectrum, based on which the wave field is reconstructed for the detailed mechanistic study of wind-wave interactions using large-eddy simulation for the wind field. The roughness of the water surface is quantified using a dynamic model for the effects of subgrid-scale waves. The results show that the waves are sensitive to the water depth variation. Associated with the changes in the wave field, the momentum fluxes at the air-sea interface increase in shallow regions.

  11. Location of and landing on a source of human body odour by female Culex quinquefasciatus in still and moving air

    PubMed Central

    LACEY, EMERSON S.; CARDÉ, RING T.

    2014-01-01

    The orientation to and landing on a source of human odour by female Culex quinquefasciatus Say (Diptera: Culicidae) is observed in a wind tunnel without an airflow or with a laminar airflow of 0.2 m s-1. Odours from human feet are collected by ‘wearing’ clean glass beads inside a stocking and presenting beads in a Petri dish in a wind tunnel. Mosquitoes are activated by brief exposure to a 1 L min-1 jet of 4% CO2 positioned 10 cm from the release cage. In moving air at 0.2 m s-1, a mean of 3.45 ± 0.49 landings are observed in 10 min trials (5 mosquitoes per trial), whereas 6.50 ± 0.96 landings are recorded in still air. Furthermore, 1.45 ± 0.31mosquitoes are recorded on beads at any one time in moving air (a measure of individuals landing versus one landing multiple times) compared to 3.10 ± 0.31 in still air. Upwind flight to beads in moving air is demonstrated by angular headings of flight immediately prior to landing, whereas approaches to beads in still air are oriented randomly. The mean latency until first landing is 226.7 ± 17.98 s in moving air compared to 122.5 ± 24.18 in still air. Strategies used to locate a prospective host at close range in still air are considered. PMID:26472918

  12. Air-sea interaction measurements in the west Mediterranean Sea during the Tyrrhenian Eddy Multi-Platform Observations Experiment

    SciTech Connect

    Schiano, M.E.; Santoleri, R.; Bignami, F.; Leonardi, R.M. ); Marullo, S. ); Boehm, E. )

    1993-02-15

    Measurements of radiative fluxes were carried out in the Tyrrhenian Sea in fall and winter as part of the Tyrrhenian Eddy Multi-Platform Observations Experiment (TEMPO). These measurements have supplied the first experimental radiation data set over this basin. Seasonal variation of the different components of the budget are investigated. Since data collection was carried out in an area in which a quasi-permanent eddy is present, the behavior of the radiation parameters across the frontal zone is analyzed. The most interesting result of the air-sea interaction in proximity of a marine front consists in the covariation of sea surface temperature and downwelling long-wave radiation. Contemporaneous satellite data show a clear correlation between sea surface structure and horizontal distribution of columnar atmospheric water content. Therefore this inhomogeneity clearly is one of the main factors responsible for the variation of the downwelling radiation across the front. A comparison between experimental data and results of some of the most widely used bulk formulae is carried out for both short- and long-wave radiation. The mean differnece between measured and empirical solar radiation values is less than 3%, while in the case of the net long-wave radiation budge, poor agreement is found. Indeed, a 30 W/m[sup 2] bias results from the comparison. This discrepancy is consistent with the imbalance between previous bulk calculations of total heat budget at the surface and corresponding hydrographical observations of heat exchange at Gibraltar. 30 refs., 6 figs., 9 tabs.

  13. Climatic Impacts of a Stochastic Parameterization of Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2014-12-01

    The atmosphere and ocean are coupled by the exchange of fluxes across the ocean surface. Air-sea fluxes vary partly on scales that are too small and fast to be resolved explicitly in numerical models of weather and climate, making them a candidate for stochastic parameterization. This presentation proposes a nonlinear physical mechanism by which stochastic fluctuations in the air-sea buoyancy flux may modify the mean climate, even though the mean fluctuation is zero. The mechanism relies on a fundamental asymmetry in the physics of the ocean mixed layer: positive surface buoyancy fluctuations cannot undo the vertical mixing caused by negative fluctuations. The mechanism has much in common with Stommel's mixed-layer demon. The presentation demonstrates the mechanism in climate simulations with a comprehensive coupled atmosphere-ocean general circulation model (SINTEX-G). In the SINTEX-G simulations with stochastic air-sea buoyancy fluxes, significant changes are detected in the time-mean oceanic mixed-layer depth, sea-surface temperature, atmospheric Hadley circulation, and net upward water flux at the sea surface. Also, El Niño Southern Oscillation (ENSO) variability is significantly increased. The findings demonstrate that noise-induced drift and noise-enhanced variability, which are familiar concepts from simple climate models, continue to apply in comprehensive climate models with millions of degrees of freedom. The findings also suggest that the lack of representation of sub-grid variability in air-sea fluxes may contribute to some of the biases exhibited by contemporary climate models.

  14. Impact of autumn SST in the Japan Sea on winter rainfall and air temperature in Northeast China

    NASA Astrophysics Data System (ADS)

    Shi, Xiaomeng; Sun, Jilin; Wu, Dexing; Yi, Li; Wei, Dongni

    2015-08-01

    We studied the impact of sea surface temperature anomaly (SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast (NE) China using the singular value decomposition (SVD) and empirical orthogonal function (EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature (SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960-2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 hPa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.

  15. Interannual Variation of the Summer Rainfall in the Taipei Basin Caused by the Impact of ENSO on the Land-Sea Breeze Activity

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Tsay, Jenq-Dar; Takle, Eugene S.

    2015-04-01

    The Taipei Basin, located in northern Taiwan, is formed by the intersection of the Tanshui River Valley (~30km) and the Keelung River Valley (~60km). Summer is the dry season in northern Taiwan, but the maximum rainfall in the Taipei Basin occurs during the summer. The majority of summer rainfall (75%) in this Basin is produced by afternoon thunderstorms triggered by the sea breeze interactions with the mountains to the south of this Basin. Environmental conditions for the roughly three million people living in the Taipei Basin are greatly affected by the land-sea breeze and afternoon thunderstorm activities. Thus, the water supply, air-land traffic, and pollution for this extremely urbanized basin can be profoundly affected by interannual variations of thunderstorm days and rainfall. A systematic analysis was made of thunderstorm days and rainfall for the past two decades. Opposite the interannual variation of the sea surface temperature (SST) anomalies over the NOAA NINO3 - 4 region, ΔSST (NINO3 - 4), clear interannual variations of these two variables emerge. Occurrence days of afternoon thunderstorm and rainfall amount in the Taipei Basin are double during the cold ΔSST(NINO3 - 4) phase compared to the warm phase. During the latter (former) El Niño-Southern Oscillation (ENSO) phase, the Taipei Basin needs a stronger (weaker) warm/moist monsoon southwesterly flow channeled through the land-sea breeze to trigger thunderstorm activity. In contrast, the convergence of water vapor flux over the southeast/east Asian monsoon region toward Taiwan is enhanced more (less) to maintain rainfall over the Taipei Basin during the cold (warm) ENSO phase.

  16. Substantial primary production in the land-remote region of the central and northern Scotia Sea

    NASA Astrophysics Data System (ADS)

    Whitehouse, M. J.; Atkinson, A.; Korb, R. E.; Venables, H. J.; Pond, D. W.; Gordon, M.

    2012-01-01

    The Scotia Sea area has high productivity relative to the Southern Ocean as a whole, but this displays strong latitudinal and longitudinal gradients. Elucidating the extent of these from a single cruise is problematic, given the high variability of bloom timing and location in this region. Therefore, this study used data from transects across the central Scotia Sea in spring, summer and autumn of 2006, 2008 and 2009, combined with satellite data, to obtain a larger-scale appreciation of the latitudinal contrasts in phytoplankton standing stock and primary production across the region. Concentrations of nitrate, phosphate and particularly silicic acid increased towards the south of the transect with the latter showing a step change at the Southern Antarctic Circumpolar Current Front (SACCF). Changes in seasonal nutrient concentrations indicated increasing phytoplankton uptake north of ˜57°S that peaked at ˜53°S in the Georgia Basin. Based on seasonal depletions of nitrate relative to phosphate, the highest relative nitrate uptake occurred northwest of South Georgia on the periphery of the Georgia Basin, indicating efficient nitrate use here due to iron-replete conditions. An integrative approach to examine these gradients was with the use of 10-year satellite climatology data. These showed that the lowest mean chlorophyll a (chl- a) values were in the central/northern Scotia Sea, but these were still substantial values, 67% of values within the Georgia Basin bloom. Cruise data on chl- a and on microplankton biomass from cell counts support this finding of substantial biomass in the central Scotia Sea; since these averaged half of values in the iron-fertilised bloom of the Georgia Basin downstream of South Georgia. Given that our transect was nearly 1000 km long and in parts was land remote with low iron concentrations, the relatively high production in the central and northern Scotia Sea is surprising. Iron levels may be maintained here by efficient recycling

  17. Scattering properties of a stratified air/snow/sea ice medium. Small slope approximation

    NASA Astrophysics Data System (ADS)

    Dusséaux, Richard; Afifi, Saddek; Dechambre, Monique

    2016-11-01

    The sea-ice thickness, a key parameter in Arctic studies, is derived from radar altimeter height measurements of the freeboard, taking into account not only snow load, but also the penetration depth of the electromagnetic waves inside the snow-this is the not generally the case. Within the framework of the small slope approximation method, we study in Ku-band (f = 13 GHz, λ = 2.31 cm in the air) the electromagnetic signature of an air/snow/sea ice rough layered medium. The snow is inhomogeneous and is represented as a stack of several layers with different relative permittivities. We show that the electromagnetic response is very sensitive to the isotropy factor of the air/snow interface and to the cross-correlation parameters of interfaces. xml:lang="fr"

  18. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  19. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  20. Seasonal and Non-seasonal Sea Level Variations by Exchange of Water with Land Hydrology

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.

    2004-01-01

    The global ocean exchanges a large amount of water, seasonally or non-seasonally, with land hydrology. Apart from the long-term melting of ice sheets and glaciers, the water is exchanged directly as land runoff R, and indirectly via atmosphere in the form of precipitation minus evapo-transpiration P-E. On land, the hydrological budget balance is soil moisture S = P-E-R. The runoff R has been difficult to monitor; but now by combining the following two data sets one can obtain a global estimate, subject to the spatial and temporal resolutions afforded by the data: (1) The space gravity mission GRACE yields monthly S estimate on a spatial scale larger than approx. 1000 km over the last 2.5 years; (2) The atmospheric circulation model output, such as from NCEP, provides proxy estimates for P-E at monthly and approx. 200 km resolutions. We will discuss these estimates and the effects on the global ocean water budget and hence sea level.

  1. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  2. Air-sea interaction in the tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.

    1972-01-01

    Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.

  3. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    SciTech Connect

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Kehl, S R; Lindman, T R; Yakuma, S C

    2010-04-22

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  4. Effect of air-sea coupling on the frequency distribution of intense tropical cyclones over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomoaki

    2015-12-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual sea surface temperature (SST) variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence, AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling, and hence, TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  5. Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes

    PubMed Central

    Pahari, Susanta; Bickford, David; Fry, Bryan G; Kini, R Manjunatha

    2007-01-01

    Background Snake venom composition varies widely both among closely related species and within the same species, based on ecological variables. In terrestrial snakes, such variation has been proposed to be due to snakes' diet. Land snakes target various prey species including insects (arthropods), lizards (reptiles), frogs and toads (amphibians), birds (aves), and rodents (mammals), whereas sea snakes target a single vertebrate class (fishes) and often specialize on specific types of fish. It is therefore interesting to examine the evolution of toxins in sea snake venoms compared to that of land snakes. Results Here we describe the expression of toxin genes in the venom glands of two sea snakes, Lapemis curtus (Spine-bellied Sea Snake) and Acalyptophis peronii (Horned Sea Snake), two members of a large adaptive radiation which occupy very different ecological niches. We constructed cDNA libraries from their venom glands and sequenced 214 and 192 clones, respectively. Our data show that despite their explosive evolutionary radiation, there is very little variability in the three-finger toxin (3FTx) as well as the phospholipase A2 (PLA2) enzymes, the two main constituents of Lapemis curtus and Acalyptophis peronii venom. To understand the evolutionary trends among land snakes, sea snakes and sea kraits, pairwise genetic distances (intraspecific and interspecific) of 3FTx and PLA2 sequences were calculated. Results show that these proteins appear to be highly conserved in sea snakes in contrast to land snakes or sea kraits, despite their extremely divergent and adaptive ecological radiation. Conclusion Based on these results, we suggest that streamlining in habitat and diet in sea snakes has possibly kept their toxin genes conserved, suggesting the idea that prey composition and diet breadth may contribute to the diversity and evolution of venom components. PMID:17900344

  6. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  7. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  8. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  9. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  10. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    NASA Astrophysics Data System (ADS)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  11. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  12. Impact of land-sea breezes at different scales on the diurnal rainfall in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Ru; Wang, Shih-Yu

    2014-10-01

    The formation mechanism of diurnal rainfall in Taiwan is commonly recognized as a result of local forcings involving solar thermal heating and island-scale land-sea breeze (LSB) interacting with orography. This study found that the diurnal variation of the large-scale circulation over the East Asia-Western North Pacific (EAWNP) modulates considerably the diurnal rainfall in Taiwan. It is shown that the interaction between the two LSB systems—the island-scale LSB and the large-scale LSB over EAWNP—facilitates the formation of the early morning rainfall in western Taiwan, afternoon rainfall in central Taiwan, and nighttime rainfall in eastern Taiwan. Moreover, the post-1998 strengthening of a shallow, low-level southerly wind belt along the coast of Southeast China appears to intensify the diurnal rainfall activity in Taiwan. These findings reveal the role of the large-scale LSB and its long-term variation in the modulation of local diurnal rainfall.

  13. Giardia, Cryptosporidium and the spectre of zoonosis: the Italian experience from land to sea.

    PubMed

    Giangaspero, A

    2006-06-01

    In the last decade, a major concern for the scientific community has been whether infected animals can serve as reservoirs of Giardia and Cryptosporidium infection for humans. Worldwide, prevalence studies and molecular tools have provided insights into the taxonomy and epidemiology of these protozoa in order to better understand such a relation. This paper presents data on the prevalence and molecular genotyping studies from several sample types from land to sea (humans, companion animals, sheep, cattle, goats, wastewaters, surface water, and shellfish) available in Italy. The contribution of Italian researchers to the international debate on the veterinary significance of these infections and their impact on public health is highlighted and the main objectives to be pursued in the future depicted.

  14. Diatom and Geochemical Constraints on Pliocene Sea Surface Conditions on the Wilkes Land Margin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Taylor-Silva, B.

    2015-12-01

    The mid-Pliocene is the most recent interval in Earth's history to sustain global temperatures within the range of warming predicted for the 21st century, providing an appealing analog with which to examine the changes we might encounter in the coming century. Diatom-based Southern Ocean sea surface and sea ice reconstructions by the USGS Pliocene Research Interpretations and Synoptic Mapping (PRISM) Group suggest an average +2° summer SST anomaly during the 3.3-3.0 Ma interval relative to modern. Here, we present a reconstruction of Pliocene sea surface conditions from a marine sediment core collected at IODP Site U1361, on the continental rise of the Wilkes Land margin. U1361 biogenic silica concentrations document the alternation of diatom-rich and diatom-poor lithologies; we interpret 8 diatom-rich mudstones within this sequence to record interglacial conditions between 3.8 and 2.8 Ma, across the transition from obliquity control to precession control on East Antarctic ice volumes. This progression also preserves 3 packages of interglacial sediments within the 3.3-3.0 PRISM interval, providing an opportunity for direct comparison to proximal PRISM site Eltanin 50-28. Diatom assemblages in both cores are characterized by Fragilariopsis barronii and Rouxia antarctica, extinct species with an inferred ecological preference for waters south of the polar front. However F. weaveri, an extinct diatom with inferred preference for more northerly waters and moderate abundance in E50-28, has not been identified at U1361. This may indicate that the polar frontal zone migrated across E50-28 (62° 54'S) but remained north of U1361 (64° 25'S) during the mid-Pliocene. This interpretation is bolstered by the low abundance of extant polar front species (e.g., Thalassiosira oliverana, T. lentiginosa) at U1361; these diatoms dominate the E50-28 assemblage. In contrast, the U1361 assemblage includes a number of extant sea ice indicators (F. sublinearis, F. curta, Chaetoceros

  15. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  16. Numerical simulation of changes in tropical cyclone intensity using a coupled air-sea model

    NASA Astrophysics Data System (ADS)

    Duan, Yihong; Wu, Rongsheng; Yu, Runling; Liang, Xudong

    2013-10-01

    A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model. Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane. When coupled processes are excluded, a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research. The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well, as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks. Asymmetric structures are successfully simulated under conditions of uniform environmental flow. The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions. The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated. TC intensity responds nonlinearly to sea surface temperature (SST). The TC intensification rate becomes smaller once the SST exceeds a certain threshold. Oceanic stratification also influences TC intensity, with stronger stratification responsible for a larger decrease in intensity. The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified, demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification. Air-sea interaction has only a slight influence on TC movement in this model.

  17. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  18. Small Autonomous Air/Sea System Concepts for Coast Guard Missions

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2005-01-01

    A number of small autonomous air/sea system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.

  19. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  20. Diagenesis and porosity development associated with major sea level fluctuations, Upper Permian, Jameson land, east Greenland

    SciTech Connect

    Scholle, P.A.; Ulmer, D.S. ); Stemmerik, L. )

    1990-05-01

    The Upper Permian of Jameson Land includes two major carbonate sequences, represented by the Karstryggen and Wegener Halvoe formations. The initial Karstryggen transgression led to the development of a shallow marine platform with structurally controlled evaporite basins (salinas) separated by stromatolitic, peloidal, or micritic carbonate depositional areas. The Wegener Havloe sequence reflects more rapid and extensive transgression with the deposition of three subcycles of fully marine, platform, or biohermal carbonates containing minor evaporites near the basin margins. Bioherms (bryozoan-brachiopod-marine cement mounds) show > 100 m of relief, indicating that large relative sea level changes were involved. Both the Karstryggen and Wgener Havloe cycles were terminated by major regressions, which led to karstic and/or fluvial incision of the underlying sequences. Not surprisingly, carbonate and evaporite diagenesis was greatly affected by these regional or eustatic sea level fluctuations. Evaporites dissolved or were replaced by calcite and celestite under the influence of meteoric waters. Limestones show collapse brecciation, grain leaching, soil development, and characteristic vadose and phreatic cements. Most significantly meteoric flushing led to massive dissolution of botryoidal marine cements (aragonite and probable high-Mg calcite) within biohermal facies on the Wegener Peninsula. This early porosity resurrection led to the preservation of porous bioherm core zones until hydrocarbon migration. Only late (posthydrocarbon), probably hydrothermal fluid flow led to cementation of the bioherm cores while expelling most of the reservoired hydrocarbons. If the sea level changes affecting the Greenlandic Permian are eustatic, then this study may provide significant clues to porosity development throughout the largely unexplored northern Zechstein basin.

  1. Assessing the impact of vertical land motion on twentieth century global mean sea level estimates

    NASA Astrophysics Data System (ADS)

    Hamlington, B. D.; Thompson, P.; Hammond, W. C.; Blewitt, G.; Ray, R. D.

    2016-07-01

    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.24 ± 0.08 mm yr-1 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM.

  2. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  3. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  4. Distribution and Sea-to-air Flux of Nitrous Oxide in the East China Sea during the Summer of 2013

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Zhang, Guiling; Zhu, Zhuoyi; Li, Jia; Liu, Sumei; Ye, Wangwang; Han, Yu

    2016-07-01

    Dissolved nitrous oxide (N2O) at different depths of 73 stations in the Changjiang (Yangtze River) Estuary and the East China Sea (ECS) were determined from August 4 to 31 of 2013, and the sea-to-air fluxes of N2O were also estimated in this study. N2O concentrations in the surface waters ranged from 6.33 to 44.40 nmol L-1 with an average of (9.27±4.30) nmol L-1 and the values in the bottom waters ranged from 5.19 to 26.98 nmol L-1 with an average of (11.87±3.71) nmol L-1. The concentrations of N2O decreased with distance from the Changjiang Estuary to the open sea. The vertical distributions of N2O indicated great spatial variations. A region of significant bottom-water hypoxia, with oxygen concentration less than 1.5 mg L-1, occurred at the north of the ECS, and increased bottom N2O concentrations was observed. Frequent vertical mixing may enhance the emission of N2O from this hypoxic area. N2O in the surface waters of all stations were over-saturated, and the N2O saturations ranged from 106% to 658%, with an average of (149±62)%. We estimated the sea-to-air fluxes of N2O as (30.6±59.1) μmol m-2 d-1 from the Changjiang Estuary, (9.8±8.8) μmol m-2 d-1 from the coastal and shelf, and (21.0±12.7) μmol m-2 d-1 from the continental slope using the Wanninkhof 1992 equation, (24.9±47.2) μmol m-2 d-1, (8.0±6.7) μmol m-2 d-1 and (16.5±9.6) μmol m-2 d-1 using the Nightingale 2000 equation, respectively. N2O emission from the ECS was estimated to be about (8.2-16.0)×10-2 Tg-N2O yr-1, suggesting that the ECS was a significant net source of atmospheric N2O.

  5. An analysis of observed large air-sea temperature differences in tropical cyclones

    SciTech Connect

    Kepert, J.D.

    1994-12-31

    At high wind speeds over the sea, the lower part of the atmospheric boundary layer becomes filled with spray. In recent years, much attention has been devoted to the question of whether the evaporation from these droplets contributes significantly to the total sea-air evaporative flux under such conditions. Direct observations of turbulent fluxes of heat, moisture and momentum over the sea at moderately high wind speeds were taken during HEXOS Main Experiment (HEXMAX). (HEXOS is the Humidity Exchange Over the Sea program.) An analysis of these results shows that the neutral transfer coefficient is nearly constant with wind speed, up to about 18 m/s, albeit with considerable scatter about the mean. Here the author describes a preliminary investigation of the possible effects evaporation of sea spray could have on the vertical structure of the atmospheric boundary layer at high wind speeds. The remainder of the paper consists of a brief discussion of a radiosonde ascent launched from a ship during a tropical cyclone, a description of the turbulent closure model used to investigate the role of the various physical processes, followed by a discussion of the model results and their relationship to the observation.

  6. Effect of Air-Sea coupling on the Frequency Distribution of Intense Tropical Cyclones over the Northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Mizuta, Ryo; Adachi, Yukimasa; Murakami, Hiroyuki; Ose, Tomomaki

    2016-04-01

    Effect of air-sea coupling on the frequency distribution of intense tropical cyclones (TCs) over the northwestern Pacific (NWP) region is investigated using an atmosphere and ocean coupled general circulation model (AOGCM). Monthly varying flux adjustment enables AOGCM to simulate both subseasonal air-sea interaction and realistic seasonal to interannual SST variability. The maximum of intense TC distribution around 20-30°N in the AGCM shifts equatorward in the AOGCM due to the air-sea coupling. Hence AOGCM reduces northward intense TC distribution bias seen in AGCM. Over the NWP, AOGCM-simulated SST variability is large around 20-30°N where the warm mixed layer becomes shallower rapidly. Active entrainment from subsurface water over this region causes stronger SST cooling and hence TC intensity decreases. These results suggest that air-sea coupling characterized by subsurface oceanic condition causes more realistic distribution of intense TCs over the NWP.

  7. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    EPA Science Inventory

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  8. Comparison of plasmaspheric electron content over sea and land using Jason-2 observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Cherniak, Iurii; Zakharenkova, Irina

    2016-07-01

    The Global Ionospheric Maps of Total Electron Content, GIM-TEC, may suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based GPS receivers network only on seashores and islands which involve more assumptions or interpolations imposed on GIM mapping techniques. The GPS-derived TEC represents the total electron content integrated through the ionosphere, iTEC, and the plasmasphere, pTEC. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. Derivation of a sea/land proportion of total electron content from the new source of the satellite-based measurements would allow improve the mapping GIM-TEC products and their assimilation by the ionosphere-plasmasphere IRI-Plas model. In this context the data of Jason-2 mission provided through the NOAA CLASS Website (http://www.nsof.class.noaa.gov/saa/products/catSearch) present a unique database of pTEC measured through the plasmasphere over the Jason-2 orbit (1335 km) to GPS orbit (20,200 km) which become possible from GPS receivers placed onboard of Jason-2 with a zenith looking antenna that can be used not only for precise orbit determination (POD), but can also provide new data on the plasma density distribution in the plasmasphere. Special interest represents possibility of the potential increase of the data volume in two times due to the successful launch of the Jason-3 mission on 17 January 2016. The present study is focused on a comparison of plasmasphere electron content, pTEC, over the sea and land with a unique data base of the plasmasphere electron content, pTEC, using measurements onboard Jason-2 satellite during the solar minimum (2009) and solar maximum (2014). Slant TEC values were scaled to estimate vertical pTEC using a geometric

  9. Is it Necessary to Consider Air Flow in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Su, Z.; Wan, L.; Wen, J.

    2011-12-01

    From a subsurface physical point of view, this paper discusses the necessity and feasibility of considering two-phase heat and mass transfer process in land surface models (LSMs). The potential-based equations of coupled mass and heat transport under constant air pressure are adopted as the basis. The proposed model is developed on this basis by considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two-phase heat and mass transfer is formulated fully considering diffusion, advection and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two-phase flow (moisture/air transfer). Further investigation is carried out to elucidate how the coupled moisture and heat transfer is influenced by adding the air flow, and how the isothermal two-phase flow is affected by considering the heat flow. The importance of including the air flow in the coupled mass and heat transfer is clearly identified. Concerning the two-phase flow, the influence of heat flow is only significant if the air phase plays a significant role in solving the equations of the water phase. Based on a field experiment, the proposed model is compared with the measured soil moisture, temperature and evaporation rate, the results show clearly that it is necessary to consider the air flow mechanism for soil-atmosphere interaction studies.

  10. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.

    PubMed

    Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W

    2016-09-30

    The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing.

  11. Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.

    PubMed

    Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W

    2016-09-30

    The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. PMID:27181035

  12. Distributions and sea-to-air fluxes of chloroform, trichloroethylene, tetrachloroethylene, chlorodibromomethane and bromoform in the Yellow Sea and the East China Sea during spring.

    PubMed

    He, Zhen; Yang, Gui-Peng; Lu, Xiao-Lan; Zhang, Hong-Hai

    2013-06-01

    Halocarbons including chloroform (CHCl3), trichloroethylene (C2HCl3), tetrachloroethylene (C2Cl4), chlorodibromomethane (CHBr2Cl) and bromoform (CHBr3) were measured in the Yellow Sea (YS) and the East China Sea (ECS) during spring 2011. The influences of chlorophyll a, salinity and nutrients on the distributions of these gases were examined. Elevated levels of these gases in the coastal waters were attributed to anthropogenic inputs and biological release by phytoplankton. The vertical distributions of these gases in the water column were controlled by different source strengths and water masses. Using atmospheric concentrations measured in spring 2012 and seawater concentrations obtained from this study, the sea-to-air fluxes of these gases were estimated. Our results showed that the emissions of C2HCl3, C2Cl4, CHBr2Cl, and CHBr3 from the study area could account for 16.5%, 10.5%, 14.6%, and 3.5% of global oceanic emissions, respectively, indicating that the coastal shelf may contribute significantly to the global oceanic emissions of these gases.

  13. Current Land Subsidence and Sea Level Rise along the North American Coastal Region: Observations from 10-Year (2005-2014) Closely-Spaced GPS and Tide Gauge Stations

    NASA Astrophysics Data System (ADS)

    Yang, L.; Yu, J.; Kearns, T.; Wang, G.

    2014-12-01

    Strong evidence has proved that the global sea-level is now rising at an increased rate and it is projected to continue to rise. However the rise of the sea-level is not uniform around the world. The local or relative sea-level rise will be of great concern to the coastal regions. The combination of the land subsidence and global sea-level rise causes the relative sea-level to rise. Relative sea-level rise increases the risk of flooding and wetland loss problems in near coastal areas, which in turn have important economic, environmental, and human health consequences for the heavily populated and ecologically important coastal region. However the role played by the coastal land subsidence is commonly absent during the discussion of sea-level rise problems. The sea-level can be measured in two ways: satellite altimetry and tide gauges. The sea-level measured by satellite is called the geocentric sea-level that is relative to earth center and the one measured by tide gauges is called local sea-level that is relative to the land. The tide gauge measurements of the local sea-level do not distinguish between whether the water is rising or the land is subsiding. In some coastal areas, land subsidence is occurring at a higher rate than the geocentric sea-level is rising. This can have a great local effect. GPS technology has proven to be efficient and accurate for measuring and tracking absolute land elevation change. There are about 300 publically available Continuously Operating Reference GPS Stations (CORS) within 15 km from the coastal line along North America. In this study, we use publicly available long-history (> 5 years) CORS data to derive current (2005-2014) coastal subsidence in North America. Absolute coastal sea-level rise will be determined by combing the land subsidence and relative sea-level measurements. This study shows that the relative sea-level of the Alaska area appears to be falling because the land is uplifting; this study also shows that the

  14. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  15. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  16. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  17. Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.

    1960-01-01

    An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg

  18. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    PubMed

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-01

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.

  19. Implementation of a canopy air space scheme into the Community Land Model

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2015-12-01

    A single-layer Canopy Air Space Scheme (CASS) is implemented into the Community Land Surface Model version 4.5 (CLM4.5) in this study. It considers the canopy storages for heat, water, and trace gases that are generally neglected in the CLM4.5 surface flux calculation algorithm. Moreover, the CASS introduces prognostic equations for the surface variables and eliminates the CLM4.5 Crank-Nicolson iterative solution for computing surface skin temperature, which usually brings residual errors into the model and causes numerical instability. Two off-line simulations (one with the CASS and the other with the origin CLM4.5 scheme) were conducted and their results were compared with the FLUXNET observations. Preliminary results show that compared with the origin CLM4.5 scheme, the CASS has similar or better skills in representing land surface exchanges for heat, water and carbon under several biome types. The implementation of the CASS into the CLM4.5 not only improves the land model skills, but also provides a modeling framework to incorporate more complex canopy processes into the land surface model, such as bi-directional emission schemes for various trace gases and multi-layer canopy energy balance models.

  20. Sea surface carbon dioxide at the Georgia time series site (2006-2007): Air-sea flux and controlling processes

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Cai, Wei-Jun; Hu, Xinping; Sabine, Christopher; Jones, Stacy; Sutton, Adrienne J.; Jiang, Li-Qing; Reimer, Janet J.

    2016-01-01

    Carbon dioxide partial pressure (pCO2) in surface seawater was continuously recorded every three hours from 18 July 2006 through 31 October 2007 using a moored autonomous pCO2 (MAPCO2) system deployed on the Gray's Reef buoy off the coast of Georgia, USA. Surface water pCO2 (average 373 ± 52 μatm) showed a clear seasonal pattern, undersaturated with respect to the atmosphere in cold months and generally oversaturated in warm months. High temporal resolution observations revealed important events not captured in previous ship-based observations, such as sporadically occurring biological CO2 uptake during April-June 2007. In addition to a qualitative analysis of the primary drivers of pCO2 variability based on property regressions, we quantified contributions of temperature, air-sea exchange, mixing, and biological processes to monthly pCO2 variations using a 1-D mass budget model. Although temperature played a dominant role in the annual cycle of pCO2, river inputs especially in the wet season, biological respiration in peak summer, and biological production during April-June 2007 also substantially influenced seawater pCO2. Furthermore, sea surface pCO2 was higher in September-October 2007 than in September-October 2006, associated with increased river inputs in fall 2007. On an annual basis this site was a moderate atmospheric CO2 sink, and was autotrophic as revealed by monthly mean net community production (NCP) in the mixed layer. If the sporadic short productive events during April-May 2007 were missed by the sampling schedule, one would conclude erroneously that the site is heterotrophic. While previous ship-based pCO2 data collected around this buoy site agreed with the buoy CO2 data on seasonal scales, high resolution buoy observations revealed that the cruise-based surveys undersampled temporal variability in coastal waters, which could greatly bias the estimates of air-sea CO2 fluxes or annual NCP, and even produce contradictory results.

  1. US Navy Submarine Sea Trial of the NASA Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.

    2017-01-01

    For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent

  2. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  3. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  4. Impacts of Air-Sea Interaction on Tropical Cyclone Track and Intensity

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2004-01-01

    The influence of hurricane-ocean coupling on intensity and track of tropical cyclones (TCs) is investigated through idealized numerical experiments using a coupled hurricane-ocean model. The focus is placed on how air-sea interaction affects TC tracks and intensity. It is found that the symmetric sea surface temperature (SST) cooling is primarily responsible for the TC weakening in the coupled experiments because the induced asymmetric circulation associated with the asymmetric SST anomalies is weak and shallow. The track difference between the coupled and fixed SST experiments is generally small because of the competing processes. One is associated with the modified TC asymmetries. The asymmetric SST anomalies - weaken the surface fluxes in the rear and enhance the fluxes in the front. As a result, the enhanced diabatic heating is located on the southern side for a westward-moving TC, tending to shift the TC southward. The symmetric SST anomalies weakens the TC intensity and thus the dymmetrization process, leading to more prominent TC asymmetries. The other is associated with the weakening of the beta drift resulting from the weakening of the TC outer strength. In the coupled experiment, the weakening of the beta drift leads to a more northward shift. By adjusting the vortex outer strength of the initial vortices, the beta drift can vary while the effect of air-sea interaction changes little. Two types of track differences simulated in the previous numerical studies are obtained.

  5. An Observational Study of Sea- and Land-Breeze Circulation in an Area of Complex Coastal Heating.

    NASA Astrophysics Data System (ADS)

    Zhong, Shiyuan; Takle, Eugene S.

    1992-12-01

    The diurnal evolution of the three-dimensional structure of a mesoscale circulation system frequently occurring in the area of Kennedy Span Center-Cape Canaveral has been studied using the data from the Kennedy Space Center Atmospheric Boundary Layer Experiment (KABLE). The case was chosen from the spring intensive data-collection period when the greatest daytime temperature difference between land and water (sea and inland rivers) occurs and the local circulations are most intense. The daytime flow structure was determined primarily by the mesoscale pressure-gradient form created by the temperature contrast between land and water. A strong sea-breeze circulation, the dominant feature of the daytime flow field, was modified by a local inland river breeze known as the Indian River breeze, in that divergent flow over the river enhanced the sea-breeze convergence on the seaward side and generated additional convergence on the landward side of the river. The rivers near the coastline also modified the initial flow field by enhancing convergence in the surrounding areas and speeding up the movement of the sea-breeze front. The nighttime flow structure was dominated by a large-scale land breeze that was relatively uniform over the area and became quasi-stationary after midnight. The nonuniformity of the wind-vector rotation rate suggests that mesoscale forcing significantly modifies the Coriolis-induced oscillation. No clear convergence patterns associated with the rivers were observed at night. Detailed characteristics over a diurnal cycle of the sea-land breeze and of the river breeze onset time, strength, depth, propagation speed and both landward and seaward extension, are documented in this study. Some boundary-layer characteristics needed for predicting diffusion of pollutants released from coastal launch pads, including atmospheric stability, depth of the thermal internal boundary layer, and turbulent mixing are also discussed.

  6. State and local governments plan for development of most land vulnerable to rising sea level along the US Atlantic coast

    NASA Astrophysics Data System (ADS)

    Titus, J. G.; Hudgens, D. E.; Trescott, D. L.; Craghan, M.; Nuckols, W. H.; Hershner, C. H.; Kassakian, J. M.; Linn, C. J.; Merritt, P. G.; McCue, T. M.; O'Connell, J. F.; Tanski, J.; Wang, J.

    2009-10-01

    Rising sea level threatens existing coastal wetlands. Overall ecosystems could often survive by migrating inland, if adjacent lands remained vacant. On the basis of 131 state and local land use plans, we estimate that almost 60% of the land below 1 m along the US Atlantic coast is expected to be developed and thus unavailable for the inland migration of wetlands. Less than 10% of the land below 1 m has been set aside for conservation. Environmental regulators routinely grant permits for shore protection structures (which block wetland migration) on the basis of a federal finding that these structures have no cumulative environmental impact. Our results suggest that shore protection does have a cumulative impact. If sea level rise is taken into account, wetland policies that previously seemed to comply with federal law probably violate the Clean Water Act. The opinions expressed in this letter do not necessarily reflect the official positions of either the US Environmental Protection Agency, the National Oceanic and Atmospheric Administration, any state or national Sea Grant Program, or the US Government.

  7. The North Carolina Department of Environment and Natural Resources: clean land, water, and air for healthy people and communities.

    PubMed

    Riegel, Lisa Diaz; Wakild, Charles; Boothe, Laura; Hildebrandt, Heather J; Nicholson, Bruce

    2012-01-01

    The North Carolina Department of Environment and Natural Resources works with communities and other agencies to sustain clean air, water, and land. Sustainability efforts include protecting air quality through community design, community enhancement through brownfields revitalization, community development strategies to protect water resources, and the integration of natural resource conservation.

  8. Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure

    PubMed Central

    Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D.

    2015-01-01

    Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation. PMID

  9. Transition of Eocene whales from land to sea: evidence from bone microstructure.

    PubMed

    Houssaye, Alexandra; Tafforeau, Paul; de Muizon, Christian; Gingerich, Philip D

    2015-01-01

    Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. The lifestyle of early cetaceans is investigated by analysis of microanatomical features in postcranial elements of archaeocetes. We document the internal structure of long bones, ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete families--Remingtonocetidae, Protocetidae, and Basilosauridae--using microtomography and virtual thin-sectioning. This enables us to discuss the osseous specializations observed in these taxa and to comment on their possible swimming behavior. All these taxa display bone mass increase (BMI) in their ribs, which lack an open medullary cavity, and in their femora, whereas their vertebrae are essentially spongious. Humeri and femora show opposite trends in microanatomical specialization in the progressive independence of cetaceans from a terrestrial environment. Humeri change from very compact to spongious, which is in accordance with the progressive loss of propulsive role for the forelimbs, which were used instead for steering and stabilizing. Conversely, hind-limbs in basilosaurids became strongly reduced with no involvement in locomotion but display strong osteosclerosis in the femora. Our study confirms that Remingtonocetidae and Protocetidae were almost exclusively aquatic in locomotion for the taxa sampled, which probably were shallow water suspended swimmers. Basilosaurids display osseous specializations similar to those of modern cetaceans and are considered more active open-sea swimmers. This study highlights the strong need for homologous sections in comparative microanatomical studies, and the importance of combining information from several bones of the same taxon for improved functional interpretation.

  10. Mid-Holocene climate and land-sea interaction along the southern coast of Saurashtra, western India

    NASA Astrophysics Data System (ADS)

    Banerji, Upasana S.; Pandey, Shilpa; Bhushan, Ravi; Juyal, Navin

    2015-11-01

    The relict mudflat from the southern Saurashtra coast of Gujarat was investigated using geochemical and palynological analyses supported by radiocarbon dating to understand whether climate fluctuations and sea-level operated in tandem during mid-Holocene. The study revealed that the Saurashtra coast experienced relatively wet climatic conditions with simultaneous occurrence of marginally high sea-level between 4710 and 2825 cal yr BP. Subsequently, a gradual onset of aridity and lowering of the sea-level was observed between 2825 and 1835 cal yr BP, and further a slight decrease in aridity is observed after 1835 cal yr BP. The present day coastal configuration was probably achieved after around 1500 cal yr BP. Considering the tectonic instability of Saurashtra coast (land level changes), the effective mid-Holocene sea-level was estimated to be ∼1 m higher than the present. The study demonstrates that sea-level changes, climate variability and land-level changes were coupled during the mid-Holocene.

  11. Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Campagne, Philippine; Crosta, Xavier; Schmidt, Sabine; Noëlle Houssais, Marie; Ther, Olivier; Massé, Guillaume

    2016-07-01

    Diatoms account for a large proportion of primary productivity in Antarctic coastal and continental shelf zones. Diatoms, which have been used for a long time to infer past sea surface conditions in the Southern Ocean, have recently been associated with diatom-specific biomarkers (highly branched isoprenoids, HBI). Our study is one of the few sedimentary research projects on diatom ecology and associated biomarkers in the Antarctic seasonal sea ice zone. To date, the Adélie Land region has received little attention, despite evidence for the presence of high accumulation of laminated sediment, allowing for finer climate reconstructions and sedimentary process studies. Here we provide a sequence of seasonally to annually laminated diatomaceous sediment from a 72.5 cm interface core retrieved on the continental shelf off Adélie Land, covering the 1970-2010 CE period. Investigations through statistical analyses of diatom communities, diatom-specific biomarkers and major element abundances document the relationships between these proxies at an unprecedented resolution. Additionally, comparison of sedimentary records to meteorological data monitored by automatic weather station and satellite derived sea ice concentrations help to refine the relationships between our proxies and environmental conditions over the last decades. Our results suggest a coupled interaction of the atmospheric and sea surface variability on sea ice seasonality, which acts as the proximal forcing of siliceous productivity at that scale.

  12. Sea level differences between Topex/Poseidon altimetry and tide gauges: observed trends and vertical land motions

    NASA Astrophysics Data System (ADS)

    Lombard, A.; Dominh, K.; Cazenave, A.; Calmant, S.; Cretaux, J.

    2002-12-01

    Nine year-long (1993-2001) sea level difference time series have been constructed by comparing sea level recorded by tide gauges and Topex/Poseidon altimetry. Although the primary goal of such an analysis is to define a sub network of good quality tide gauges for calibration of satellite altimetry systems, in particular Jason-1. The difference time series displaying large positive or negative trends may give evidence of vertical land motion at the tide gauge site. We have analyzed 98 tide gauge records from the UHSLC. Among them, 42 sites mainly located on open ocean islands, give very good agreement (better than 2 mm/year) with Topex/Poseidon-derived sea level trends. 22 other sites, mainly located along the continental coastlines of the Pacific Ocean, present sea level trends differing by more than 5 mm/year with Topex/Poseidon. Many of these sites are located in active tectonic areas (either in the vicinity of subduction zones or in active volcanic areas), where vertical land motions (either transient or long-term) are expected. For example, this is the case at Kushimoto, Ofunato, Kushiro (Japan), Kodiak Island and Yakutat (Alaska), La Libertad, Callao, Caldera (western south America), and Rabaul (western Pacific). When possible, we compare these observed trends in sea level differences with GPS and/or DORIS observations.

  13. Effects of urban land expansion on the regional meteorology and air quality of eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-08-01

    Rapid urbanization throughout eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden, averaged over all newly urbanized grid cells, consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the responses of pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10 % increase in nearby urban land coverage on average leads to a decrease of approximately 2 % in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1 % is simulated. At 800 hPa, pollutants' concentrations tend to increase even more rapidly with an increase in nearby urban land coverage. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. IPR analysis reveals the contribution of individual atmospheric processes to pollutants' concentration changes. It indicates that, for primary pollutants, the enhanced sink (source

  14. Validation and Verification of the Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Kumar, S.; Peters-Lidard, C. D.; Cetola, J.

    2011-12-01

    The importance of operational benchmarking and uncertainty characterization of land surface modeling can be clear upon considering the wide range of performance characteristics of numerical land surface models realizable through various combinations of factors. Such factors might include model physics and numerics, resolution, and forcing datasets used in operational implementation versus those that might have been involved in any prior development benchmarking. Of course, decisions concerning operational implementation may be better informed through more effective benchmarking of performance under various blends of such aforementioned operational factors. To facilitate this and other needs for land analysis activities at the Air Force Weather Agency (AFWA), the Model Evaluation Toolkit (MET) - a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community - and the land information system (LIS) Verification Toolkit (LVT) - developed at the Goddard Space Flight Center (GSFC) - have been adapted to the operational benchmarking needs of AFWA's land characterization activities in order to compare the performance of new land modeling and related activities with that of previous activities as well as observational or analyzed datasets. In this talk, three examples of adaptations of MET and LVT to evaluation of LIS-related operations at AFWA will be presented. One example will include comparisons of new surface rainfall analysis capabilities, towards forcing of AFWA's LIS, with previous capabilities. Comparisons will be relative to retrieval-, model-, and measurement-based precipitation fields. Results generated via MET's grid-stat, neighborhood, wavelet, and object based evaluation (MODE) utilities adapted to AFWA's needs will be discussed. This example will be framed in the context of better informing optimal blends of land surface model (LSM) forcing data sources - namely precipitation data- under

  15. Transferring patients with Ebola by land and air: the British military experience.

    PubMed

    Ewington, Ian; Nicol, E; Adam, M; Cox, A T; Green, A D

    2016-06-01

    The Ebola epidemic of 2014/2015 led to a multinational response to control the disease outbreak. Assurance for British aid workers included provision of a robust treatment pathway including repatriation back to the UK. This pathway involved the use of both land and air assets to ensure that patients were transferred quickly, and safely, to a high-level isolation unit in the UK. Following a road move in Sierra Leone, an air transportable isolator (ATI) was used to transport patients for the flight and onward transfer to the Royal Free Hospital. There are several unique factors related to managing a patient with Ebola virus disease during prolonged evacuation, including the provision of care inside an ATI. These points are considered here along with an outline of the evacuation pathway. PMID:27177575

  16. Transferring patients with Ebola by land and air: the British military experience.

    PubMed

    Ewington, Ian; Nicol, E; Adam, M; Cox, A T; Green, A D

    2016-06-01

    The Ebola epidemic of 2014/2015 led to a multinational response to control the disease outbreak. Assurance for British aid workers included provision of a robust treatment pathway including repatriation back to the UK. This pathway involved the use of both land and air assets to ensure that patients were transferred quickly, and safely, to a high-level isolation unit in the UK. Following a road move in Sierra Leone, an air transportable isolator (ATI) was used to transport patients for the flight and onward transfer to the Royal Free Hospital. There are several unique factors related to managing a patient with Ebola virus disease during prolonged evacuation, including the provision of care inside an ATI. These points are considered here along with an outline of the evacuation pathway.

  17. Turbulent structure of scalars in the eddy surface layer over land and sea

    NASA Astrophysics Data System (ADS)

    Smedman, Ann-Sofi; Sahlee, Erik

    2015-04-01

    Turbulent structure of scalars in the 'eddy surface layer' over land and sea. In a study of the kinematic structure of the near neutral atmospheric surface layer, Högström, Hunt and Smedman, 2002, it was demonstrated that a model with detached eddies from above the surface layer impinging on to the surface (Hunt and Morison, 2000) could explain some of the observed features in the neutral atmospheric boundary layer. Thus the detached eddy model proved successful in explaining the dynamic structure of the near neutral atmospheric surface layer (eddy surface layer), especially the shape of the spectra of the wind components and corresponding fluxes. However, the structure of temperature and humidity fluctuations in the eddy surface layer shows quite different behaviour. In particular the efficiency of turbulent exchange of sensible and latent heat is observed to be more strongly enhanced than is consistent with standard similarity theory. Also the profiles of dissipation of turbulent kinetic energy and temperature fluctuation variance are found to depend on the height of the eddy surface layer and not the height above the surface. All these features are found to be similar in measurements at a marine site, a flat land site and during hurricane conditions (hurricane Fabian and Isabel). Hunt, J.C.R and Morrison, J.F., 2000: Eddy structure in turbulent boundary layers, Euro. J. Mech. B-Fluids, 19, 673-694.. Högström, U., Hunt, J.C.R., and Smedman, A., 2002: Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer, Bound.-Layer Meteorol., 103,101-124.

  18. Antarctic and Arctic land-fast sea ice growth rates: an intercomparison based on stable isotope fractionation measurements

    NASA Astrophysics Data System (ADS)

    Smith, I.; Langhorne, P. J.; Gough, A. J.; Leonard, G. H.; Mahoney, A. R.; Eicken, H.; Van Hale, R.; Trodahl, H. J.; Haskell, T.

    2012-12-01

    The growth rate of sea ice (i.e., the change in sea ice thickness with time) is a critical factor affecting the thermohaline circulation because it determines the amount and timing of salt fluxes to the ocean. Studies of the colonisation of sea ice by microorganisms and the timing of ice-algal blooms, evident at depth horizons in sea ice, also require knowledge of growth rates. However, sea ice thickness and in particular growth rates of level ice are poorly known, mostly due to restrictions in remote sensing of these quantities. Direct measurements through repeated drilling, or the use of temperature probes or ultrasonic pingers (such as on ice mass balance buoys) are resource intensive, and are therefore limited to a few sites. An ideal methodology would allow retrospective reconstruction of sea ice growth rates from the analysis of ice cores taken at the end of the growth season. Previously developed methods have included salinity-based growth rate models, growth history deductions from thick section structural analysis and growth rate models based on the measurement of oxygen isotope fractionation in sea ice. In this presentation, we focus on the latter and compare measured growth rates with those derived from an existing isotope fractionation based model (Eicken, Ant. Res. Ser., 1998). In addition, comparisons are made with measured seasonal changes in δ18O values in Antarctic surface waters. The data presented have been collected for land-fast sea ice from McMurdo Sound, Antarctica and the Chukchi Sea near Barrow, Alaska. These two locations are ideally suited for this intercomparison study because both locations have a long history of sea ice and ocean observations. The Antarctic sea ice data are influenced by the appearance of waters from beneath an ice shelf. The Arctic sea ice growth rate and isotope data are from two sites, and are supported by oceanographic data, including under-ice current speeds, from a nearby mooring. Previous measurements of Arctic

  19. An investigation into the vertical axis control power requirements for landing VTOL type aircraft onboard nonaviation ships in various sea states

    NASA Technical Reports Server (NTRS)

    Stevens, M. E.; Roskam, J.

    1985-01-01

    The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a nonpiloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags. The piloted simulation was run using a fixed-based simulator at Ames Research center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the nonpiloted simulation. A unique aspect of the nonpiloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior.

  20. Sea Level, Land Motion, and the Anomalous Tide at Churchill, Hudson Bay

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2015-12-01

    The importance of the tide gauge at Churchill, Manitoba, cannot be overstated. It is the only permanently operating tide gauge in the central Canadian Arctic, and it sits on a prime spot for monitoring the mantle's rebound from the Laurentide ice loss. Yet interpretation of the sea-level time series at Churchill has long been problematic, going back even to early work by Gutenberg in the 1940s. The long-term relative sea-level rates are inconsistent: approximately -4, -19, -5 ± 1 mm/y for the periods 1940-1970, 1970-1990, 1990-2014 respectively. Annual mean high water (MHW) and mean low water (MLW) reflect these trends until around 1990, after which MLW leveled off and is now nearly unchanging. Slightly later, around 2000, the semidiurnal tides became very anomalous, with falling amplitudes and slightly increasing phase lags. The amplitude of M2 was approximately 154 cm before 2000; it dropped to about 146 cm by 2010 and reached an all-time low of 142 cm in 2014. Satellite altimeter estimates of the tide in this region, although challenging because of seasonal ice cover, show no comparable M2 changes, so the tidal changes must be localized to the near vicinity of the gauge (or to the gauge itself if caused by a malfunction). On the other hand, altimetry confirms the post-1992 Churchill measurements of mean sea level, thanks to the long time series of land motion measurements obtained at GPS station CHUR, which gives a vertical uplift of 10.1 mm/y. Combining satellite altimeter data with the Churchill tide-gauge data gives an implied vertical crustal rate of about 9.0 ± 0.8 mm/y, in reasonable agreement with the GPS. In summary, we have still anomalous MSL measurements at the Churchill gauge for the intermediate 1970-1990 era, and very anomalous tidal measurements since 2000, but we have apparently quite reliable MSL rates since 1990.

  1. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze Initiated Precipitation

    NASA Technical Reports Server (NTRS)

    Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne

    2000-01-01

    Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.

  2. Effects of urban land expansion on the regional meteorology and air quality of Eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-04-01

    Rapid urbanization throughout Eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden averaged over all newly urbanized grid cells consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the response of meteorology and pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10% increase in nearby urban land coverage (NULC) on average leads to a decrease of approximately 2% in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1% is simulated. At 800 hPa, each 10% increase in the square of NULC enhances air pollution concentrations by 5-10%, depending on species. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be amplified. IPR results indicate that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key

  3. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  4. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  5. Paleomagnetic evidence from land-based and ODP cores for clockwise rotation and northward translation of the Phillippine Sea plate

    SciTech Connect

    Cisowski, S.M.; Fuller, M.; Haston, R.B.; Koyama, M. )

    1990-06-01

    On-land and deep-sea core paleomagnetic data have been collected from around the Philippine Sea plate. Data from the Palau islands suggest 70{degree} of clockwise rotation and northward translation since the mid-Oligocene. The authors interpret this rotation as a rotation of the West Philippine Sea basin as a whole. New paleomagnetic data from Guam indicate 70{degree} of clockwise rotation and northward translation since the early Oligocene. Although Eocene results have been previously quoted, the new data suggest that there is no reliable Eocene data from Guam. New data from Saipan suggest 50-60{degree} of clockwise rotation since the Late Eocene and 20{degree} of clockwise rotation since the mid-Miocene, along with northward translation. During ODP Leg 126, a new technique utilizing the formation microscanner logging tool was employed to obtain orientated drill cores from the Bonin forearc basin. Preliminary results indicate that 70-110{degree} of clockwise rotation has occurred there since the mid-Oligocene. Inclination studies on cores from ODP Legs 125 and 126 along with the on-land paleomagnetic data support 15{degree} of northward translation of the Philippine Sea plate since the mid-Oligocene. The consistent clockwise rotations found around the Philippine Sea plate suggest that the entire plate, including the Bonin and Mariana arcs, has rotated more than 50{degree} since the mid-Oligocene. The similarity of Oligocene results from the Bonin forearc and Guam suggest that little or no relative rotation has occurred between these two points. This implies that the shape of the Mariana arc is probably not due to rotational deformation. The northward translation and clockwise rotation of the Philippine Sea plate established oblique subduction along the proto-Philippine margin, which could account for the 600 km of subducted slab beneath the eastern Celebes Sea.

  6. Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon

    NASA Astrophysics Data System (ADS)

    Saramul, Suriyan; Ezer, Tal

    2014-11-01

    The study addresses two important issues associated with sea level along the coasts of Thailand: first, the fast sea level rise and its spatial variation, and second, the monsoonal-driven seasonal variations in sea level. Tide gauge data that are more extensive than in past studies were obtained from several different local and global sources, and relative sea level rise (RSLR) rates were obtained from two different methods, linear regressions and non-linear Empirical Mode Decomposition/Hilbert-Huang Transform (EMD/HHT) analysis. The results show extremely large spatial variations in RSLR, with rates varying from ~ 1 mm y-1 to ~ 20 mm y-1; the maximum RSLR is found in the upper Gulf of Thailand (GOT) near Bangkok, where local land subsidence due to groundwater extraction dominates the trend. Furthermore, there are indications that RSLR rates increased significantly in all locations after the 2004 Sumatra-Andaman Earthquake and the Indian Ocean tsunami that followed, so that recent RSLR rates seem to have less spatial differences than in the past, but with high rates of ~ 20-30 mm y-1 almost everywhere. The seasonal sea level cycle was found to be very different between stations in the GOT, which have minimum sea level in June-July, and stations in the Andaman Sea, which have minimum sea level in February. The seasonal sea-level variations in the GOT are driven mostly by large-scale wind-driven set-up/set-down processes associated with the seasonal monsoon and have amplitudes about ten times larger than either typical steric changes at those latitudes or astronomical annual tides.

  7. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  8. Modeling mesoscale diffusion and transport processes for releases within coastal zones during land/sea breezes

    SciTech Connect

    Lyons, W.A.; Keen, C.S.; Schuh, J.A.

    1983-12-01

    This document discusses the impacts of coastal mesoscale regimes (CMRs) upon the transport and diffusion of potential accidental radionuclide releases from a shoreline nuclear power plant. CMRs exhibit significant spatial (horizontal and vertical) and temporal variability. Case studies illustrate land breezes, sea/lake breeze inflows and return flows, thermal internal boundary layers, fumigation, plume trapping, coastal convergence zones, thunderstorms and snow squalls. The direct application of a conventional Gaussian straight-line dose assessment model, initialized only by on-site tower data, can potentially produce highly misleading guidance as to plume impact locations. Since much is known concerning CMRs, there are many potential improvements to modularized dose assessment codes, such as by proper parameterization of TIBLs, forecasting the inland penetration of convergence zones, etc. A three-dimensional primitive equation prognostic model showed excellent agreement with detailed lake breeze field measurements, giving indications that such codes can be used in both diagnostic and prognostic studies. The use of relatively inexpensive supplemental meteorological data especially from remote sensing systems (Doppler sodar, radar, lightning strike tracking) and computerized data bases should save significantly on software development costs. Better quality assurance of emergency response codes could include systems of flags providing personnel with confidence levels as to the applicability of a code being used during any given CMR.

  9. Revisiting global mean sea level changes from tide gauge records corrected for vertical land motion

    NASA Astrophysics Data System (ADS)

    Dangendorf, Sönke; Marcos, Marta

    2016-04-01

    Observational evidence of global/regional mean sea level (GMSL/RMSL) over the 20th century is restricted to a spatially and temporally heterogeneously distributed set of tide gauges along the coast, whose measurements are impacted by vertical land motion (VLM) of the Earth's crust. Here we revisit estimates of 20th century RMSL and GMSL using an area weighting virtual station approach applied to a novel set of VLM corrected tide gauges from six coherently varying oceanic regions. We test our approach in a realistic ocean reanalysis, where the "true" modeled GMSL is a priori known. We find that the performance in reconstructing RMSL and GMSL is strongly influenced by the available tide gauges leading to unavoidable biases in the late 19th and early 20th century. While in regions such as the Pacific Ocean spatially coherent large-scale climate signals, as the Pacific Decadal Oscillation, allow for relatively accurate estimates of the low-frequency variability, in regions such as the South Atlantic the poor availability of tide gauge records hampers sophisticated estimates of RMSL. These uncertainties directly transmit into GMSL estimates. A further bias of roughly 0.2 mm/yr is introduced when not accounting for the area weights of regions for which the virtual stations are representative. However, from ~1920 onwards, the available stations allow us to capture the low frequency variability and trends in GMSL.

  10. Complex seasonal patterns of primary producers at the land-sea interface

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.

    2008-01-01

    Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO 2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts with annual cycles of terrestrial and oceanic primary producers for which seasonal fluctuations are recurrent and synchronous over large geographic regions. This finding bears on two fundamental ecological questions: (1) how do estuarine and coastal consumers adapt to an irregular and unpredictable food supply, and (2) how can we extract signals of climate change from phytoplankton observations in coastal ecosystems where local-scale processes can mask responses to changing climate? ?? 2008 Blackwell Publishing Ltd/CNRS.

  11. Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Sarma, V. V. S. S.; Lenton, A.; Law, R. M.; Metzl, N.; Patra, P. K.; Doney, S.; Lima, I. D.; Dlugokencky, E.; Ramonet, M.; Valsala, V.

    2013-11-01

    The Indian Ocean (44° S-30° N) plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea-air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea-air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea-air CO2 uptake of -0.37 ± 0.06 PgC yr-1 is consistent with the -0.24 ± 0.12 PgC yr-1 calculated from observations. The fluxes from the southern Indian Ocean (18-44° S; -0.43 ± 0.07 PgC yr-1 are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), overestimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but overestimate the magnitude. The predicted sea-air CO2 fluxes by ocean biogeochemical models (OBGMs) respond to seasonal variability with strong phase lags with reference to climatological CO2 flux, whereas the atmospheric inversions predicted an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than that found by atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric

  12. Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009

    NASA Astrophysics Data System (ADS)

    Sarma, V. V. S. S.; Lenton, A.; Law, R.; Metzl, N.; Patra, P. K.; Doney, S.; Lima, I. D.; Dlugokencky, E.; Ramonet, M.; Valsala, V.

    2013-07-01

    The Indian Ocean (44° S-30° N) plays an important role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea-air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea-air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea-air CO2 uptake of -0.37 ± 0.06 Pg C yr-1, is consistent with the -0.24 ± 0.12 Pg C yr-1 calculated from observations. The fluxes from the Southern Indian Ocean (18° S-44° S; -0.43 ± 0.07 Pg C yr-1) are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), over estimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by a lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but over estimate the magnitude. The predicted sea-air CO2 fluxes by Ocean BioGeochemical Models (OBGM) respond to seasonal variability with strong phase lags with reference to climatological CO2 flux, whereas the atmospheric inversions predict an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric inversions

  13. Estimating monthly averaged air-sea transfers of heat and momentum using the bulk aerodynamic method

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Reynolds, R. W.

    1981-01-01

    Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly averaged wind speeds, temperatures and humidities can be used to estimate the monthly averaged sensible and latent heat fluxes from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimates of monthly averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly averaged nonneutral values.

  14. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

    PubMed Central

    Miles, Bertie W. J.; Stokes, Chris R.; Jamieson, Stewart S. R.

    2016-01-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519

  15. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.

    PubMed

    Miles, Bertie W J; Stokes, Chris R; Jamieson, Stewart S R

    2016-05-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica.

  16. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes.

    PubMed

    Miles, Bertie W J; Stokes, Chris R; Jamieson, Stewart S R

    2016-05-01

    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974-1990, before switching to advance in every drainage basin during the two most recent periods, 1990-2000 and 2000-2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica. PMID:27386519

  17. Polyfluorinated compounds in ambient air from ship- and land-based measurements in northern Germany

    NASA Astrophysics Data System (ADS)

    Dreyer, Annekatrin; Ebinghaus, Ralf

    Neutral volatile and semi-volatile polyfluorinated organic compounds (PFC) and ionic perfluorinated compounds were determined in air samples collected at two sites in the vicinity of Hamburg, Germany, and onboard the German research vessel Atair during a cruise in the German Bight, North Sea, in early November 2007. PUF/XAD-2/PUF cartridges and glass fiber filters as sampling media were applied to collect several fluorotelomer alcohols (FTOH), fluorotelomer acrylates (FTA), perfluoroalkyl sulfonamides (FASA), and perfluoroalkyl sulfonamido ethanols (FASE) in the gas- and particle-phase as well as a set of perfluorinated carboxylates (PFCA) and sulfonates (PFSA) in the particle-phase. This study presents the distribution of PFC in ambient air of the German North Sea and in the vicinity of Hamburg for the first time. Average total PFC concentrations in and around Hamburg (180 pg m -3) were higher than those observed in the German Bight (80 pg m -3). In the German Bight, minimum-maximum gas-phase concentrations of 17-82 pg m -3 for ΣFTOH, 2.6-10 pg m -3 for ΣFTA, 10-15 pg m -3 for ΣFASA, and 2-4.4 pg m -3 for ΣFASE were determined. In the vicinity of Hamburg, minimum-maximum gas-phase concentrations of 32-204 pg m -3 for ΣFTOH, 3-26 pg m -3 for ΣFTA, 3-18 pg m -3 for ΣFASA, and 2-15 pg m -3 for ΣFASE were detected. Concentrations of perfluorinated acids were in the range of 1-11 pg m -3. FTOH clearly dominated the substance spectrum; 8:2 FTOH occurred in maximum proportions. Air mass back trajectories, cluster, and correlation analyses revealed that the air mass origin and thus medium to long range atmospheric transport was the governing parameter for the amount of PFC in ambient air. Southwesterly located source regions seemed to be responsible for elevated PFC concentrations, local sources appeared to be of minor importance.

  18. Modeling and imaging land-cover influences on air temperature in and near Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Heisler, Gordon M.; Ellis, Alexis; Nowak, David J.; Yesilonis, Ian

    2016-04-01

    Over the course of 1681 hours between May 5 and September 30, 2006, air temperatures measured at the 1.5-m height at seven sites in and near the city of Baltimore, MD were used to empirically model Δ widehat{T} R-p , the difference in air temperature between a site in downtown Baltimore and the six other sites. Variables in the prediction equation included difference between the downtown reference and each of the other sites in upwind tree cover and impervious cover as obtained from 10-m resolution geographic information system (GIS) data. Other predictor variables included an index of atmospheric stability, topographic indices, wind speed, vapor pressure deficit, and antecedent precipitation. The model was used to map predicted hourly Δ widehat{T} R-p across the Baltimore region based on hourly weather data from the airport. Despite the numerous sources of variability in the regression modeling, the method produced reasonable map patterns of Δ widehat{T} R-p that, except for some areas evidently affected by sea breeze from the Chesapeake, closely matched results of mesoscale modeling. Potential applications include predictions of the effect of changing tree cover on air temperature in the area.

  19. Land use changes and its impacts on air quality and atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  20. Rapid urban growth, land-use changes and air pollution in Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P.

    This paper is a contribution to the understanding of the topoclimatic and environmental geography of the basin where Santiago — one of the most polluted Latin American city - is located. In the first part, land-use change is analysed looking at the climatic transformation caused by the rapid transit from natural semiarid surface to urban areas. In the second part, seasonal weather and daily cycles of slope winds and the available ventilation are described trying to relate those patterns with the spatial distribution of air pollution. A combination of meteorological, geographical and cultural factors explain extreme air pollution events: meteorologically, Santiago is under permanent subsidence inversion layers. Geographically, the city is located in a closed basin surrounded by mountains. Culturally, the urban area has the highest population concentration (40% of the national total), industries (near 70% of the total) and vehicles, which are the main sources of smog. The urban and suburban transport system is based on a large number of buses (diesel) and private cars, both experiencing a rapid growth from the past few years. The city and specially the transport system generates high emissions of pollutant, but the natural semiarid deforested soils and slopes are also important sources. The local wind system can explain the differential spatial distribution on the concentration of air pollutants in the city and its periphery. In winter (rain season) concentrations of particulate matter are higher at the centre and the SW part of the city. The andean piedmont area (E part of the city) shows minimum values, suggesting major ventilation effects of slope and valley winds. Ozone exceeds air quality standards in summer (dry season) at all sites in the centre and periphery. However, the O 3-concentrations are higher on preferred residential areas located at the piedmont area (E part of the city), suggesting air pollution transport effects. Currently, there is no

  1. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    USGS Publications Warehouse

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and

  2. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient.

    PubMed

    Roxy, Mathew Koll; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Goswami, B N

    2015-06-16

    There are large uncertainties looming over the status and fate of the South Asian summer monsoon, with several studies debating whether the monsoon is weakening or strengthening in a changing climate. Our analysis using multiple observed datasets demonstrates a significant weakening trend in summer rainfall during 1901-2012 over the central-east and northern regions of India, along the Ganges-Brahmaputra-Meghna basins and the Himalayan foothills, where agriculture is still largely rain-fed. Earlier studies have suggested an increase in moisture availability and land-sea thermal gradient in the tropics due to anthropogenic warming, favouring an increase in tropical rainfall. Here we show that the land-sea thermal gradient over South Asia has been decreasing, due to rapid warming in the Indian Ocean and a relatively subdued warming over the subcontinent. Using long-term observations and coupled model experiments, we provide compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.

  3. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City

    PubMed Central

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼37% of the variations in temperature were explained by the percentage tree cover, while ∼87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment. PMID:25010134

  4. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  5. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  6. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-05-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.

  7. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-05-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. PMID:8593853

  8. The Aeroclipper: A new instrument for quasi-Lagrangian measurements at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Duvel, J. P.; Reverdin, G.; Pichon, T.; Vargas, A.

    The Aeroclipper is a new balloon developed by CNES. The Aeroclipper is a balloon equipped with a cable extended by a guide-rope in contact with the surface of the ocean. The balloon is vertically stabilised at a given height (currently 40 to 60m above the sea surface) and move on quasi-Lagrangian trajectories depending on the surface wind. LMD (Laboratoire de Méteorologie Dynamique), LodyC (Laboratoire d'océanographie physique et de Climatologie) and ENSTA (Ecole Nationale Supérieure de Techniques Avancées) developed an instrumentation adapted to this new measurement system. This instrumentation is distributed on one atmospheric gondola and one oceanic gondola. The aim is to measure surface physical parameters (Air and sea surface temperatures, sea surface salinity, wind, pressure and humidity) and to derive turbulent fluxes of moisture, heat and momentum. The Aeroclippers will give legs of the different parameters at a relatively high spatial resolution and thus information on the perturbation of these parameters at mesoscale. A first test of the full system will be performed from Banyuls (France) during spring 2004. The first scientific use of the Aeroclipper is planned in February 2005 in the Indian Ocean South of the Equator in link with the pilot phase of the Vasco (Variability of the Atmosphere at the intra-Seasonal time scale and Coupling with the Ocean) experiment.

  9. SLIM: A multi-scale model of the land-sea continuum

    NASA Astrophysics Data System (ADS)

    De Maet, T.; Hanert, E.; Deleersnijder, E.; Fichefet, T.; Legat, V.; Remacle, J. F.; Soares Frazao, S.; Vanclooster, M.; Lambrechts, J.; König Beatty, C.; Bouillon, S.; de Brye, B.; Gourgue, O.; Kärnä, T.; Lietaer, O.; Pestiaux, A.; Slaoui, K.; Thomas, C.

    2012-04-01

    The hydrosphere is made up of a number media, such as the oceans, the shelf seas, the estuaries, the rivers, the land surface and ground water as well as the sea ice - which, for the sake of simplicity, is considered herein to be part of the hydrosphere. The processes taking place in these domains are vastly different in nature and are characterized by a wide range of space- and time-scales. The components of the hydrosphere interact with each other. For instance, the shallow marine and estuarine regions, though accounting for less than 1% of the volume of the oceans, have a biomass far from negligible as compared to that of the oceans, implying that they play a significant role in global biogeochemical cycles. This is one of the reasons why models are now needed that deal with most, if not all, of the components of the hydrospheric system. Numerical models of each of the components of the hydrosphere already exist. However, an integrated model of the whole hydrosphere has yet to be developed. Building such a model is a daunting task, requiring the development of multi-scale/physics simulation tools. Numerical methods for dealing with multi-scale problems are developing rapidly. Unstructured meshes offer an almost infinite geometrical flexibility, allowing the space resolution to be increased when and where necessary. In addition, time steppings for dealing with a wide spectrum of timescales while retaining a high order of accuracy have been developed over recent years (e.g. multi-rate schemes). The Discontinuous Galerkin Finite Element (DGFE) framework SLIM is at his third implementation. It has been build on the GMSH code (http://geuz.org/gmsh), which a state-of-the-art open-source meshing tool. This allows the use of the same definitions and easy interactions between the mesher and the model. Moreover, this provides the same user interface for meshing and visualizing results. It also enables the use of the most recent advances in mesh generation, as GMSH has a

  10. Air-sea interaction at the subtropical convergence south of Africa

    SciTech Connect

    Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van

    1994-12-31

    The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBT and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.

  11. Using eddy covariance to estimate air-sea gas transfer velocity for oxygen

    NASA Astrophysics Data System (ADS)

    Andersson, Andreas; Rutgersson, Anna; Sahlée, Erik

    2016-07-01

    Air-sea gas transfer velocity for O2 is calculated using directly measured fluxes with the eddy covariance technique. It is a direct method and is frequently used to determine fluxes of heat, humidity, and CO2, but has not previously been used to estimate transfer velocities for O2, using atmospheric eddy covariance data. The measured O2 fluxes are upward directed, in agreement with the measured air-sea gradient of the O2 concentration, and opposite to the direction of the simultaneously measured CO2 fluxes. The transfer velocities estimated from measurements are compared with prominent wind speed parameterizations of the transfer velocity for CO2 and O2, previously established from various measurement techniques. Our result indicates stronger wind speed dependence for the transfer velocity of O2 compared to CO2 starting at intermediate wind speeds. This stronger wind speed dependence appears to coincide with the onset of whitecap formation in the flux footprint and the strong curvature of a cubic wind-dependent function for the transfer velocity provides the best fit to the data. Additional data using the measured O2 flux and an indirect method (based on the Photosynthetic Quotient) to estimate oxygen concentration in water, support the stronger wind dependence for the transfer velocity of O2 compared to CO2.

  12. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  13. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean.

    PubMed

    Mayol, Eva; Jiménez, María A; Herndl, Gerhard J; Duarte, Carlos M; Arrieta, Jesús M

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 10(4) and 1.6 × 10(7) microbes per m(2) of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m(2) every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes.

  14. The air-sea interface and surface stress under tropical cyclones.

    PubMed

    Soloviev, Alexander V; Lukas, Roger; Donelan, Mark A; Haus, Brian K; Ginis, Isaac

    2014-01-01

    Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coordinated numerical simulation, conducted in this work, the microstructure of the air-water interface under hurricane force wind resembled Kelvin-Helmholtz shear instability between fluids with a large density difference. Supported by these observations, we bring forth the concept that the resulting two-phase environment suppresses short gravity-capillary waves and alters the aerodynamic properties of the sea surface. The unified wave-form and two-phase parameterization model shows the well-known increase of the drag coefficient (Cd) with wind speed, up to ~30 ms(-1). Around 60 ms(-1), the new parameterization predicts a local peak of Ck/Cd, under constant enthalpy exchange coefficient Ck. This peak may explain rapid intensification of some storms to major tropical cyclones and the previously reported local peak of lifetime maximum intensity (bimodal distribution) in the best-track records. The bimodal distribution of maximum lifetime intensity, however, can also be explained by environmental parameters of tropical cyclones alone. PMID:24930493

  15. DOGEE-SOLAS: The Role of Surfactants in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Upstill-Goddard, R. C.; Nightingale, P.

    2008-12-01

    One of the major aims of DOGEE-SOLAS was to improve our understanding of the role of surfactants in air- sea gas exchange. With this in mind we carried out a number of artificial surfactant releases on a research cruise in the North Atlantic (D320), during June-July of 2007. We used oleyl alcohol, a surrogate for natural surfactants which is relatively cheap and easy to obtain (it is used in the manufacture of cosmetics). The main release overlaid a dual tracer "patch" of SF6 and 3He; our aim was to directly compare values of the gas transfer velocity, kw, estimated within the surfactant covered patch with those estimated quasi- simultaneously in a second, surfactant-free patch about 20km away. A second release in conjunction with colleagues from the University of Hawaii had the aim of measuring DMS fluxes by eddy correlation both inside and outside a surfactant slick, and a third was undertaken in the path of one of two 14m ASIS (Air-Sea Interaction Spar) buoys operated by the University of Miami for direct comparison of surfactant effects on the fluxes of CO2, H2O, heat and momentum (eddy correlation) etc. We present here some preliminary findings from the work.

  16. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    PubMed Central

    Mayol, Eva; Jiménez, María A.; Herndl, Gerhard J.; Duarte, Carlos M.; Arrieta, Jesús M.

    2014-01-01

    Airborne transport of microbes may play a central role in microbial dispersal, the maintenance of diversity in aquatic systems and in meteorological processes such as cloud formation. Yet, there is almost no information about the abundance and fate of microbes over the oceans, which cover >70% of the Earth's surface and are the likely source and final destination of a large fraction of airborne microbes. We measured the abundance of microbes in the lower atmosphere over a transect covering 17° of latitude in the North Atlantic Ocean and derived estimates of air-sea exchange of microorganisms from meteorological data. The estimated load of microorganisms in the atmospheric boundary layer ranged between 6 × 104 and 1.6 × 107 microbes per m2 of ocean, indicating a very dynamic air-sea exchange with millions of microbes leaving and entering the ocean per m2 every day. Our results show that about 10% of the microbes detected in the boundary layer were still airborne 4 days later and that they could travel up to 11,000 km before they entered the ocean again. The size of the microbial pool hovering over the North Atlantic indicates that it could play a central role in the maintenance of microbial diversity in the surface ocean and contribute significantly to atmospheric processes. PMID:25400625

  17. Large Temporal Variations in Air-Sea CO2 Flux off the Coast of Georgia

    NASA Astrophysics Data System (ADS)

    Caves, J. K.; Sabine, C.; Cai, W.; Alin, S.

    2008-12-01

    Though the inner shelf is a small portion of global ocean area, its air-sea CO2 flux is disproportionately high. Due to its tight links with both terrestrial and oceanic systems, the inner shelf is likely to experience significant spatial and temporal variability. We measured the fugacity of CO2 (fCO2) continuously from July 2006 to June 2008 on a moored platform in Gray's Reef National Marine Sanctuary on Georgia's inner shelf. The long-term, high temporal resolution data has allowed us to begin to measure interannual variations in CO2 flux along the inner Georgia shelf. From July 2006-June 2007, the inner Georgia shelf was a CO2 sink (-3.26mmol/m2/day), while during following year, the shelf switched to being a source (2.26mmol/m2/day). Choice of wind data (satellite or buoy-derived) significantly alters these estimates of annual fluxes. QuikSCAT satellite wind data indicate a much larger sink (- 6.13mmol/m2/day) during 2006-2007, and a non-existent source (0.02mmol/m2/day) during 2007- 2008. An earlier, high-resolution spatial study from January 2005-May 2006 found that the inner shelf within the South Atlantic Bight may have been a source of 0.65 to 1.20mmol/m2/day, suggesting that the inner shelf may experience dramatic swings in CO2 flux. Though sea-surface temperature (SST) is the largest influence on surface water fCO2, average monthly SST varied little between both years; instead, possible explanations for the large variation in interannual CO2 flux include decreased biological production and increased river flow (and, hence carbon export) during 2007-2008. This is the first evidence of large-scale, annual switches in air-sea CO2 flux within an inner shelf, and it holds significant implications for global estimates of air-sea CO2 flux.

  18. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  19. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  20. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    PubMed

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  1. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  2. Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lencina-Avila, J. M.; Ito, R. G.; Garcia, C. A. E.; Tavano, V. M.

    2016-09-01

    The oceans play an important role in absorbing a significant fraction of the atmospheric CO2 surplus, but there are still uncertainties concerning several open ocean regions, such as the under-sampled South Atlantic Ocean. This study assessed the net sea-air CO2 fluxes and distribution of sea-surface CO2 fugacity (f C O2sw) along the 35°S latitude in the South Atlantic, during 2011 spring and early summer periods. Underway CO2 molar fraction, temperature, salinity and dissolved oxygen measurements were taken continuously from South American to South African continental shelves. Values of both satellite and discrete in situ chlorophyll-a concentration along the ship's track were used as ancillary data. Both f C O2sw and difference in sea-air fugacity (ΔfCO2) showed high variability along the cruise track, with higher values found on the continental shelf and slope regions. All ΔfCO2 values were negative, implying that a sinking process was occurring during the cruise period, with an average net CO2 flux of -3.1±2.2 mmol CO2 m-2 day-1 (using Wanninkhof, 1992). Physical variables were the main drivers of f C O2sw variability in South American continental shelf and open ocean regions, while the biological factor dominated the South African continental shelf. Algorithms for estimating fCO2 and temperature-normalized fCO2 were developed and applied separately to the three defined sub-regions: the South American shelf, the open ocean and the South African continental shelf, with the regional temperature-normalized fCO2 models showing better results.

  3. Towards More Realistic Simulation of Air-Sea Interaction over Lakes on Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot; Soto, Alejandro

    2016-06-01

    The exchange of methane between the atmosphere and surface liquid reservoirs dominates the short time-scale methanological cycle. In this study, previous two-dimensional simulations of the exchange of methane vapor, sensible heat and momentum between the atmosphere and lakes are updated with the inclusion of radiative forcing and extended to three dimensions, including the introduction of realistic coastlines. Previous studies of Titan's air-sea exchange in two dimensions suggested that the exchange process was self-limiting. Evaporation from lakes produced a shallow but extremely stable marine layer that suppressed turbulent exchange. Furthermore, the circulation associated with the higher buoyancy of methane-rich atmosphere over the lake was offset by the oppositely directed thermal sea breeze circulation, which muted the mean wind. Two major weaknesses of this previous work were the lack of radiative forcing and the imposition of two dimensionality that limited the full range of dynamical solutions. Based on early theoretical studies, it was thought that magnitude of turbulent energy flux exchanges would be much larger than radiative fluxes, thereby justifying the neglect of radiation, but the two-dimensional simulations indicated that this was not a valid assumption. The dynamical limitations of two-dimensional simulations are well known. Vorticity stretching (i.e., circulation intensification through vertical motion) is not possible and it is also not possible to produce dynamically balanced gradient wind-type circulations. As well, the irregular shape of a realistic coastline cannot be expressed in two dimensions, and these realistic structures will generally induce complex convergence and divergence circulations in the atmosphere. The impact of radiative forcing and the addition of the third dimension on the air-sea exchange are presented.

  4. Compact optical system for imaging underwater and through the air/sea interface

    NASA Astrophysics Data System (ADS)

    Alley, Derek; Mullen, Linda; Laux, Alan

    2012-06-01

    Typical line-of-sight (LOS)/monostatic optical imaging systems include a laser source and receiver that are co-located on the same platform. The performance of such systems is deteriorated in turbid ocean water due to the large amount of light that is scattered on the path to and from an object of interest. Imagery collected with the LOS/monostatic system through the air/sea interface is also distorted due to wave focusing/defocusing effects. The approach of this project is to investigate an alternate, non-line-of-sight (NLOS)/bistatic approach that offers some advantages over these traditional LOS/monostatic imaging techniques. In this NLOS system the laser and receiver are located on separate platforms with the laser located closer to the object of interest. As the laser sequentially scans the underwater object, a time-varying intensity signal corresponding to reflectivity changes in the object is detected by the distant receiver. A modulated laser illuminator is used to communicate information about the scan to the distant receiver so it can recreate the image with the collected scattered light. This NLOS/bistatic configuration also enables one to view an underwater target through the air-sea interface (transmitter below the surface and receiver above the surface) without the distortions experienced with the LOS/monostatic sensor. In this paper, we will review the results of recent laboratory water tank experiments where an underwater object was imaged with the receiver both below and above the sea surface.

  5. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    These two images show Hurricane Isabel as viewed by AIRS and each of the two SeaWinds scatterometers on the ADEOS-2 and QuikScat satellites, all JPL-managed experiments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction.

    Figure 1 shows Isabel on September 13, 2003, when it was a Category 5 storm threatening the Caribbean and southern United States. At the time Isabel was the strongest Atlantic storm since hurricane Mitch killed thousands in central America in 1997. The red vectors in the image show Isabel's surface winds as measured by SeaWinds on ADEOS-2, and the background colors show the temperature of clouds and surface, as viewed in the infrared by AIRS. The hurricane's powerful swirling winds are apparent. These winds circle the hurricane's eye, seen as the red dot near the middle top of the image. Light blue areas shows adjacent cold clouds tops associated with strong thunderstorms embedded within the storm.

    Figure 2 shows Isabel as it approached landfall on the outer banks of North Carolina on September 18. The hurricane weakened in the five days since the earlier image was observed, as indicated by a less clearly defined eye. Nevertheless, it was still a powerful storm. The winds blowing onshore north of the eye knocked over trees, blew roofs off buildings, and drove large waves that breached the coastal barrier islands in many places. Water, transportation and power are still not fully restored to many of the areas in the image. The winds apparently blowing away from the eye of the storm are an artifact of one of the hurricane's other destructive phenomena: rain. The darkest blue clouds observed by AIRS show the most intense thunderstorms, and hence the heaviest rains. Hard rain fools the the SeaWinds on Quik

  6. Retoxification by heavy metals at land-sea interface in coastal aquifers

    NASA Astrophysics Data System (ADS)

    Fidelibus, Maria Dolores

    2014-05-01

    Although during the last decades a significant number of countermeasures have been put in place with respect to the release of pollutants into the environment, and emissions of many of these are in fact ceased, the signs of a generalized pollution are found with increasing frequency. The appearance of new signals may surprise, given that common sense leads us to believe that in a period of reduced emissions the environment should be in an improved state rather than in a worse one: however, the environmental effects of previous pollution are clearly appearing after a build-up of pollutants in the environment over the past decades, with a lag with respect to the activities that generated it.In particular, soils are the final receptor (sink) of pollutants as heavy metals, pesticides and fertilizers: the common belief that the heavy metals remain forever locked may, however, give a false sense of security: today it is no longer possible to ignore the fact that the soils involve potential long-term impacts.With this in mind we can open a window on some aspects of the nonlinear behavior of soils and detrital aquifers. Researches on the former are more frequent and help extending some results to the latter. As matter of fact, in response to variations in environmental conditions, sudden releases of pollutants accumulated in soils occur with a considerable delay compared to the input. The attention of the study is on coastal aquifers. The coastal areas in general are dynamic non-linear systems at the land-sea interface in perpetual chemical-physical disequilibrium: these areas are complex with regard to the constituent elements and subject to a set of variable boundary conditions (oscillating borderswith periodic and aperiodic frequency), to cyclic and non-cyclic variations of climatic conditions and anthropogenic forcing (permanent or transient), whose behavior is not easily predictable, and that act on different temporal and spatial scales.The question is: can the

  7. Air Flow Path Dynamics In The Vadose Zone Under Various Land Surface Climate Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Schulte, P. E.; Cihan, A.; Christ, J.

    2010-12-01

    Vapor intrusion (VI) refers to the transport of volatile chemical vapors from subsurface sources to surface and subsurface structures through the vadose zone. Because of the difference in pressure between the inside of the building and the subsurface soil pores, vapor can enter the building through cracks in the foundation, slab and walls and utility openings. The processes that govern the vapor transport in the heterogeneous subsurface “outside the home” are complex, and the sampling to assess potential pathways is subjected to spatial and temporal variability. Spatial variability is a result of a number of factors that include changing soil and soil moisture conditions. Temporal variability is a result of transient heat, wind, ambient pressure and a water flux boundary conditions at the land-atmospheric interface. Fluctuating water table conditions controlled by recharge, pumping, and stream-aquifer interactions will also contribute to the transient vapor flux generation at the sources. When the soil moisture changes as a result of precipitation events and other soil surface boundary conditions, the soil moisture content changes and hence the air permeability. Therefore, the primary pathways for the vapor are preferential channels that change with the transient soil moisture distribution. Both field and laboratory studies have shown that heterogeneity has a significant influence on soil moisture conditions in unsaturated soils. Uncertainties in vapor transport predictions have been attributed to heterogeneity and spatial variability in hydraulic properties. In this study, our goal was to determine the role of soil moisture variability on vapor transport and intrusion as affected by the climate driven boundary conditions on the land surface. A series of experiments were performed to generate a comprehensive data set to understand and evaluate how the spatial and temporal variability of soil moisture affected by the mass and heat flux boundary conditions on the

  8. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  9. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  10. Fault Characterization in the Sea of Marmara (Turkey) Using OBS and Land Seismic Stations

    NASA Astrophysics Data System (ADS)

    Pinar, Ali; Yamamoto, Yojiro; Comoglu, Mustafa; Polat, Remzi; Turhan, Fatih; Takahashi, Narumi; Kalafat, Dogan; Citak, Seckin

    2016-04-01

    The fault segments of the North Anatolian fault (NAF) occurring between Tekirdag basin and Kumburgaz basin are investigated using 15 Ocean Bottom Seismic (OBS) stations. The OBS stations were deployed closely around the fault trace of NAF. During the observation period from September, 2014 until July, 2015 more than one thousand microearthquakes were determined. No uniform seismicity pattern was observed along strike and along dip of the fault segments in an area spanning 100 km from East to West of Marmara Sea. The western fault segments exhibit relatively higher and deeper seismic activity while the eastern segment show shallower and relatively lower seismic activity. Integrating the first motion polarity data from the land based stations of Kandilli Observatory and Earthquake Research Institute (KOERI) with the polarity data acquired from the OBS stations the focal mechanisms of 173 micro-earthquakes were determined. Most of the fault plane solutions indicate predominantly strike-slip mechanism. Several clusters of events are identified along the E-W extending NAF. We derive a focal mechanism for the individual events whenever the number of the polarities are sufficient. In addition, simultaneous inversion of the polarities in a cluster are done to retrieve a stress tensor along with focal mechanisms of the individual events in a cluster. A unique cluster of focal mechanisms was obtained from the events taking place in Western High (WH) region located between Tekirdag Basin (TB) and Central Basin (CB). Several features of this cluster are noticeable; 1) the site is the most seismically active part in Marmara Sea, 2) the site is the locus of the deepest events in the Sea of Marmara, 3) the shallower part of this segment is seismically less active, 4) two subgroups of P-axes of focal mechanisms exist; one oriented NW-SE and other oriented in N-S direction despite the proximity of the location of the events giving clues on the faulting dynamics. The N-S oriented P

  11. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  12. The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements

    NASA Astrophysics Data System (ADS)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    This study aims to quantify the vertical motions driving the decadal coastline mobility and their uncertainty at global scale. Multisatellite altimetry is combined with tide gauges and Global Positioning System (GPS) observations to evaluate the marine and crustal components of relative sea level variations. Vertical land motions and sea level variations are estimated simultaneously over the past 20 years for a network of 886 ground stations, with accuracies better than 1.7 mm/yr. The ALTIGAPS database present significant interest both by its technical characteristics (global coverage, larger number of sites, longer period of observation, improved accuracy) and by the novelty of the applications empowered. ALTIGAPS offers the opportunity to look independently into the recent dynamic processes affecting the ocean and the interior of the Earth. Here, the role of vertical land motions in relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Global evidence for the local variability in vertical land motions is provided, which may either amplify or attenuate the apparent rise of the sea at the coast. A set of 182 potential vulnerable localities are identified by large coastal subsidence (>1.5 mm/yr) which increases by several times the effects of climate-induced sea level rise. For coastal management purposes, both marine (absolute sea level variations) and crustal (vertical land motions) components of vertical coastal motions (relative sea level variations) should therefore be accounted for.

  13. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  14. Air-water exchange of brominated anisoles in the northern Baltic Sea.

    PubMed

    Bidleman, Terry F; Agosta, Kathleen; Andersson, Agneta; Haglund, Peter; Nygren, Olle; Ripszam, Matyas; Tysklind, Mats

    2014-06-01

    Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA)>2,4-dibromoanisole (2,4-DBA)≫2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA>2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km2) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.

  15. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise

    USGS Publications Warehouse

    Gesch, D.B.

    2009-01-01

    The importance of sea-level rise in shaping coastal landscapes is well recognized within the earth science community, but as with many natural hazards, communicating the risks associated with sea-level rise remains a challenge. Topography is a key parameter that influences many of the processes involved in coastal change, and thus, up-to-date, high-resolution, high-accuracy elevation data are required to model the coastal environment. Maps of areas subject to potential inundation have great utility to planners and managers concerned with the effects of sea-level rise. However, most of the maps produced to date are simplistic representations derived from older, coarse elevation data. In the last several years, vast amounts of high quality elevation data derived from lidar have become available. Because of their high vertical accuracy and spatial resolution, these lidar data are an excellent source of up-to-date information from which to improve identification and delineation of vulnerable lands. Four elevation datasets of varying resolution and accuracy were processed to demonstrate that the improved quality of lidar data leads to more precise delineation of coastal lands vulnerable to inundation. A key component of the comparison was to calculate and account for the vertical uncertainty of the elevation datasets. This comparison shows that lidar allows for a much more detailed delineation of the potential inundation zone when compared to other types of elevation models. It also shows how the certainty of the delineation of lands vulnerable to a given sea-level rise scenario is much improved when derived from higher resolution lidar data. ?? 2009 Coastal Education and Research Foundation.

  16. Response of air-sea carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.

    2010-07-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net air-sea carbon fluxes are small, which is due to several effects, two of which stand out: first, colder sea surface temperature leads to a more effective solubility pump but also to increased sea ice concentration which blocks air-sea exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.

  17. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  18. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change. PMID:22924498

  19. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate.

    PubMed

    Tiwary, A; Williams, I D; Pant, D C; Kishore, V V N

    2015-08-01

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages - first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated - mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution.

  20. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  1. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel

  2. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  3. Sensitivity of Hurricane Storm Surge to Land Cover and Topography Under Various Sea Level Rise Scenarios Along the Mississippi Coast

    NASA Astrophysics Data System (ADS)

    Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.

    2013-12-01

    Major Gulf hurricanes have a high probability of impacting the northern Gulf of Mexico, especially coastal Mississippi (Resio, 2007). Due to the wide and flat continental shelf, this area provides near-perfect geometry for high water levels under tropical cyclone conditions. Literature suggests with 'very high confidence that global sea level will rise at least 0.2 m and no more than 2.0 m by 2011' (Donoghue, 2011; Parris et al., 2012). Further, it is recognized that the Mississippi barrier islands are highly susceptible to a westward migration and retreating shoreline. With predictions for less frequent, more intense tropical storms, rising sea levels, and a changing landscape, it is important to understand how these changes may affect inundation extent and flooding due to hurricane storm surge. A state-of-the-art SWAN+ADCIRC hydrodynamic model of coastal Mississippi was utilized to simulate Hurricane Katrina with present day sea level conditions. Using present day as a base scenario, past (1960) and future (2050) sea level changes were simulated. In addition to altering the initial sea state, land use land cover (LULC) was modified for 1960 and 2050 based on historic data and future projections. LULC datasets are used to derive surface roughness characteristics, such as Manning's n, and wind reduction factors. The topography along the barrier islands and near the Pascagoula River, MS was also altered to reflect the 1960 landscape. Storm surge sensitivity to topographic change were addressed by comparing model results between two 1960 storm surge simulations; one with current topography and a second with changes to the barrier islands. In addition, model responses to changes in LULC are compared. The results will be used to gain insight into adapting present day storm surge models for future conditions. References Donoghue, J. (2011). Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future. Climatic Change, 107

  4. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  5. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  6. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  7. Modeling, simulation & optimization of the landing craft air cushion fleet readiness.

    SciTech Connect

    Engi, Dennis

    2006-10-01

    The Landing Craft Air Cushion is a high-speed, over-the-beach, fully amphibious landing craft capable of carrying a 60-75 ton payload. The LCAC fleet can serve to transport weapons systems, equipment, cargo and personnel from ship to shore and across the beach. This transport system is an integral part of our military arsenal and, as such, its readiness is an important consideration for our national security. Further, the best way to expend financial resources that have been allocated to maintain this fleet is a critical Issue. There is a clear coupling between the measure of Fleet Readiness as defined by the customer for this project and the information that is provided by Sandia's ProOpta methodology. Further, there is a richness in the data that provides even more value to the analyst. This report provides an analytic framework for understanding the connection between Fleet Readiness and the output provided by Sandia's ProOpta software. Further, this report highlights valuable information that can also be made available using the ProOpta output and concepts from basic probability theory. Finally, enabling assumptions along with areas that warrant consideration for further study are identified.

  8. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  9. A numerical coupled model for studying air-sea-wave interaction

    NASA Astrophysics Data System (ADS)

    Ly, Le Ngoc

    1995-10-01

    A numerical coupled model of air-sea-wave interaction is developed to study the influence of ocean wind waves on dynamical, turbulent structures of the air-sea system and their impact on coupled modeling. The model equations for both atmospheric and oceanic boundary layers include equations for: (1) momentum, (2) a k-ɛ turbulence scheme, and (3) stratification in the atmospheric and oceanic boundary layers. The model equations are written in the same form for both the atmosphere and ocean. In this model, wind waves are considered as another source of turbulent energy in the upper layer of the ocean besides turbulent energy from shear production. The dissipation ɛ at the ocean surface is written as a linear combination of terms representing dissipation from mean flow and breaking waves. The ɛ from breaking waves is estimated by using similarity theory and observed data. It is written in terms of wave parameters such as wave phase speed, height, and length, which are then expressed in terms of friction velocity. Numerical experiments are designed for various geostrophic winds, wave heights, and wave ages, to study the influence of waves on the air-sea system. The numerical simulations show that the vertical profiles of ɛ in the atmospheric and oceanic boundary layers (AOBL) are similar. The magnitudes of ɛ in the oceanic surface zone are much larger than those in the atmospheric surface zone and in the interior of the oceanic boundary layer (OBL). The model predicts ɛ distributions with a surface zone of large dissipation which was not expected from similarity scaling based on observed wind stress and surface buoyancy. The simulations also show that waves have a strong influence on eddy viscosity coefficients (EVC) and momentum fluxes, and have a dominated effect on the component of fluxes in the direction of the wind. The depth of large changes in flux magnitudes and EVC in the ocean can reach to 10-20 m. The simulations of surface drift currents confirm that

  10. Characterization of Sea-Air Methane Fluxes Around a Seafloor Gas Seep in the Central Laptev Sea

    NASA Astrophysics Data System (ADS)

    Geibel, M. C.; Thornton, B. F.; Prytherch, J.; Brooks, I. M.; Salisbury, D. J.; Tjernstrom, M. K. H.; Semiletov, I. P.; Mörth, C. M.; Humborg, C.; Crill, P. M.

    2015-12-01

    The fate of CH4 released from thawing subsea permafrost on the East Siberian Arctic Shelf (ESAS) is unclear. In recent years, interest has focused on the possibility of large emissions of CH4 directly to the atmosphere from this remote area. It is uncertain how high those emissions are and whether they are primarily of biogenic or thermogenic nature, or some combination of sources. The SWERUS-C3 expedition onboard the Swedish icebreaker Oden during July-August 2014 sought to document possible CH4 release from subsea permafrost, and to understand mechanisms and magnitudes of such CH4 being released to the atmosphere. During the first leg of the expedition continuous high-resolution measurements were made to determine the in situ concentrations of CH4 in both the atmosphere and surface water. During SWERUS-C3, several underwater gas flares were found within the ESAS region showing elevated CH4 concentrations collocated in the surface waters. Here we focus on one seep area, a so-called "mega-flare" site, in the central Laptev Sea. Over individual gas flares of this site the surface water concentration of CH4 reached as high as 200ppm. The atmospheric concentrations of CH4 briefly (< 1 s) reached a maximum of ~3.2 ppm. More typical atmospheric values around the seeps were between 1.9-2.0 ppm (background values were approximately 1.88 ppm). However, such peak concentrations in both air and water were highly localized, returning to background levels within a few hundred meters of the source seeps. Together with continuous high-precision eddy-covariance measurements that were made during the SWERUS-C3 expedition, the combined dataset allows an intensive analysis these highly inhomogeneous gas flares. This gives the opportunity to calculate accurate high-resolution CH4 fluxes and thus give a better insight into the current rates of subsea CH4 outgassing reaching the atmosphere.

  11. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  12. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  13. Model estimating the effect of marginal ice zone processes on the phytoplankton primary production and air-sea flux of CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Martjyanov, Stanislav

    2016-04-01

    This study is aimed to assess the impact of sea ice on the primary production of phytoplankton (PPP) and air-sea CO2 flux in the Barents Sea. To get the estimations, we apply a three-dimensional eco-hydrodynamic model based on the Princeton Ocean Model which includes: 1) a module of sea ice with 7 categories, and 2) the 11-component module of marine pelagic ecosystem developed in the St. Petersburg Branch, Institute of Oceanology. The model is driven by atmospheric forcing, prescribed from the reanalysis NCEP / NCAR, and conditions on the open sea boundary, prescribed from the regional model of the atmosphere-ocean-sea ice-ocean biogeochemistry, developed at Max Planck Institute for Meteorology, Hamburg. Comparison of the model results for the period 1998-2007 with satellite data showed that the model reproduces the main features of the evolution of the sea surface temperature, seasonal changes in the ice extent, surface chlorophyll "a" concentration and PPP in the Barents Sea. Model estimates of the annual PPP for whole sea, APPmod, appeared in 1.5-2.3 times more than similar estimates, APPdata, from satellite data. The main reasons for this discrepancy are: 1) APPdata refers to the open water, while APPmod, to the whole sea area (under the pack ice and marginal ice zone (MIZ) was produced 16 - 38% of PPP); and 2) values of APPdata are underestimated because of the subsurface chlorophyll maximum. During the period 1998-2007, the modelled maximal (in the seasonal cycle) sea ice area has decreased by 15%. This reduction was accompanied by an increase in annual PPP of the sea at 54 and 63%, based, respectively, on satellite data and the model for the open water. According to model calculations for the whole sea area, the increase is only 19%. Using a simple 7-component model of oceanic carbon cycle incorporated into the above hydrodynamic model, the CO2 exchange between the atmosphere and sea has been estimated in different conditions. In the absence of biological

  14. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  15. [Main concepts of preventive health care for the air staff of sea-based aviation].

    PubMed

    Mel'nik, S G; Chulaevskiĭ, A O

    2013-08-01

    The authors researched the air-stuff and complex of adverse factors uncharacteristic for the air-staff of land-based aircraft. It was determined that adverse factors affect the air-staff foremost in 4-5 months of a blue-water sailing, except cardiovascular system diseases. In a month of a blue-water sailing was registered a hypotonic state. Systolic blood pressure varied from 100-105 mm Hg and lower, dystolic blood pressure varied from 60-65 mm Hg and lower. The lowest ranges of blood pressure were registered in three months after the beginning of the sailing. In the following, the hypotonic state, registered during the monthly medical examinations, remained till the end of the sailing. Normal averages of blood pressure were restored in two weeks after the end of sailing. Low red cell count (for more than 1100 points) was registered in 61.5% of patients, (for more than 550 points) in 38.4% of patients. Low white cell count (for more than 4800 points) was registered in 33.3% of patients, (for more than 3300 points) in 41% of patients, (for more than 1330 points) in 25% of patients. Input data was: red cell count--4250 points, white cell count--7300 points in 1 ml of blood. After the sailing haematological indices were restored. The authors suggested guidelines for primary and secondary disease prevention.

  16. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  17. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    NASA Astrophysics Data System (ADS)

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-08-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment.

  18. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface.

    PubMed

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D'Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,...) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  19. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes

    NASA Astrophysics Data System (ADS)

    Glazman, R. E.

    The book is based on the proceedings of the 1983 Whitecap Workshop, held at University College, Galway, Ireland. The 22 full-length papers and 18 abstracts of poster presentations that it contains cover a wide range of topics. The small-scale air-sea exchange processes triggered by the breaking of wind-generated gravity waves serve as the common ground from which specialized excursions are made into the fields of acoustics and optics of bubbly water, statistics and hydrodynamics of water waves, remote sensing, atmospheric electricity, and physicochemical hydrodynamics of bubbles, droplets, and water surfaces coated with organic films. The book opens with “The Life and Science of Alfred H. Woodcock” by Duncan Blanchard (State University of New York, Albany).

  20. Photosensitized production of functionalized and unsaturated organic compounds at the air-sea interface

    PubMed Central

    Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian

    2015-01-01

    The sea-surface microlayer (SML) has different physical, chemical and biological properties compared to the subsurface water, with an enrichment of organic matter i.e., dissolved organic matter including UV absorbing humic substances, fatty acids and many others. Here we present experimental evidence that dissolved organic matter, such as humic acids, when exposed to sunlight, can photosensitize the chemical conversion of linear saturated fatty acids at the air-water interface into unsaturated functionalized gas phase products (i.e. saturated and unsaturated aldehydes and acids, alkenes and dienes,…) which are known precursors of secondary organic aerosols. These functionalized molecules have previously been thought to be of biological origin, but here we demonstrate that abiotic interfacial photochemistry has the potential to produce such molecules. As the ocean is widely covered by the SML, this new understanding will impact on our ability to describe atmospheric chemistry in the marine environment. PMID:26244712

  1. [Relationship between urban green-land landscape patterns and air pollution in the central district of Yichang city].

    PubMed

    Shao, Tianyi; Zhou, Zhixiang; Wang, Pengcheng; Tang, Wanpeng; Liu, Xuequan; Hu, Xingyi

    2004-04-01

    (-2)) with only 6.13% green-land coverage, and the atmospheric noise and the TSP and NOx content increased by 21.47%, 5.08% and 9.06%, respectively, comparing to control. It was obvious that the greater the average area of the green-land patch and the lower the fragmentation index of green-land patches, the more effective the green-land on purifying air pollution.

  2. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed Central

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-01-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 4. C Figure 4. D PMID:8593853

  3. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  4. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  5. Selected current-use and historic-use pesticides in air and seawater of the Bohai and Yellow Seas, China

    NASA Astrophysics Data System (ADS)

    Zhong, Guangcai; Tang, Jianhui; Xie, Zhiyong; Möller, Axel; Zhao, Zhen; Sturm, Renate; Chen, Yingjun; Tian, Chongguo; Pan, Xiaohui; Qin, Wei; Zhang, Gan; Ebinghaus, Ralf

    2014-01-01

    Consumption of pesticides in China has increased rapidly in recent years; however, occurrence and fate of current-use pesticides (CUPs) in China coastal waters are poorly understood. Globally banned pesticides, so-called historic-use pesticides (HUPs), are still commonly observed in the environment. In this work, air and surface seawater samples taken from the Bohai and Yellow Seas in May 2012 were analyzed for CUPs including trifluralin, quintozene, chlorothalonil, dicofol, chlorpyrifos, and dacthal, as well as HUPs (hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and endosulfan). CUP profile in both air and seawater samples generally reflected their consumption patterns in China. HUPs in the air and seawater samples were in comparable levels as those of CUPs with high concentrations. α-Endosulfan, dicofol, and chlorothalonil showed strong net deposition likely resulting from their intensive use in recent years, while CUPs with low consumption amount (quintozene and dacthal) were close to equilibrium at most samplings sites. Another CUP with high usage amout (i.e., chlorpyrifos) underwent volatilization possibly due to its longer half-life in seawater than that in air. α-HCH and γ-HCH were close to equilibrium in the Bohai Sea, but mainly underwent net deposition in the Yellow Sea. The net deposition of α-HCH could be attributed to polluted air pulses from the East China identified by air mass back trajectories. β-HCH showed net volatilization in the Bohai Sea, which was driven by its relative enrichment in seawater. HCB either slightly favored net volatilization or was close to equilibrium in the Bohai and Yellow Seas.

  6. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  7. Oceanic distributions and air-sea fluxes of biogenic halocarbons in the open ocean

    NASA Astrophysics Data System (ADS)

    Chuck, Adele L.; Turner, Suzanne M.; Liss, Peter S.

    2005-10-01

    Surface seawater and atmospheric concentrations of methyl iodide, chloroiodomethane, bromoform, dichlorobromomethane, and chlorodibromethane were measured during three open ocean cruises in the Atlantic and Southern oceans. The measurements spanned a longitudinal range of 115°, between 50°N and 65°S. The saturation anomalies and the instantaneous air-sea fluxes of the gases during one of these cruises (ANT XVIII/1) are presented and discussed. Methyl iodide and chloroiodomethane were highly supersaturated (>1000%) throughout the temperate and tropical regions, with calculated mean fluxes of 15 and 5.5 nmol m-2 d-1, respectively. The oceanic emissions of the brominated compounds were less substantial, and a significant area of the temperate Atlantic Ocean was found to be a sink for bromoform. Correlation analyses have been used to investigate possible controls on the concentrations of these gases. In particular, the relationship of CH3I with sea surface temperature and light is discussed, with the tentative conclusion that this compound may be formed abiotically.

  8. Application of the Hilbert-Huang Transform to the Estimation of Air-Sea Turbulent Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Song, Jinbao; Huang, Yansong; Fan, Conghui

    2013-06-01

    The Hilbert-Huang transform (HHT) is applied to analyzing the turbulent time series obtained within the atmospheric boundary layer over the ocean. A method based on the HHT is introduced to reduce the influence of non-turbulent motions on the eddy-covariance based flux by removing non-turbulent modes from the time series. The scale dependence of the flux is examined and a gap mode is identified to distinguish between turbulent modes and non-turbulent modes. To examine the effectiveness of this method it is compared with three conventional methods (block average, moving-window average, and multi-resolution decomposition). The data used are from three sonic anemometers installed on a moored buoy at about 6, 4 and 2.7 m height above the sea surface. For each method, along-wind and cross-wind momentum fluxes and sensible heat fluxes at the three heights are calculated. According to the assumption of a constant-flux layer, there should be no significant difference between the fluxes at the three heights. The results show that the fluxes calculated using HHT exhibit a smaller difference and higher correlation than the other methods. These results support the successful application of HHT to the estimation of air-sea turbulent fluxes.

  9. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α , in {W m}^{-2}{ K}^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 {W m}^{-2}{ K}^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 {W m}^{-2}{ K}^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  10. Crustal structure and evolution of the Mawson Sea, western Wilkes Land margin, East Antarctica

    USGS Publications Warehouse

    Leitchenkov, G.L.; Gandyukhin, V.V.; Guseva, Yu. B.; Kazankov, A. Yu

    2007-01-01

    3 to 11 mm/yr. Three major unconformities are identified in the sedimentary cover of the Mawson Sea and are interpreted to be caused by break-up between Australia and Antarctica at about 81 Ma ago (WL1), the first arrival of the ice sheet to the Mawson Sea (WL3) and continental scale glaciation at about 34 Ma ago (WL4).

  11. Long-term change in surface air temperature over Eurasian continent and possible contribution from land-surface conditions.

    NASA Astrophysics Data System (ADS)

    Kim, K.; Jeong, J. H.; Shim, T.

    2015-12-01

    Summertime heat wave over Eurasia is induced by various climatic factors. As internal and external factors are changing under an abrupt climate change, the variability of heat waves exhibits radical changes. In this study, the long-term change in heat wave characteristics over Eurasia for the last several decades was examined and the impact of land-atmosphere interaction modulated by soil moisture variability on the change was investigated. Through the empirical orthogonal functions(EOF) analysis, the principle spatio-temporal pattern of Eurasian heat wave during July-August was objectively detected. The leading pattern (1st EOF mode) of the variability was found be an overall increase in heat waves over eastern Europe and east Asia (Mongol to northern part of China), which seems to be associated mainly with the global warming signal but with interannual variability as well. Through performing JULES(Joint UK Land Environment Simulator) land surface model simulation forced with observational atmospheric forcings, soil moisture and energy flux at surface were estimated, and the impacts of land-atmosphere interaction on the heat wave variability was investigated based on the estimated land surface variables and temperature observations. It is found that there is a distinct dry soil condition accompanying with East Asian heat waves. The dry condition leads to an increase in sensible heat flux from land surface to atmosphere and resulting near-surface warming, which is followed by warm-core high - a typical characteristics of a heatwave sustained by land-atmosphere interaction. This result is consistent with an distinct increase in heatwave in recent years. By using the hindcast of long-range prediction model of KMA, GloSea5, the seasonal predictability of heatwave was examined. GloSea5 reasonably well simulates the spatial pattern of Eurasian heatwaves variability found in observations but shows modest skill in simulating accurate year-to-year variability. This result

  12. Global Diversification at the Harsh Sea-Land Interface: Mitochondrial Phylogeny of the Supralittoral Isopod Genus Tylos (Tylidae, Oniscidea)

    PubMed Central

    Hurtado, Luis A.; Lee, Eun J.; Mateos, Mariana; Taiti, Stefano

    2014-01-01

    The supralittoral environment, at the transition between sea and land, is characterized by harsh conditions for life. Nonetheless, evolution of terrestrial isopods (Oniscidea), the only group of Crustacea fully adapted to live on land, appears to have involved a transitional step within the supralittoral. The two most basal oniscidean lineages (Ligiidae and Tylidae) have representatives that successfully colonized the supralittoral. One of them is the genus Tylos, which is found exclusively in supralittoral sandy beaches from tropical and subtropical coasts around the world. Comprehensive phylogenetic hypotheses for this genus are lacking, which are necessary for understanding the evolution and biogeography of a lineage that successfully diversified in the harsh sea-land interface. Herein, we studied the phylogenetic relationships among 17 of the 21 currently recognized species of the genus Tylos, based on sequences from four mitochondrial genes (Cytochrome Oxidase I, Cytochrome b, 16S rDNA, and 12S rDNA). Maximum Likelihood and Bayesian phylogenetic analyses identified several lineages with deep divergences and discrete geographic distributions. Phylogenetic and distributional patterns of Tylos provide important clues on the biogeography and evolution of this group. Large divergences among the most basal clades are consistent with ancient splits. Due to the biological characteristics of Tylos, which likely prevent dispersal of these isopods across vast oceanic scales, we argue that tectonic events rather than trans-oceanic dispersal explain the distribution of Tylos in different continents. Overwater dispersal, however, likely enabled range expansions within some basins, and explains the colonization of volcanic oceanic islands. Present-day distributions were also likely influenced by sea level and climate changes. High levels of allopatric cryptic genetic differentiation are observed in different regions of the world, implying that the dispersal abilities of

  13. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

    NASA Astrophysics Data System (ADS)

    Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.

    2013-04-01

    Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.

  14. Field-Analytical approach of land-sea records for elucidating the Younger Dryas Boundary syndrome

    NASA Astrophysics Data System (ADS)

    Ge, T.; Courty, M. M.; Guichard, F.

    2009-12-01

    Linking lonsdaleite crystals, carbon spherules and diamond polymorphs from the North American dark layers at 12.9 cal yr B.P. to a cosmic event has questioned the nature and timing of the related impact processes. A global signal should trace the invoked airshocks and/or surface impacts from a swarm of comets or carbonaceous chondrites. Here we report on the contextual analytical study of debris fall events from three reference sequences of the Younger Dyras period (11-13 ka cal BP) : (1) sand dune fields along the French Atlantic coast at the Audenge site; (2) A 10 m record of detrital/bioorganic accumulation in the southern basin of the Caspian Sea with regular sedimentation rate (0.1 to 3 mm per year) from 14 to 2-ka BP cal; (3) the Paijan sequence (Peruvian coastal desert) offering fossiliferous fluvial layers with the last large mammals and aquatic fauna at 13 ka BP sealed by abiotic sand dunes. The three sequences display one remarkable layer of exogenous air-transported microdebris that is part of a complex time series of recurrent fine dust/wildfire events. The sharp debris-rich microfacies and its association to ashes derived from calcination of the local vegetation suggest instantaneous deposition synchronous to a high intensity wildfire. The debris assemblage comprises microtektite-like glassy spherules, partly devitrified glass shards, unmelted to partly melted sedimentary and igneous clasts, terrestrial native metals, and carbonaceous components. The later occur as grape-clustered polymers, vitrified graphitic carbon, amorphous carbon spherules with a honeycomb pattern, and green carbon fibres with recrystallized quartz and metal blebs. Evidence for high temperature formation from a heterogeneous melt with solid debris and volatile components derived from carbonaceous precursors supports an impact origin from an ejecta plume. The association of debris deposition to total firing would trace a high energy airburst with surface effects of the fireball. In

  15. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  16. Second international conference on air-sea interaction and on meteorology and oceanography of the coastal zone

    SciTech Connect

    1994-12-31

    This conference was held September 22--27, 1994 in Lisbon, Portugal. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on air-sea interactions. Individual papers have been processed separately for inclusion in the appropriate data bases.

  17. Land-sea correlations in the Australian region: post-glacial onset of the monsoon in northwestern Western Australia

    NASA Astrophysics Data System (ADS)

    De Deckker, Patrick; Barrows, Timothy T.; Rogers, John

    2014-12-01

    Deep-sea core Fr10/95-GC17, collected offshore North West Cape at the western tip of Western Australia, is located beneath the path of the Leeuwin Current. This shallow, warm and low salinity current is an offshoot of the Indonesian Throughflow that transfers water and heat from the West Pacific Ocean into the Indian Ocean. The location is at the edge of the Indo Pacific Warm Pool, the source of large-scale transfer of moisture and heat from the ocean to the atmosphere. For this core, we combine previously published data with new research and use a revised chronology to re-examine the timing of climate change during the last 34,000 years in the tropics of northern Australia. The age model for the core is based on 15 radiocarbon dates complemented by luminescence ages and an oxygen isotope record. This study draws on an extensive range of analyses that have been performed on the core, including micropalaeontology of planktic and benthic foraminifera and coccoliths, stable isotopes analysis of foraminifera and their faunal composition, clay content, sediment composition and pollen analyses. Sea-surface and land temperatures are estimated from the foraminifer faunal analyses and from pollen spectra, respectively. The clay fraction and sediment composition and radiogenic isotopes of that fraction helped identify changes both on land and at sea: changes such as rainfall as shown by river discharge, and oceanic current tracing by neodymium, strontium and lead isotopes obtained from sediments. The most significant finding is that a major threshold was crossed at 13 ka BP. Prior to that time, rainfall over NW Western Australia was low as was sea-surface temperature (SST); river discharge to the ocean was also low as a result of the lack of monsoonal activity and finally, ocean alkalinity would have been lower than at present due to the uptake of atmospheric CO2. By 13 ka BP, the entire system moved away from glacial period conditions. The Indo-Australian monsoon commenced

  18. Coastal Flood Risks in the Bangkok Metropolitan Region, Thailand: Combined Impacts of Land Subsidence, Sea Level Rise and Storm Surge

    NASA Astrophysics Data System (ADS)

    Duangyiwa, C.; Yu, D.; Wilby, R.; Aobpaet, A.

    2015-12-01

    Due to the fast-changing climatic and anthropogenic conditions at coastal regions, many coastal mega-cities are becoming increasingly vulnerable to internal and external risks. The risk is particularly high for low-lying coastal cities in developing nations, with Southeast Asia recognized as a hotspot of vulnerability due to the increasing population density, rapid change of natural landscape associated with urbanization and intensified hydrological and atmospheric conditions at the coastal front in an uncertain climate future. The Bangkok Metropolitan Region is one of the largest coastal megacities in Southeast Asia that are challenged by the potential impacts due to climate change and anthropological variability in the coming decades. Climate-related risks in this region are associated with its relatively low-lying nature of the terrain and adjacency to the coast. Coastal inundation due to high tides from the sea occurs annually in the area close to the seashore. This is set to increase given a projected rising sea level and the sinking landscape due to groundwater extraction and urbanization. The aim of this research is, therefore, to evaluate the vulnerability of the city to sea level rise, land subsidence and storm surge. Distributed land subsidence rate, projected sea level rise and existing structural features such as flood defences are taken into account. The 2011 flood in Thailand is used as a baseline event. Scenarios were designed with projections of land subsidence and sea level rise to 2050s, 2080s, and 2100s. A two-dimensional flood inundation model (FloodMap, Yu and Lane 2006) is used to derive inundation depth and velocity associated with each scenario. The impacts of coastal flood risk on critical infrastructures (e.g. power supply, transportation network, rescue centers, hospitals, schools and key government buildings) are evaluated (e.g. Figure 1). Results suggest progressively increase but non-linear risks of coastal flooding to key coastal

  19. On the role of extratropical air-sea interaction in the persistence of the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Xiao, Bei; Zhang, Yang; Yang, Xiu-Qun; Nie, Yu

    2016-08-01

    Using the daily atmosphere and ocean reanalysis data, this study highlights the role of extratropical air-sea interaction in the variability of the Southern Annular Mode (SAM). Our analysis shows that the SAM-induced meridional dipolar sea surface temperature (SST) anomalies, through surface heat fluxes, can maintain persistent lower tropospheric temperature anomalies, which further results in anomalous eddy momentum forcing enhancing the persistence of the SAM. With the Finite Amplitude Wave Activity diagnosis, we illustrate that response of the eddy momentum forcing to SST anomalies can be attributed to changes in both baroclinic processes as baroclinic eddy generation and barotropic processes as wave breaking thus resultant diffusive eddy mixing, with the former confined at high latitudes and the latter strongest at midlatitudes. Spectral analysis further suggests that the above air-sea interactions are important for bimonthly and longer time scale SAM variations. The dipolar SST pattern may be an indicator for predicting subseasonal and interseasonal variabilities of the SAM.

  20. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  1. The evolution of scale sensilla in the transition from land to sea in elapid snakes.

    PubMed

    Crowe-Riddell, Jenna M; Snelling, Edward P; Watson, Amy P; Suh, Anton Kyuseop; Partridge, Julian C; Sanders, Kate L

    2016-06-01

    Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8-6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative 'sensitivity' represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits.

  2. The evolution of scale sensilla in the transition from land to sea in elapid snakes.

    PubMed

    Crowe-Riddell, Jenna M; Snelling, Edward P; Watson, Amy P; Suh, Anton Kyuseop; Partridge, Julian C; Sanders, Kate L

    2016-06-01

    Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8-6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative 'sensitivity' represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits. PMID:27278646

  3. The evolution of scale sensilla in the transition from land to sea in elapid snakes

    PubMed Central

    Crowe-Riddell, Jenna M.; Watson, Amy P.; Suh, Anton Kyuseop; Partridge, Julian C.; Sanders, Kate L.

    2016-01-01

    Scale sensilla are small tactile mechanosensory organs located on the head scales of many squamate reptiles (lizards and snakes). In sea snakes and sea kraits (Elapidae: Hydrophiinae), these scale organs are presumptive scale sensilla that purportedly function as both tactile mechanoreceptors and potentially as hydrodynamic receptors capable of sensing the displacement of water. We combined scanning electron microscopy, silicone casting of the skin and quadrate sampling with a phylogenetic analysis to assess morphological variation in sensilla on the postocular head scale(s) across four terrestrial, 13 fully aquatic and two semi-aquatic species of elapids. Substantial variation exists in the overall coverage of sensilla (0.8–6.5%) among the species sampled and is broadly overlapping in aquatic and terrestrial lineages. However, two observations suggest a divergent, possibly hydrodynamic sensory role of sensilla in sea snake and sea krait species. First, scale sensilla are more protruding (dome-shaped) in aquatic species than in their terrestrial counterparts. Second, exceptionally high overall coverage of sensilla is found only in the fully aquatic sea snakes, and this attribute appears to have evolved multiple times within this group. Our quantification of coverage as a proxy for relative ‘sensitivity’ represents the first analysis of the evolution of sensilla in the transition from terrestrial to marine habitats. However, evidence from physiological and behavioural studies is needed to confirm the functional role of scale sensilla in sea snakes and sea kraits. PMID:27278646

  4. [Levels and sources of gaseous polybrominated diphenyl ethers in air over the northern South China Sea].

    PubMed

    Li, Qi-lu; Li, Jun; Liu, Xiang; Xu, Wei-hai; Zhang, Gan

    2012-08-01

    A total of 32 air samples collected during a Shiyan III voyage over the northern South China Sea (SCS) were analyzed for polybrominated diphenyl ethers (PBDEs) by gas chromatography/mass spectrometry. The concentrations of sigma 7 PBDEs ranged from 0.07 to 35.9 pg x m(-3). The sigma 7 PBDEs were dominated by tetra-(BDE-47) and penta-(BDE-99 and -100) components, which accounted for 51.5% and 36.9%, respectively. This result indicated that the widely used commercial penta-BDE product was the original source. The higher concentrations of PBDEs were monitored close to the coastline of the South China and Philippine, while the lower concentrations were found over the SCS adjacent to central coast of Vietnam. Back trajectory analysis showed that the high PBDE concentrations observed in air over the northern SCS may be related to the continental pollutant outflows from the southeast coast of China, especially the Pearl River Delta, Taiwan and Philippine, by prevailing northeast wind transport.

  5. Extreme subseasonal tropical air-sea interactions and their relation to ocean thermal stratification

    NASA Astrophysics Data System (ADS)

    Lloyd, Ian D.

    2011-12-01

    This thesis is concerned with extreme, rapid timescale tropical air-sea interactions and the influence of large-scale oceanic conditions on these interactions. The focus is on two types of extreme events: equatorial Indian Ocean cooling events and tropical cyclones. Cooling events occur on timescales of a few days to several weeks, in which atmospheric forcing causes Sea Surface Temperature (SST) cooling in the range of 1--5K, in both observational and coupled climate models. Cooling events are driven by changes in air-sea enthalpy fluxes and Ekman upwelling. Because the cooling due to Ekman upwelling depends on thermocline depth, large-scale oceanic conditions influence SST cooling. La Nina and negative Indian Ocean Dipole conditions are conducive to a shallower southwest equatorial thermocline, resulting in greater intraseasonal SST cooling during these interannual events; El Nino and positive Indian Ocean Dipole conditions lead to a deeper thermocline and reduced SST cooling. Results indicate that cooling events are related to the eastward propagation of convective patterns that resemble the Madden-Julian Oscillation. For tropical cyclones, the response of intensity to cyclone-induced SST cooling was explored over 10-years of observational data. For slow moving (V/ f < 100km) tropical cyclones, it was found that the SST cooling response increases along with storm intensity from category 0--2 on the Saffir-Simpson scale. However, from category 2--5 the magnitude of SST cooling decreases. This result confirms model predictions indicating a prominent role for oceanic feedback controlling tropical cyclone intensity. Thus, only storms that develop in regions containing deep mixed layer and thermocline can achieve high intensity, and entrainment cooling is weaker for these storms. The SST-intensity response in observations was compared to the GFDL Hurricane Forecast Model (GHM) for the periods 2005 and 2006--2009. The GHM was modified in 2006 to include a

  6. A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

    PubMed Central

    Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.

    2016-01-01

    The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683

  7. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  8. Application of land use regression to regulatory air quality data in Japan.

    PubMed

    Kashima, Saori; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki

    2009-04-01

    A land use regression (LUR) model has been used successfully for predicting traffic-related pollutants, although its application has been limited to Europe and North America. Therefore, we modeled traffic-related pollutants by LUR then examined whether LUR models could be constructed using a regulatory monitoring network in Shizuoka, Japan. We used the annual-mean nitrogen dioxide (NO2) and suspended particulate matter (SPM) concentrations between April 2000 and March 2006 in the study area. SPM accounts for particulate matter with an aerodynamic diameter less than 8 microm (PM(8)). Geographic variables that are considered to predict traffic-related pollutants were classified into four groups: road type, traffic intensity, land use, and physical component. Using geographical variables, we then constructed a model to predict the monitored levels of NO2 and SPM. The mean concentrations of NO2 and SPM were 35.75 microg/m(3) (standard deviation of 11.28) and 28.67 microg/m(3) (standard deviation of 4.73), respectively. The final regression model for the NO2 concentration included five independent variables. R(2) for the NO2 model was 0.54. On the other hand, the regression model for the SPM concentration included only one independent variable. R(2) for the SPM model was quite low (R(2) = 0.11). The present study showed that even if we used regulatory monitoring air quality data, we could estimate NO2 moderately well. This result could encourage the wide use of LUR models in Asian countries. PMID:19185904

  9. Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development

    NASA Astrophysics Data System (ADS)

    Luyendyk, Bruce P.; Wilson, Douglas S.; Siddoway, Christine S.

    2003-10-01

    The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at ˜20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100-94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, ˜300 km northeast of the eastern Ross Sea margin. Near this limit, aeromagnetic mapping reveals an extensive region of high amplitude anomalies east of the Ford ranges that can be interpreted as a sub ice volcanic province. Modeling of gravity data suggests that extended crust in the eastern Ross Sea and wMBL is 8-9 km thinner than interior MBL (β = 1.35). Gravity modeling also outlines extensive regions of low-density (2300-2500 kg m-3) buried basement rock that is lighter than rock exposed at the surface. These regions are interpreted as bounded by throughgoing east-west faults with vertical separation. These buried low-density rocks are possibly a low-density facies of Early Paleozoic metagreywacke, or the low-density epizonal facies of Cretaceous granites, or felsic volcanic rocks known from moraines. These geophysical features and structures on land in the wMBL region preserve the record of middle and Late Cretaceous development of the Ross Sea rift

  10. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  11. Air-sea exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China Sea, the Hainan Island, China.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2016-06-01

    The air-sea exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying air in the tropical coast (Luhuitou fringing reef) of the South China Sea (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in air and surface waters, estimate the air-sea Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in air and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to air (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The air-sea Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.

  12. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  13. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  14. Land Surface Data Assimilation and the Gulf Coast Sea-Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The focus of this paper is to examine how the satellite assimilation technique impacts simulations of near-surface meteorology on the 4- to 48-hour time scale. The technique is implemented within the PSU/NCAR MM5 V34 and applied on a 36-km CONUS domain and a 12-km nest centered over Oklahoma. Two Friday periods during 2000 were selected for study, one during the warm season (May-June) and the other in the cold season (Nov-Dec). Bulk verification statistics (BIAS and RMSE) of surface air temperature and dewpoint show that the assimilation technique can improve numerical simulations on both regional and continental scales. Comparison of the simulated surface energy and water fluxes with observations from Energy Balance Bowen Ratio measurements taken at CART/ARM sites in the Southern Great Plains showed the assimilation technique produces a realistic argument of the Bowen ratio in both seasons. Additional runs with the Oregon

  15. Singapore Haze in June 2013: Consequences of Land-Use Change, Fires, and Anomalous Meteorology for Air Quality in Equatorial Asia

    NASA Astrophysics Data System (ADS)

    Koplitz, S.; Mickley, L. J.; Jacob, D. J.; Kim, P. S.; DeFries, R. S.; Marlier, M. E.; Schwartz, J.; Buonocore, J.; Myers, S. S.

    2014-12-01

    Much of Equatorial Asia is currently undergoing extensive burning from agricultural fires and rapid land-use conversion to oil palm plantations, with substantial consequences for air quality and health. In June 2013, Singapore experienced severe smoke levels, with surface particulate matter concentrations greater than ten times average. Unlike past haze events in Singapore (e.g. September 1997 and October 2006), the June 2013 pollution event occurred during El Nino-neutral conditions. Using a combination of observations and chemical transport modeling, we examine relationships between sea surface temperatures, wind fields, fire patterns, and aerosol optical depth during the June 2013 haze event. We find reasonable agreement between satellite measurements of aerosol optical depth (AOD) from the MODIS and MISR instruments and in-situ measurements from the AERONET stations across Equatorial Asia for 2005-2010 (MODIS R2 = 0.39, bias = -1.6%; MISR R2 = 0.27, bias = -42%). However, AOD observations fail to capture the Singapore pollution event of June 2013. Simulations with the GEOS-Chem model suggest that anomalously high dust concentrations during June 2013 may have impaired the ability of MODIS to monitor the haze over Singapore. In contrast, we show that the OMI Aerosol Index can effectively capture these smoke events and may be used to monitor future haze episodes in Equatorial Asia. We find that the June 2013 haze in Singapore may be attributed to anomalously strong westerlies carrying smoke from Riau Province in Indonesia. These westerlies, 5 m s-1 faster than the 2005-2010 mean June winds, are consistent with the phase of the Madden-Julian Oscillation (MJO) crossing the Maritime Continent at that time. These westerlies may have been further enhanced by a negative phase of the Indian Ocean Dipole (IOD), an east-west gradient in sea surface temperature anomalies across the Indian Ocean, with cold sea surface temperature anomalies (-3 C°) off the Arabian coast and

  16. Overview of the Pre-YMC2015 campaign over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Mori, Shuichi; Katsumata, Masaki; Yoneyama, Kunio; Suzuki, Kenji; Hayati, Noer; Syamsudin, Fadli

    2016-04-01

    An international research project named Years of the Maritime Continent (YMC) is planned during 2017-2019 to expedite the progress of improving understanding and prediction of local multi-scale variability of the Maritime Continent (MC) weather-climate system and its global impact through observations and modeling exercises. We carried out a campaign observation over the southwestern coastal land and adjacent sea of Sumatera Island, Indonesia, during November-December 2015 as a pilot study of the YMC to examine land-ocean coupling processes in mechanisms of coastal heavy rain band (CHeR) along Sumatera Island and further potential scientific themes in the coming YMC. We deployed two land observation sites at Bengkulu city (3.86S, 102.34E) in the southwestern coast of Sumatera Island with various kinds of instruments including an X-band dual polarimetric (DP) radar and a C-band Doppler radar, and the R/V Mirai approximately 50 km southwest (4.07S, 101.90E) of the land stations with a C-band DP radar. We made 3 hourly soundings at Bengkulu and the R/V Mirai during 09 November - 25 December (47 days) and 24 November - 17 December (24 days), respectively. In addition, 18 videosondes observations, which could identify precipitation particles by an onboard camera in and out of rainclouds, were performed under heavy rainfall condition to examine cloud microphysical processes as well as simultaneous RHI observations with the Mirai DP radar. Whereas rainfall amount during the period was less than that of climatological view due to the Godzilla El-Nino event in this rainy season, we found concrete diurnal variation with thunderstorms in the evening along the foothills of coastal land and widely spread stratiform precipitation mainly over the adjacent sea due to the passage of Madden-Julian Oscillation (MJO) convection with strong westerly wind in the lower troposphere during the former and latter halves of the campaign period, respectively. Diurnally developed thunderstorms

  17. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.

    PubMed

    Reece, Joshua Steven; Noss, Reed F; Oetting, Jon; Hoctor, Tom; Volk, Michael

    2013-01-01

    Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments. PMID:24260447

  18. A Vulnerability Assessment of 300 Species in Florida: Threats from Sea Level Rise, Land Use, and Climate Change

    PubMed Central

    Reece, Joshua Steven; Noss, Reed F.; Oetting, Jon; Hoctor, Tom; Volk, Michael

    2013-01-01

    Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida’s biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments. PMID:24260447

  19. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change.

    PubMed

    Reece, Joshua Steven; Noss, Reed F; Oetting, Jon; Hoctor, Tom; Volk, Michael

    2013-01-01

    Species face many threats, including accelerated climate change, sea level rise, and conversion and degradation of habitat from human land uses. Vulnerability assessments and prioritization protocols have been proposed to assess these threats, often in combination with information such as species rarity; ecological, evolutionary or economic value; and likelihood of success. Nevertheless, few vulnerability assessments or prioritization protocols simultaneously account for multiple threats or conservation values. We applied a novel vulnerability assessment tool, the Standardized Index of Vulnerability and Value, to assess the conservation priority of 300 species of plants and animals in Florida given projections of climate change, human land-use patterns, and sea level rise by the year 2100. We account for multiple sources of uncertainty and prioritize species under five different systems of value, ranging from a primary emphasis on vulnerability to threats to an emphasis on metrics of conservation value such as phylogenetic distinctiveness. Our results reveal remarkable consistency in the prioritization of species across different conservation value systems. Species of high priority include the Miami blue butterfly (Cyclargus thomasi bethunebakeri), Key tree cactus (Pilosocereus robinii), Florida duskywing butterfly (Ephyriades brunnea floridensis), and Key deer (Odocoileus virginianus clavium). We also identify sources of uncertainty and the types of life history information consistently missing across taxonomic groups. This study characterizes the vulnerabilities to major threats of a broad swath of Florida's biodiversity and provides a system for prioritizing conservation efforts that is quantitative, flexible, and free from hidden value judgments.

  20. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models.

  1. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. PMID:26530819

  2. Methane distribution and sea-to-air flux in the East China Sea during the summer of 2013: Impact of hypoxia

    NASA Astrophysics Data System (ADS)

    Ye, Wangwang; Zhang, Guiling; Zhu, Zhuoyi; Huang, Daji; Han, Yu; Wang, Lan; Sun, Mingshuang

    2016-02-01

    We measured dissolved methane (CH4) at different depths and calculated sea-to-air CH4 fluxes at 65 stations in the East China Sea (ECS) from August 4 to 31 of 2013. CH4 concentrations in surface waters ranged from 2.07 to 27.39 nM and concentrations in bottom waters ranged from 1.76 to 31.35 nM. The concentration of CH4 also decreased with distance from the Changjiang (Yangtze River) Estuary. Analysis of the depth profiles of CH4 indicated great variations among the different stations due to the influence of different water masses and variations in other factors. A region of significant bottom-water hypoxia, with an oxygen level less than 1.5 mg L-1, occurred at the northern region of the ECS. This hypoxic region also had enhanced CH4 production in the water column and sedimentary release of CH4. CH4 saturations in the surface waters ranged from 113% to 1364%, with an average of 317% (±236). We estimated the sea-to-air CH4 flux as 6.5±7.4 μmol m-2 d-1 using the LM86 equation, and as 11.5±11.9 μmol m-2 d-1 using the W92 equation. The overall estimated CH4 emission rate from the ECS was 6.4×10-2 Tg yr-1. The saturation and sea-to-air flux of CH4 varied significantly among the stations. Taken together, our data suggest that the ECS is a net source of atmospheric CH4.

  3. Sea-air of CO2 in the North Pacific using shipboard and satellite data

    NASA Technical Reports Server (NTRS)

    Stephens, Mark P.; Samuels, Geoffrey; Olson, Donald B.; Fine, Rana A.; Takahashi, Taro

    1995-01-01

    A method has been developed to produce high-resolution maps of pCO2 in surface water for the North Pacific using satellite sea surface temperature (SST) data and statistical relationships between measured pCO2 and temperature. In the subtropical North Pacific the pCO in seawater is controlled primarily by temperature. Accordingly, pCO2 values that are calculated from the satellite SST data have good agreement with the measured values (rms deviation of +/- microatm). In the northwestern subpolar region the pCO2 is controlled not only by temperature, but also by significant seasonal changes in the total CO2 concentration, which are caused by seasonal changes in primary production, mixing with subsurface waters and sea-air exchange. Consequently, the parameterization of oceanic p CO2 based on SST data alone is not totally successful in the northwestern region (rms deviation of +/- 40 microatm). The use of additional satellite products, such as wind and ocean color data, as planned for a future study, is considered necessary to account for the pCO2 variability caused by seasonal changes in the total CO2 concentration. The net CO2 flux for the area of the North Pacific included in this study (north of 10 deg N) has been calculated using the monthly pCO2 distributions computed, and monthly wind speeds from the European Centre for Medium-Range Weather Forecasts. The region is found to be a net source to the atmosphere of 1.9 x 10(exp 12) to 5.8 x 10(exp 12) moles of CO2 per year (or 0.02-0.07 Gt C/yr), most of the outflux occurring in the subtropics.

  4. Effects of future climate and land cover changes on biogenic emissions and air quality in the US

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Gonzalez Abraham, R.; Arroyo, A.; Lamb, B. K.; Duhl, T.; Wiedinmyer, C.; Guenther, A. B.; Zhang, Y.; Salathe, E. P.

    2009-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetations are highly reactive in the atmosphere and contribute to ozone and secondary organic aerosol formation. Climate change influences vegetation distributions and emissions of BVOCs and thereby affects air quality. As part of a comprehensive investigation of the effects of global change on regional air quality in the US, this study examines the effects of future climate and land cover changes on emissions of BVOCs into the atmosphere and air quality in the US. The mesoscale WRF (Weather Research and Forecasting) model is applied at hemispheric (220 km grid cells) and continental US (36 km grid cells) scales for current (1995-2004) and future (2045-2054) decades to downscale climate results from the ECHAM5 global climate model for IPCC SRES scenario A1B. The MEGAN (Model of Emissions of Gases and Aerosols from Nature) model is driven by WRF meteorological results to predict biogenic emissions of VOCs and NOx. MEGAN accounts for vegetation species distributions and environmental factors such as temperature and light. Current decade vegetation distributions are derived from satellite observations. Future vegetation distributions are predicted from MAPSS (Mapped Atmosphere-Plant-Soil System) and the land cover model of IMAGE 2.0 (Integrated Model to Assess the Global Environment). Future land cover changes include the expansion of croplands so that land management changes can also be examined. The CMAQ (Community Multiscale Air Quality Modeling) chemical transport model is used to simulate O3 and aerosol concentrations using current- and future-decade biogenic emissions but with anthropogenic emissions held constant at current-decade levels. Results showing the changes in US air quality due to climate- and landuse-driven changes in biogenic emissions will be presented. These results are compared to previous simulations derived from the IPCC SRES scenario A1 scenario with the PCM (Parallel Climate Model

  5. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  6. Pathology and distribution of sea turtles landed as bycatch in the Hawaii-based North Pacific pelagic longline fishery.

    PubMed

    Work, Thierry M; Balazs, George H

    2010-04-01

    We examined the gross and microscopic pathology and distribution of sea turtles that were landed as bycatch from the Hawaii, USA-based pelagic longline fishery and known to be forced submerged. Olive ridley turtles (Lepidochelys olivacea) composed the majority of animals examined, and hook-induced perforation of the esophagus was the most common gross lesion followed by perforation of oral structures (tongue, canthus) and of flippers. Gross pathology in the lungs suggestive of drowning was seen in 23 of 71 turtles. Considering only the external gross findings, the pathologist and the observer on board the longline vessel agreed on hook-induced lesions only 60% of the time thereby illustrating the limitations of depending on external examination alone to implicate hooking interactions or drowning as potential cause of sea turtle mortality. When comparing histology of drowned turtles to a control group of nondrowned turtles, the former had significantly more pulmonary edema, hemorrhage, and sloughed columnar epithelium. These microscopic changes may prove useful to diagnose suspected drowning in sea turtles where history of hooking or netting interactions is unknown.

  7. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  8. Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica

    USGS Publications Warehouse

    Bohannon, R.G.; Eittreim, S.L.

    1991-01-01

    The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.

  9. Water-gas dynamics and coastal land subsidence over Chioggia Mare field, northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Teatini, Pietro; Baú, Domenico; Gambolati, Giuseppe

    2000-09-01

    A major development programme comprising 15 gas fields of the northern Adriatic Sea has recently been submitted to the Ministry of the Environment, VIA Committee for the assessment of the environmental impact, by ENI-Agip, the Italian national oil company. One of the largest reservoirs is Chioggia Mare, located about 10 km offshore of the Venetian littoral, with a burial depth of 1000-1400 m. The planned gas production from this field is expected to impact the shoreline stability with a potential threat to the city of Venice, 25 km northwest of the center of Chioggia Mare. To evaluate the risk of anthropogenic land subsidence due to gas withdrawal, a numerical model was developed that predicts the compaction of both the gas-bearing formations and the lateral/bottom aquifer (water drive) during a 13-year producing and a 12-year post-production period, and the transference of the deep compaction to the ground surface. To address the uncertainty of a few important hydromechanical parameters, several scenarios are simulated and the most pessimistic predictions obtained. The modeling results show that at most 1 cm of land subsidence over 25 years may be expected at the city of Chioggia, whereas Venice is not subject to settlement. If aquifer drawdown is mediated by water injection, land subsidence is arrested 5 km offshore, with the Chioggia littoral zone experiencing a rebound of 0.6-0.7 cm. Résumé. Un important programme de développement portant sur 15 gisements de gaz du nord de l'Adriatique a été récemment soumis au Comité VIA pour l'évaluation de l'impact sur l'environnement du Ministère de l'Environnement, par la société ENI-Agip, la compagnie nationale pétrolière italienne. L'un des plus importants réservoirs est celui de Chioggia Mare, situé à environ 10 km au large du littoral vénitien, à une profondeur de 1000 à 1400 m. La production de gaz prévue pour ce gisement laisse envisager un impact sur la stabilité du trait de côte, avec une

  10. Occurrence and air-seawater exchange of brominated flame retardants and Dechlorane Plus in the North Sea

    NASA Astrophysics Data System (ADS)

    Möller, Axel; Xie, Zhiyong; Caba, Armando; Sturm, Renate; Ebinghaus, Ralf

    2012-01-01

    The occurrence, spatial and seasonal concentration variations in air and seawater and the air-seawater exchange of polybrominated diphenyl ethers (PBDEs), alternate brominated flame retardants (BFRs) and Dechlorane Plus (DP) were studied in the German part of the North Sea in 2010. BDE-209 and DP were found to be the dominating compounds, both in the atmosphere and in seawater. Sum PBDEs (∑ 10PBDEs) ranged from 0.31 to 10.7 pg m -3 in the atmosphere and from not detected (n.d.) to 10.5 pg L -1 in seawater, respectively. DP ranged from 0.13 to 22.3 pg m -3 and from 0.10 to 17.7 pg L -1 in air and seawater, respectively. Besides, four other BFRs including hexabromobenzene (HBB) and pentabromobenzene (PBBz) were detected. Elevated atmospheric concentrations were observed in continentally influenced air masses while highest seawater concentrations were observed at sampling stations close to the coast influenced by riverine discharge. The ratio of the two DP stereoisomers both in air and water was found to be close to the technical mixture at high concentrations but changed at lower concentrations giving first evidence for the alteration within the aquatic environment. Both dry air-seawater gas exchange and dry deposition are input pathways of BFRs and DP in the North Sea besides riverine discharge.

  11. Roughness of Weddell Sea Ice and Estimates of the Air-Ice Drag Coefficient

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.; Lange, Manfred A.; Ackley, Stephen F.; Wadhams, Peter

    1993-07-01

    The roughness of a sheet of sea ice encodes its deformational history and determines its aerodynamic coupling with the overlying air and underlying water. Here we report snow surface, ice surface, and ice underside roughness computed from 47 surface elevation profiles collected during a transect of the Weddell Sea. The roughness for each surface, parameterized as the standard deviation of the surface elevation, segregates according to whether or not a floe has been deformed: deformed ice has greater roughness than undeformed ice. Regardless of deformational history, the underside roughness is almost always greater than the snow surface and ice surface roughnesses, which are nearly equal. Roughness spectra for all three surfaces and for both deformed and undeformed ice roll off roughly as k-1 when the wavenumber k is between 0.1 and 3 rad m-1. The snow surface and underside spectra roll off somewhat faster than k-1, and the ice surface spectra roll off somewhat slower than k-1. Both top and underside Arctic ice roughness spectra, on the other hand, have been reported to roll off faster than k-2. We speculate that the excess spectral intensity at high wavenumbers in the Antarctic ice surface spectra results from the small-scale roughness that the ice sheet had on consolidation. This excess high-wavenumber spectral intensity persists in the ice surface spectra of second-year ice. Evidently, once formed, the ice surface remains unchanged on the microscale until the entire ice sheet melts. With a remote measurement of roughness, we should be able to decide whether an ice floe is deformed or undeformed. Our spectral analysis hints that remote sensing may also be able to differentiate between first-year and second-year ice. From the snow surface spectra, we compute a roughness scale ξ that parameterizes the air-ice momentum coupling and lets us estimate the neutral stability drag coefficient referenced to a height of 10 m, CDN10. Typical CDN10 values are 1.1-1.4 × 10

  12. First assessment of effects of air-gun seismic shooting on marine resources in the central Adriatic sea

    SciTech Connect

    La Bella, G.; Cannata, S.; Froglia, C.

    1996-11-01

    A series of investigations were carried out to test the effects of air-gun seismic shooting on main fishery resources of the Adriatic Sea during summer 1995. The energy source used for the trial was formed by one air-gun array made up by two sub-arrays consisting in 8 air-guns each developing a total volume of c.a. 2500 i{sup 3} at 2000 psi with an amplitude of 60 bar/m. The interval between two was of 25 s. The intensity was of 210 dB re 1 mPa-m/Hz. Acoustical and spectral analysis were performed simultaneously in the surveyed areas to correlate fishery and behavior observations with sound pattern of the energization. Main results were: (1) Analysis of trawl catch data evidenced no significant changes before and after the air-gun seismic profiling. (2) Echosurvey relative estimate of pelagic biomass, performed simultaneously to trawling operations, failed to evidence any significant change in the pelagic biomass subsequent to the seismic shooting. (3) Small differences were observed in the trammel net catch composition, but one single set of pre-post fishing operations could be done in the study period. (4) Similar density estimate were obtained from dredge surveys performed by an hydraulic dredger before and after air-gun seismic profiling over a clam bed in 14 in depth. (5) Video recording of captive fish, kept into cages moored on the sea bottom at 12 in depth, evidenced a Behavioral response to the approach of the sound source; but no lethal event was recorded on captive sea-bass immediately after the seismic shooting. (6) Biochemical and histological analysis were performed to verify if it is to be related to the captive condition or is somewhat consequent to the air-gun energization. These results confirm that no relevant effects are induced on fishery resources by seismic air-gun shooting.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model

    SciTech Connect

    Lipscomb, William

    2012-06-19

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more by 2100. Although some sea-level contributions are fairly well constrained by models, others are highly uncertain. Recent studies suggest a potential large contribution ({approx}0.5 m/century) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet/ocean models that do not yet exist (but are well under way). CESM is uniquely positioned to provide integrated, physics based sea-level predictions.

  15. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive.

    PubMed

    Pontier, Jean-Michel; Gempp, Emmanuel; Ignatescu, Mihaela

    2012-10-01

    Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.

  16. The zonal movement of the Indian-East Asian summer monsoon interface in relation to the land-sea thermal contrast anomaly over East Asia

    NASA Astrophysics Data System (ADS)

    Tao, Yun; Cao, Jie; Lan, Guangdong; Su, Qin

    2016-05-01

    Based on atmospheric circulation reanalysis, global gridded precipitation, and outgoing longwave radiation datasets, this study reveals the physical process through which the land-sea thermal contrast over East Asia interrelates with the variability of the interface between the Indian summer monsoon and East Asian summer monsoon (IIE). The results indicate that the release of latent heating exerted by the low-frequency variability of anomalous land-sea thermal contrast is one of the most important physical processes correlating with the zonal movement of the IIE, in which the release of latent heating over eastern East Asia makes the greatest contribution. When a lower apparent moisture sink occurs over the South China Sea but a higher one over southern China, an anomalously positive land-sea thermal contrast is formed. An anomalous convergent zone in relation to the positive land-sea thermal contrast, located in the eastern part of the IIE, will favor the IIE to move more eastward than normal, and vice versa. An anomalous divergent zone located in the eastern part of the IIE will benefit the IIE to shift more westward than normal. Experiments using a linear baroclinic model confirm the physical processes revealed by the observational analysis.

  17. Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston Metropolitan area: Part II. Air quality simulation results

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Yi; Kim, Soontae; Byun, Daewon W.

    In the companion paper, we showed that MM5 simulation using a satellite-derived high resolution Texas Forest Service (TFS) land use and land cover (LULC) data set (M2), compared to the MM5 results with the default USGS-LULC (M1), improved representation of the complicated features of the atmospheric planetary boundary layer (PBL) in the Houston ship channel (HSC) area, where large industrial emission sources are concentrated. In the present paper, the study is extended to investigate these effects on air quality simulations. Two emission inputs, namely E1 and E2, are prepared with the M1 and M2 meteorology data, respectively, to reflect the differences in the point source plume rise estimates while keeping the biogenic and mobile emissions the same. Air quality simulations were performed with CMAQ using the M1E1 and M2E2 inputs. The simulation results demonstrate the importance of utilizing high resolution LULC data. In the default LULC data, the HSC area was classified as grass land cover, and MM5 predicted confined mixing, resulting in over-prediction of ozone (O 3) precursors, such as NO x (NO plus NO 2), and highly reactive volatile organic compounds (HRVOC) species, including ethylene and propylene, over the HSC area. In the TFS data, the area was classified as the impervious "urban" land use and MM5 predicted enhanced mixing of the precursor species, leading to better agreements with measurements. The high resolution LULC also resolves the location of water body near the HSC more accurately, predicting shallower PBL heights than the default LULC during daytime. With favorable wind conditions, the O 3 precursors were transported from the HSC emission source towards the area, trapping the pollutants in a confined shallow mixing layer that occasionally led to a rapid photochemical production of O 3. The above comparison includes the changes in both meteorological and plume-rise emissions inputs. We performed two additional CMAQ simulations using the same

  18. Spatial and temporal variability of air-sea CO2 exchange of alongshore waters in summer near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Ikawa, Hiroki; Oechel, Walter C.

    2014-03-01

    Alongshore water off Barrow, Alaska is a useful area for studying the carbon cycle of the Arctic coastal sea, because the different coastal characteristics extant in the area likely represent much larger regions of the coastal water of the western Arctic Ocean. Especially noteworthy is the inflow shelf water transferred northward by the Arctic Coastal Current into the Chukchi Sea from the North Pacific and turbid water in the Elson Lagoon where a significant amount of coastal erosion has been reported along the extensive coastal line and where a part of the water from the lagoon drains into the Beaufort Sea adjacent to the Chukchi Sea. To investigate spatial and temporal variations of air-sea CO2 flux (CO2 flux) of the alongshore water, partial pressure of CO2 of surface seawater (pCO2sw) was measured in summer, 2007 and 2008, and CO2 flux was directly measured by eddy covariance at a fixed point for the Beaufort Sea in summer 2008. Measured pCO2sw in the Chukchi Sea side was the lowest in the beginning of the measurement season and increased later in the season both in 2007 and 2008. The average CO2 flux estimated based on pCO2sw in the Chukchi Sea side was -0.10 μmol m-2 s-1 (±0.1 s.d.) using the sign convention of positive fluxes into the atmosphere from the ocean. pCO2sw in the Beaufort Sea and the Elson Lagoon was relatively higher in early summer and decreased in the middle of the summer. The overall average CO2 flux was -0.07 μmol m-2 s-1 (±0.1 s.d.) for the Beaufort Sea side and -0.03 μmol m-2 s-1 (±0.07 s.d.) for the Elson Lagoon respectively, indicating a sink of CO2 despite high carbon inflows from the terrestrial margin into the Elson Lagoon. A strong sink of CO2 was often observed from the Beaufort Sea by eddy covariance in the middle of the summer. This sink activity in the middle summer in the Beaufort Sea and Elson Lagoon was likely due to biological carbon uptake as inferred by low apparent oxygen utilization and high chlorophyll

  19. Air-Sea Methane Flux after the Deepwater Horizon Oil Leak

    NASA Astrophysics Data System (ADS)

    McAdoo, J.; Sweeney, C.; Kiene, R. P.; McGillis, W. R.

    2012-12-01

    One of the key questions associated with the Deepwater Horizon's (DWH) oil leak involves understanding how much of its methane is still entrained in deep waters. Analysis of air-sea fluxes reveals a slight decrease in average aqueous CH4 from 3.3 nM in June to 3.1 and 2.8 nM in August and September, respectively. The flux estimate showed higher methane flux to the atmosphere after the blowout was capped (3.8 μmol m-2 d-1 in August) compared to 0.024 μmol m-2 d-1 during the leak. Almost all observations were within the range of historical levels. The exception was one large peak to the southwest of the wellhead, but its contribution to atmospheric methane is found to be insignificant compared to the total amount of methane released by the leak. This result supports findings that DWH methane remained entrained in the deep waters and consequently is available for biological degradation and threatens to deplete oxygen, adding further stress to an area that already suffers from anoxic-induced dead zones.

  20. Distinctive precursory air-sea signals between regular and super El Niños

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Behera, Swadhin K.; Doi, Takeshi

    2016-08-01

    Statistically different precursory air-sea signals between a super and a regular El Niño group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Niño events during 1958-2008 are first separated into two groups: a super El Niño group (S-group) and a regular El Niño group (R-group). Composite analysis shows that a significantly larger SST anomaly (SSTA) tendency appears in S-group than in R-group during the onset phase [April-May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly ( u'). This is attributed to the difference in the thermocline depth anomaly ( D') over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D' is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.

  1. Influence of precipitation on the CO2 air-sea flux, an eddy covariance field study

    NASA Astrophysics Data System (ADS)

    Zavarsky, Alexander; Steinhoff, Tobias; Marandino, Christa

    2016-04-01

    During the SPACES-OASIS cruise (July-August 2015) from Durban, SA to Male, MV direct fluxes of CO2 and dimethyl sulfide (DMS) were measured using the eddy covariance (EC) technique. The cruise covered areas of sources and sinks for atmospheric CO2, where the bulk concentration gradient measurements resembled the Takahashi (2009) climatology. Most of the time, bulk CO2 fluxes (F=k* [cwater-cair]), calculated with the parametrization (k) by Nightingale et al. 2000, were in general agreement with direct EC measurements. However, during heavy rain events, the directly measured CO2 fluxes were 4 times higher than predicted. It has been previously described that rain influences the k parametrization of air-sea gas exchange, but this alone cannot explain the measured discrepancy. There is evidence that freshwater input and a change in the carbonate chemistry causes the water side concentration of ?c=cwater-cair to decrease. Unfortunately this cannot be detected by most bulk measurement systems. Using the flux measurements of an additional gas like DMS, this rain influence can be evaluated as DMS does not react to changes in the carbonate system and has a different solubility. A pending question is if the enhanced flux of CO2 in the ocean is sequestered into the ocean mixed layer and below. This question will be tackled using the GOTM model to understand the implications for the global carbon cycle.

  2. A Unified Air-Sea Visualization System: Survey on Gridding Structures

    NASA Technical Reports Server (NTRS)

    Anand, Harsh; Moorhead, Robert

    1995-01-01

    The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.

  3. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  4. Impact of continuously varied SST on land-sea breezes and ozone concentration over south-western coast of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Soon-Hwan; Lee, Hwa-Woon; Kim, Yoo-Keun; Jeon, Won-Bae; Choi, Hyun-Jung; Kim, Dong-Hyuk

    2011-11-01

    Several comparison studies including numerical experiments were carried out at the well urbanized Gwangyang Bay region, Korea, to clarify the relationship between the continuously varied SST distribution and meteorology and how that impacts the ozone concentration. The numerical models used in this study were Regional Atmospheric Modeling System (RAMS) and Comprehensive Air quality Model with eXtensions (CAMx) for meteorological and photochemical ozone fields, respectively. Based on buoy observations, the sea surface temperature (SST) had a noticeable influence on the near surface wind field and distribution of photochemical ozone because the mean SST near Gwangyang Bay changed by 2.8 °C over the five day period. Sea breeze with temporally varied SST was better represented than that estimated without the SST variation. Temporally changed SST distribution and its impact are more crucial factors for estimating the ozone concentration under weak synoptic conditions. And the accuracy of the estimated ozone concentration associated with the time varied SST tends to depend on the distance from the coastline. The acquisition of ocean conditions, including temporal variation in the SST, is indispensible for assessing and predicting the air quality, especially in well urbanized area near the coast.

  5. Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.

    PubMed

    Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

    2010-03-01

    Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice.

  6. From Fysics to Phorestry: How do I engage diverse audiences in land-air interaction?

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.

    2011-12-01

    The educational component of the CAREER award "A New Direction into Near-Surface Transport for Weak-Wind Conditions in Plant Canopies" (AGS #0955444) calls for an integration of in-classroom teaching and a new field class to provide students from across the disciplines with an opportunity to explore and learn mechanisms of land-air interactions. The charge is clear, but how do I best do this? This contribution presents a concept of how to address the diverse interests and needs with backgrounds ranging from atmospheric science & engineering to botany & forestry by emphasizing the underlying physical principles of light, heat, and water exchange that are of common interest to many scientific disciplines. The idea behind the teaching technique is to let the students escape from their rather passive role in the classroom by providing opportunities for active participation and discovery through a) developing an online syllabus created by the students for the students, b) offering field excursions to expose students to the research activities funded through this award, c) helping small student teams formulate their own research questions, develop their own experimental design, and collect and evaluate measurements in the field class. In addition to discussing the concept and giving some concrete topical examples, a summary of the student feedback received to date will also be included. However, since the award is just about to enter its second year at the time of writing, a major part of this concept still awaits implementation. Seeking input from other awardees and experienced teachers and educators is therefore intended. A secondary objective of this contribution is to describe the many positive impacts on my career that are evident even after the first year by exposing my research and teaching activities to a much broader audience including the Long-Term Ecological Research community at the HJ Andrews experimental forest in Oregon.

  7. The great divergence: when did diversity on land exceed that in the sea?

    PubMed

    Vermeij, Geerat J; Grosberg, Richard K

    2010-10-01

    Between 85% and 95% of all living macroscopic species are found on land; the rest are mainly marine. We argue that the extraordinary diversity on land is geologically recent, dating from the mid-Cretaceous period, ∼110 million years ago. We suggest that the ability and necessity to be rare--that is, to maintain populations at low density--are made possible by the low cost of mobility of consumers on land, and that rarity is critical to the attainment of high-terrestrial diversity. Increasing productivity beginning in the mid-Cretaceous led to an increase in the survival of populations at low density and to an increase in the intensity of selection for that ability as well as for high mobility and habitat specialization. The pre-eminence of terrestrial, as compared to marine, diversity is therefore an historical phenomenon that is best explained by selection-related changes in mobility, dispersibility, and the evolution of partnerships. PMID:21558232

  8. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  9. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  10. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow

  11. Impact of increasing inflow of warm Atlantic water on the sea-air exchange of carbon dioxide and methane in the Laptev Sea

    NASA Astrophysics Data System (ADS)

    Wâhlström, Iréne; Dieterich, Christian; Pemberton, Per; Meier, H. E. Markus

    2016-07-01

    The Laptev Sea is generally a sink for atmospheric carbon dioxide and a source of methane to the atmosphere. We investigate how sensitive the net sea-air exchange of carbon dioxide and methane in the Laptev Sea are to observed changes in the inflow of Atlantic water into the Arctic Ocean and in atmospheric conditions occurring after 1990. Using a time-dependent coupled physical-biogeochemical column model, both the physical and biogeochemical effects are investigated in a series of sensitivity experiments. The forcing functions are kept constant at 40 year climatological values except successively selected drivers that vary in time. Their effects are examined by comparing two periods, 1971-1989 and 1991-2009. We find that the flux of carbon dioxide is more sensitive to the increased Atlantic water inflow than the methane exchange. The increased volume transport of water in the Atlantic layer increases the ocean net uptake of carbon dioxide more than the warming of the incoming bottom water as the vertical advection is enhanced in the first case. The methane cycling is mainly affected by the increase in temperature, irrespective of whether the warming originates from the atmosphere or the incoming bottom water, causing increased outgassing to the atmosphere. In summary, our results suggest that the observed changes in the atmosphere and ocean potentially had a substantial impact on carbon dioxide uptake on the Siberian Shelf. However, the results suggest that the impact on the outgassing of methane might have been relatively modest compared to the interannual variability of sea-air fluxes of methane.

  12. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  13. The impact of anthropogenic land-cover change on the Florida Peninsula Sea Breezes and warm season sensible weather

    USGS Publications Warehouse

    Marshall, C.H.; Pielke, R.A.; Steyaert, L.T.; Willard, D.A.

    2004-01-01

    During the twentieth century, the natural landscape of the Florida peninsula was transformed extensively by agriculture, urbanization, and the diversion of surface water features. The purpose of this paper is to present a numerical modeling study in which the possible impacts of this transformation on the warm season climate of the region were investigated. For three separate July-August periods (1973, 1989, and 1994), a pair of simulations was performed with the Regional Atmospheric Modeling System. Within each pair, the simulations differed only in the specification of land-cover class. The two different classes were specified using highly detailed datasets that were constructed to represent pre-1900 natural land cover and 1993 land-use patterns, thus capturing the landscape transformation within each pair of simulations. When the pre-1900 natural cover was replaced with the 1993 land-use dataset, the simulated spatial patterns of the surface sensible and latent heat flux were altered significantly, resulting in changes in the structure and strength of climatologically persistent, surface-forced mesoscale circulations-particularly the afternoon sea-breeze fronts. This mechanism was associated with marked changes in the spatial distribution of convective rainfall totals over the peninsula. When averaged over the model domain, this redistribution was reflected as an overall decrease in the 2-month precipitation total. In addition, the domain average of the diurnal cycle of 2-m temperature was amplified, with a noted increase in the daytime maximum. These results were consistent among all three simulated periods, and largely unchanged when subjected to a number of model sensitivity factors. Furthermore, the model results are in reasonable agreement with an analysis of observational data that indicates decreasing regional precipitation and increasing daytime maximum temperature during the twentieth century. These results could have important implications for water

  14. Interannual variability of the Indian summer monsoon associated with the air-sea feedback in the northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shukla, Ravi P.; Huang, Bohua

    2016-03-01

    Using observation-based analyses, this study identifies the leading interannual pattern of the Indian summer monsoon rainfall (ISMR) independent of ENSO and examines the potential mechanisms of its formation. For this purpose, an objective procedure is used to isolate the variability of the summer precipitation associated with the contemporary ENSO state and in previous winter-spring, which influence the Indian summer monsoon (ISM) region in opposite ways. It is shown that the leading pattern of these ENSO-related monsoon rainfall anomalies reproduces some major ISMR features and well represents its connections to the global-scale ENSO features in both lower and upper troposphere. On the other hand, the leading pattern derived from the precipitation anomalies with the ENSO component removed in the ISM and surrounding region also accounts for a substantial amount of the monsoon precipitation centered at the eastern coast of the subtropical Arabian Sea, extending into both the western Indian Ocean and the Indian subcontinent. The associated atmospheric circulation change is regional in nature, mostly confined in the lower to mid troposphere centered in the Arabian Sea, with a mild connection to an opposite tendency centered at the South China Sea. Further analyses show that this regional pattern is associated with a thermodynamic air-sea feedback during early to mid summer season. Specifically, before the monsoon onset, an anomalous atmospheric high pressure over the Arabian Sea causes excessive shortwave radiation to the sea surface and increases SST in May. The warm SST anomalies peak in June and reduce the sea level pressure. The anomalous cyclonic circulation generates regional convection and precipitation, which also induces subsidence and anticyclonic circulation over the South China Sea. The combined cyclonic-anticyclonic circulation further transport moisture from the western Pacific into the Indian Ocean and causes its convergence into the Arabian Sea. As a

  15. Influence of quaternary sea-level variations on a land bird endemic to Pacific atolls.

    PubMed

    Cibois, Alice; Thibault, Jean-Claude; Pasquet, Eric

    2010-11-22

    Little is known about the effect of quaternary climate variations on organisms that inhabited carbonate islands of the Pacific Ocean, although it has been suggested that one or several uplifted islands provided shelter for terrestrial birds when sea-level reached its highest. To test this hypothesis, we investigated the history of colonization of the Tuamotu reed-warbler (Acrocephalus atyphus) in southeastern Polynesia, and found high genetic structure between the populations of three elevated carbonate islands. Estimates of time since divergence support the hypothesis that these islands acted as refugia during the last interglacial maximum. These findings are particularly important for defining conservation priorities on atolls that endure the current trend of sea-level rise owing to global warming. PMID:20554555

  16. Influence of quaternary sea-level variations on a land bird endemic to Pacific atolls.

    PubMed

    Cibois, Alice; Thibault, Jean-Claude; Pasquet, Eric

    2010-11-22

    Little is known about the effect of quaternary climate variations on organisms that inhabited carbonate islands of the Pacific Ocean, although it has been suggested that one or several uplifted islands provided shelter for terrestrial birds when sea-level reached its highest. To test this hypothesis, we investigated the history of colonization of the Tuamotu reed-warbler (Acrocephalus atyphus) in southeastern Polynesia, and found high genetic structure between the populations of three elevated carbonate islands. Estimates of time since divergence support the hypothesis that these islands acted as refugia during the last interglacial maximum. These findings are particularly important for defining conservation priorities on atolls that endure the current trend of sea-level rise owing to global warming.

  17. Influence of quaternary sea-level variations on a land bird endemic to Pacific atolls

    PubMed Central

    Cibois, Alice; Thibault, Jean-Claude; Pasquet, Eric

    2010-01-01

    Little is known about the effect of quaternary climate variations on organisms that inhabited carbonate islands of the Pacific Ocean, although it has been suggested that one or several uplifted islands provided shelter for terrestrial birds when sea-level reached its highest. To test this hypothesis, we investigated the history of colonization of the Tuamotu reed-warbler (Acrocephalus atyphus) in southeastern Polynesia, and found high genetic structure between the populations of three elevated carbonate islands. Estimates of time since divergence support the hypothesis that these islands acted as refugia during the last interglacial maximum. These findings are particularly important for defining conservation priorities on atolls that endure the current trend of sea-level rise owing to global warming. PMID:20554555

  18. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed... the lands are entirely free of dangerous materials or other contamination. AFLC will compare...

  19. Sea ice pCO2 dynamics and air-ice CO2 fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) experiment - Bellingshausen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Tison, J.-L.; Ackley, S. F.; Galley, R. J.; Rysgaard, S.; Miller, L. A.; Delille, B.

    2014-12-01

    Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows physical and thermodynamic processes controls the CO2 system in the ice. During the survey, cyclical warming and cooling strongly influenced the physical, chemical, and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We show that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers reduced the amplitude of these changes: snow cover influences the sea ice carbonate system by modulating the temperature and therefore the salinity of the sea ice cover. Results indicate that pCO2 was undersaturated with respect to the atmosphere both in the in situ bulk ice (from 10 to 193 μatm) and brine (from 65 to 293 μatm), causing the sea ice to act as a sink for atmospheric CO2 (up to 2.9 mmol m-2 d-1), despite supersaturation of the underlying seawater (up to 462 μatm).

  20. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    NASA Astrophysics Data System (ADS)

    LéVy, M.; Lengaigne, M.; Bopp, L.; Vincent, E. M.; Madec, G.; Ethé, C.; Kumar, D.; Sarma, V. V. S. S.

    2012-06-01

    Previous case studies have illustrated the strong local influence of tropical cyclones (TCs) on CO2 air-sea flux ? suggesting that they can significantly contribute to the global ? In this study, we use a state-of-the art global ocean biochemical model driven by TCs wind forcing derived from a historical TCs database, allowing to sample the ? response under 1663 TCs. Our results evidence a very weak contribution of TCs to global ? one or two order of magnitude smaller than previous estimates extrapolated from case studies. This result arises from several competing effects involved in the ? response to TCs, not accounted for in previous studies. While previous estimates have hypothesized the ocean to be systematically oversaturated in CO2 under TCs, our results reveal that a similar proportion of TCs occur over oversaturated regions (i.e. the North Atlantic, Northeast Pacific and the Arabian Sea) and undersaturated regions (i.e. Westernmost North Pacific, South Indian and Pacific Ocean). Consequently, by increasing the gas exchange coefficient, TCs can generate either instantaneous CO2 flux directed from the ocean to the atmosphere (efflux) or the opposite (influx), depending on the CO2 conditions at the time of the TC passage. A large portion of TCs also occurs over regions where the ocean and the atmosphere are in near equilibrium, resulting in very weak instantaneous fluxes. Previous estimates also did not account for any asynchronous effect of TCs on ? during several weeks after the storm, oceanic pCO2 is reduced in response to vertical mixing, which systematically causes an influx anomaly. This implies that, contrary to previous estimates, TCs weakly affect the CO2 efflux when they blow over supersaturated areas because the instantaneous storm wind effect and post-storm mixing effect oppose with each other. In contrast, TCs increase the CO2 influx in undersaturated conditions because the two effects add up. These compensating effects result in a very weak

  1. Effects of Urban Land Forcing on Local and Downwind Air Quality, a Case Study for East Asia

    NASA Astrophysics Data System (ADS)

    Wei, T.; Liu, J.; Ban-Weiss, G. A.

    2015-12-01

    Urban land surfaces are distinct from natural surfaces as their unique radiative, thermal, hydrologic and aerodynamic properties. In this study, we have investigated the response of a range of meteorological and air quality indicators to urban land expansion based on the Weather Research and Forecasting model coupled with chemistry (WRF/Chem). Specifically, we simulate the climate and air quality impacts of four hypothetical urbanization scenarios during the month of July from 2008 to 2012 over eastern China, a region experiencing the fastest urbanization. We find that as urban land expanses, though emissions are held constant, concentrations of CO, elemental carbon (EC), and PM2.5 tend to decrease near the surface (below ~500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the contrary, the O3 burden averaged over all newly urbanized grid cells consistently increases from the surface to a height of about 4 km. The responses of pollutant concentrations to the spatial extent of urbanization are linear near the surface, but nonlinear (or intensified) at higher altitudes. The perturbations in boundary layer height, 2-m temperature and 2-m relative humidity also increase linearly with the spatial extent of urban land expansion (R2 >0.96). Our work indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the non-negligible and unique role of urban land forcing in impacting the advection, turbulent mixing, and dry/wet removal of pollutants. IPR indicates that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key factor in changes to simulated vertical profiles. The evolution of secondary pollutants is further largely

  2. Model studies of the flux of CO{sub 2} over the air-sea interface in the Baltic Sea

    SciTech Connect

    Ohlson, M.

    1994-12-31

    In the discussion about the green house effect generated by the burning of fossil fuels, carbon dioxide (CO{sub 2}) has a key role. A major part of the surplus CO{sub 2} has been suggested, by the scientific community, to be withdrawn from the atmosphere and to be taken up by the growth in continental shelf areas with high primary production, and in terrestrial forests. The exact quantity and reaction ways and mechanisms of those processes are not known today. The Baltic Sea is, for several reasons, a well chosen area to study this phenomenon. It is a shallow continental Mediterranean sea, in this area almost the first measurements of the carbonate system were carried out in the end of the last century. This has resulted in long time series of measurements of the carbonate system available for use in, e.g. modelling work, a working numerical carbonate model.

  3. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  4. Relative Sea-Level Changes Along the Victoria Land Coast, Antarctica

    NASA Astrophysics Data System (ADS)

    Hall, B.; Baroni, C.

    2002-05-01

    Relative sea-level (RSL) curves produced from dated raised-beach ridges afford information concerning glacial isostasy and the timing of deglaciation. Here we present data from Terra Nova Bay (74o35'-75o00'S, 163o30-164o30'E) and the southern Scott Coast (76o30'-78o30'S, 163o-164oE) that allow us to reconstruct Holocene RSL changes along the western coast of the Ross Sea Embayment, Antarctica. During the last glacial maximum, the Ross Sea Embayment was filled with an extensive grounded ice sheet. Raised beaches, deltas, and marine sediments associated with retreat of this ice sheet occur up to 32 m elevation and are the subject of this study. Over seventy AMS radiocarbon dates of incorporated shells, seal skin, and seal and penguin remains afford a chronology for RSL curves along the southern Scott Coast. Final unloading of grounded Ross Sea ice occurred there shortly before 6500 14C yr B.P. (all ages have been corrected for an estimated 1300-yr marine-reservoir effect). This timing is consistent with glacial geologic evidence that places deglaciation of the same area between 5730 and 8340 14C yr B.P. Farther north at Terra Nova Bay, a new RSL curve, constrained by over sixty AMS radiocarbon dates of penguin guano and remains, seal skin, and shells, intersects the marine limit at about 7000 14C yr B.P. This age is consistent with other evidence for the timing of deglaciation at Terra Nova Bay, but is several thousand years younger than dates obtained from total organic carbon in marine sediment cores located nearby and from relict penguin rookeries farther south at Cape Hickey. The timing of deglaciation is critical for isolating the mechanism that forced retreat of the West Antarctic Ice Sheet grounding line to its present position at the Siple Coast. Our data strongly suggest Holocene grounding-line retreat, with much of the ice sheet, at least along the southern Scott Coast, still intact 7000 14C yr B.P. If correct, then ice recession to the present position may

  5. High-resolution simulations of heavy precipitation events: role of the Adriatic SST and air-sea interactions

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Stocchi, Paolo

    2016-04-01

    Strong Bora and Sirocco winds over the Adriatic Sea favour intense air-sea interactions and are often associated with heavy rainfall that affects the mountainous areas surrounding the basin. A convection-permitting model (MOLOCH) has been implemented at high resolution (2 km) in order to analyse several precipitation events over northern Italy, occurred during different seasons of the year and presenting different rainfall characteristics (stratiform, convective, orographic), and to possibly identify the relevant physical mechanisms involved. With the aim of assessing the impact of the sea surface temperature (SST) and surface fluxes on the intensity and location of the rainfall, sensitivity experiments have been performed taking into account the possible variability of SST analysis for model initialization. The model has been validated and specific diagnostic tools have been developed and applied to evaluate the vertically integrated moisture fluxes feeding the precipitating system or to compute a water balance in the atmosphere over the sea. The results show that the Adriatic Sea plays a role in determining the boundary layer characteristics through exchange of heat and moisture thus modifying the low-level flow dynamics and its interaction with the orography. This in turn impacts on the rainfall. Although the results vary among the analysed events, the precise definition of the SST and its evolution can be relevant for accurate precipitation forecasting.

  6. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.


  7. A new Methane and carbon dioxide eddy-covariance flux monitor for land-based, sea-based, and aircraft-based applications.

    NASA Astrophysics Data System (ADS)

    Crosson, Eric; Karion, Anna; Law, Beverly; Sweeney, Colm; Christoph, Thomas; Rahn, Thomas; Mc Gillis, Wade

    2010-05-01

    It is now recognized that a comprehensive understanding of global warming's full impact on local and global weather patterns still requires much more data, namely, mapping the atmospheric mixing ratios (concentrations) of carbon dioxide (CO2), methane (CH4). Moreover, even as this understanding becomes more complete, there will also be a major ongoing need to continuously map quantitative levels of these gases to monitor the effects of regional, national and international green house gas (GHG) reduction efforts, as well as to certify compliance. To carry out this effort will require analyzers that can pr