Science.gov

Sample records for air land water

  1. Linking Air, Land, and Water Pollution for Effective Environmental Management

    EPA Science Inventory

    Since the passage of the National Environmental Policy Act in 1970, the U.S. Environmental Protection Agency, other federal agencies, and the states have made substantial progress in improving the Nation’s air and water quality. Traditionally, the air, land, and water pollution ...

  2. Interaction between heterogeneous environmental quality domains (air, water, land, socio-demographic and built environment) on preterm birth.

    EPA Science Inventory

    Environmental exposures are often measured individually, though many occur in tandem. To address aggregate exposures, a county-level Environmental Quality Index (EQI) representing five environmental domains (air, water, land, built and sociodemographic) was constructed. Recent st...

  3. The North Carolina Department of Environment and Natural Resources: clean land, water, and air for healthy people and communities.

    PubMed

    Riegel, Lisa Diaz; Wakild, Charles; Boothe, Laura; Hildebrandt, Heather J; Nicholson, Bruce

    2012-01-01

    The North Carolina Department of Environment and Natural Resources works with communities and other agencies to sustain clean air, water, and land. Sustainability efforts include protecting air quality through community design, community enhancement through brownfields revitalization, community development strategies to protect water resources, and the integration of natural resource conservation.

  4. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  5. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  6. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  7. A Systems Approach to the Estimation of Ecosystem and Human Health Stressors in Air, Land and Water

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Dennis, R. L.; Bash, J. O.

    2013-12-01

    Nitrogen (N) and sulfur oxides (SOx) in air, land and water media are parts of tightly coupled geophysical systems resulting in multiple routes for human and ecosystem exposure. For instance, excess forms of total reactive N in water can lead to harmful algal blooms, with the depletion of oxygen and adverse impacts to aquatic ecosystem productivity in coastal estuaries. Acidic deposition can result in lost forest productivity for terrestrial ecosystem and impacts to trout and other fishery resources in inland waters. Human pulmonary health can be impaired when N and SOx in the atmosphere lead to the generation of ozone and particulate matter (PM). Atmospheric N deposition can also contribute to eutrophication of drinking water sources. The U.S. Environmental Protection Agency (USEPA) Office of Research and Development (ORD) has embarked on the development of a multi-media 'one environment' systems approach to these issues to help develop management decisions that create win-win policies. The purpose of this project is to develop a 'one environment' set of models that can inform protection of ecosystems and human health in both the current state and under future climate scenarios. The research framework focuses on three interrelated themes; coupling air quality with land use and agricultural land management, connecting the hydrosphere (i.e., coupling meteorology and hydrology) and linking the air/land/hydrosphere with ecosystem models and benefits models. We will present an overall modeling framework and then move to the presentation of on-going research results related to direct linkage of air quality with land use and agricultural land management. A modeling interface system has been developed that facilitates the simulation of field-scale agricultural land management decisions over a gridded domain at multiple grid resolutions for the Contiguous United States (CONUS) using a modified version of the USDA EPIC (Environmental Policy Integrated Climate) model. EPIC

  8. Numerical Investigation of the Consequences of Land Impacts, Water Impacts, or Air Bursts of Asteroids

    NASA Astrophysics Data System (ADS)

    Ezzedine, S. M.; Dearborn, D. S.; Miller, P. L.

    2015-12-01

    The annual probability of an asteroid impact is low, but over time, such catastrophic events are inevitable. Interest in assessing the impact consequences has led us to develop a physics-based framework to seamlessly simulate the event from entry to impact, including air and water shock propagation and wave generation. The non-linear effects are simulated using the hydrodynamics code GEODYN. As effects propagate outward, they become a wave source for the linear-elastic-wave propagation code, WPP/WWP. The GEODYN-WPP/WWP coupling is based on the structured adaptive-mesh-refinement infrastructure, SAMRAI, and has been used in FEMA table-top exercises conducted in 2013 and 2014, and more recently, the 2015 Planetary Defense Conference exercise. Results from these simulations provide an estimate of onshore effects and can inform more sophisticated inundation models. The capabilities of this methodology are illustrated by providing results for different impact locations, and an exploration of asteroid size on the waves arriving at the shoreline of area cities. We constructed the maximum and minimum envelops of water-wave heights given the size of the asteroid and the location of the impact along the risk corridor. Such profiles can inform emergency response and disaster-mitigation efforts, and may be used for design of maritime protection or assessment of risk to shoreline structures of interest. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675390-DRAFT.

  9. Investigation of environmental indices from the Earth Resources Technology Satellite. [environmental trends in land use water quality, and air quality in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Greeley, R. S. (Principal Investigator); Ward, E. A.; Elliott, J. C.; Friedman, E. J.; Riley, E. L.; Stryker, S.

    1974-01-01

    The author has identified the following significant results. Land use change, water quality, and air quality indices have been calculated from analysis of ERTS-1 multispectral scanning imagery and computer compatible tapes. Specifications have been developed and discussed for an ERTS-1 environmental monitoring system which help to serve the information needs of environmental managers at the Federal, state, regional, and local level. General conclusions of the investigation are that ERTS-1 data is very useful in land use mapping and updating to 10-15 categories, and can provide an overall measure of air and water turbidity; however, more and better ground truth and possibly additional spacecraft sensors will be required if specific air and water pollutants are to be quantified from satellite data.

  10. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    with weak wind. In the same night temperature gradients up to 30 K m-1 were determined above the meadow. The water was up to 13 K warmer than the air in this night resulting in a sharp and strong temperature decrease at the water surface and a moderate decrease with gradients up to -9 K m-1 in the air above. The plexiglass rings caused some obvious artefacts and affected data was removed and replaced by linear interpolation. According to the uncertainty estimation performed to date, conduction between fabric and fiber increased fiber temperatures by approximately 0.005 K at 2 m height on a sunny day with weak wind. This effect was deemed negligible as it reflected less than 1 % of the total heating compared to that in the air. The maximum absolute error was approximately 0.9 K at 2 m height on the same day. Ongoing work will demonstrate potential benefits of the enhanced-resolution profiles by quantitatively comparing measured and interpolated temperature profiles with varying resolution (as well as sensible heat fluxes computed according to flux-gradient-similarity).

  11. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  12. Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models?

    NASA Astrophysics Data System (ADS)

    Zeng, Yijian; Su, Zhongbo; Wan, Li; Wen, Jun

    2011-10-01

    From a subsurface physical point of view, this paper discusses the necessity of considering the two-phase heat and mass transfer process in land surface models (LSMs). The potential-based equations of coupled mass and heat transport under constant air pressure form the basis of the proposed model. The model is developed considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two-phase heat and mass transfer is formulated fully considering diffusion, advection, and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two-phase flow (moisture/air transfer). The influence adding airflow has on the coupled moisture and heat transfer is further investigated, clearly identifying the importance of including airflow in the coupled mass and heat transfer. How the isothermal two-phase flow is affected by considering heat flow is also evaluated, showing the influence of heat flow only to be significant if the air phase plays a significant role in solving the equations of the water phase. On the basis of a field experiment, the proposed model is compared with the measured soil moisture, temperature, and evaporation rate, the results showing clearly that it is necessary to consider the airflow mechanism in soil-atmosphere interaction studies.

  13. Global land and water grabbing

    PubMed Central

    Rulli, Maria Cristina; Saviori, Antonio; D’Odorico, Paolo

    2013-01-01

    Societal pressure on the global land and freshwater resources is increasing as a result of the rising food demand by the growing human population, dietary changes, and the enhancement of biofuel production induced by the rising oil prices and recent changes in United States and European Union bioethanol policies. Many countries and corporations have started to acquire relatively inexpensive and productive agricultural land located in foreign countries, as evidenced by the dramatic increase in the number of transnational land deals between 2005 and 2009. Often known as “land grabbing,” this phenomenon is associated with an appropriation of freshwater resources that has never been assessed before. Here we gather land-grabbing data from multiple sources and use a hydrological model to determine the associated rates of freshwater grabbing. We find that land and water grabbing are occurring at alarming rates in all continents except Antarctica. The per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to improve food security and abate malnourishment in the grabbed countries. It is found that about 0.31 × 1012 m3⋅y−1 of green water (i.e., rainwater) and up to 0.14 × 1012 m3⋅y−1 of blue water (i.e., irrigation water) are appropriated globally for crop and livestock production in 47 × 106 ha of grabbed land worldwide (i.e., in 90% of the reported global grabbed land). PMID:23284174

  14. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  15. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  16. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  17. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  18. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  19. Land use information and air quality planning

    USGS Publications Warehouse

    Reed, Wallace E.; Lewis, John E.

    1975-01-01

    The pilot national land use information system developed by the U.S. Geological Survey in the Central Atlantic Regional Ecological Test Site project has provided an improved technique for estimating emissions, diffusion, and impact patterns of sulfur dioxide (SO2) and particulate matter. Implementation of plans to control air quality requires land use information, which, until this time, has been inadequate. The pilot system, however, provided data for updating information on the sources of point and area emissions of SO2 and particulate matter affecting the Norfolk-Portsmouth area of Virginia for the 1971-72 winter (Dec.-Jan.-Feb.) and the annual 1972 period, and for a future annual period 1985. This emission information is used as input to the Air Quality Display Model of the Environmental Protection Agency to obtain diffusion and impact patterns for the three periods previously mentioned. The results are: (1) During the 1971-72 winter, estimated S02 amounts over an area with a SW-NE axis in the central section of Norfolk exceeded both primary and secondary levels; (2) future annual levels of SO2, estimated by anticipated residential development and point-source changes, are not expected to cause serious deterioration of the region's present air quality; and (3) for the 1971-72 winter and annual 1972 period the diffusion results showed that both primary and secondary standards for particulate matter are regularly exceeded in central Norfolk and Portsmouth. In addition, on the basis of current control programs, the 1985 levels of particulate matter are expected to exceed the presently established secondary air quality standards through central Norfolk and Portsmouth and in certain areas of Virginia Beach.

  20. Air cushion landing gear applications study

    NASA Technical Reports Server (NTRS)

    Earl, T. D.

    1979-01-01

    A series of air cushion landing gear (ACLG) applications was studied and potential benefits analyzed in order to identify the most attractive of these. The selected applications are new integrated designs (not retrofits) and employ a modified design approach with improved characteristics and performance. To aid the study, a survey of potential users was made. Applications were evaluated in the light of comments received. A technology scenario is developed, with discussion of problem areas, current technology level and future needs. Feasible development timetables are suggested. It is concluded that near-term development of small-size ACLG trunks, exploration of flight effects and braking are key items. The most attractive applications are amphibious with very large cargo aircraft and small general aviation having the greatest potential.

  1. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  2. AIRS total precipitable water over high latitudes

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Bromwich, D. H.; Fishbein, E.; Olsen, E. T.; Granger, S.; Lee, S.; Lambrigtsen, B.; Chen, L.

    2006-12-01

    Given the importance of atmospheric conditions over the Arctic and Antarctica to the global climate system, hydrological cycles, and cryopspheric dynamics, and the poor coverage of traditional data over these region, AIRS data will play a significant role in filling the information gaps. In this study, we examine the quality of AIRS total atmospheric precipitable water (PWV) and explore its potential applications over the Antarctica and Arctic. For Antarctica, both Level II matching files and Level III gridded products of AIRS are compared with radiosonde records at Dome C and ECMWF's analysis products during December 10, 2003 to January 26, 2004. Results will testify to the quality of AIRS moisture data over glacial surfaces. For the Arctic region, AIRS level III data are used to compare with AMSR-E data and ECMWF analysis product during September of 2004. Results will reveal the quality of AIRS data over high-latitude water, sea ice, and land surfaces. The potential of AIRS data to improve model simulation will be discussed.

  3. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  4. Water Resources Investigations at Edwards Air Force Base since 1988

    USGS Publications Warehouse

    Sneed, Michelle; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Edwards Air Force Base (EAFB) in southern California (fig. 1) has relied on ground water to meet its water-supply needs. The extraction of ground water has led to two major problems that can directly affect the mission of EAFB: declining water levels (more than 120 ft since the 1920s) and land subsidence, a gradual downward movement of the land surface (more than 4 ft since the late 1920s). As water levels decline, this valuable resource becomes depleted, thus requiring mitigating measures. Land subsidence has caused cracked (fissured) runways and accelerated erosion on Rogers lakebed. In 1988, the U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force, began investigations of the effects of declining water levels and land subsidence at EAFB and possible mitigation measures, such as the injection of imported surface water into the ground-water system. The cooperative investigations included data collection and analyses, numerical simulations of ground-water flow and land subsidence, and development of a preliminary simulation-optimization model. The results of these investigations indicate that the injection of imported water may help to control land subsidence; however, the potential ground-water-quality impacts are unknown.

  5. Orion Crew Member Injury Predictions during Land and Water Landings

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Littell, Justin D.; Fasanella, Edwin L.; Tabiei, Ala

    2008-01-01

    A review of astronaut whole body impact tolerance is discussed for land or water landings of the next generation manned space capsule named Orion. LS-DYNA simulations of Orion capsule landings are performed to produce a low, moderate, and high probability of injury. The paper evaluates finite element (FE) seat and occupant simulations for assessing injury risk for the Orion crew and compares these simulations to whole body injury models commonly referred to as the Brinkley criteria. The FE seat and crash dummy models allow for varying the occupant restraint systems, cushion materials, side constraints, flailing of limbs, and detailed seat/occupant interactions to minimize landing injuries to the crew. The FE crash test dummies used in conjunction with the Brinkley criteria provides a useful set of tools for predicting potential crew injuries during vehicle landings.

  6. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  7. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear is on the ground and the nose gear is about to touch down as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  8. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air land ocean interactions and human activities

    NASA Astrophysics Data System (ADS)

    Poulos, S. E.; Chronis, G. Th; Collins, M. B.; Lykousis, V.

    2000-04-01

    zone ecosystem. Thus, the construction of dams along the routes of the main rivers has reduced dramatically the water/sediment fluxes; this caused, for example, retreat of the deltaic coastlines and seawater intrusion into the groundwater aquifers. Similarly, pollution and/or eutrophication of the nearshore marine environment have resulted from the inputs of industrial wastes, urban untreated sewage, and agricultural activities on the coastal plains. This effect is demonstrated by high levels of pollutants, nutrients, and by the increased concentrations of non-residual trace-metals within the surficial sediments. Finally, climatic changes associated with a potential rise in sea level (i.e. 30-50 cm) will threaten a substantial part of the low-lying lands of Thermaikos Gulf. Thus, systematic and thorough monitoring is needed in order to protect the coastal ecosystem; this will ensure its sustainable development and successful management, in relation to present and future socio-economic activities and climatic changes.

  9. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  10. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Endeavour, after completing a mission of almost 17 days duration in space, touches down on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995. In this photo the nose gear is still in the air as the orbiter touches down.

  11. Landing performance of an air cushion landing system installed on a 1/10-scale dynamic model on the C-8 Buffalo airplane

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.

    1973-01-01

    An experimental study was conducted to evaluate the landing behavior of a 1/10-scale dynamic model of the C-8 Buffalo airplane equipped with an air-cushion landing system (ACLS) on a variety of surfaces including both calm and rough water and a smooth hard surface. Taxi runs were made on the hard surface over several obstacles. Landings were made with the model at various pitch and roll attitudes and vertical velocities and at one nominal horizontal velocity. Data from the landings include time histories of the trunk and air-cushion pressures and accelerations at selected locations on the model.

  12. The water footprint of land grabbing

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2013-12-01

    increasing global demand for food, fibers, and biofuels has made investments in agriculture a priority for some governments and corporations eager to expand their agricultural production while securing good profits. Here we calculate the water appropriation associated with land deals at different negotiation and implementation stages. Using estimates of actual and potential evapotranspiration for the crops planted in the acquired land, we calculate the green and blue water appropriated by land investors under a variety of irrigation scenarios. We also determine the grey water footprint as the amount of water required to dilute to allowable standards the pollution resulting from fertilizer applications. We found that about 380 × 109 m3 yr-1 of rainwater is appropriated with the 43 million ha of reported contract area acquired by agri-investors (>240 × 109 m3 yr-1 in the 29 million ha of foreign acquisitions only). This water would be sufficient to feed ≈ 300-390 million people.

  13. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  14. Air cushion landing system stability study

    NASA Astrophysics Data System (ADS)

    Burton, T. D.

    1981-02-01

    An analysis of an inelastic ACLS plunge mode dynamic model is presented. The ACLS has unrestrained side elements and frozen end elements. The model exhibits unstable behavior at certain operating conditions for which the side elements are in contact with the ground. A linear analysis showed this instability to be due mainly to the altitude sensitivities of the cushion to atmosphere airflows and the attendant influence on the dynamic pressure forces on the vehicle. The model instability can be alleviated by isolating side and end elements so that they are all unrestrained and by simultaneously venting the air cushion directly to atmosphere.

  15. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  16. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  17. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  18. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  19. 7 CFR 632.13 - Eligible lands and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Eligible lands and water. 632.13 Section 632.13... lands and water. Lands and water eligible for reclamation are those that were mined for coal or were... lands and water are not eligible if: (a) There is continuing reclamation responsibility on the part of...

  20. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  1. STS-66 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The drag chute is fully deployed as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.

  2. STS-67 landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The drag chute is fully deployed in this view of the Space Shuttle Endeavour as it completes a mission of almost 17 days duration in space on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995.

  3. Air stripping for treatment of produced water

    SciTech Connect

    Fang, C.S.; Lin, J.H.

    1988-05-01

    In a laboratory study, air stripping shows a promising potential for treatment of produced water to meet new government regulations on total organic carbon (TOC). Reservoir hydrocarbons dissolved in water, such as volatile paraffins and aromatics, can be removed by air stripping through interphase mass transfer. However, air stripping cannot remove many chemicals added to crude oil by the operator.

  4. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal...

  5. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal...

  6. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal...

  7. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal...

  8. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal...

  9. Water resources and the land-water interface.

    PubMed

    Karr, J R; Schlosser, I J

    1978-07-21

    Development and implementation of local and regional plans to control nonpoint sources of pollution from agricultural land are major mandates of section 208 of Public Law 92-500. Many planners tend to equate erosion control as measured by the universal soil loss equation with improvements in water quality. Others implement channel management practices which degrade rather than improve water quality and thereby decrease the effectiveness of other efforts to control nonpoint sources. Planners rarely recognize the importance of the land-water interface in regulating water quality in agricultural watersheds. More effective planning can result from the development of "best management systems" which incorporate theory from all relevant disciplines.

  10. Land, carbon and water footprints in Taiwan

    SciTech Connect

    Lee, Yung-Jaan

    2015-09-15

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO{sub 2} emitted by a certain activity or the CO{sub 2} accumulation during a product life cycle. This definition cannot be used to convert CO{sub 2} emissions into land units. This study responds to the needs of “CO{sub 2} land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m{sup 3} in 2000 and 784 m{sup 3} in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m{sup 3} blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has

  11. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  12. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  13. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  14. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  15. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  16. Land use habits impair US waters

    SciTech Connect

    Selzer, L.A.; Wilcher, L.S.

    1994-08-01

    Preventing nonpoint source pollution begins with personal responsiblity. Land use practices, including construction, agriculture, urban runoff and chemical use in both rural and urban areas, are among the principal causes of nonpoint source pollution. In April 1993, approximately 370,000 Milwaukee, Wis., residents fell ill after ingesting contaminated drinking water. Some people with compromised immune systems died. The culprit was a tiny parasitic microorganism that breeds in the intestines and manure of cattle. Health officials speculate that the parasite hitchhiked across the floor of the watershed to the city`s water supply-a classic example of nonpoint source pollution. This paper describes several efforts to reduce nonpoint source pollution.

  17. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  18. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  19. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  20. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  1. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  2. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  3. Future land-use related water demand in California

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  4. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  5. Is it Necessary to Consider Air Flow in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Su, Z.; Wan, L.; Wen, J.

    2011-12-01

    From a subsurface physical point of view, this paper discusses the necessity and feasibility of considering two-phase heat and mass transfer process in land surface models (LSMs). The potential-based equations of coupled mass and heat transport under constant air pressure are adopted as the basis. The proposed model is developed on this basis by considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two-phase heat and mass transfer is formulated fully considering diffusion, advection and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two-phase flow (moisture/air transfer). Further investigation is carried out to elucidate how the coupled moisture and heat transfer is influenced by adding the air flow, and how the isothermal two-phase flow is affected by considering the heat flow. The importance of including the air flow in the coupled mass and heat transfer is clearly identified. Concerning the two-phase flow, the influence of heat flow is only significant if the air phase plays a significant role in solving the equations of the water phase. Based on a field experiment, the proposed model is compared with the measured soil moisture, temperature and evaporation rate, the results show clearly that it is necessary to consider the air flow mechanism for soil-atmosphere interaction studies.

  6. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  7. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  8. Implementation of a canopy air space scheme into the Community Land Model

    NASA Astrophysics Data System (ADS)

    Xu, M.; Hoffman, F. M.

    2015-12-01

    A single-layer Canopy Air Space Scheme (CASS) is implemented into the Community Land Surface Model version 4.5 (CLM4.5) in this study. It considers the canopy storages for heat, water, and trace gases that are generally neglected in the CLM4.5 surface flux calculation algorithm. Moreover, the CASS introduces prognostic equations for the surface variables and eliminates the CLM4.5 Crank-Nicolson iterative solution for computing surface skin temperature, which usually brings residual errors into the model and causes numerical instability. Two off-line simulations (one with the CASS and the other with the origin CLM4.5 scheme) were conducted and their results were compared with the FLUXNET observations. Preliminary results show that compared with the origin CLM4.5 scheme, the CASS has similar or better skills in representing land surface exchanges for heat, water and carbon under several biome types. The implementation of the CASS into the CLM4.5 not only improves the land model skills, but also provides a modeling framework to incorporate more complex canopy processes into the land surface model, such as bi-directional emission schemes for various trace gases and multi-layer canopy energy balance models.

  9. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Water Landing Characteristics of a Reentry Capsule. Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions. [Entire movie available on DVD from CASI as Doc ID 20070030955. Contact help@sti.nasa.gov

  10. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale

    SciTech Connect

    Corburn, Jason . E-mail: jtc2105@columbia.edu

    2007-03-15

    Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale.

  11. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  12. Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.

    1960-01-01

    An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg

  13. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  14. Water Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  15. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  16. Integration of air and water quality issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of dairy farms is dependent upon a number of air and water quality issues. Atmospheric emissions include hazardous compounds such as ammonia and hydrogen sulfide along with greenhouse gases and their implications with global climate change. Runoff of sediment, phosph...

  17. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  18. Land and water impacts of oil sands production in Alberta.

    PubMed

    Jordaan, Sarah M

    2012-04-01

    Expansion of oil sands development results not only in the release of greenhouse gas emissions, but also impacts land and water resources. Though less discussed internationally due to to their inherently local nature, land and water impacts can be severe. Research in key areas is needed to manage oil sands operations effectively; including improved monitoring of ground and surface water quality. The resulting information gap means that such impacts are not well understood. Improved analyses of oil sands products are required that compare land and water use with other transportation fuel pathways and use a regional perspective so local effects can be considered and mitigated.

  19. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  20. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments.

  1. Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.

    PubMed

    Meneses, B M; Reis, R; Vale, M J; Saraiva, R

    2015-09-15

    To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. PMID:25981942

  2. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%. PMID:26065891

  3. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%.

  4. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-09-01

    Detonation experiments are conducted in a 52 {mm} square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3. Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ }) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  5. Ethylene-air detonation in water spray

    NASA Astrophysics Data System (ADS)

    Jarsalé, G.; Virot, F.; Chinnayya, A.

    2016-07-01

    Detonation experiments are conducted in a 52 mm square channel with an ethylene-air gaseous mixture with dispersed liquid water droplets. The tests were conducted with a fuel-air equivalence ratio ranging from 0.9 to 1.1 at atmospheric pressure. An ultrasonic atomizer generates a polydisperse liquid water spray with droplet diameters of 8.5-12 μm, yielding an effective density of 100-120 g/m3 . Pressure signals from seven transducers and cellular structure are recorded for each test. The detonation structure in the two-phase mixture exhibits a gaseous-like behaviour. The pressure profile in the expansion fan is not affected by the addition of water. A small detonation velocity deficit of up to 5 % was measured. However, the investigation highlights a dramatic increase in the cell size (λ ) associated with the increase in the liquid water mass fraction in the two-phase mixture. The detonation structure evolves from a multi-cell to a half-cell mode. The analysis of the decay of the post-shock pressure fluctuations reveals that the ratio of the hydrodynamic thickness over the cell size (x_{{HT}}/{λ } ) remains quite constant, between 5 and 7. A slight decrease of this ratio is observed as the liquid water mass fraction is increased, or the ethylene-air mixture is made leaner.

  6. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  7. 75 FR 66125 - Federal Land Managers' Air Quality Related Values Work Group (FLAG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... National Park Service Federal Land Managers' Air Quality Related Values Work Group (FLAG) AGENCY: National...' Air Quality Related Values Work Group (FLAG) was formed (1) to develop a more consistent and objective... their air quality related values (AQRVs); and (2) to provide State permitting authorities and...

  8. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  9. Air Flow Path Dynamics In The Vadose Zone Under Various Land Surface Climate Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Schulte, P. E.; Cihan, A.; Christ, J.

    2010-12-01

    Vapor intrusion (VI) refers to the transport of volatile chemical vapors from subsurface sources to surface and subsurface structures through the vadose zone. Because of the difference in pressure between the inside of the building and the subsurface soil pores, vapor can enter the building through cracks in the foundation, slab and walls and utility openings. The processes that govern the vapor transport in the heterogeneous subsurface “outside the home” are complex, and the sampling to assess potential pathways is subjected to spatial and temporal variability. Spatial variability is a result of a number of factors that include changing soil and soil moisture conditions. Temporal variability is a result of transient heat, wind, ambient pressure and a water flux boundary conditions at the land-atmospheric interface. Fluctuating water table conditions controlled by recharge, pumping, and stream-aquifer interactions will also contribute to the transient vapor flux generation at the sources. When the soil moisture changes as a result of precipitation events and other soil surface boundary conditions, the soil moisture content changes and hence the air permeability. Therefore, the primary pathways for the vapor are preferential channels that change with the transient soil moisture distribution. Both field and laboratory studies have shown that heterogeneity has a significant influence on soil moisture conditions in unsaturated soils. Uncertainties in vapor transport predictions have been attributed to heterogeneity and spatial variability in hydraulic properties. In this study, our goal was to determine the role of soil moisture variability on vapor transport and intrusion as affected by the climate driven boundary conditions on the land surface. A series of experiments were performed to generate a comprehensive data set to understand and evaluate how the spatial and temporal variability of soil moisture affected by the mass and heat flux boundary conditions on the

  10. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  11. Air expansion in a water rocket

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro; Bove, Italo; González Madina, Federico

    2013-10-01

    We study the thermodynamics of a water rocket in the thrust phase, taking into account the expansion of the air with water vapor, vapor condensation, and the corresponding latent heat. We set up a simple experimental device with a stationary bottle and verify that the gas expansion in the bottle is well approximated by a polytropic process PVβ = constant, where the parameter β depends on the initial conditions. We find an analytical expression for β that depends only on the thermodynamic initial conditions and is in good agreement with the experimental results.

  12. Diatom (Bacillariophyta) community response to water quality and land use

    USGS Publications Warehouse

    Stewart, Paul M.; Butcher, Jason T.; Gerovac, Paul J.

    1999-01-01

    Aquatic algal communities are sensitive to environmental stresses and are used as indicators of water quality. Diatoms were collected from three streams that drain the Great Marsh at Indiana Dunes National Lakeshore. Diatom communities, water chemistry, and land use were measured at each site to test the hypothesis that differences in land use indirectly affect diatom communities, through changes in water quality. Relationships among these variables were examined by correlation, cluster, and detrended correspondence analysis. Several water chemistry variables were correlated to several land-use categories. Diatom species diversity was most variable in disturbed areas with poorer water quality and was correlated with land use and total alkalinity, total hardness, and specific conductance. Sites within each stream were grouped in terms of their diatom assemblage by both cluster and detrended correspondence analysis with but two exceptions in Dunes Creek. Diatom communities in the three streams responded to land use through its effects on water quality. The results of this study demonstrate the use of diatom assemblages as indicators of water quality, which can be linked to land use in a watershed.

  13. Orion MPCV Water Landing Test at Hydro Impact Basin

    NASA Video Gallery

    This is the third Orion Multi-Purpose Crew Vehicle (MPCV) water landing test conducted at the Hydro Impact Basin at NASA Langley Research Center. This test represented the worst-case scenario for l...

  14. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  15. Changes in Landing Mechanics after Cold-Water Immersion

    ERIC Educational Resources Information Center

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  16. Biofuels, land and water : a systems approach to sustainability.

    SciTech Connect

    Gopalakrishnan, G.; Negri, M. C.; Wang, M.; Wu, M.; Snyder, S. W.; LaFreniere, L.

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  17. Biofuels, land, and water: a systems approach to sustainability.

    PubMed

    Gopalakrishnan, Gayathri; Negri, M Cristina; Wang, Michael; Wu, May; Snyder, Seth W; Lafreniere, Lorraine

    2009-08-01

    There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels. This study presents a systems approach where the agricultural, energy, and environmental sectors are considered as components of a single system, and environmental liabilities are used as recoverable resources for biomass feedstock production. We focus on efficient use of land and water resources. We conducted a spatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration for the state of Nebraska. Results indicate that utilizing marginal land resources such as riparian and roadway buffer strips, brownfield sites, and marginal agricultural land could produce enough feedstocks to meet a maximum of 22% of the energy requirements of the state compared to the current supply of 2%. Degraded water resources such as nitrate-contaminated groundwater and wastewater were evaluated as sources of nutrients and water to improve feedstock productivity. Spatial overlap between degraded water and marginal land resources was found to be as high as 96% and could maintain sustainable feedstock production on marginal lands. Other benefits of implementing this strategy include feedstock intensification to decrease biomass transportation costs, restoration of contaminated water resources, and mitigation of greenhouse gas emissions.

  18. A review of dioxin releases to land and water in the UK.

    PubMed

    Dyke, P H; Foan, C; Wenborn, M; Coleman, P J

    1997-11-27

    UK government policy is to identify and control the sources of some chlorinated organic compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), often known collectively as dioxins. This requires the gathering of information on the scale of releases of PCDD/PCDFs to all environmental media. While a number of recent studies have produced inventories of PCDD/PCDF emissions to air, this study, commissioned by Her Majesty's Inspectorate of Pollution (HMIP--now part of the Environment Agency), is the first attempt at producing a comprehensive UK inventory of emissions of dioxins to land and water from industrial and non-industrial processes. Release of PCDD/PCDFs in wastes taken to landfill are included under the definitions or releases to land used by the Environment Agency. Assembly of the inventory, particularly for releases to water, was severely hampered by lack of data from the UK or overseas; further work is required to remedy the data gaps and deficiencies revealed. The inventory puts total quantified releases to land at 1500-12,000 g toxic equivalent quantities (TEQ) per year--significantly more than releases to air or water. This is as expected, given the nature of the processes that form PCDD/PCDFs and their propensity to bind tightly to solid materials. The bulk of releases to land are to landfills rather than the open environment. From the data available, the open use of chemicals (including the disposal of wood treated with PCP), the manufacture of pesticides, the incineration of municipal solid waste (MSW) and accidental fires appear to be the largest contributors. The processes with greatest potential for releases to water appear to be the open use of chemicals, sewage treatment, disposal of waste oil, accidental fires, production of pesticides and chlorophenols and chemical waste incineration. In addition, the run-off from roads may be a significant source of releases as this is untreated. For the majority

  19. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  20. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  1. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  2. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C....

  3. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  4. Landing of STS-59 Shuttle Endeavour at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occured at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes.

  5. Groundwater air stripping: Effect on water toxicity

    SciTech Connect

    Eldridge, R.B.; Simpson, C.W.; Elliott, D.J.

    1995-02-01

    An air stripping unit was designed to reduce groundwater hydrocarbon content and biotoxicity to acceptable levels. A pilot plant study was conducted to determine the water treatability and to optimize the commercial unit design conditions. A measurement of the pilot plant effluent toxicity was obtained from {open_quotes}Microtox{close_quotes} analysis and rigorous bio-assays. These results indicated that reduction of the water hydrocarbon content to permitted discharge limits was accompanied by the elimination of water toxicity. The Onda mass transfer model was used to prepare the commercial unit design. A post-installation evaluation indicated that the model gave a good representation of the commercial unit performance. Toxicity reductions observed in the pilot plant were also observed in the commercial unit. 3 refs., 5 figs., 3 tabs.

  6. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  7. Biofuel, land and water: maize, switchgrass or Miscanthus?

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Qin, Zhangcai; Chen, Min

    2013-03-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0-5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis.

  8. SR-71 Tail #844 Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    With distinctive heat waves trailing behind its engines, NASA Dryden Flight Research Center's SR-71A, tail number 844, lands at the Edwards AFB runway after a 1996 flight. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward

  9. Intersects between Land, Energy, Water and the Climate System

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  10. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  11. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  12. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  13. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  14. 32 CFR 644.415 - Army military and Air Force lands-$50,000 limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Army military and Air Force lands-$50,000 limitation. 644.415 Section 644.415 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Interests § 644.415 Army military and Air Force lands—$50,000 limitation. (a) 10 U.S.C. 2672 authorizes...

  15. Photodetoxification and purification of water and air

    SciTech Connect

    Anderson, M.; Blake, D.M.

    1996-09-01

    The scope of interest in this section is basic research in photochemistry that can remove barriers to the development of photochemical technologies for the removal of hazardous chemicals from contaminated air or water (photodetoxification). Photochemistry is be broadly interpreted to include direct photochemistry, indirect photochemistry (sensitized and photocatalytic), photochemistry of species adsorbed on inert surfaces, and complementary effects of high energy radiation photons and particles. These may occur in either homogeneous or heterogeneous media. The photon source may span the range from ionizing radiation to the near infrared.

  16. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    PubMed

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  17. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  18. Population momentum and the demand on land and water resources

    PubMed Central

    Fischer, G.; Heilig, G. K.

    1997-01-01

    Future world population growth is fuelled by two components: the demographic momentum, which is built into the age composition of current populations, and changes in reproductive behaviour and mortality of generations yet to come. This paper investigates, by major world regions and countries, what we know about population growth, what can be projected with reasonable certainty, and what is pure speculation. The exposition sets a frame for analysing demographic driving forces that are expected to increase human demand and pressures on land and water resources. These have been contrasted with current resource assessments of regional availability and use of land, in particular with estimates of remaining land with cultivation potential. In establishing a balance between availabilty of land resources and projected needs, the paper distinguishes regions with limited land and water resources and high population pressure from areas with abundant resources and low or moderate demographic demand. Overall, it is estimated that two-thirds of the remaining balance of land with rainfed cultivation potential is currently covered by various forest ecosystems and wetlands. The respective percentages by region vary between 23% in Southern Africa to 89% in South-Eastern Asia. For Latin America and Asia the estimated share of the balance of land with cultivation potential under forest and wetland ecosystems is about 70%, in Africa this is about 60%. If these were to be preserved, the remaining balance of land with some potential for rainfed crop cultivation would amount to some 550 million hectares. The regions which will experience the largest difficulties in meeting future demand for land resources and water, or alternatively have to cope with much increased dependency on external supplies, include foremost Western Asia, South-Central Asia, and Northern Africa. A large stress on resources is to be expected also in many countries of Eastern, Western and Southern Africa

  19. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  20. Land disposal of water treatment plant sludge -- A feasibility analysis

    SciTech Connect

    Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

    1998-07-01

    In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

  1. Integrated Water Supply and Land Resource Management in Developing Countries

    NASA Astrophysics Data System (ADS)

    Jakeman, A. J.; Croke, B. F.; Croke, B. F.; Dietrich, C. R.; Letcher, R. A.; Merritt, W.; Perez, P.

    2001-05-01

    Intensification of agricultural development has led to water supply conflicts and exacerbation of environmental problems in many developing countries. In Thailand, for example, issues of water access between upstream and downstream users and on-site erosion and off-site water quality are common in the Northern Highlands. The authors report on a framework which has been developed to assist improved land use planning and water allocation. It can be used to assess the water supply, environmental and socioeconomic impacts of land use, climate and government policy. This framework utilises the integration of catchment supply models, crop, water allocation and erosion models, as well as models of household decision making. For the Mae Chaem catchment in Thailand, the authors present details of the particular method of integration of these models and results for the individual model components. The effects of changes in land use and climate variations on the distribution of water supply, crop yields and erosion illustrate the types of tradeoffs that have to be made. Crucial to the effectiveness of such integrated tools is an understanding of the reliability of the integrated model's predictions of different outcomes. The authors present a relevant framework for analysing model uncertainty in order to appreciate the degree to which one can confidently differentiate among different model outcomes resulting from different land use changes.

  2. NASA's Orion Spacecraft Undergoes Water Landing Test

    NASA Video Gallery

    On August 25, 2016, the Orion spacecraft underwent a water drop test at the Hydro Impact Basin at NASA's Langley Research Center in Hampton, Virginia. Join host Eric Gillard, of NASA Langley, and g...

  3. Landing-Time-Controlled Management Of Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard

    1988-01-01

    Conceptual system controls aircraft with old and new guidance equipment. Report begins with overview of concept, then reviews controller-interactive simulations. Describes fuel-conservative-trajectory algorithm, based on equations of motion for controlling landing time. Finally, presents results of piloted simulations.

  4. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  5. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is...

  6. Watershed land use effects on lake water quality in Denmark.

    PubMed

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin; Lauridsen, Torben L; Bjerring, Rikke; Olesen, Jørgen E; Jeppesen, Erik

    2012-06-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes

  7. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2011-07-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  8. Biogeography in the air: fungal diversity over land and oceans

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.

    2012-03-01

    Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  9. Global land and water grabbing for food and bioenergy

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  10. Numerical Simulation of Air Bubble Characteristics in Stationary Water

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Wang, Y. X.

    The motion of air bubble in water plays a key role in such diverse aspects as air bubble curtain breakwater, air curtain drag reduction, air cushion isolation, weakening the shock wave in water by air bubble screen, etc. At present, the research on air bubble behaviors can be subdivided into several processes: air bubble formation from submerged orifices; interaction and coalescence during the ascending. The work presented in this paper focuses on numerical simulation of air bubble characteristics in stationary water, for example, air bubble formation, the ascending speed, the departing period, and so on. A series of models to simulate the characteristics of air bubble are developed by the VOF method in the two phase flow module of FLUENT. The numerical simulation results are consistent with the theoretical characteristics of air bubble in many aspects. So it is concluded that numerical simulation of air bubble characteristics in stationary water based on FLUENT is feasible. Due to the fact that the characteristics of air bubble are complicated questions, it is important that study on the air bubble behaviors in stationary water should be conducted on deeply.

  11. Enhanced sound transmission from water to air at low frequencies.

    PubMed

    McDonald, B Edward; Calvo, David C

    2007-12-01

    Excitation of acoustic radiation into the air from a low-frequency point source under water is investigated using plane wave expansion of the source spectrum and Rayleigh reflection/transmission coefficients. Expressions are derived for the acoustic power radiated into air and water as a function of source depth and given to lowest order in the air/water density ratio. Near zero source depth, the radiation into the water is quenched by the source's acoustic image, while the power radiated into air reaches about 1% of the power that would be radiated into unbounded water.

  12. [Research advances in simulating land water-carbon coupling].

    PubMed

    Liu, Ning; Sun, Peng-Sen; Liu, Shi-Rong

    2012-11-01

    The increasing demand of adaptive management of land, forest, and water resources under the background of global change and water resources crisis has promoted the comprehensive study of coupling ecosystem water and carbon cycles and their restrictive relations. To construct the water-carbon coupling model and to approach the ecosystem water-carbon balance and its interactive response mechanisms under climate change at multiple spatiotemporal scales is nowadays a major concern. After reviewing the coupling relationships of water and carbon at various scales, this paper explored the implications and estimation methods of the key processes and related parameters of water-carbon coupling, the construction of evapotranspiration model at large scale based on RS, and the importance of this model in water-carbon coupling researches. The applications of assimilative multivariate data in water-carbon coupling researches under future climate change scenarios were also prospected.

  13. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  14. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  15. Water at the Phoenix landing site

    NASA Astrophysics Data System (ADS)

    Smith, Peter Hollingsworth

    The Phoenix mission investigated patterned ground and climate in the northern arctic region of Mars for 5 months starting May 25, 2008. A shallow ice table was uncovered by the robotic arm in a nearby polygon's edge and center at depths of 5-15 cm. In late summer snowfall and frost blanket the surface at night; water ice and vapor constantly interact with the soil. Analysis reveals an alkaline Ph with CaCO 3 , aqueous minerals, and salts making up several wt% of the soil; liquid water is implicated as having been important in creating these components. In combination with the oxidant perchlorate (~1 wt%), an energy source for terrestrial microbes, and a prior epoch of higher temperatures and humidity, this region may have been a habitable zone.

  16. CRUCIAL: Cryosat-2 Success over Inland Water and Land

    NASA Astrophysics Data System (ADS)

    Moore, Philip; Berry, Philippa; Balmbra, Robert; Birkinshaw, Stephen; Kilsby, Chris; Bauer-Gottwein, Peter; Benveniste, Jerome; Dinardo, Salvatore; Lucas, Bruno

    2014-05-01

    CRUCIAL is an ESA/STSE funded project investigating innovative land and inland water applications from Cryosat-2 with a forward-look component to the future Sentinel-3 mission. The fact that the Earth's land surface is, in general, a relatively poor reflector of Ku band energy, with the exceptions of inland water, salar and ice surfaces has enabled Earth-orbiting satellite radar altimeters to be used for land surface applications including mapping and measurement of river and lake systems. Research with EnviSat Burst Echoes has shown that substantial high frequency information content is present at short spatial scales with a small bright reflecting patch at nadir, such as over inland water, able to dominate the returned echo. Onboard echo averaging of the previous generation of satellite radar altimeters therefore causes loss of significant amounts of information. The high along-track sampling of Cryosat-2 altimeter in SAR mode (I8 KHz) offers the opportunity to recover high frequency signals over much of the Earth's land surface, enhancing the inland water height retrieval capability. Constraining this application is the limited availability of SAR Full Bit Rate (FBR) data from Cryosat-2 over these land surfaces; however, for Sentinel-3 the SAR mode will be deployed widely over land. The Cryosat-2 CRUCIAL project will not only provide valuable data, but, as precursor of the Sentinel-3 SAR mode data, gives a valuable first look at this new measurement capability. This paper will summarise the CRUCIAL aims and objectives and showcase first results from retracking Cryosat-2 SAR and LRM waveforms over multiple inland water targets.

  17. CRUCIAL: Cryosat-2 success over inland water and land

    NASA Astrophysics Data System (ADS)

    Moore, Philip; Benveniste, Jérôme; Bauer-Gottwein, Peter; Dinardo, Salvatore; Lucas, Bruno Manuel; Berry, Philippa; Balmbra, Robert; Birkinshaw, Stephen

    CRUCIAL is an ESA/STSE funded project investigating innovative land and inland water applications from Cryosat-2 with a forward-look component to the future Sentinel-3 mission. The fact that the Earth’s land sur face is, in general, a relatively poor reflector of Ku band energy, with the exceptions of inland water, salar and ice surfaces has enabled Earth-orbiting satellite radar altimeters to be used for land surface applications including mapping and measurement of river and lake systems. Research with EnviSat Burst Echoes has shown that sub stantial high frequency information content is present at short spatial scales with a small bright reflecting patch at nadir, such as over inland water, able to dominate the returned echo. Onboard echo averaging of the previous generation of satellite radar altimeters therefore causes loss of significant amounts of information. The high along track sampling of Cryosat-2 altimeter in SAR mode (I8 KHz) offers the opportunity to recover high frequency signals over much of the Earth’s land surface, enhancing the inland water height retrieval capability. Constraining this application is the limited availability of SAR Full Bit Rate (FBR) data from Cryosat-2 over these land surfaces; however, for Sentinel-3 the SAR mode will be deployed widely over land. The Cryosat-2 CRUCIAL project will not only provide valuable data, but, as precursor of the Sentinel-3 SAR mode data, gives a valuable first look at this new measurement capability. This paper will summarise the CRUCIAL aims and objectives and showcase first results from retracking Cryosat-2 SAR and LRM waveforms over multiple inland water targets.

  18. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique

  19. 78 FR 18562 - Economic and Environmental Principles and Guidelines for Water and Related Land Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... QUALITY Economic and Environmental Principles and Guidelines for Water and Related Land Resources... Quality. ACTION: Draft guidelines with request for comments. SUMMARY: Section 2031 of the Water Resources... Environmental Principles and Guidelines for Water and Related Land Resources Implementation...

  20. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  1. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Air quality impacts as a result of changes in energy and land use in China`s Jiangsu Province

    SciTech Connect

    Chang, Young-Soo; Su, Haiping; Streets, D.G.; Carmichael, G.R.

    1996-12-31

    The southern Jiangsu Province in the People`s Republic of China, is a nationally important agricultural and industrial center. After the Cultural Revolution, this region experienced unprecedented industrial and economic growth, resulting in significant problems in resource depletion, air and water quality deterioration, and land-use management. It is also projected that the growing energy demands attendant with industrial and economic growth will require substantial increases in the use of indigenous coal, a major culprit in air and water pollution. High levels of agricultural and industrial production and rapid population growth are placing intolerable burdens on the natural carrying capacity. Unless coherent land-use planning and practices are in place, rapid growth in the region can possibly result in not only intense land-use conflicts, but also significant impacts on overall environmental quality in the foreseeable future. In this paper, an attempt is made to predict potential air quality impacts of increases in SO{sub 2} emissions resulting from industrial growth, and a discussion of past impacts and current conditions is presented. The Lagrangian trajectory model, UR-BAT (Urban-Branching Atmospheric Trajectory) was used to estimate long-term SO{sub 2} concentrations, based on available emission data originating from area and major point sources. In order to characterize the urban environment and to realize concentration peaks near the megacities, emission data with the 1 resolution was used to construct the modeling emission fields with a 0.1 resolution, based on the remote-sensing Landsat satellite imagery and population distribution data. For 1980 to 2010, changes in SO{sub 2} emissions and land-use patterns were correlated with the Landsat data, when available. Modeling results are compared with available monitoring data and potential impacts in the foreseeable future are estimated based on various projected scenarios of industrial growth.

  3. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.

  4. Methylglyoxal at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Gordon, B. P.; McWilliams, L.; Valley, N. A.; Richmond, G.

    2014-12-01

    Recently, it has been suggested that aqueous-phase processing of atmospheric α-dicarbonyl compounds such as methylglyoxal (MG) could constitute an important source of secondary organic aerosol (SOA). The uptake of MG to aqueous particles is higher than expected due to the fact that its carbonyl moieties can hydrate to form diols, as well as the fact that MG can undergo aldol condensation reactions to form larger oligomers in solution. MG is known to be surface active but an improved description of its surface behaviour is crucial to understanding MG-SOA formation, in addition to understanding its gas-to-particle partitioning and cloud forming potential. Here, we employ a combined experimental and theoretical approach involving vibrational sum frequency generation spectroscopy (VSFS), surface tensiometry, molecular dynamics simulations, and density functional theory calculations to study MG's surface adsorption, in both the presence and absence of salts. We are particularly interested in determining MG's hydration state at the surface. Our experimental results indicate that MG slowly adsorbs to the air-water interface and strongly perturbs the water structure there. This perturbation is enhanced in the presence of NaCl. Together our experimental and theoretical results suggest that singly-hydrated MG is the dominant form of MG at the surface.

  5. Surface Wave Driven Air-Water Plasmas

    NASA Astrophysics Data System (ADS)

    Tatarova, Elena; Henriques, Julio; Ferreira, Carlos

    2013-09-01

    The performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model has been developed in order to describe in detail the creation and loss processes of active species of interest and to provide a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N +O -->NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and FT-IR spectroscopy. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. The plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  6. Land utilization and water resource inventories over extended test sites

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  7. Monitoring vegetative land cover and water use using satellite imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative land cover and water use are the key indicators required by the Global Bioenergy Partnership (GBEP) for promoting the production and use of modern bioenergy, particularly in the developing world. Since the statistical data and field observations are limited in the developing countries, re...

  8. USGS reports latest land-water changes for southeastern Louisiana

    USGS Publications Warehouse

    Barras, John A.; Johnston, James B.

    2006-01-01

    The USGS National Wetlands Research Center is reporting that a total of 118 square miles of land has been transformed to new water areas in a 9,742 square mile area from the Chandeleur Islands to the Atchafalaya River. This area encompasses the basins of Breton Sound, Mississippi River, Pearl River, Pontchartrain, Barataria, Terrebonne and the western quarter of the Atchafalaya basin.

  9. A Land-Water Environment for the Classroom

    ERIC Educational Resources Information Center

    Barman, Charles R.

    1977-01-01

    Describes and details the construction of a land-water environment using an aquarium and variety of terrestrial and aquatic materials and organisms. Suggests activities such as identification of organisms, observation of predator-prey interactions, construction of food webs, and recognition of interdependence of biotic and abiotic factors. (CS)

  10. Integrated Land-Water-Energy assessment using the Foreseer Tool

    NASA Astrophysics Data System (ADS)

    Allwood, Julian; Konadu, Dennis; Mourao, Zenaida; Lupton, Rick; Richards, Keith; Fenner, Richard; Skelton, Sandy; McMahon, Richard

    2016-04-01

    This study presents an integrated energy and resource modelling and visualisation approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for energy system pathways. The Foreseer Tool maps linked energy, water and land resource futures by outputting a set of Sankey diagrams for energy, water and land, showing the flow from basic resource (e.g. coal, surface water, and forested land) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). By 'mapping' resources in this way, policy-makers can more easily understand the competing uses through the identification of the services it delivers (e.g. food production, landscaping, energy), the potential opportunities for improving the management of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper will present a case study of the UK Carbon Plan, and highlights the need for integrated resource planning and policy development.

  11. Land use and water use in the Antelope Valley, California

    USGS Publications Warehouse

    Templin, W.E.; Phillips, S.P.; Cherry, D.E.; DeBortoli, M.L.; Haltom, T.C.; McPherson, K.R.; Mrozek, C.A.

    1995-01-01

    Urban land use and water use in the Antelope Valley, California, have increased greatly since the devel- opment of the valley began in the late 1800's. Ground water always has been a major source of supply in this area because of limited local surface-water resources. Ground-water pumpage reportedly increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Declines in ground-water levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground-water pumped annually for irrigation uses. Ground-water pumpage was further reduced in the 1970's following the completion of the California Aqueduct, which conveys water from northern California. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased again to about 91,700 acre-feet in 1991. Rapid urban development and the 1987-92 drought renewed concern about a possible return to extensive ground-water- storage depletion and increased land subsidence. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual demand by the year 2020 was expected to be about 250,000 acre- feet per year, with agricultural uses to be about 65 percent of this total demand. In 1990, total demand. In 1993, preliminary forecasts for total demand for 2010 ranged from about 127,000 to 329,000 acre-feet with urban water uses accounting for all but a few percent of the total anticipated demand. This history of forecasts indicates that expectations change with time. Factors that affect water demand change and different forecasting methods are used. Water-conservation options may be adopted to employ best-management practices that would further influence future water demands in the Antelope Valley.

  12. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  13. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs.

  14. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. PMID:25602661

  15. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  16. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  17. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  18. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  19. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  20. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Hardy, Robin C.; Willey, Cliff E.; Welch, Joseph V.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations, while meeting crew and vehicle safety requirements. The analyses and associated testing presented here surround a second generation of the airbag design developed by ILC Dover, building off of relevant first-generation design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley s Landing and Impact Research (LandIR) facility in Hampton, Virginia. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, develop the simulations, and make comparisons to experimental data are discussed.

  1. A Critical Review of the Effect of Air Pollution Control Regulations on Land Use Planning

    ERIC Educational Resources Information Center

    Roberts, John J.; And Others

    1975-01-01

    Although a number of recent federal initiatives explicitly require greater coordination of land use and air quality management, viable working relationships among the planning and regulatory agencies have not been developed. The concept of emission density zoning is endorsed. (Author/BT)

  2. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  3. Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations

    EPA Science Inventory

    Abstract Land-use regression (LUR) models have emerged as a preferred methodology for estimating individual exposure to ambient air pollution in epidemiologic studies in absence of subject-specific measurements. Although there is a growing literature focused on LUR evaluation, fu...

  4. Air Conditions Close to the Ground and the Effect on Airplane Landings

    NASA Technical Reports Server (NTRS)

    Thompson, F L; Peck, W C; Beard, A P

    1935-01-01

    This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground.

  5. The water table: the shifting foundation of life on land.

    PubMed

    Glazer, Alexander N; Likens, Gene E

    2012-11-01

    Hyperarid, arid, and semi-arid lands represent over a third of the Earth's land surface, and are home to over 38 % of the increasing world population. Freshwater is a limiting resource on these lands, and withdrawal of groundwater substantially exceeds recharge. Withdrawals of groundwater for expanding agricultural and domestic use severely limit water availability for groundwater dependent ecosystems. We examine here, with emphasis on quantitative data, case histories of groundwater withdrawals at widely differing scales, on three continents, that range from the impact of a few wells, to the outcomes of total appropriation of flow in a major river system. The case histories provide a glimpse of the immense challenge of replacing groundwater resources once they are severely depleted, and put into sharp focus the question whether the magnitude of the current and future human, economic, and environmental consequences and costs of present practices of groundwater exploitation are adequately recognized.

  6. Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston Metropolitan area: Part II. Air quality simulation results

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Yi; Kim, Soontae; Byun, Daewon W.

    In the companion paper, we showed that MM5 simulation using a satellite-derived high resolution Texas Forest Service (TFS) land use and land cover (LULC) data set (M2), compared to the MM5 results with the default USGS-LULC (M1), improved representation of the complicated features of the atmospheric planetary boundary layer (PBL) in the Houston ship channel (HSC) area, where large industrial emission sources are concentrated. In the present paper, the study is extended to investigate these effects on air quality simulations. Two emission inputs, namely E1 and E2, are prepared with the M1 and M2 meteorology data, respectively, to reflect the differences in the point source plume rise estimates while keeping the biogenic and mobile emissions the same. Air quality simulations were performed with CMAQ using the M1E1 and M2E2 inputs. The simulation results demonstrate the importance of utilizing high resolution LULC data. In the default LULC data, the HSC area was classified as grass land cover, and MM5 predicted confined mixing, resulting in over-prediction of ozone (O 3) precursors, such as NO x (NO plus NO 2), and highly reactive volatile organic compounds (HRVOC) species, including ethylene and propylene, over the HSC area. In the TFS data, the area was classified as the impervious "urban" land use and MM5 predicted enhanced mixing of the precursor species, leading to better agreements with measurements. The high resolution LULC also resolves the location of water body near the HSC more accurately, predicting shallower PBL heights than the default LULC during daytime. With favorable wind conditions, the O 3 precursors were transported from the HSC emission source towards the area, trapping the pollutants in a confined shallow mixing layer that occasionally led to a rapid photochemical production of O 3. The above comparison includes the changes in both meteorological and plume-rise emissions inputs. We performed two additional CMAQ simulations using the same

  7. Low-head air stripper treats oil tanker ballast water

    SciTech Connect

    Goldman, M. )

    1992-02-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions.

  8. Water security, global change and land-atmosphere feedbacks.

    PubMed

    Dadson, Simon; Acreman, Michael; Harding, Richard

    2013-11-13

    Understanding the competing pressures on water resources requires a detailed knowledge of the future water balance under uncertain environmental change. The need for a robust, scientifically rigorous evidence base for effective policy planning and practice has never been greater. Environmental change includes, but is not limited to, climate change; it also includes land-use and land-cover change, including deforestation for agriculture, and occurs alongside changes in anthropogenic interventions that are used in natural resource management such as the regulation of river flows using dams, which can have impacts that frequently exceed those arising in the natural system. In this paper, we examine the role that land surface models can play in providing a robust scientific basis for making resource management decisions against a background of environmental change. We provide some perspectives on recent developments in modelling in land surface hydrology. Among the range of current land surface and hydrology models, there is a large range of variability, which indicates that the specification and parametrization of several basic processes in the models can be improved. Key areas that require improvement in order to address hydrological applications include (i) the representation of groundwater in models, particularly at the scales relevant to land surface modelling, (ii) the representation of human interventions such as dams and irrigation in the hydrological system, (iii) the quantification and communication of uncertainty, and (iv) improved understanding of the impact on water resources availability of multiple use through treatment, recycling and return flows (and the balance of consumptive and conservative uses). Through a series of examples, we demonstrate that changes in water use could have important reciprocal impacts on climate over a wide area. The effects of water management decisions on climate feedbacks are only beginning to be investigated-they are

  9. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  10. A research on analysis method of land environment big data storage based on air-earth-life

    NASA Astrophysics Data System (ADS)

    Lu, Yanling; Li, Jingwen

    2015-12-01

    Many problems of land environment in urban development, with the support of 3S technology, the research of land environment evolved into the stage of spatial-temporal scales. This paper combining space, time and attribute features in land environmental change, with elements of "air-earth-life" framework for the study of pattern, researching the analysis method of land environment big data storage due to the limitations of traditional processing method in land environment spatial-temporal data, to reflect the organic couping relationship among the multi-dimensional elements in land environment and provide the theory basis of data storage for implementing big data analysis application platform in land environment.

  11. Stature recovery after sitting on land and in water.

    PubMed

    Camilotti, Bárbara Maria; Rodacki, André L F; Israel, Vera Lúcia; Fowler, Neil E

    2009-12-01

    Back pain treatment in water has been commonly used although there is little evidence about its effects. One purported advantage for exercise is the reduced loading due to the buoyant force. The purpose of this study was to compare stature change, as a marker of spinal loading, after sitting in aquatic and dry land environments. Fourteen asymptomatic volunteers had their stature measured in a precision stadiometer, before and after a bout of physical activity and during a recovery period either sitting in water (head out of water immersion; HOWI) and sitting in a chair on land (SITT). Stature loss following exercise was as expected similar in both groups (SITT=89.2+/-5.4% and HOWI=86.5+/-8.1%; p=0.33). When stature recovery was compared between the water and land environments, HOWI (102.2+/-8.7%) showed greater recovery than SITT (86.5+/-6.3%) after 30 min (p<0.05). These results suggest that HOWI facilitated more rapid stature recovery through lower spinal loading and supports use of this technique to reduce spinal loading during recovery.

  12. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds.

  13. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds. PMID:23885409

  14. Land use impact on water quality: valuing forest services in terms of the water supply sector.

    PubMed

    Fiquepron, Julien; Garcia, Serge; Stenger, Anne

    2013-09-15

    The aim of this paper is to quantify the impact of the forest on raw water quality within the framework of other land uses. On the basis of measurements of quality parameters that were identified as being the most problematic (i.e., pesticides and nitrates), we modeled how water quality is influenced by land uses. In order to assess the benefits provided by the forest in terms of improved water quality, we used variations of drinking water prices that were determined by the operating costs of water supply services (WSS). Given the variability of links between forests and water quality, we chose to cover all of France using data observed in each administrative department (France is divided into 95 départements), including a description of WSS and information on land uses. We designed a model that describes the impact of land uses on water quality, as well as the operation of WSS and prices. This bioeconomic model was estimated by the generalized method of moments (GMM) to account for endogeneity and heteroscedasticity issues. We showed that the forest has a positive effect on raw water quality compared to other land uses, with an indirect impact on water prices, making them lower for consumers.

  15. Microorganism levels in air near spray irrigation of municipal waste water: The Lubbock Infection Surveillance Study

    SciTech Connect

    Camann, D.E.; Moore, B.E.; Harding, H.J.; Sorber, C.A.

    1988-01-01

    The Lubbock Infection Surveillance Study (LISS) investigated possible adverse effects on human health from slow-rate land application of municipal wastewater. Extensive air sampling was conducted to characterize the irrigation site as a source of infectious microbial aerosols. Spray irrigation of poor-quality waste water received directly from the treatment plant significantly elevated air densities of fecal coliforms, fecal streptococci, mycobacteria, and coliphage above ambient background levels for at least 200 m downwind. Enteroviruses were repeatedly recovered at 44 to 60 m downwind at a higher level (geometric mean = 0.05 pfu/m3) than observed at other waste water aerosol sites in the U.S. and in Israel. Waste water storage in reservoirs reduced downwind air densities of indicator organisms by two orders of magnitude.

  16. Location of and landing on a source of human body odour by female Culex quinquefasciatus in still and moving air

    PubMed Central

    LACEY, EMERSON S.; CARDÉ, RING T.

    2014-01-01

    The orientation to and landing on a source of human odour by female Culex quinquefasciatus Say (Diptera: Culicidae) is observed in a wind tunnel without an airflow or with a laminar airflow of 0.2 m s-1. Odours from human feet are collected by ‘wearing’ clean glass beads inside a stocking and presenting beads in a Petri dish in a wind tunnel. Mosquitoes are activated by brief exposure to a 1 L min-1 jet of 4% CO2 positioned 10 cm from the release cage. In moving air at 0.2 m s-1, a mean of 3.45 ± 0.49 landings are observed in 10 min trials (5 mosquitoes per trial), whereas 6.50 ± 0.96 landings are recorded in still air. Furthermore, 1.45 ± 0.31mosquitoes are recorded on beads at any one time in moving air (a measure of individuals landing versus one landing multiple times) compared to 3.10 ± 0.31 in still air. Upwind flight to beads in moving air is demonstrated by angular headings of flight immediately prior to landing, whereas approaches to beads in still air are oriented randomly. The mean latency until first landing is 226.7 ± 17.98 s in moving air compared to 122.5 ± 24.18 in still air. Strategies used to locate a prospective host at close range in still air are considered. PMID:26472918

  17. Blocking of the water-lunar fines reaction by air and water concentration effects

    NASA Technical Reports Server (NTRS)

    Gammage, R. B.; Holmes, H. F.

    1975-01-01

    The elements of air, if adsorbed in conjunction with water vapor or liquid water, are able to impede severely the attack of lunar fines. Thus is explained the stability of lunar fines in moisture laden air, and their small solubility in liquid, aerated water. In the absence of air, liquid water is more effective than water vapor in attacking the grains; the channels formed are wider and the expansion of area is greater.

  18. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China

    PubMed Central

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T. A.; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  19. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-04-27

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas.

  20. Spatial-Temporal Variations of Water Quality and Its Relationship to Land Use and Land Cover in Beijing, China.

    PubMed

    Chen, Xiang; Zhou, Weiqi; Pickett, Steward T A; Li, Weifeng; Han, Lijian

    2016-01-01

    Rapid urbanization with intense land use and land cover (LULC) change and explosive population growth has a great impact on water quality. The relationship between LULC characteristics and water quality provides important information for non-point sources (NPS) pollution management. In this study, we first quantified the spatial-temporal patterns of five water quality variables in four watersheds with different levels of urbanization in Beijing, China. We then examined the effects of LULC on water quality across different scales, using Pearson correlation analysis, redundancy analysis, and multiple regressions. The results showed that water quality was improved over the sampled years but with no significant difference (p > 0.05). However, water quality was significantly different among nonurban and both exurban and urban sites (p < 0.05). Forest land was positively correlated with water quality and affected water quality significantly (p < 0.05) within a 200 m buffer zone. Impervious surfaces, water, and crop land were negatively correlated with water quality. Crop land and impervious surfaces, however, affected water quality significantly (p < 0.05) for buffer sizes greater than 800 m. Grass land had different effects on water quality with the scales. The results provide important insights into the relationship between LULC and water quality, and thus for controlling NPS pollution in urban areas. PMID:27128934

  1. Air/Superfund national technical guidance study series: Estimation of air impacts for air stripping of contaminated water

    SciTech Connect

    Eklund, B.; Smith, S.; Hunt, M.

    1991-05-01

    Analysis of the air impacts associated with the alternatives to cleaning up Superfund sites is frequently required for planning purposes prior to actual cleanup. Such analyses depend on estimates rather than on field measurements. The report provides procedures for estimating the emissions and ambient air concentrations associated with air stripping - a widely used technique for removing volatile organic compounds (VOC) from contaminated water. Procedures are given to evaluate the effect of the concentration of contaminants in water, the stripping efficiency and the stripping rate on the emission rates and on the ambient air concentrations at selected distances from the air stripper. Henry's Law constants are provided for over 130 compounds to assist in determining stripping efficiencies. Health-based action levels are also provided for the 130 compounds for comparison to the estimated ambient air concentrations. Action levels are also expressed in terms of water concentrations using conservative estimates of emissions and dispersion.

  2. Land subsidence caused by ground water withdrawal in urban areas

    USGS Publications Warehouse

    Holzer, T.L.; Johnson, A.I.

    1985-01-01

    At least eight urban areas in the world have encountered significant economic impact from land subsidence caused by pumping of ground water from unconsolidated sediment. The areas, most of which are coastal, include Bangkok, Houston, Mexico City, Osaka, San Jose, Shanghai, Tokyo, and Venice. Flooding related to decreased ground elevation is the principal adverse effect of the subsidence. Lesser effects include regional tilting, well-casing failures, "rising" buildings, and ground failure or rupture. Subsidence of most of these urban areas began before the phenomenon was discovered and understood. Thus, the subsidence problems were unanticipated. Methods to arrest subsidence typically have included control of ground water pumping and development of surface water to offset the reductions of ground water pumping. Ground water recharge has also been practiced. Areas threatened by flooding have been protected by extensive networks of dikes and sea walls, locks, and pumping stations to remove storm runoff. ?? 1985 D. Reidel Publishing Company.

  3. Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air-sea exchange.

    PubMed

    Zhang, Gan; Li, Jun; Cheng, Hairong; Li, Xiangdong; Xu, Weihai; Jones, Kevin C

    2007-06-01

    The South China Sea (SCS) is surrounded by developing countries in Southeast Asia, where persistent organic pollutants (POPs), such as organochlorine pesticides (OCPs), are still used legally or illegally, and are of concern. Yet little is known about the distribution of OCPs in the water and atmosphere over SCS, as well as their air-sea equilibrium status and time trends. In this study, ship-board air samples and surface seawater collected in the northern SCS between September 6 and 22, 2005 were analyzed for selected OCPs. The measured OCP concentrations in the atmosphere over the northern SCS were influenced by proximity to source regions and air mass origins. The highest atmospheric OCP concentrations were found at sampling sites adjacent to continental South China. OCPs in surface seawater showed significant spatial variations, with the highest concentration observed in a water sample from off Vietnam. The coastal currents were suggested to play a key role in the delivery of waterborne OCPs in the northern SCS. Time trend, land outflow, and air-sea exchange of selected OCPs in the SCS were investigated, by comparison of this dataset with historical data.

  4. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  5. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  6. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  7. Impacts of land use and land cover change on water resources and water scarcity in the 20th century: a multi-model multi-forcing analysis

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Wada, Yoshihide; Ward, Philip; Aerts, Jeroen

    2016-04-01

    Socioeconomic developments increasingly put pressure on our global fresh water resources. Over the past century, increasing extents of land were converted into (irrigated) agricultural production areas whilst dams and reservoirs were built to get grip on the timing and availability of fresh water resources. Often targeted to be of use at local, regional, or national levels, such human interventions affect, however, terrestrial water fluxes on larger scales. Although many of these interventions have been studied intensively at global and regional scales, the impact of land use and land cover change has often been omitted, and an assessment on how land conversions impact water resources availability and water scarcity conditions was not executed before, despite its importance in the development of sound integrated river basin water management plans. To address this issue, we evaluate in this contribution how land use and land cover change impact water resources and water scarcity conditions in the 20th century, using a multi-model multi-forcing framework. A novelty of this research is that the impact models applied in this study use the dynamic HYDE 3.1 - MIRCA dataset to cover the historical (1971-2010) changes in land use and land cover. Preliminary results show that more than 60% of the global population, predominantly living in downstream areas, is adversely affected by the impacts of land use and land cover change on water resources and water scarcity conditions. Whilst incoming discharge generally (in 97% of the global land area) tends to decrease due to upstream land conversions, we found at the same time increases in local runoff levels for a significant share (27%) of the global land area. Which effect eventually dominates and whether it causes water scarcity conditions is determined by the dependency of a region to water resources originating in upstream areas, and by the increasing rates with which the (locally generated) stream flow is used to fulfil (non

  8. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  9. Water from air: An overlooked source of moisture in arid and semiarid regions

    USGS Publications Warehouse

    McHugh, Theresa; Morrissey, Ember M; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.

  10. Water from air: an overlooked source of moisture in arid and semiarid regions.

    PubMed

    McHugh, Theresa A; Morrissey, Ember M; Reed, Sasha C; Hungate, Bruce A; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth's arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption--movement of atmospheric water vapor into soil when soil air is drier than the overlying air--likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding (18)O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  11. Water from air: an overlooked source of moisture in arid and semiarid regions

    PubMed Central

    McHugh, Theresa A.; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert

    2015-01-01

    Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands. PMID:26345615

  12. 75 FR 142 - Marseilles Land and Water Company; Notice Soliciting Scoping Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... Energy Regulatory Commission Marseilles Land and Water Company; Notice Soliciting Scoping Comments... No.: P-13351-000. c. Date filed: December 30, 2008. d. Applicant: Marseilles Land and Water Company... and Vice President, Marseilles Land & Water Company, 4132 S. Rainbow Blvd., 247, Las Vegas, NV...

  13. 75 FR 11154 - Marseilles Land and Water Company; Notice of Application Ready for Environmental Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Energy Regulatory Commission Marseilles Land and Water Company; Notice of Application Ready for...-13351-000. c. Date filed: December 30, 2008. d. Applicant: Marseilles Land and Water Company. e. Name of... President, Marseilles Land & Water Company, 4132 S. Rainbow Blvd., 247, Las Vegas, NV 89103, (702)...

  14. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible lands and water after certification... Eligible lands and water after certification. (a) Following certification, eligible noncoal lands, waters... coal problems are found or occur after certification, you must submit to us a plan that describes...

  15. 78 FR 12349 - Proposed Information Collection; Land and Water Conservation Fund State Assistance Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... National Park Service Proposed Information Collection; Land and Water Conservation Fund State Assistance... INFORMATION: I. Abstract The Land and Water Conservation Fund Act of 1965 (LWCF Act) (16 U.S.C. 460l-4 et seq... discussed in detail in the Land and Water Conservation Fund State Assistance Program Federal...

  16. 75 FR 52010 - Land and Water Conservation Fund Description and Notification, Performance Reports, Agreements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... National Park Service Land and Water Conservation Fund Description and Notification, Performance Reports... copy of the ICR packages free of charge. SUPPLEMENTARY INFORMATION: The Land and Water Conservation... Form Title: Land and Water Conservation Fund Description and Notification Form. OMB Control...

  17. Impact of subjacent rocks at the water and air regime of the depleted peat deposits

    NASA Astrophysics Data System (ADS)

    Rakovich, V. A.

    2009-04-01

    At the depleted peat deposits (after peat extraction), where the residual layer of peat with the thickness of about 0,5 meters is laid at the well water permeable rocks, vegetation typical for dry conditions is developed in case of good drainage conditions; birch trees, willow, alder-trees and buckthorn prevail in this vegetation. Water and air regime is characterized here by good aeration with prevailing of oxidative processes. If water regime is regulated, these depleted peat areas are suitable for agricultural and forest lands; however, necessity of transformation of these depleted lands into forest and agricultural lands must be ecologically and economically justified. If the residual layer of peat with the thickness of 0,05-0,3 m is based at the sapropel or peat sapropel, contrast amphibiotic water and air regime with strong fluctuation of oxidative and restoration process depending on the weather conditions is formed; this regime is formed without artificial increase of the ground waters level. This does not allow bog vegetation or vegetation typical for dry conditions to develop. Thus, within 20 and more years after completion of peat extraction, such areas are not covered by vegetation in spite of favorable agro-chemical qualities of peat layer and favorable for vegetation chemical composition of soil and ground waters. Depleted peat deposits, that are based at the sapropel, are not suitable for agricultural use, because agricultural vegetation requires stable water and air regime with good aeration and oxidative and restoration potential within 400-750 mV. Contrast amphibiotic water and air regime of the depleted peat deposits that are based at sapropel excludes possibility to use them as agricultural lands. Because of this reason, areas with residual peat layer that are based at sapropel are not suitable for forest planting. Due to periodic increase of ground waters level, rot systems of the plants can not penetrate into the required depth, and mechanical

  18. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  19. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be

  20. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are

  1. STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they

  2. CRUCIAL: Cryosat-2 Success over Inland Water and Land: Preliminary Inland Water Heights and Validation

    NASA Astrophysics Data System (ADS)

    Benveniste, J.; Moore, P.; Berry, P. A. M.; Balmbra, R.; Birkinshaw, S.; Bauer-Gottwein, P.; Dinardo, S.; Lucas, B.

    2014-12-01

    CRUCIAL is an ESA/STSE funded project investigating innovative land and inland water applications from Cryosat-2 with a forward-look component to the future Sentinel-3 mission. The fact that the Earth's land surface is, in general, a relatively poor reflector of Ku band energy, with the exceptions of inland water, salar and ice surfaces has enabled Earth-orbiting satellite radar altimeters to be used for land surface applications including mapping and measurement of river and lake systems. The high along-track sampling of Cryosat-2 altimeter in SAR mode (I8 KHz) offers the opportunity to recover high frequency signals over much of the Earth's land surface, enhancing the inland water height retrieval capability. Constraining this application is the limited availability of SAR Full Bit Rate (FBR) data from Cryosat-2 over these land surfaces; however, for Sentinel-3 the SAR mode will be deployed widely over land. This paper will summarise the CRUCIAL aims and objectives and present preliminary inland water heights from retracked Cryosat-2 altimetric waveforms, including results over Lake Malawi, the Amazon, Mekong and Brahmaputra with validation against in situ and other satellite data where possible.

  3. LINKING LAND COVER AND WATER QUALITY IN NEW YORK CITY'S WATER SUPPLY WATERSHEDS

    EPA Science Inventory

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented as series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was...

  4. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components.

  5. Cardiorespiratory Responses to Stationary Running in Water and on Land

    PubMed Central

    Kruel, Luiz Fernando M.; Beilke, Débora D.; Kanitz, Ana C.; Alberton, Cristine L.; Antunes, Amanda H.; Pantoja, Patrícia D.; da Silva, Eduardo M.; Pinto, Stephanie S.

    2013-01-01

    The aim of the study was to compare maximal and submaximal cardiorespiratory responses between progressive tests on a treadmill on land (TRE), and stationary running on land (SRL) and in water (SRW), while also comparing two methods of determining the second turn point (ST) (ventilatory curve and heart rate deflection point). The study sample consisted of nine active women (23 ± 1.94 years) that performed three maximal protocols in separate days. Heart rate (HR) and oxygen uptake (VO2) were measured in all sessions. The data were analyzed using repeated-measures ANOVA and two-way repeated measures ANOVA with post-hoc Bonferroni test. Greater values of maximal HR (HRmax) and HR at ST (HRST) were observed during exercise performed on TRE and during the SRL, compared to the SRW (p < 0.05). The results for maximal VO2 (VO2max) and VO2 at ST (VO2ST) showed greater and significant values on TRE compared to STL and STW (p < 0.05). Furthermore, the HR and VO2 corresponding to the ST showed similar values between the two methods. Thus, the main conclusion of the present study was that the HR deflection point seems to be a simple and practical alternative method for determining the ST in all protocols analyzed. Key Points The maximal and submaximal (second turn point) oxygen uptake were influenced by the type of exercise, as these responses were similar in both water-based and land-based stationary running protocols and different from those obtained during the treadmill running, that presented greater values compared with both stationary running protocols. The heart rate deflection point can be used for determining the second turn point during stationary running test in aquatic environment. Caution is necessary in the interpretation of the application of the heart rate deflection point in water aerobics exercises because we analyzed only young women performing one water-based exercise. PMID:24149170

  6. Geology and hydrogeology of Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad, Bee and Goliad counties, Texas

    USGS Publications Warehouse

    Snyder, G.L.

    1995-01-01

    Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.

  7. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  8. Water table fluctuations under three riparian land covers, Iowa (USA)

    USGS Publications Warehouse

    Schilling, K.E.

    2007-01-01

    Water table depth is known to play an important role in nitrogen cycling in riparian zones, but little detailed monitoring of water table fluctuations has been reported. In this study, results of high-resolution water table monitoring under three common riparian land covers (forest, cool season grass, corn) were analysed to gain a better understanding of the relation of vegetation cover to water table depth. Three riparian wells located at the Neal Smith National Wildlife Refuge in Jasper County, Iowa, were instrumented with data loggers to record hourly water table behaviour from July to December 2004. Water table depth under the forest showed a diurnal pattern of rising and falling water levels, whereas the grass and corn exhibited a stepped pattern of greater drawdown during the day and less drainage at night. Clear daytime and night-time water table signals were related to daily plant water demands and lateral groundwater flow. Using two estimates of specific yield, hourly and daily ET rates were estimated to be higher under the forest cover than the grass and corn, with peak ET rates in July ranging from 5.02 to 6.32 mm day-1 for forest and from 1.81 to 4.13 mm day-1 for corn and grass. Following plant senescence in October, water table declines were associated with lateral flow to Walnut Creek. The results from this study suggest that consideration should be given to monitoring water table behaviour more frequently to capture daily and seasonal patterns related to riparian vegetation type. Copyright ?? 2007 John Wiley & Sons, Ltd.

  9. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  10. Air stripping of contaminated water sources - air emissions and controls. Final report

    SciTech Connect

    Vancit, M.A.; Howle, R.H.; Herndon, D.J.; Shareef, S.A.

    1987-08-01

    Air-stripping towers are being used to remove low concentrations of organic contaminants from water. The report describes the technology and methods used to control air pollution resulting from this procedure. The cost of the controls is presented along with other positive and negative impacts of the technology.

  11. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  12. Specific features of aluminum nanoparticle water and wet air oxidation

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, Aleksandr S.; Glazkova, Elena A.; Svarovskaya, Natalia V.; Bakina, Olga V.; Kazantsev, Sergey O.; Lerner, Marat I.

    2015-10-01

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  13. 78 FR 52561 - Public Land Order No. 7820; Partial Modification, Public Water Reserve No. 107; Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Bureau of Land Management Public Land Order No. 7820; Partial Modification, Public Water Reserve No. 107... lands withdrawn from settlement, sale, location, or entry under the public land laws, including location for non-metalliferous minerals under the United States mining laws, for protection of springs...

  14. OPERA: An Atmospheric Correction for Land and Water

    NASA Astrophysics Data System (ADS)

    Sterckx, Sindy; Knaeps, Els; Adriaensen, Stefan; Reusen, Ils; De Keukelaere, Liesbeth; Hunter, Peter; Giardino, Claudia; Odermatt, Daniel

    2015-12-01

    Atmospheric correction is one of the most important part of the pre-processing of satellite remotely sensed data used to retrieve bio-geophysical paramters. In this paper we present the scene and sensor generic atmospheric correction scheme ‘OPERA’ allowing to correct both land and water areas in the remote sensing image. OPERA can now be used to correct for atmospheric effects in scenes acquired by MERIS, Landsat-8, hyperspectral sensors and will be applicable to Sentinel-3 and Sentinel-2.

  15. From Fysics to Phorestry: How do I engage diverse audiences in land-air interaction?

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.

    2011-12-01

    The educational component of the CAREER award "A New Direction into Near-Surface Transport for Weak-Wind Conditions in Plant Canopies" (AGS #0955444) calls for an integration of in-classroom teaching and a new field class to provide students from across the disciplines with an opportunity to explore and learn mechanisms of land-air interactions. The charge is clear, but how do I best do this? This contribution presents a concept of how to address the diverse interests and needs with backgrounds ranging from atmospheric science & engineering to botany & forestry by emphasizing the underlying physical principles of light, heat, and water exchange that are of common interest to many scientific disciplines. The idea behind the teaching technique is to let the students escape from their rather passive role in the classroom by providing opportunities for active participation and discovery through a) developing an online syllabus created by the students for the students, b) offering field excursions to expose students to the research activities funded through this award, c) helping small student teams formulate their own research questions, develop their own experimental design, and collect and evaluate measurements in the field class. In addition to discussing the concept and giving some concrete topical examples, a summary of the student feedback received to date will also be included. However, since the award is just about to enter its second year at the time of writing, a major part of this concept still awaits implementation. Seeking input from other awardees and experienced teachers and educators is therefore intended. A secondary objective of this contribution is to describe the many positive impacts on my career that are evident even after the first year by exposing my research and teaching activities to a much broader audience including the Long-Term Ecological Research community at the HJ Andrews experimental forest in Oregon.

  16. Oil Palm expansion over Southeast Asia: land use change and air quality

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.

    2015-12-01

    Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, SEA is a rapidly developing region, with increasing urban population, and growing air quality concerns. Thus, SEA represents an ideal case study to examine the impacts of land use change on air quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in SEA using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere processes (dry deposition, biogenic emissions). We show the sensitivity of air quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on air quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.

  17. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    NASA Technical Reports Server (NTRS)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  18. Educating Youth in Water Quality Land Use Principles Through Outdoor Education.

    ERIC Educational Resources Information Center

    Mancl, Karen; LaBarge, Gregory

    1996-01-01

    Examines pre-/posttests, land use plans, and oral presentations in order to assess whether the Conservation Camp was successful in increasing the knowledge and abilities of young people to consider water-quality impacts in land-use decisions. Results indicate that the camp was an effective method of teaching young people water-quality land-use…

  19. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  20. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  1. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  2. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  3. 30 CFR 875.14 - Eligible lands and water after certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible lands and water after certification. 875.14 Section 875.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.14 Eligible lands and water after certification....

  4. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  5. 30 CFR 875.12 - Eligible lands and water prior to certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Eligible lands and water prior to certification. 875.12 Section 875.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR ABANDONED MINE LAND RECLAMATION CERTIFICATION AND NONCOAL RECLAMATION § 875.12 Eligible lands and water prior to...

  6. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  7. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  8. Remote Mine Detection Technologies for Land and Water Environments

    SciTech Connect

    Hoover, Eddie R.

    1999-05-11

    The detection of mines, both during and after hostilities, is a growing international problem. It limits military operations during wartime and unrecovered mines create tragic consequences for civilians. From a purely humanitarian standpoint an estimated 100 million or more unrecovered mines are located in over 60 countries worldwide. This paper presents an overview of some of the technologies currently being investigated by Sandia National Laboratories for the detection and monitoring of minefields in land and water environments. The three technical areas described in this paper are: 1) the development of new mathematical techniques for combining or fusing the data from multiple sources for enhanced decision-making; 2) an environmental fate and transport (EF&T) analysis approach that is central to improving trace chemical sensing technique; and 3) the investigation of an underwater range imaging device to aid in locating and characterizing mines and other obstacles in coastal waters.

  9. Sustainable Phosphorus Management in Land Applied Reclaimed Water Scenarios

    NASA Astrophysics Data System (ADS)

    Weinkam, G.

    2015-12-01

    Florida leads the nation in wastewater effluent/reclaimed water use, at over 700 million gallons per day, of which 75% is land applied. While these effluent waters are treated to reduce pathogen loads, phosphorus (P) concentrations can still be substantial in long term application scenarios. Currently an estimated 1.5 million kg of P are reintroduced to the landscape yearly (at effluent = 2 mg P/L), compared to only 23,000 kg that would be applied if landscapes were irrigated with ground water (at ground water = 0.03 mg P/L). Research suggests that under long term applications of P systems can reach a state at which they are no longer able to assimilate further loading, potentially resulting in landscapes that are actively leaching and eroding P rich particulate matter to receiving hydrologic systems. This can be especially relevant in Florida given the large proportion of sandy soils that contain, relatively, low physical and chemical ion exchange capacity and high hydraulic conductivity, thus increasing the potential for water quality impairment. Due to increasingly stringent surface water P concentrations allowances, and the many uncertainties regarding the long term fate and transport of P, this research seeks to determine how different soil conditions and reclaimed water loading amounts can alter P leaching profiles in Florida. Field sampling at reclaimed water sprayfield sites are used to determine the relative change in P sequestration potential using soil-phosphorus saturation capacity (SPSC) analyses and potential leaching risk is determined by soil core experimentation. The resulting information improves fundamental understanding of soil-phosphorus transport dynamics and provides insights into alternative techniques for long term environmental sustainability of reclaimed wastewater usage.

  10. Modelling bacterial water quality in streams draining pastoral land.

    PubMed

    Collins, Rob; Rutherford, Kit

    2004-02-01

    A model has been developed to predict concentrations of the faecal bacteria indicator E. coli in streams draining grazed hill-country in New Zealand. The long-term aim of the modelling is to assess effects of land management upon faecal contamination and, in the short term, to provide a framework for field-based research. A daily record of grazing livestock is used to estimate E. coli inputs to a catchment, and transport of bacteria to the stream network is simulated within surface and subsurface flows. Deposition of E. coli directly to streams is incorporated where cattle have access to them, and areas of permanent saturation ('seepage zones') are also represented. Bacteria are routed down the stream network and in-stream processes of deposition and entrainment are simulated. Die-off, both on land and in water, is simulated as a function of temperature and solar radiation. The model broadly reproduces observed E. coli concentrations in a hill-country catchment grazed by sheep and beef cattle, although uncertainty exists with a number of the processes represented. The model is sensitive to the distance over which surface runoff delivers bacteria to a stream and the amount of excretion direct to streams and onto seepage zones. Scenario analysis suggests that riparian buffer strips may improve bacterial water quality both by eliminating livestock defaecation in and near streams, and by trapping of bacteria by the riparian vegetation.

  11. Cold water aquifer storage. [air conditioning

    NASA Technical Reports Server (NTRS)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  12. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  13. Minimizing the water and air impacts of unconventional energy extraction

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  14. Multiregional input-output model for China's farm land and water use.

    PubMed

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-01

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.

  15. Waste Feed Delivery Raw Water and Potable Water and Compressed Air Capacity Evaluation

    SciTech Connect

    MAY, T.H.

    2000-02-08

    This study evaluated the ability of the Raw Water, Potable Water, and Compressed Air systems to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the system.

  16. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  17. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  18. Land, Water and Society in the Maya Lowlands

    NASA Astrophysics Data System (ADS)

    Murtha, T.; French, K.; Duffy, C.; Webster, D.

    2013-12-01

    This paper reports the results of our project investigating the long-term spatial and temporal dynamics of land use management, agricultural decision-making and patterns of resource availability in the tropical lowlands of Central America. Overall, our project combines diachronic environmental simulation with historic settlement pattern survey to address a series of long-standing questions about the coupled natural and human (CNH) landscape history in the Central Maya lowlands (at the UNESCO world heritage site of Tikal in the Maya Biosphere Reserve). The paper describes the preliminary results of our project, including changing patterns of land, water, settlement and political history using climate, soil and hydrologic modeling and time series spatial analysis of population and settlement patterns. The critical period of the study, 1000 BC until the present, begins with dispersed settlements accompanied by widespread deforestation and soil erosion. Population size and density grows rapidly for 800 years, while deforestation and erosion rates decline; however, there is striking evidence of political evolution during this period, including the construction of monumental architecture, hieroglyphic monuments detailing wars and alliances, and the construction of a defensive earthwork feature, signaling political territories and possibly delineating natural resource boundaries. Population decline and steady reforestation followed until more recent migration into the region, which has impacted the biosphere ecology. Building on our previous research regionally and comparative research completed in Belize and Mexico, we are modeling sample periods the 3,000-year landscape history of the region, comparing land and water availability to population distributions and what we know about political history. Simulations are generated using historic climate and land use data, primarily relying on the Erosion Productivity Impact Calculator (EPIC) and the Penn State Integrated

  19. Shuttle Columbia Post-landing Tow - with Reflection in Water

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials

  20. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  1. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  2. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  3. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  4. Land cover change and water vapour flows: learning from Australia.

    PubMed Central

    Gordon, Line; Dunlop, Michael; Foran, Barney

    2003-01-01

    Australia is faced with large-scale dryland salinization problems, largely as a consequence of the clearing of native vegetation for cropland and grassland. We estimate the change in continental water vapour flow (evapotranspiration) of Australia during the past 200 years. During this period there has been a substantial decrease in woody vegetation and a corresponding increase in croplands and grasslands. The shift in land use has caused a ca. 10% decrease in water vapour flows from the continent. This reduction corresponds to an annual freshwater flow of almost 340 km(3). The society-induced alteration of freshwater flows is estimated at more than 15 times the volume of run-off freshwater that is diverted and actively managed in the Australian society. These substantial water vapour flow alterations were previously not addressed in water management but are now causing serious impacts on the Australian society and local economies. Global and continental freshwater assessments and policy often neglects the interplay between freshwater flows and landscape dynamics. Freshwater issues on both regional and global levels must be rethought and the interplay between terrestrial ecosystems and freshwater better incorporated in freshwater and ecosystem management. PMID:14728792

  5. Managing water services in tropical regions: From land cover proxies to hydrologic fluxes.

    PubMed

    Ponette-González, Alexandra G; Brauman, Kate A; Marín-Spiotta, Erika; Farley, Kathleen A; Weathers, Kathleen C; Young, Kenneth R; Curran, Lisa M

    2015-09-01

    Watershed investment programs frequently use land cover as a proxy for water-based ecosystem services, an approach based on assumed relationships between land cover and hydrologic outcomes. Water flows are rarely quantified, and unanticipated results are common, suggesting land cover alone is not a reliable proxy for water services. We argue that managing key hydrologic fluxes at the site of intervention is more effective than promoting particular land-cover types. Moving beyond land cover proxies to a focus on hydrologic fluxes requires that programs (1) identify the specific water service of interest and associated hydrologic flux; (2) account for structural and ecological characteristics of the relevant land cover; and, (3) determine key mediators of the target hydrologic flux. Using examples from the tropics, we illustrate how this conceptual framework can clarify interventions with a higher probability of delivering desired water services than with land cover as a proxy. PMID:25432319

  6. Managing water services in tropical regions: From land cover proxies to hydrologic fluxes.

    PubMed

    Ponette-González, Alexandra G; Brauman, Kate A; Marín-Spiotta, Erika; Farley, Kathleen A; Weathers, Kathleen C; Young, Kenneth R; Curran, Lisa M

    2015-09-01

    Watershed investment programs frequently use land cover as a proxy for water-based ecosystem services, an approach based on assumed relationships between land cover and hydrologic outcomes. Water flows are rarely quantified, and unanticipated results are common, suggesting land cover alone is not a reliable proxy for water services. We argue that managing key hydrologic fluxes at the site of intervention is more effective than promoting particular land-cover types. Moving beyond land cover proxies to a focus on hydrologic fluxes requires that programs (1) identify the specific water service of interest and associated hydrologic flux; (2) account for structural and ecological characteristics of the relevant land cover; and, (3) determine key mediators of the target hydrologic flux. Using examples from the tropics, we illustrate how this conceptual framework can clarify interventions with a higher probability of delivering desired water services than with land cover as a proxy.

  7. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  8. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  9. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  10. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    SciTech Connect

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control.

  11. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 212 citations and includes a subject term index and title list.)

  12. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  13. Water treatment: Air stripping. (Latest citations from the Selected Water Resources Abstracts data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning the use of air stripping techniques for wastewater, groundwater, and soil decontamination. The advantages and disadvantages of air stripping over other water treatment processes are discussed. The cleanup of organic emissions generated by air stripping is also considered. Other water treatment processes are discussed in separate bibliographies. (Contains a minimum of 129 citations and includes a subject term index and title list.)

  14. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    NASA Astrophysics Data System (ADS)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  15. Effects of urban land expansion on the regional meteorology and air quality of eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-08-01

    Rapid urbanization throughout eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden, averaged over all newly urbanized grid cells, consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the responses of pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10 % increase in nearby urban land coverage on average leads to a decrease of approximately 2 % in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1 % is simulated. At 800 hPa, pollutants' concentrations tend to increase even more rapidly with an increase in nearby urban land coverage. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. IPR analysis reveals the contribution of individual atmospheric processes to pollutants' concentration changes. It indicates that, for primary pollutants, the enhanced sink (source

  16. Behavior of Water Jet Accompanied with Air Suction

    NASA Astrophysics Data System (ADS)

    Kawakami, Hironobu; Ishido, Tsutomu; Ihara, Akio

    In order to atomize a liquid, the authors have investigated the behavior of air-water jets. In a series of experiments, we have discovered a strange phenomenon that the water jet accompanied with air suction from the free surface has made a periodic radial splash of water drop. The purpose of the present paper is to clear out the origin of this phenomenon and the behavior of water jet accompanied with air suction. The behavior of water jet has been photographed by a digital camera aided with a flashlight and high-speed video camera. Those experiments enable us to find the origin of a periodic radial splash due to a formation of single air bubble at the flow separation region inside the nozzle and due to explosive expansion of the bubble after injected in the free space. In order to analyze the radial splash of water, we have conducted the equation of spherical liquid membrane. The numerical results obtained have been compared with the experimental results and good agreement has been obtained in radial expansion velocity.

  17. Validation and Verification of the Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Kumar, S.; Peters-Lidard, C. D.; Cetola, J.

    2011-12-01

    The importance of operational benchmarking and uncertainty characterization of land surface modeling can be clear upon considering the wide range of performance characteristics of numerical land surface models realizable through various combinations of factors. Such factors might include model physics and numerics, resolution, and forcing datasets used in operational implementation versus those that might have been involved in any prior development benchmarking. Of course, decisions concerning operational implementation may be better informed through more effective benchmarking of performance under various blends of such aforementioned operational factors. To facilitate this and other needs for land analysis activities at the Air Force Weather Agency (AFWA), the Model Evaluation Toolkit (MET) - a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community - and the land information system (LIS) Verification Toolkit (LVT) - developed at the Goddard Space Flight Center (GSFC) - have been adapted to the operational benchmarking needs of AFWA's land characterization activities in order to compare the performance of new land modeling and related activities with that of previous activities as well as observational or analyzed datasets. In this talk, three examples of adaptations of MET and LVT to evaluation of LIS-related operations at AFWA will be presented. One example will include comparisons of new surface rainfall analysis capabilities, towards forcing of AFWA's LIS, with previous capabilities. Comparisons will be relative to retrieval-, model-, and measurement-based precipitation fields. Results generated via MET's grid-stat, neighborhood, wavelet, and object based evaluation (MODE) utilities adapted to AFWA's needs will be discussed. This example will be framed in the context of better informing optimal blends of land surface model (LSM) forcing data sources - namely precipitation data- under

  18. Transferring patients with Ebola by land and air: the British military experience.

    PubMed

    Ewington, Ian; Nicol, E; Adam, M; Cox, A T; Green, A D

    2016-06-01

    The Ebola epidemic of 2014/2015 led to a multinational response to control the disease outbreak. Assurance for British aid workers included provision of a robust treatment pathway including repatriation back to the UK. This pathway involved the use of both land and air assets to ensure that patients were transferred quickly, and safely, to a high-level isolation unit in the UK. Following a road move in Sierra Leone, an air transportable isolator (ATI) was used to transport patients for the flight and onward transfer to the Royal Free Hospital. There are several unique factors related to managing a patient with Ebola virus disease during prolonged evacuation, including the provision of care inside an ATI. These points are considered here along with an outline of the evacuation pathway. PMID:27177575

  19. Transferring patients with Ebola by land and air: the British military experience.

    PubMed

    Ewington, Ian; Nicol, E; Adam, M; Cox, A T; Green, A D

    2016-06-01

    The Ebola epidemic of 2014/2015 led to a multinational response to control the disease outbreak. Assurance for British aid workers included provision of a robust treatment pathway including repatriation back to the UK. This pathway involved the use of both land and air assets to ensure that patients were transferred quickly, and safely, to a high-level isolation unit in the UK. Following a road move in Sierra Leone, an air transportable isolator (ATI) was used to transport patients for the flight and onward transfer to the Royal Free Hospital. There are several unique factors related to managing a patient with Ebola virus disease during prolonged evacuation, including the provision of care inside an ATI. These points are considered here along with an outline of the evacuation pathway.

  20. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  1. Linking water balance of mountain grasslands along altitudinal transects to climate and land-use change

    NASA Astrophysics Data System (ADS)

    Leitinger, Georg; Obojes, Nikolaus; Tasser, Erich; Tappeiner, Ulrike

    2010-05-01

    Changes of the water balance of mountain grasslands with regard to climate and land-use changes are a popular research field since years. Measuring evapotranspiration (EVT) for different land-use types and plant communities at varying sea level helps us to understand the change of water availability in a future environment. Linked with transplantation experiments, this method is promising to cover most forecasted scenarios. Although the mentioned approach is well established, our study is innovative in so far as the field work as well as data analyses was supported by more than 50 pupils from a secondary school for agriculture and food industry. Hence, a huge number of field measurements could be conducted at the same time distributed over a whole alpine valley. In our study site Stubai Valley (300km²), Tyrol, Austria, 13 sites on 4 different altitudinal transects (valley bottom, hillside, and sub-alpine/alpine) ranging from 900m a.s.l. up to 2400m a.s.l. were selected and equipped with weather stations recording air temperature, air humidity, precipitation, solar radiation, and soil water content in different soil depths at 15-minute interval. Additionally, more than 300 small lysimeters have been installed and data on EVT, infiltration, leaf conductivity, and soil wetness was collected on 7 measuring days. The measurements spanned an entire daylight period from sunrise to sunset. Moreover, soil and vegetation analyses on all selected plots complete the enormous data pool. The lysimeters on each plot contained samples of long-stemmed local vegetation (1 cut / 1 uncut), short-stemmed local vegetation (1 cut / 1 uncut), alpine standard vegetation (1), intensive standard vegetation (1 cut / 1 uncut), and water for potential transpiration (1). Each type was replicated three times resulting in a total number of 24 lysimeters per study plot. Results revealed a little increase in EVT rates for the Alpine Standard Vegetation transplanted to lower altitudes and slight

  2. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  3. Simulating Urban Tree Effects on Air, Water, and Heat Pollution Mitigation: iTree-Hydro Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Endreny, T. A.; Nowak, D.

    2011-12-01

    Urban and suburban development changes land surface thermal, radiative, porous, and roughness properties and pollutant loading rates, with the combined effect leading to increased air, water, and heat pollution (e.g., urban heat islands). In this research we present the USDA Forest Service urban forest ecosystem and hydrology model, iTree Eco and Hydro, used to analyze how tree cover can deliver valuable ecosystem services to mitigate air, water, and heat pollution. Air pollution mitigation is simulated by dry deposition processes based on detected pollutant levels for CO, NO2, SO2, O3 and atmospheric stability and leaf area indices. Water quality mitigation is simulated with event mean concentration loading algorithms for N, P, metals, and TSS, and by green infrastructure pollutant filtering algorithms that consider flow path dispersal areas. Urban cooling considers direct shading and indirect evapotranspiration. Spatially distributed estimates of hourly tree evapotranspiration during the growing season are used to estimate human thermal comfort. Two main factors regulating evapotranspiration are soil moisture and canopy radiation. Spatial variation of soil moisture is represented by a modified urban topographic index and radiation for each tree is modified by considering aspect, slope and shade from surrounding buildings or hills. We compare the urban cooling algorithms used in iTree-Hydro with the urban canopy and land surface physics schemes used in the Weather Research and Forecasting model. We conclude by identifying biophysical feedbacks between tree-modulated air and water quality environmental services and how these may respond to urban heating and cooling. Improvements to this iTree model are intended to assist managers identify valuable tree services for urban living.

  4. Effects of urban land expansion on the regional meteorology and air quality of Eastern China

    NASA Astrophysics Data System (ADS)

    Tao, W.; Liu, J.; Ban-Weiss, G. A.; Hauglustaine, D. A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S.

    2015-04-01

    Rapid urbanization throughout Eastern China is imposing an irreversible effect on local climate and air quality. In this paper, we examine the response of a range of meteorological and air quality indicators to urbanization. Our study uses the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate the climate and air quality impacts of four hypothetical urbanization scenarios with fixed surface pollutant emissions during the month of July from 2008 to 2012. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the mechanisms behind the forcing-response relationship at the process level. For all years, as urban land area expands, concentrations of CO, elemental carbon (EC), and particulate matter with aerodynamic diameter less than 2.5 microns (PM2.5) tend to decrease near the surface (below ~ 500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the other hand, the O3 burden averaged over all newly urbanized grid cells consistently increases from the surface to a height of about 4 km. Sensitivity tests show that the response of meteorology and pollutant concentrations to the spatial extent of urbanization are nearly linear near the surface, but nonlinear at higher altitudes. Over eastern China, each 10% increase in nearby urban land coverage (NULC) on average leads to a decrease of approximately 2% in surface concentrations for CO, EC, and PM2.5, while for O3 an increase of about 1% is simulated. At 800 hPa, each 10% increase in the square of NULC enhances air pollution concentrations by 5-10%, depending on species. This indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be amplified. IPR results indicate that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key

  5. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  6. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  7. [Soil condensation water in different habitats in Horqin sandy land: an experimental study].

    PubMed

    Liu, Xin-Ping; He, Yu-Hui; Zhao, Xue-Yong; Li, Yu-Lin; Li, Yu-Qiang; Li, Yan-Qing; Li, Shi-min

    2009-08-01

    Weighing method was adopted to study the formation time and the amount of soil condensation water in four habitats (mobile sandy land, fixed sandy land, farmland, and Mongolian pine forest land) in Horqin Sandy Land in August 2007. The soil condensation water began to form at 20:00-22:00, increased gradually at 22:00-4:00, and began to evaporate after 4:00. In the four habitats, soil condensation water was mainly formed in 0-9 cm layer, and the amount was the greatest in 0-3 cm layer, accounting for 40% of the total. The soil condensation water also formed in 9-30 cm layer, but in very small amount. There was a greater difference in the mean daily amount of soil condensation water in 0-3 cm layer in the four habitats, with the sequence of fixed sandy land > mobile sandy land > farmland > Mongolian pine forest land, which indicated that the habitat with better vegetation condition was not benefit the formation of soil condensation water. The mean daily amount of soil condensation water in 0-30 cm layer was 0.172 mm in fixed sandy land, 0.128 mm in Mongolian pine forest land, 0.120 mm in mobile sandy land, and 0.110 mm in farmland. PMID:19947212

  8. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina.

    PubMed

    Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J

    2014-11-01

    Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the

  9. Spatial and temporal analysis of land cover changes and water quality in the Lake Issaqueena watershed, South Carolina.

    PubMed

    Pilgrim, C M; Mikhailova, E A; Post, C J; Hains, J J

    2014-11-01

    Monitoring changes in land cover and the subsequent environmental responses are essential for water quality assessment, natural resource planning, management, and policies. Over the last 75 years, the Lake Issaqueena watershed has experienced a drastic shift in land use. This study was conducted to examine the changes in land cover and the implied changes in land use that have occurred and their environmental, water quality impacts. Aerial photography of the watershed (1951, 1956, 1968, 1977, 1989, 1999, 2005, 2006, and 2009) was analyzed and classified using the geographic information system (GIS) software. Seven land cover classes were defined: evergreen, deciduous, bare ground, pasture/grassland, cultivated, and residential/other development. Water quality data, including sampling depth, water temperature, dissolved oxygen content, fecal coliform levels, inorganic nitrogen concentrations, and turbidity, were obtained from the South Carolina (SC) Department of Health and Environmental Control (SCDHEC) for two stations and analyzed for trends as they relate to land cover change. From 1951 to 2009, the watershed experienced an increase of tree cover and bare ground (+17.4 % evergreen, +62.3 % deciduous, +9.8 % bare ground) and a decrease of pasture/grassland and cultivated land (-42.6 % pasture/grassland and -57.1 % cultivated). From 2005 to 2009, there was an increase of 21.5 % in residential/other development. Sampling depth ranged from 0.1 to 0.3 m. Water temperature fluctuated corresponding to changing air temperatures, and dissolved oxygen content fluctuated as a factor of water temperature. Inorganic nitrogen content was higher from December to April possibly due to application of fertilizers prior to the growing season. Turbidity and fecal coliform bacteria levels remained relatively the same from 1962 to 2005, but a slight decline in pH can be observed at both stations. Prior to 1938, the area consisted of single-crop cotton farms; after 1938, the

  10. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  11. Estimating ground water recharge from topography, hydrogeology, and land cover.

    PubMed

    Cherkauer, Douglas S; Ansari, Sajjad A

    2005-01-01

    Proper management of ground water resources requires knowledge of the rates and spatial distribution of recharge to aquifers. This information is needed at scales ranging from that of individual communities to regional. This paper presents a methodology to calculate recharge from readily available ground surface information without long-term monitoring. The method is viewed as providing a reasonable, but conservative, first approximation of recharge, which can then be fine-tuned with other methods as time permits. Stream baseflow was measured as a surrogate for recharge in small watersheds in southeastern Wisconsin. It is equated to recharge (R) and then normalized to observed annual precipitation (P). Regression analysis was constrained by requiring that the independent and dependent variables be dimensionally consistent. It shows that R/P is controlled by three dimensionless ratios: (1) infiltrating to overland water flux, (2) vertical to lateral distance water must travel, and (3) percentage of land cover in the natural state. The individual watershed properties that comprise these ratios are now commonly available in GIS data bases. The empirical relationship for predicting R/P developed for the study watersheds is shown to be statistically viable and is then tested outside the study area and against other methods of calculating recharge. The method produces values that agree with baseflow separation from streamflow hydrographs (to within 15% to 20%), ground water budget analysis (4%), well hydrograph analysis (12%), and a distributed-parameter watershed model calibrated to total streamflow (18%). It has also reproduced the temporal variation over 5 yr observed at a well site with an average error < 12%.

  12. Geothermal potential on Kirtland Air Force Base lands, Bernalillo County, New Mexico

    SciTech Connect

    Grant, P.R. Jr.

    1981-10-01

    Extensive sampling and geochemical analysis of groundwater in and near the base disclosed no significant geothermal parameters. However, structural conditions and current hydrologic regimes strongly suggest that thermal waters would be masked by near surface, low temperature meteoric water originating as rain and snowfall in the nearby mountains. Controlled source audio-magnetotelluric (CSAMT) electromagnetic techniques, refraction seismic experiments, and gravity traverses were utilized on the base. These, together with published geohysical information that presents evidence for a shallow magma body beneath the Albuquerque Basin; favorable terrestrial heat flow, water chemistry, and shallow temperature gradient holes on the nearby mesa west of the Rio Grande; interpretation of regional gravity data; and geological data from nearby deep wells tend to confirm structural, stratigraphic, and hydrologic conditions favorable for developing an extensive intermediate to high-temperature hydrothermal regime on portions of Kirtland AFB lands where intensive land use occurs. Two possible exploration and development scenarios are presented. One involves drilling a well to a depth of 3000 to 5000 ft (914 to 1524 m) to test the possibility of encountering higher than normal water temperatures on the basinward side of the faults underlying the travertine deposits. The other is to conduct limited reflection seismograph surveys in defined areas on the base to determine the depth to basement (granite) and thickness of the overyling, unconfined, water filled, relatively unconsolidated sand and gravel aquifer.

  13. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  14. Water, Air, Earth and Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc, which

  15. Water, air, Earth and cosmic radiation.

    PubMed

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc

  16. Water, air, Earth and cosmic radiation.

    PubMed

    Bassez, Marie-Paule

    2015-06-01

    In the context of the origin of life, rocks are considered mainly for catalysis and adsorption-desorption processes. Here it is shown how some rocks evolve in energy and might induce synthesis of molecules of biological interest. Radioactive rocks are a source of thermal energy and water radiolysis producing molecular hydrogen, H2. Mafic and ultramafic rocks evolve in water and dissolved carbon dioxide releasing thermal energy and H2. Peridotites and basalts contain ferromagnesian minerals which transform through exothermic reactions with the generation of heat. These reactions might be triggered by any heating process such as radioactive decay, hydrothermal and subduction zones or post-shock of meteorite impacts. H2 might then be generated from endothermic hydrolyses of the ferromagnesian minerals olivine and pyroxene. In both cases of mafic and radioactive rocks, production of CO might occur through high temperature hydrogenation of CO2. CO, instead of CO2, was proven to be necessary in experiments synthesizing biological-type macromolecules with a gaseous mixture of CO, N2 and H2O. In the geological context, N2 is present in the environment, and the activation source might arise from cosmic radiation and/or radionuclides. Ferromagnesian and radioactive rocks might consequently be a starting point of an hydrothermal chemical evolution towards the abiotic formation of biological molecules. The two usually separate worlds of rocks and life are shown to be connected through molecular and thermodynamic chemical evolution. This concept has been proposed earlier by the author (Bassez J Phys: Condens Matter 15:L353-L361, 2003, 2008a, 2008b; Bassez Orig Life Evol Biosph 39(3-4):223-225, 2009; Bassez et al. 2011; Bassez et al. Orig Life Evol Biosph 42(4):307-316, 2012, Bassez 2013) without thermodynamic details. This concept leads to signatures of prebiotic chemistry such as radionuclides and also iron and magnesium carbonates associated with serpentine and/or talc

  17. Negev: Land, Water, and Life in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Back, William

    In view of the continuing increased concern about the extreme fragility of deserts and desert margins, Negev provides a timely discussion of land-use practices compatible with the often conflicting goals of preservation and development. The success o f agricultural and hydrologic experiments in the Negev desert of Israel offers hope to the large percentage of the world's population that lives with an unacceptably low quality of life in desert margins. Deserts are the one remaining type of open space that, with proper use, has the potential for alleviating the misery often associated with expanding population.In addition to the science in the book, the author repeatedly reinforces the concept that “western civilization is inextricably bound to the Negev and its environs, from which it has drawn, via its desert-born religions—Judasium, Christianity, and Islam—many of the mores and concepts, and much of the imagery and love of the desert, including man's relation to nature and to ‘God’.” Deserts often are erroneously perceived to be areas of no water: In reality, these are areas in which a little rainfall occurs sporadically and unpredictably over time. This meager water supply can be meticulously garnered to produce nutritious crops and forage.

  18. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature

    NASA Technical Reports Server (NTRS)

    Mintz, Y.; Walker, G. K.

    1993-01-01

    The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.

  19. Land use changes and its impacts on air quality and atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  20. Rapid urban growth, land-use changes and air pollution in Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P.

    This paper is a contribution to the understanding of the topoclimatic and environmental geography of the basin where Santiago — one of the most polluted Latin American city - is located. In the first part, land-use change is analysed looking at the climatic transformation caused by the rapid transit from natural semiarid surface to urban areas. In the second part, seasonal weather and daily cycles of slope winds and the available ventilation are described trying to relate those patterns with the spatial distribution of air pollution. A combination of meteorological, geographical and cultural factors explain extreme air pollution events: meteorologically, Santiago is under permanent subsidence inversion layers. Geographically, the city is located in a closed basin surrounded by mountains. Culturally, the urban area has the highest population concentration (40% of the national total), industries (near 70% of the total) and vehicles, which are the main sources of smog. The urban and suburban transport system is based on a large number of buses (diesel) and private cars, both experiencing a rapid growth from the past few years. The city and specially the transport system generates high emissions of pollutant, but the natural semiarid deforested soils and slopes are also important sources. The local wind system can explain the differential spatial distribution on the concentration of air pollutants in the city and its periphery. In winter (rain season) concentrations of particulate matter are higher at the centre and the SW part of the city. The andean piedmont area (E part of the city) shows minimum values, suggesting major ventilation effects of slope and valley winds. Ozone exceeds air quality standards in summer (dry season) at all sites in the centre and periphery. However, the O 3-concentrations are higher on preferred residential areas located at the piedmont area (E part of the city), suggesting air pollution transport effects. Currently, there is no

  1. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  2. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  3. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... meaning set forth in 40 CFR 15.4. (b) TVA will not award a contract to any offeror whose performance would... is exempt at the time of contract award from the provisions of 40 CFR part 15 as set forth therein... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Clean Air and...

  4. External exposure to radionuclides in air, water, and soil

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.

    1996-05-01

    Federal Guidance Report No. 12 tabulates dose coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, water, and soil. The dose coefficients are intended for use by Federal Agencies in calculating the dose equivalent to organs and tissues of the body.

  5. 18 CFR 1316.5 - Clean Air and Water Acts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meaning set forth in 40 CFR 15.4. (b) TVA will not award a contract to any offeror whose performance would... is exempt at the time of contract award from the provisions of 40 CFR part 15 as set forth therein... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Clean Air and...

  6. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  7. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  8. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  9. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  10. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City

    PubMed Central

    Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li

    2014-01-01

    The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼37% of the variations in temperature were explained by the percentage tree cover, while ∼87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment. PMID:25010134

  11. Emergency Disinfection of Drinking Water

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  12. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

    NASA Astrophysics Data System (ADS)

    Leip, Adrian; Billen, Gilles; Garnier, Josette; Grizzetti, Bruna; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk

    2015-11-01

    Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.

  13. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    PubMed

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  14. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  15. Solar geoengineering, atmospheric water vapor transport, and land plants

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  16. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  17. Sensitivity of the global water cycle to the water-holding capacity of land

    SciTech Connect

    Milly, P.C.D.; Dunne, K.A. )

    1994-04-01

    The sensitivity of the global water cycle to the water-holding capacity of the plant-root zone of continental soils is estimated by simulations using a mathematical model of the general circulation of the atmosphere, with prescribed ocean surface temperatures and prescribed cloud. With an increase of the globally constant storage capacity, evaporation from the continents rises and runoff falls, because a high storage capacity enhances the ability of the soil to store water from periods of excess for later evaporation during periods of shortage. In addition, atmospheric feedbacks associated with higher precipitation and lower potential evaporation drive further changes in evaporation and runoff. Most changes in evaporation and runoff occur in the tropics and the northern middle-latitude rain belts. Global evaporation from land increases by 7 cm for each doubling of storage capacity. Sensitivity is negligible for capacity above 60 cm. In the tropics and in the extratropics,increased continental evaporation is split between increased continental precipitation and decreased convergence of atmospheric water vapor from ocean to land. In the tropics, this partitioning is strongly affected by induced circulation changes, which are themselves forced by changes in latent heating. In the northern middle and high latitudes, the increased continental evaporation moistens the atmosphere. This change in humidity of the atmosphere is greater above the continents than above the oceans, and the resulting reduction in the sea-land humidity gradient causes a decreased onshore transport of water vapor by transient eddies. Results here may have implications for problems in global hydrology and climate dynamics, including effects of water resource development on global precipitation, climatic control of plant rooting characteristics, climatic effects of tropical deforestation, and climate-model errors. 21 refs., 13 figs., 21 tabs.

  18. Land conversion to bioenergy production: water budget and sediment output in a semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass based bioenergy production has been considered a feasible alternative of land use for the mixed-grass prairie and marginal croplands in the High Plains. However, little is known of the effect of this land use change on the water cycle and associated sediment output in this water controll...

  19. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  20. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect

    Not Available

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  1. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  2. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  3. River temperature processes under contrasting riparian land cover: linking microclimate, heat exchange and water thermal dynamics

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kantola, K.; Malcolm, I.

    2012-12-01

    -natural > open; hence, the water temperature range was moderated substantially for the commercial site. Daily mean air temperature was ordered open > semi-natural > commercial; seasonality was less marked for the air than water column, although the range was larger for open and semi-natural than commercial site. Humidity was higher and wind speed markedly lower for the commercial than both the other sites. Net radiation was the dominant heat sink in autumn-winter and major heat source in spring-summer with the magnitude of this flux greater in summer and lower in winter for (in order) open, semi-natural and commercial reaches. Sensible heat was an energy source in autumn-winter and sink in spring-summer, with loss (gain) greater in summer (winter) for (in order) open, semi-natural and commercial reaches. Latent heat was predominantly a sink, with the magnitude and variability higher for open than both forested sites. These findings yield important information on: (1) dynamic heat exchange processes that drive stream temperature under different forest treatments, and (2) extent of influence of riparian land cover on stream thermal response. This research provides a basis to predict stream temperature impact given advocated changes to forest practice, and has potential to inform decision making by land/ water managers.

  4. Water-Urban Land Use: Neglected Link in the Climate Change Triadic Relationship among Water-Energy-Land Use in California

    NASA Astrophysics Data System (ADS)

    Blanco, H. J.

    2014-12-01

    Efforts to reduce the magnitude of climate change due to GHG emissions has focused attention on how different sectors contribute to GHG emitting energy use. California has been a leader in climate change mitigation policy across the nation with its passage of the Global Warming Act of 2006, with a major focus on the energy sector. Directly linked to climate change, the Energy-Travel-Urban Land Use Nexus in California is well recognized and the density/compactness of land use is subject of 2008 state policy (Sustainable Communities and Climate Protection Act, SB 375). The Water-Energy Nexus is also well-recognized, given that about 19% of electricity use in State is water-related, and water scarcity in the State has led to increasing policy guidelines, e.g., the 2009 water conservation plan, with a target of reducing urban water use by 20% by 2020. Since 40-50% of urban water in California is consumed by outdoor water use, the character of urban land use, its compactness and density, have important effects on water use and resulting energy impacts. However, direct policy attention to the water-urban land use nexus has focused primarily on water-conserving outdoor watering devices, and landscapes. Direct policy on the character of development itself has yet to emerge, and adequate recognition of the interrelationships among energy, water use and the character of urban development has yet to occur. This paper reviews the research and policies on the water-urban land use link, as well as on the larger triadic relation. It identifies research questions, and policy issues that this neglected link poses to California and the nation.

  5. Harmonization of environmental quality objectives for air, water and soil

    SciTech Connect

    Plassche, E.J. van de

    1994-12-31

    Environmental quality objectives (EQO) are often derived for single compartments only. However, concentrations at or below EQO level for one compartment may lead to exceeding of the EQO in another compartment due to intermedia transport of the chemical. Hence, achieving concentrations lower than the EQO in e.g. air does not necessarily mean that a ``safe`` concentration in soil can be maintained because of deposition from air to soil. This means that EQOs for air, water and soil must be harmonized in such a way that they meet a coherence criterion. This criterion implies that a EQO for one compartment has to be set at a level that full protection to organisms living in other compartments is ensured. In The Netherlands a project has been started to derive harmonized EQOs for a large number of chemicals. First, EQ0s are derived for all compartments based on ecotoxicological data for single species applying extrapolation methods. Secondly, these independently derived EQOs are harmonized. For harmonization of EQOs for water, sediment and soil the equilibrium partitioning method is used. For harmonization of EQOs for water and soil with the E00s for air a procedure is used applying computed steady state concentration ratios rather than equilibrium partitioning. The model SimpleBox is used for these computations. Some results of the project mentioned above will be presented. Attention will be paid to the derivation of independent EQ0s as well as the harmonization procedures applied.

  6. Ground-water hydrology and water quality of the southern high plains aquifer, Melrose Air Force Range, Cannon Air Force Base, Curry and Roosevelt Counties, New Mexico, 2002-03

    USGS Publications Warehouse

    Langman, Jeff B.; Gebhardt, Fredrick E.; Falk, Sarah E.

    2004-01-01

    In cooperation with the U.S. Air Force, the U.S. Geological Survey characterized the ground-water hydrology and water quality at Melrose Air Force Range in east-central New Mexico. The purpose of the study was to provide baseline data to Cannon Air Force Base resource managers to make informed decisions concerning actions that may affect the ground-water system. Five periods of water-level measurements and four periods of water-quality sample collection were completed at Melrose Air Force Range during 2002 and 2003. The water-level measurements and water-quality samples were collected from a 29-well monitoring network that included wells in the Impact Area and leased lands of Melrose Air Force Range managed by Cannon Air Force Base personnel. The purpose of this report is to provide a broad overview of ground-water flow and ground-water quality in the Southern High Plains aquifer in the Ogallala Formation at Melrose Air Force Range. Results of the ground-water characterization of the Southern High Plains aquifer indicated a local flow system in the unconfined aquifer flowing northeastward from a topographic high, the Mesa (located in the southwestern part of the Range), toward a regional flow system in the unconfined aquifer that flows southeastward through the Portales Valley. Ground water was less than 55 years old across the Range; ground water was younger (less than 25 years) near the Mesa and ephemeral channels and older (25 years to 55 years) in the Portales Valley. Results of water-quality analysis indicated three areas of different water types: near the Mesa and ephemeral channels, in the Impact Area of the Range, and in the Portales Valley. Within the Southern High Plains aquifer, a sodium/chloride-dominated ground water was found in the center of the Impact Area of the Range with water-quality characteristics similar to ground water from the underlying Chinle Formation. This sodium/chloride-dominated ground water of the unconfined aquifer in the Impact

  7. Water-Landing Characteristics of a Reentry Capsule

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Hathaway, Melvin E.; Vaughan, Victor L., Jr.

    1959-01-01

    Experimental and theoretical investigations have been made to determine the water-landing characteristics of a conical-shaped reentry capsule having a segment of a sphere as the bottom. For the experimental portion of the investigation, a 1/12-scale model capsule and a full-scale capsule were tested for nominal flight paths of 65 deg and 90 deg (vertical), a range of contact attitudes from -30 deg to 30 deg, and a full-scale vertical velocity of 30 feet per second at contact. Accelerations were measured by accelerometers installed at the centers of gravity of the model and full-scale capsules. For the model test the accelerations were measured along the X-axis (roll) and Z-axis (yaw) and for the full-scale test they were measured along the X-axis (roll), Y-axis (pitch), and Z-axis (yaw). Motions and displacements of the capsules that occurred after contact were determined from high-speed motion pictures. The theoretical investigation was conducted to determine the accelerations that might occur along the X-axis when the capsule contacted the water from a 90 deg flight path at a 0 deg attitude. Assuming a rigid body, computations were made from equations obtained by utilizing the principle of the conservation of momentum. The agreement among data obtained from the model test, the full-scale test, and the theory was very good. The accelerations along the X-axis, for a vertical flight path and 0 deg attitude, were in the order of 40g. For a 65 deg flight path and 0 deg attitude, the accelerations along the X-axis were in the order of 50g. Changes in contact attitude, in either the positive or negative direction from 0 deg attitude, considerably reduced the magnitude of the accelerations measured along the X-axis. Accelerations measured along the Y- and Z-axes were relatively small at all test conditions.

  8. Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina

    USGS Publications Warehouse

    Cardinell, A.P.; Howe, S.S.

    1997-01-01

    A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.

  9. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970s. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is employed in this study, due to its abundance of coastal habitats and its vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated from multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  10. Techniques for Producing Coastal Land Water Masks from Landsat and Other Multispectral Satellite Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joe; Hall, Callie

    2005-01-01

    Coastal erosion and land loss continue to threaten many areas in the United States. Landsat data has been used to monitor regional coastal change since the 1970's. Many techniques can be used to produce coastal land water masks, including image classification and density slicing of individual bands or of band ratios. Band ratios used in land water detection include several variations of the Normalized Difference Water Index (NDWI). This poster discusses a study that compares land water masks computed from unsupervised Landsat image classification with masks from density-sliced band ratios and from the Landsat TM band 5. The greater New Orleans area is imployed in this study, due to its abundance of coastal habitats and ist vulnerability to coastal land loss. Image classification produced the best results based on visual comparison to higher resolution satellite and aerial image displays. However, density-sliced NDWI imagery from either near infrared (NIR) and blue bands or from NIR and green bands also produced more effective land water masks than imagery from the density-sliced Landsat TM band 5. NDWI based on NIR and green bands is noteworthy because it allows land water masks to be generated form multispectral satellite sensors without a blue band (e.g., ASTER and Landsat MSS). NDWI techniques also have potential for producing land water masks from coarser scaled satellite data, such as MODIS.

  11. [Effects of land use structure on water quality in Xin'anjiang River].

    PubMed

    Cao, Fang-Fang; Li, Xue; Wang, Dong; Zhao, Yue; Wang, Yu-Qiu

    2013-07-01

    Take Xin'anjiang upstream watershed as a case study. Based on data of interpreting TM orthophoto images and water quality monitoring in May 2010, the land use map of Xin'anjiang River, which was categorized to cultivated land, forestland, grassland, water body, building site, was obtained. Using ArcGIS hydrological and spatial analysis function, Xin'anjiang River was divided into eight sub-watersheds, and its watershed land use structure was analyzed. The water quality parameters such as TN, TP, permanganate index, fecal coliform bacteria were monitored from Jan 2010 to Dec 2010. The relations between water quality and land use were analyzed. The results showed that TN and NH4(+) -N had a significant temporal variation: dry season > wet season > normal river flow period, but other parameters did not vary significantly. In the space, Yuliang and Pukou were the most serious pollution sites. Cultivated land, water body, building site had a positive impact on water quality parameters, while there were negative correlation between the forestland and grassland. Annually, cultivated land had the most significantly important effect on TN, NH4(+) -N and permanganate index, and grassland had the most significantly important effect on TP. Cultivated land had the most prominently important impact on water quality parameters in dry season and wet season. What's more, in the normal river flow, cultivated land, grassland and forestland had the most remarkably important influence on TN, TP and fecal coliform bacteria respectively.

  12. Simulated response of water quality in public supply wells to land use change

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  13. Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in

  14. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  15. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change. PMID:22924498

  16. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate.

    PubMed

    Tiwary, A; Williams, I D; Pant, D C; Kishore, V V N

    2015-08-01

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages - first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated - mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution.

  17. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  18. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  19. Offshore marine observation of Willow Ptarmigan, including water landings, Kuskokwim Bay, Alaska

    USGS Publications Warehouse

    Zimmerman, C.E.; Hillgruber, N.; Burril, S.E.; St., Peters; Wetzel, J.D.

    2005-01-01

    We report an observation of Willow Ptarmigan (Lagopus lagopus) encountered 8 to 17 km from the nearest shoreline on Kuskokwim Bay, Alaska, on 30 August 2003. The ptarmigan were observed flying, landing on our research vessel, and landing and taking off from the water surface. We also report on one other observation of ptarmigan sitting on the water surface and other marine observations of ptarmigan from the North Pacific Pelagic Seabird Database. These observations provide evidence that Willow Ptarmigan are capable of dispersing across large bodies of water and landing and taking off from the water surface.

  20. Water landing characteristics of a model of a winged reentry vehicle

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.

    1972-01-01

    Proposed manned space shuttle vehicles are expected to land on airport runways. In an emergency situation, however, the vehicle may be required to land on water. A 1/10-scale dynamic model of a winged reentry vehicle was investigated to determine the water landing characteristics. Two configurations of the proposed vehicle were studied. Configuration 1 had a 30 deg negative dihedral of the stabilizer-elevon surface whereas configuration 2 had a 30 deg positive dihedral. Results indicate that the maximum normal accelerations for configurations 1 and 2 when landing in calm water were approximately 8g and 6g, respectively, and the maximum longitudinal accelerations were approximately 5g and 3g, respectively. A small hydroflap was needed to obtain satisfactory calm-water landings with configuration 2, whereas configuration 1 gave good landings without a hydroflap. All landings made in rough water resulted in unsatisfactory motions. For landings made in three different wave sizes, both configurations dived. The maximum normal accelerations for configurations 1 and 2 when landing in waves were -10.1g and -18.7g, respectively, and the maximum longitudinal accelerations for both configurations were approximately 13g.

  1. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  2. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  3. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  4. Modeling, simulation & optimization of the landing craft air cushion fleet readiness.

    SciTech Connect

    Engi, Dennis

    2006-10-01

    The Landing Craft Air Cushion is a high-speed, over-the-beach, fully amphibious landing craft capable of carrying a 60-75 ton payload. The LCAC fleet can serve to transport weapons systems, equipment, cargo and personnel from ship to shore and across the beach. This transport system is an integral part of our military arsenal and, as such, its readiness is an important consideration for our national security. Further, the best way to expend financial resources that have been allocated to maintain this fleet is a critical Issue. There is a clear coupling between the measure of Fleet Readiness as defined by the customer for this project and the information that is provided by Sandia's ProOpta methodology. Further, there is a richness in the data that provides even more value to the analyst. This report provides an analytic framework for understanding the connection between Fleet Readiness and the output provided by Sandia's ProOpta software. Further, this report highlights valuable information that can also be made available using the ProOpta output and concepts from basic probability theory. Finally, enabling assumptions along with areas that warrant consideration for further study are identified.

  5. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  6. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  7. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  8. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  9. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  10. Green and blue water demand from large-scale land acquisitions in Africa

    PubMed Central

    Johansson, Emma Li; Fader, Marianela; Seaquist, Jonathan W.; Nicholas, Kimberly A.

    2016-01-01

    In the last decade, more than 22 million ha of land have been contracted to large-scale land acquisitions in Africa, leading to increased pressures, competition, and conflicts over freshwater resources. Currently, 3% of contracted land is in production, for which we model site-specific water demands to indicate where freshwater appropriation might pose high socioenvironmental challenges. We use the dynamic global vegetation model Lund–Potsdam–Jena managed Land to simulate green (precipitation stored in soils and consumed by plants through evapotranspiration) and blue (extracted from rivers, lakes, aquifers, and dams) water demand and crop yields for seven irrigation scenarios, and compare these data with two baseline scenarios of staple crops representing previous water demand. We find that most land acquisitions are planted with crops that demand large volumes of water (>9,000 m3⋅ha−1) like sugarcane, jatropha, and eucalyptus, and that staple crops have lower water requirements (<7,000 m3⋅ha−1). Blue water demand varies with irrigation system, crop choice, and climate. Even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources. These hotspots indicate areas at risk for transgressing regional constraints for freshwater use as a result of overconsumption of blue water, where socioenvironmental systems might face increased conflicts and tensions over water resources. PMID:27671634

  11. Artificial neural network modeling of the water quality index using land use areas as predictors.

    PubMed

    Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin

    2015-02-01

    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.

  12. Land Management, River Restoration and the Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Clifford, Nicholas

    2014-05-01

    The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.

  13. Coupled Soil Water and Heat Transport Near the Land Surface in Arid and Semiarid Regions - Multi-Domain Modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, Binayak; Yang, Zhenlei

    2016-04-01

    Understanding and simulating coupled water and heat transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere, which consequently could enhance the reliability of weather as well as climate forecast. The theory of Philip and de Vries (1957), accounting for water vapor diffusion only, was considered physically incomplete and consequently extended and improved by several researchers by explicitly taking water vapor convection, dispersion or air flow into account. It is generally believed that the soil moisture is usually low in the near surface layer under highly transient field conditions, particularly in arid and semiarid regions, and that accurate characterization of water vapor transport is critical when modeling simultaneous water and heat transport in the shallow field soils. The first objective of this study is thus mainly to test existing coupled water and heat transport theories and to develop reasonable and simplified numerical models using field experimental data collected under semi-arid and arid hydro-climatic conditions. In addition, more complex multi-domain models are developed for ubiquitous heterogeneous terrestrial surfaces such as horizontal textural contrasts or structured heterogeneity including macropores (fractures, cracks, root channels, etc.). This would make coupled water and heat transfer models applicable in such non-homogeneous soils more meaningful and enhance the skill of land-atmosphere interaction models at a larger context.

  14. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  15. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  16. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  17. Acoustic and Doppler radar detection of buried land mines using high-pressure water jets

    NASA Astrophysics Data System (ADS)

    Denier, Robert; Herrick, Thomas J.; Mitchell, O. Robert; Summers, David A.; Saylor, Daniel R.

    1999-08-01

    The goal of the waterjet-based mine location and identification project is to find a way to use waterjets to locate and differentiate buried objects. When a buried object is struck with a high-pressure waterjets, the impact will cause characteristic vibrations in the object depending on the object's shape and composition. These vibrations will be transferred to the ground and then to the water stream that is hitting the object. Some of these vibrations will also be transferred to the air via the narrow channel the waterjet cuts in the ground. Currently the ground vibrations are detected with Doppler radar and video camera sensing, while the air vibrations are detected with a directional microphone. Data is collected via a Labview based data acquisition system. This data is then manipulated in Labview to produce the associated power spectrums. These power spectra are fed through various signal processing and recognition routines to determine the probability of there being an object present under the current test location and what that object is likely to be. Our current test area consists of a large X-Y positioning system placed over approximately a five-foot circular test area. The positioning system moves both the waterjet and the sensor package to the test location specified by the Labview control software. Currently we are able to locate buried land mine models at a distance of approximately three inches with a high degree of accuracy.

  18. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  19. Simulated response of water quality in public supply wells to land use change

    USGS Publications Warehouse

    McMahon, P.B.; Burow, K.R.; Kauffman, L.J.; Eberts, S.M.; Böhlke, J.K.; Gurdak, J.J.

    2009-01-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypotheticalland use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and > 1, 000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectivesdm: 10.1029/2007 WR0067 J1. copyright. Published in 2008

  20. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  1. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  2. Coaxial injector spray characterization using water/air as simulants

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle M.; Klem, Mark D.

    1991-01-01

    Quantitative information about the atomization of injector sprays is required to improve the accuracy of computational models that predict the performance and stability of liquid propellant rocket engines. An experimental program is being conducted at NASA-Lewis to measure the drop size and velocity distributions in shear coaxial injector sprays. A phase/Doppler interferometer is used to obtain drop size data in water air shear coaxial injector sprays. Droplet sizes and axial component of droplet velocities are measured at different radii for various combinations of water flow rate, air flow rate, injector liquid jet diameter, injector annular gap, and liquid post recess. Sauter mean diameters measured in the spray center 51 mm downstream of the liquid post tip range from 28 to 68 microns, and mean axial drop velocities at the same location range from 37 to 120 m/s. The shear coaxial injector sprays show a high degree of symmetry; the mean drop size and velocity profiles vary with liquid flow rate, post recess, and distance from the injector face. The drop size data can be used to estimate liquid oxygen/hydrogen spray drop sizes by correcting property differences between water-air and liquid oxygen/hydrogen.

  3. Bacterial Swimming at Air/Water and Oil/Water Interfaces

    NASA Astrophysics Data System (ADS)

    Morse, Michael; Huang, Athena; Li, Guanglai; Tang, Jay

    2012-02-01

    The microbes inhabiting the planet over billions of years have adapted to diverse physical environments of water, soil, and interfaces between water and either solid or air. Following recent studies on bacterial swimming and accumulation near solid surfaces, we turn our attention to the behavior of Caulobacter crescentus, a singly flagellated bacterium, at water/air and water/oil interfaces. The latter is motivated by relevance to microbial degradation of crude oil in light of the recent oil spill in the Gulf of Mexico. Our ongoing study suggests that Caulobacter swarmer cells tend to get physically trapped at both water/air and water/oil interfaces, accumulating at the surface to a greater degree than boundary confinement properties like that of solid surfaces would predict. At the water/air interface, swimmers move in tight circles at half the speed of swimmers in the bulk fluid. At the water/oil interface, swimming circles are even tighter with further reduced swimming speed. We report experimental data and present preliminary analysis of the findings based on low Reynolds number hydrodynamics, the known surface tension, and surface viscosity at the interface. The analysis will help determine properties of the bacterium such as their surface charge and hydrophobicity.

  4. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  5. [Relationship between urban green-land landscape patterns and air pollution in the central district of Yichang city].

    PubMed

    Shao, Tianyi; Zhou, Zhixiang; Wang, Pengcheng; Tang, Wanpeng; Liu, Xuequan; Hu, Xingyi

    2004-04-01

    (-2)) with only 6.13% green-land coverage, and the atmospheric noise and the TSP and NOx content increased by 21.47%, 5.08% and 9.06%, respectively, comparing to control. It was obvious that the greater the average area of the green-land patch and the lower the fragmentation index of green-land patches, the more effective the green-land on purifying air pollution.

  6. An Integrated Assessment of Water Scarcity Effects on Energy and Land Use Decisions and Mitigation Policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Kim, S. H.; Liu, L.; Liu, Y.; Calvin, K. V.; Leon, C.; Edmonds, J.; Kyle, P.; Patel, P.; Wise, M. A.; Davies, E. G.

    2015-12-01

    Water is essential for the world's food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide food for an increasing population. We use the Global Change Assessment Model (GCAM), where interactions between population, economic growth, energy, land and water resources interact simultaneously in a dynamically evolving system, to investigate how water scarcity affects energy and land use decisions as well as mitigation policies. In GCAM, competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater sources and desalinated water—across 235 major river basins. Limits to hydrologic systems have significant effects on energy and land use induced emissions via constraints on decisions of their use. We explore these effects and how they evolve under climate change mitigation policies, which can significantly alter land use patterns, both by limiting land use change emissions and by increasing bioenergy production. The study also explores the mitigation scenarios in the context of the shared socioeconomic pathways (SSPs). We find that previous estimates of global water withdrawal projections are overestimated, as our simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the fact that water is a binding factor in agriculture, energy and land use decisions in integrated assessment models (IAMs), and stresses the crucial role of water in regulating agricultural commodities trade and land-use and energy decisions.

  7. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  8. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    2001-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect climate and air quality. In this project the role that clouds play in this relationship was studied. Through GOES satellite observations and RAMS modeling of the Atlanta area, we found that in Atlanta (1) clouds are more frequent than in the surrounding rural areas; (2) clouds cool the surface by shading and thus tend to counteract the warming effect of urbanization; (3) clouds reflect sunlight, which might other wise be used to produce ozone; and (4) clouds decrease biogenic emission of ozone precursors, and they probably decrease ozone concentration. We also found that mesoscale modeling of clouds, especially of small, summertime clouds, needs to be improved and that coupled mesoscale and air quality models are needed to completely understand the mediating role that clouds play in the relationship between land use/land cover change and the climate and air quality of Atlanta. It is strongly recommended that more cities be studied to strengthen and extend these results.

  9. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    ERIC Educational Resources Information Center

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  10. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick

  11. Analysis of land use changes near large water bodies in Ukraine using GIS.

    PubMed

    Bogdanets, Vyacheslav; Vlaev, Anatoliy

    2015-01-01

    Analysis of land use and land cover changes in Ukraine were evaluated with special attention given to the interaction of land and water resources. The rational fresh water management in agriculture under future climate change conditions is of great importance. The hydrological regime of a river has huge impact on the environment of the surrounding area. Creating reservoirs, changes the landscape of river valleys and lake basins. Changes in the hydrological regime of the river and the process taking place in the coastal zone are reflected in land cover, wildlife and micro-climatic conditions. In the area closer to the shore line of the reservoir, there is greater amplitude of fluctuations in the level of ground water due to low rate of filtration behind fluctuations in the level of the reservoir. The interaction of water reservoirs with the environment, especially with the nature of the catchment area is substantially different from the natural water bodies. Analysis was done using GIS and remotely sensed data of land use near large water reservoirs and processed statistically. The ratio of arable lands and forested territories and future analysis of land use has been discussed. PMID:26591880

  12. A statistical assessment of the impact of land uses on surface water quality indexes.

    PubMed

    Seeboonruang, Uma

    2012-06-30

    The release of wastewater from various land uses is threatening the quality of surface water. Different land uses pose varying degrees of danger to water resources. The hazardous extent of each activity depends on the amount and characteristics of the wastewater. The concept of the contamination potential index (CPI) of an activity is introduced and applied here. The index depends on the quantity of wastewater from a single source and on various chemicals in the waste whose concentrations are above allowable standards. The CPI concept and the land use impact assessment are applied to the surface water conditions in Nakhon Nayok Province in the central region of Thailand. The land uses considered in this study are residential area, industrial zone, in-season and off-season rice farming, and swine and poultry livestock. Multiple linear regression analysis determines the impact of the CPIs of these land uses on certain water quality characteristics, i.e., total dissolved solids, electrical conductivity, phosphate, and chloride concentrations, using CPIs and previous water quality measurements. The models are further verified according to the current CPIs and measured concentrations. The results of the backward and forward modeling show that the land uses that affect water quality are off-season rice farming, raising poultry, and residential activity. They demonstrate that total dissolved solids and conductivity are reasonable parameters to apply in the land use assessment.

  13. Analysis of land use changes near large water bodies in Ukraine using GIS.

    PubMed

    Bogdanets, Vyacheslav; Vlaev, Anatoliy

    2015-01-01

    Analysis of land use and land cover changes in Ukraine were evaluated with special attention given to the interaction of land and water resources. The rational fresh water management in agriculture under future climate change conditions is of great importance. The hydrological regime of a river has huge impact on the environment of the surrounding area. Creating reservoirs, changes the landscape of river valleys and lake basins. Changes in the hydrological regime of the river and the process taking place in the coastal zone are reflected in land cover, wildlife and micro-climatic conditions. In the area closer to the shore line of the reservoir, there is greater amplitude of fluctuations in the level of ground water due to low rate of filtration behind fluctuations in the level of the reservoir. The interaction of water reservoirs with the environment, especially with the nature of the catchment area is substantially different from the natural water bodies. Analysis was done using GIS and remotely sensed data of land use near large water reservoirs and processed statistically. The ratio of arable lands and forested territories and future analysis of land use has been discussed.

  14. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  15. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  16. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  17. 43 CFR 4120.3-9 - Water rights for the purpose of livestock grazing on public lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Water rights for the purpose of livestock... ADMINISTRATION-EXCLUSIVE OF ALASKA Grazing Management § 4120.3-9 Water rights for the purpose of livestock grazing on public lands. Any right that the United States acquires to use water on public land for...

  18. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  19. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  20. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  1. Total Land Water Storage Change over 2003-2013 Estimated from a Global Mass Budget Approach

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.; Dieng, H.; Champollion, N.; Wada, Y.; Schrama, E. J. O.; Meyssignac, B.

    2015-12-01

    We estimate the total land water storage change over 2003-2013 using a global water mass budget approach. It consists of comparing the ocean mass change from GRACE space gravimetry to the sum of the main water mass components of the climate system : glaciers, Greenland and Antarctica ice sheets, atmospheric water vapour and land water storage (the latter being the unknown quantity to be estimated). We first compute a mean trend over the study period. Then, we account for the change in rates (acceleration) seen in several terms of the mass budget equation (e.g., GRACE-based ocean mass, Greenland, Antarctica and glaciers mass balances). For the glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different sub-periods of the 2003-2013 decade. For each component, we compute a changing rate through time. We also consider time series of mass balance rates and associated accelerations. From the global water mass budget approach, we derive a time series of land water storage rate over the study period. The computed changing rate in global land water storage mainly represents direct anthropogenic effects on land hydrology, i.e. the net effect of ground water depletion and impoundment of water in man-made reservoirs (estimates from hydrological models driven by meteorological forcing show that natural climate variability essentially cause interannual fluctuations in the net land water storage but negligible long term trend). Our results are compared with independent estimates of human-induced changes in global land hydrology, in particular ground water depletion.

  2. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  3. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or...

  4. Systematic processes of land use/land cover change to identify relevant driving forces: implications on water quality.

    PubMed

    Teixeira, Zara; Teixeira, Heliana; Marques, João C

    2014-02-01

    Land use and land cover (LULC) are driving forces that potentially exert pressures on water bodies, which are most commonly quantified by simply obtained aggregated data. However, this is insufficient to detect the drivers that arise from the landscape change itself. To achieve this objective one must distinguish between random and systematic transitions and identify the transitions that show strong signals of change, since these will make it possible to identify the transitions that have evolved due to population growth, industrial expansion and/or changes in land management policies. Our goal is to describe a method to characterize driving forces both from LULC and dominant LULC changes, recognizing that the presence of certain LULC classes as well as the processes of transition to other uses are both sources of stress with potential effects on the condition of water bodies. This paper first quantifies the driving forces from LULC and also from processes of LULC change for three nested regions within the Mondego river basin in 1990, 2000 and 2006. It then discusses the implications for the environmental water body condition and management policies. The fingerprint left on the landscape by some of the dominant changes found, such as urbanization and industrial expansion, is, as expected, low due to their proportion in the geographic regions under study, yet their magnitude of change and consistency reveal strong signals of change regarding the pressures acting in the system. Assessing dominant LULC changes is vital for a comprehensive study of driving forces with potential impacts on water condition.

  5. Drinking Water Contaminants -- Standards and Regulations

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  6. NITRATE CONTAMINATION OF GROUND WATER FROM LAND APPLICATION OF SWINE WASTE: CASE STUDY AND GENERAL CONSIDERATIONS

    EPA Science Inventory

    Guidelines for land application of CAFO waste may not be sufficient to prevent ground water contamination by nitrate. A case study is presented illustrating the problem for one field site disposing of swine waste. Data are discussed in context with documented land application ...

  7. RECYCLING OF WATER TREATMENT PLANT SLUDGE VIA LAND APPLICATION: ASSESSMENT OF RISK

    EPA Science Inventory

    Water treatment sludges (WTS) offer potential benefits when applied to soil and recycling of the waste stream via land application has been proposed as a management option. Recycling of WTS to the land helps conserve landfill disposal capacity and natural resources, but potential...

  8. Air/water oxydesulfurization of coal: laboratory investigation

    SciTech Connect

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  9. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  10. Application of land use regression to regulatory air quality data in Japan.

    PubMed

    Kashima, Saori; Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki

    2009-04-01

    A land use regression (LUR) model has been used successfully for predicting traffic-related pollutants, although its application has been limited to Europe and North America. Therefore, we modeled traffic-related pollutants by LUR then examined whether LUR models could be constructed using a regulatory monitoring network in Shizuoka, Japan. We used the annual-mean nitrogen dioxide (NO2) and suspended particulate matter (SPM) concentrations between April 2000 and March 2006 in the study area. SPM accounts for particulate matter with an aerodynamic diameter less than 8 microm (PM(8)). Geographic variables that are considered to predict traffic-related pollutants were classified into four groups: road type, traffic intensity, land use, and physical component. Using geographical variables, we then constructed a model to predict the monitored levels of NO2 and SPM. The mean concentrations of NO2 and SPM were 35.75 microg/m(3) (standard deviation of 11.28) and 28.67 microg/m(3) (standard deviation of 4.73), respectively. The final regression model for the NO2 concentration included five independent variables. R(2) for the NO2 model was 0.54. On the other hand, the regression model for the SPM concentration included only one independent variable. R(2) for the SPM model was quite low (R(2) = 0.11). The present study showed that even if we used regulatory monitoring air quality data, we could estimate NO2 moderately well. This result could encourage the wide use of LUR models in Asian countries. PMID:19185904

  11. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  12. Land use change and its effects on water quality in typical inland lake of arid area in China.

    PubMed

    Cui, Hong; Zhou, Xiaode; Guo, Mengjing; Wei, Wu

    2016-07-01

    Land-use change is very important for determining and assessing the influence of human activity on aquatic environment of rivers and lakes. The present work with Bosten River basin as the subject, analyzes features of dynamic land-use change of the basin from 1993 to 2013, in order to study the influence of land-use pattern change on the basin water quality, according to the land-use/land-cover(LUCC) chart from 2000 to 2013 made by ArcGIS and ENVI. It shows cultivated land, wetland and forestland constitute most of Bosten River basin, taking up over 41.7% of the total; from 1993-2000, LUCC of the basin is relatively small, with an increase of cultivated land, residential-industry land, water wetlands by 15.09%-18.33%,most of which are transformed from forestland, grassland and unused land; from 2000-2013, LUCC of the basin is relatively significant, with a continuing and bigger increase of cultivated land and Residential-industry area, most of which are transformed from water wetlands and unused land. Based on analysis of landuse pattern and water quality index, it can be told that water pollution is positively correlated to cultivated land and residential-industry area and negatively correlated to water and grassland. Also, the influence of land-use pattern change on water quality has been discussed, whose finding can serve as the scientific evidence for land-use optimization and water pollution control. PMID:27498508

  13. Land use change and its effects on water quality in typical inland lake of arid area in China.

    PubMed

    Cui, Hong; Zhou, Xiaode; Guo, Mengjing; Wei, Wu

    2016-07-01

    Land-use change is very important for determining and assessing the influence of human activity on aquatic environment of rivers and lakes. The present work with Bosten River basin as the subject, analyzes features of dynamic land-use change of the basin from 1993 to 2013, in order to study the influence of land-use pattern change on the basin water quality, according to the land-use/land-cover(LUCC) chart from 2000 to 2013 made by ArcGIS and ENVI. It shows cultivated land, wetland and forestland constitute most of Bosten River basin, taking up over 41.7% of the total; from 1993-2000, LUCC of the basin is relatively small, with an increase of cultivated land, residential-industry land, water wetlands by 15.09%-18.33%,most of which are transformed from forestland, grassland and unused land; from 2000-2013, LUCC of the basin is relatively significant, with a continuing and bigger increase of cultivated land and Residential-industry area, most of which are transformed from water wetlands and unused land. Based on analysis of landuse pattern and water quality index, it can be told that water pollution is positively correlated to cultivated land and residential-industry area and negatively correlated to water and grassland. Also, the influence of land-use pattern change on water quality has been discussed, whose finding can serve as the scientific evidence for land-use optimization and water pollution control.

  14. Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.

    PubMed

    Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun

    2014-08-01

    Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia.

  15. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  16. 14 CFR 135.183 - Performance requirements: Land aircraft operated over water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operated over water. 135.183 Section 135.183 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS... operated over water. No person may operate a land aircraft carrying passengers over water unless— (a) It...

  17. Green Residential Demolitions: Case Study of Vacant Land Reuse in Storm Water Management in Cleveland

    EPA Science Inventory

    The demolition process impacts how vacant land might be reused for storm water management. For five residential demolition sites (Cleveland, Ohio), an enhanced green demolition process was observed in 2012, and soil physical and hydrologic characteristics were measured predemolit...

  18. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    PubMed

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  19. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    PubMed

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  20. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau

    PubMed Central

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land. PMID:27243772

  1. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  2. Remote sensing of effects of land use practices on water quality

    NASA Technical Reports Server (NTRS)

    Graves, D. H.; Colthrap, G. B.

    1977-01-01

    An intensive study was conducted to determine the utility of manual densitometry and color additive viewing of aircraft and LANDSAT transparencies for monitoring land use and land use change. The relationship between land use and selected water quality parameters was also evaluated. Six watersheds located in the Cumberland Plateau region of eastern Kentucky comprised the study area for the project. Land uses present within the study area were reclaimed surface mining and forestry. Fertilization of one of the forested watersheds also occurred during the study period.

  3. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  4. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-01

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry. PMID:27509207

  5. Airborne Multispectral LIDAR Data for Land-Cover Classification and Land/water Mapping Using Different Spectral Indexes

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. E.

    2016-06-01

    Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and landwater mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes (NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared (MIR): 1550 nm by the world's first airborne multispectral LiDAR sensor "Optech Titan". The Jenks natural breaks optimization method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of returns from different wavelengths, thus the overall accuracy is improved to 96.98%.

  6. Monitoring air and water quality in Canada's Chemical Valley

    SciTech Connect

    Walter, M.

    1994-01-01

    As nations begin strengthening environmental enforcement initiatives, governments and industries are evaluating the cost-effectiveness of waste management cooperatives,'' in which several companies operating in an area, such as an industrial park, establish a single organization to conduct monitoring, treatment and disposal activities for the group. One such cooperative is the Lambton Industrial Society (LIS), which monitors air and water quality, and oversees waste management activities for 15 major petrochemical industries in and near Sarnia, Ontario. LIS manages a network of air and water monitoring stations, waste disposal and treatment systems, and an innovative biological monitoring program to oversee long-term water quality in the St. Clair River. Since 1975, discharges of total organic carbon, ammonia, phenols, suspended solids, and oil and grease have been reduced by 95 percent.'' Similar reductions are being realized for another 140 priority pollutants.'' An automatic remote analyzer provides concentrations of 20 VOCs at a point downstream of the industrial site. Results are transmitted to a central LIS computer, and the data may be accessed by any member company.

  7. Reconnaissance of hydrology, land use, ground-water chemistry, and effects of land use on ground-water chemistry in the Albuquerque-Belen basin, New Mexico

    USGS Publications Warehouse

    Anderholm, S.K.

    1987-01-01

    In 1984, the U.S. Geological Survey began regional assessments of groundwater contamination in 14 areas, one of which was the Albuquerque-Belen basin. Groundwater recharge occurs along the basin margins. Groundwater discharge occurs as evapotranspiration in the Rio Grande valley, pumpage, and groundwater flow to the Socorro basin. Open-space land use, which primarily is used for grazing livestock, occupies the majority of the basin. In the Rio Grande valley, agricultural and residential land uses are predominant; in the area near Albuquerque, the land also is used for commercial, institutional , and industrial purposes. The Albuquerque-Belen basin was divided into seven zones on the basis of water chemistry. These water-chemistry zones indicate that large variations in water chemistry exist in the basin as the result of natural processes. Groundwater in the majority of the Albuquerque-Belen basin has a relatively low susceptibility to contamination because the depth to water is > 100 ft and there is virtually no natural mechanism for recharge to the groundwater system. Groundwater in the Rio Grande valley has a relatively high susceptibility to contamination because the depth to water is generally < 30 ft and there are many types of recharge to the groundwater system. Changes in land use may cause changes in the chemical composition of recharge to the groundwater system. The relatively large concentrations of dissolved iron in the Rio Grande valley near Albuquerque may result from the change from agricultural land use to residential land use. Recharge associated with agricultural land use is relatively oxidized because the water is in equilibrium with the atmosphere, whereas recharge associated with residential land use (onsite waste-disposal effluent) is relatively reduced and has larger concentrations of organic carbon, biological oxygen demand, and chemical oxygen demand. The constituents in the onsite waste-disposal effluent could cause reducing conditions in

  8. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  9. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  10. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models.

  11. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. PMID:26530819

  12. Design and manufacturing considerations for high-performance gimbals used for land, sea, air, and space

    NASA Astrophysics Data System (ADS)

    Sweeney, Mike; Redd, Lafe; Vettese, Tom; Myatt, Ray; Uchida, David; Sellers, Del

    2015-09-01

    High performance stabilized EO/IR surveillance and targeting systems are in demand for a wide variety of military, law enforcement, and commercial assets for land, sea, air, and space. Operating ranges, wavelengths, and angular resolution capabilities define the requirements for EO/IR optics and sensors, and line of sight stabilization. Many materials and design configurations are available for EO/IR pointing gimbals depending on trade-offs of size, weight, power (SWaP), performance, and cost. Space and high performance military aircraft applications are often driven toward expensive but exceptionally performing beryllium and aluminum beryllium components. Commercial applications often rely on aluminum and composite materials. Gimbal design considerations include achieving minimized mass and inertia simultaneous with demanding structural, thermal, optical, and scene stabilization requirements when operating in dynamic operational environments. Manufacturing considerations include precision lapping and honing of ball bearing interfaces, brazing, welding, and casting of complex aluminum and beryllium alloy structures, and molding of composite structures. Several notional and previously developed EO/IR gimbal platforms are profiled that exemplify applicable design and manufacturing technologies.

  13. Descriptive Epidemiology of Musculoskeletal Injuries in Naval Special Warfare Sea, Air, and Land Operators.

    PubMed

    Lovalekar, Mita; Abt, John P; Sell, Timothy C; Wood, Dallas E; Lephart, Scott M

    2016-01-01

    The purpose of this analysis was to describe medical chart reviewed musculoskeletal injuries among Naval Special Warfare Sea, Air, and Land Operators. 210 Operators volunteered (age: 28.1 ± 6.0 years, height: 1.8 ± 0.1 m, weight: 85.4 ± 9.3 kg). Musculoskeletal injury data were extracted from subjects' medical charts, and injuries that occurred during 1 year were described. Anatomic location of injury, cause of injury, activity when injury occurred, and injury type were described. The frequency of injuries was 0.025 per Operator per month. Most injuries involved the upper extremity (38.1% of injuries). Frequent anatomic sublocations for injuries were the shoulder (23.8%) and lumbopelvic region of the spine (12.7%). Lifting was the cause of 7.9% of injuries. Subjects were participating in training when 38.1% of injuries occurred and recreational activity/sports when 12.7% of injuries occurred. Frequent injury types were strain (20.6%), pain/spasm/ache (19.0%), fracture (11.1%), and sprain (11.1%). The results of this analysis underscore the need to investigate the risk factors, especially of upper extremity and physical activity related injuries, in this population of Operators. There is a scope for development of a focused, customized injury prevention program, targeting the unique injury profile of this population. PMID:26741478

  14. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  15. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  16. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  17. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  18. Nano- and microstructure of air/oil/water interfaces.

    PubMed

    McGillivray, Duncan J; Mata, Jitendra P; White, John W; Zank, Johann

    2009-04-01

    We report the creation of air/oil/water interfaces with variable-thickness oil films using polyisobutylene-based (PIB) surfactants cospread with long-chain paraffinic alkanes on clean water surfaces. The resultant stable oil layers are readily measurable with simple surface techniques, exhibit physical densities the same as expected for bulk oils, and are up to approximately 100 A thick above the water surface as determined using X-ray reflectometry. This provides a ready system for studying the competition of surfactants at the oil/water interface. Results from the competition of a nonionic polyamide surfactant or an anionic sodium dodecyl sulfate with the PIB surfactant are reported. However, this smooth oil layer does not account for the total volume of spread oil nor is the increase in thickness proportional to the film compression. Brewster angle microscopy (BAM) reveals surfactant and oil structures on the scale of 1 to 10 microm at the interface. At low surface pressure (pi < 24 mN m(-1)) large, approximately 10 microm inhomogeneities are observed. Beyond a phase transition observed at pi approximately = 24 mN m(-1), a structure with a spongy appearance and a microscale texture develops. These structures have implications for understanding the microstructure at the oil/water interface in emulsions. PMID:19714829

  19. Effects of future climate and land cover changes on biogenic emissions and air quality in the US

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Gonzalez Abraham, R.; Arroyo, A.; Lamb, B. K.; Duhl, T.; Wiedinmyer, C.; Guenther, A. B.; Zhang, Y.; Salathe, E. P.

    2009-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetations are highly reactive in the atmosphere and contribute to ozone and secondary organic aerosol formation. Climate change influences vegetation distributions and emissions of BVOCs and thereby affects air quality. As part of a comprehensive investigation of the effects of global change on regional air quality in the US, this study examines the effects of future climate and land cover changes on emissions of BVOCs into the atmosphere and air quality in the US. The mesoscale WRF (Weather Research and Forecasting) model is applied at hemispheric (220 km grid cells) and continental US (36 km grid cells) scales for current (1995-2004) and future (2045-2054) decades to downscale climate results from the ECHAM5 global climate model for IPCC SRES scenario A1B. The MEGAN (Model of Emissions of Gases and Aerosols from Nature) model is driven by WRF meteorological results to predict biogenic emissions of VOCs and NOx. MEGAN accounts for vegetation species distributions and environmental factors such as temperature and light. Current decade vegetation distributions are derived from satellite observations. Future vegetation distributions are predicted from MAPSS (Mapped Atmosphere-Plant-Soil System) and the land cover model of IMAGE 2.0 (Integrated Model to Assess the Global Environment). Future land cover changes include the expansion of croplands so that land management changes can also be examined. The CMAQ (Community Multiscale Air Quality Modeling) chemical transport model is used to simulate O3 and aerosol concentrations using current- and future-decade biogenic emissions but with anthropogenic emissions held constant at current-decade levels. Results showing the changes in US air quality due to climate- and landuse-driven changes in biogenic emissions will be presented. These results are compared to previous simulations derived from the IPCC SRES scenario A1 scenario with the PCM (Parallel Climate Model

  20. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reserved by the grantor of lands conveyed to the United States. 251.19 Section 251.19 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Rights of Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United...

  1. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reserved by the grantor of lands conveyed to the United States. 251.19 Section 251.19 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Rights of Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United...

  2. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reserved by the grantor of lands conveyed to the United States. 251.19 Section 251.19 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Rights of Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United...

  3. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reserved by the grantor of lands conveyed to the United States. 251.19 Section 251.19 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Rights of Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United...

  4. 36 CFR 251.19 - Exercise of water rights reserved by the grantor of lands conveyed to the United States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reserved by the grantor of lands conveyed to the United States. 251.19 Section 251.19 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Rights of Grantors § 251.19 Exercise of water rights reserved by the grantor of lands conveyed to the United...

  5. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    SciTech Connect

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Kehl, S R; Lindman, T R; Yakuma, S C

    2010-04-22

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  6. Powder wettability at a static air-water interface.

    PubMed

    Dupas, Julien; Forny, Laurent; Ramaioli, Marco

    2015-06-15

    The reconstitution of a beverage from a dehydrated powder involves several physical mechanisms that determine the practical difficulty to obtain a homogeneous drink in a convenient way and within an acceptable time for the preparation of a beverage. When pouring powder onto static water, the first hurdle to overcome is the air-water interface. We propose a model to predict the percentage of powder crossing the interface in 45 s, namely the duration relevant for this application. We highlight theoretically the determinant role of the contact angle and of the particle size distribution. We validate experimentally the model for single spheres and use it to predict the wettability performance of commercial food powders for different contact angles and particles sizes. A good agreement is obtained when comparing the predictions and the wettability of the tested powders. PMID:25721855

  7. Deformation of a water shell during free fall in air

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-04-01

    The basic regularities of the change in the shape and sizes (the initial volume is 0.05-0.5 L) of a water shell are singled out in its deformation during free fall in air from a height of 3 m. The 3D recording of the basic stages of deformation (flattening of the shell, nucleation, growth, and destruction of bubbles, formation of the droplet cloud) is carried out using high-speed (up to 105 frames per second) Phantom V411 and Phantom Miro M310 video cameras and the program complex Tema Automotive (with the function of continuous tracking). The physical model of destruction of large water bodies is formulated at free fall with the formation of the droplet cloud.

  8. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  9. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  10. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  11. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et...

  12. Development of an integrated data base for land use and water quality planning

    NASA Technical Reports Server (NTRS)

    Adams, J.; Vanschayk, C.; Istvan, L. B.

    1977-01-01

    To help understand the role played by different land resources in water quality management a computer based data system was created. The Land Resource Information System (LRIS) allows data to be readily retrieved or statistically analyzed for a variety of purposes. It is specifically formatted to perform coordination of water quality data with logy, etc. New understanding of the region gained through the use of LRIS has gone well beyond the initial purpose of assessing water quality conditions. The land use and natural features information has provided a well defined starting point for a systematic evaluation of proposed land uses, transportation, housing, and other public investments. It has laid the foundation for a comprehensive and integrated approach to many different planning and investment programs presently underway.

  13. Proton Transfers at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu

    Proton transfer reactions at the interface of water with hydrophobic media, such as air or lipids, are ubiquitous on our planet. These reactions orchestrate a host of vital phenomena in the environment including, for example, acidification of clouds, enzymatic catalysis, chemistries of aerosol and atmospheric gases, and bioenergetic transduction. Despite their importance, however, quantitative details underlying these interactions have remained unclear. Deeper insight into these interfacial reactions is also required in addressing challenges in green chemistry, improved water quality, self-assembly of materials, the next generation of micro-nanofluidics, adhesives, coatings, catalysts, and electrodes. This thesis describes experimental and theoretical investigation of proton transfer reactions at the air-water interface as a function of hydration gradients, electrochemical potential, and electrostatics. Since emerging insights hold at the lipid-water interface as well, this work is also expected to aid understanding of complex biological phenomena associated with proton migration across membranes. Based on our current understanding, it is known that the physicochemical properties of the gas-phase water are drastically different from those of bulk water. For example, the gas-phase hydronium ion, H3O +(g), can protonate most (non-alkane) organic species, whereas H 3O+(aq) can neutralize only relatively strong bases. Thus, to be able to understand and engineer water-hydrophobe interfaces, it is imperative to investigate this fluctuating region of molecular thickness wherein the 'function' of chemical species transitions from one phase to another via steep gradients in hydration, dielectric constant, and density. Aqueous interfaces are difficult to approach by current experimental techniques because designing experiments to specifically sample interfacial layers (< 1 nm thick) is an arduous task. While recent advances in surface-specific spectroscopies have provided

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Maps showing water-level declines, land subsidence, and earth fissures in south-central Arizona

    USGS Publications Warehouse

    Laney, R.L.; Raymond, R.H.; Winikka, C.C.

    1978-01-01

    From 1915 to 1975, more than 109 million acre-feet of ground water was withdrawn from about 4,500 square miles in Pinal and Maricopa Counties in south-central Arizona. The volume of water withdrawn greatly exceeds the volume of natural recharge, and water levels have been declining since 1923. As a result of the water-level declines, the land surface has subsided, the alluvial deposits have been subjected to stress, and earth fissures have developed. Land subsidence and earth fissures have damaged public and private properties. Subsidence and fissures will continue to occur as long as ground water is being mined and water levels continue to decline. As urban development expands, land subsidence and earth fissures will have an increasing socioeconomic impact. Information on maps includes change in water levels, measurements of land subsidence, and location of earth fissures. A section showing land subsidence between Casa Grande and the Picacho Peak Interchange also is included. Scale 1:250,000. (Woodard-USGS)

  16. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  17. Assessing water quality at large geographic scales: Relations among land use, water physicochemistry, riparian condition, and fish community structure

    USGS Publications Warehouse

    Meador, M.R.; Goldstein, R.M.

    2003-01-01

    Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs-total nitrogen and suspended sediment and basin-wide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.

  18. Autumn daily characteristics of land surface heat and water exchange over the Loess Plateau mesa in China

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Wei, Zhigang; Lü, Shihua; Chen, Shiqiang; Ao, Yinhuan; Liang, Ling

    2007-03-01

    The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as “loess mesa”. The experiment’s field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.

  19. Non-contact microrheology at the air-water interface

    NASA Astrophysics Data System (ADS)

    Boatwright, Thomas; Shlomovitz, Roie; Levine, Alex; Dennin, Michael

    2012-02-01

    Mechanical properties of biological interfaces, such as cell membranes, have the potential to be measured with optical tweezers. We report on an approach to measure air-water interfacial properties through microrheology of particles near, but not contacting, the surface. An inverted optical tweezer traps beads of micron size or greater in the bulk, and can then translate them perpendicular to the interface. Through the measurement of thermally driven fluctuations, the mobility of the particle is found to vary as a function of submerged depth and the boundary conditions at the interface. Near a rigid wall, the mobility is confirmed to decrease in a way consistent with Faxèn's law. Very close to the free air-water interface, the mobility changes with the opposite sign, increasing by about 30% at the surface, consistent with recent calculations by Shlomovitz and Levine. In addition, the presence of a Langmuir monolayer at the interface is found to significantly change the mobility of the particle close to the interface. With an accurate theory, it should be possible to infer the shear modulus of a monolayer from the fluctuations of the particle beneath the interface. Since particles are not embedded in the monolayer, this technique avoids impacting the system of study.

  20. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  1. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  2. The Water Cycle from Space: Use of Satellite Data in Land Surface Hydrology and Water Resource Management

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Blankenship, Clay; Khan, Maudood; Limaye, Ashutosh; Hornbuckle, Brian; Rowlandson, Tracy

    2010-01-01

    This slide presentation reviews how our understanding of the water cycle is enhanced by our use of satellite data, and how this informs land surface hydrology and water resource management. It reviews how NASA's current and future satellite missions will provide Earth system data of unprecedented breadth, accuracy and utility for hydrologic analysis.

  3. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  4. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir.

    PubMed

    Yang, Huicai; Wang, Guoqiang; Wang, Lijing; Zheng, Binghui

    2016-06-01

    The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was

  5. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir.

    PubMed

    Yang, Huicai; Wang, Guoqiang; Wang, Lijing; Zheng, Binghui

    2016-06-01

    The assessment of spatial and temporal variation of water quality influenced by land use is necessary to manage the environment sustainably in basin scales. Understanding the correlations between land use and different formats of nonpoint source nutrients pollutants is a priority in order to assess pollutants loading and predicting the impact on surface water quality. Forest, upland, paddy field, and pasture are the dominant land use in the study area, and their land use pattern status has direct connection with nonpoint source (NPS) pollutant loading. In this study, two land use scenarios (1995 and 2010) were used to evaluate the impact of land use changes on NPS pollutants loading in basins upstream of Three Gorges Reservoir (TGR), using a calibrated and validated version of the soil and water assessment tool (SWAT) model. The Pengxi River is one of the largest tributaries of the Yangtze River upstream of the TGR, and the study area included the basins of the Dong and Puli Rivers, two major tributaries of the Pengxi River. The results indicated that the calibrated SWAT model could successfully reproduce the loading of NPS pollutants in the basins of the Dong and Puli Rivers. During the 16-year study period, the land use changed markedly with obvious increase of water body and construction. Average distance was used to measure relative distribution patterns of land use types to basin outlets. Forest was mainly distributed in upstream areas whereas other land use types, in particular, water bodies and construction areas were mainly distributed in downstream areas. The precipitation showed a non-significant influence on NPS pollutants loading; to the contrary, interaction between precipitation and land use were significant sources of variation. The different types of land use change were sensitive to NPS pollutants as well as land use pattern. The influence of background value of soil nutrient on NPS pollutants loading was evaluated in upland and paddy field. It was

  6. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  7. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States.

    PubMed

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-08-19

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion--that beef production demands about 1 order of magnitude more resources than alternative livestock categories--is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  8. Land Use Patterns and Fecal Contamination of Coastal Waters in Western Puerto Rico

    NASA Technical Reports Server (NTRS)

    Norat, Jose

    1994-01-01

    The Department of Environmental Health of the Graduate School of Public Health of the Medical Sciences Campus, University of Puerto Rico (UPR-RCM) conducted this research project on how different patterns of land use affect the microbiological quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Coastal shellfish growing areas, stream and ocean bathing beaches, and pristine marine sites in the Bay are affected by the discharge of the three study rivers. Satellite imagery was used to study watershed land uses which serve as point and nonpoint sources of pathogens affecting stream and coastal water users. The study rivers drain watersheds of different size and type of human activity (including different human waste treatment and disposal facilities). Land use and land cover in the study watersheds were interpreted, classified and mapped using remotely sensed images from NASA's Landsat Thematic Mapper (TM). This study found there is a significant relationship between watershed land cover and microbiological water quality of rivers flowing into Mayaguez Bay in Western Puerto Rico. Land covers in the Guanajibo, Anasco, and Yaguez watersheds were classified into forested areas, pastures, agricultural zones and urban areas so as to determine relative contributions to fecal water contamination. The land cover classification was made processing TM images with IDRISI and ERDAS software.

  9. Ecologization of water-land property matters on the territory of the Tom lower course

    NASA Astrophysics Data System (ADS)

    Popov, V. K.; Kozina, M. V.; Levak, Yu Yu; Shvagrukova, E. V.

    2016-03-01

    In the present paper the water-land property complex is considered as a strategic resource of the city development. The formulated question is expounded through the example of water-land property complex usage on the territory of the Tom lower course for land-use planning and developing the systems of water recourses management and land tenure. Consequences of liquid radioactive waste (LRW) landfilling are investigated in terms of arable farming. Also, forming a water budget of the soils spread on the area of the Tomsk underground water supply cone of depression and its role in the development of agricultural industry are studied. The main aspect of the analysis is the incorporation of social, economic, and ecological requirements for the system of life-supporting branches of municipal economy and social services. As far as the system of land tax payments plays an important role in land property complex management, the common issues and tendencies are specified in the paper. These problems are concerned with the inadequate incorporation of an ecological constituent in the methods of cadastral valuation of lands, as well as the situation of the narrow area of its results usage in the Russian Federation. Natural factors (hydrological, territorial, geological (geomorphologic) territory conditions) are combined by the authors into a special group. These factors should be reflected in the results of cadastral valuation. Also, in order to protect the interests of water consumers, it is offered to establish the Water Consumers Association based on the international experience of such countries as Spain and Uzbekistan.

  10. Human modification of the atmospheric water cycle through land use change

    NASA Astrophysics Data System (ADS)

    Wang-Erlandsson, Lan; Keys, Patrick; Fetzer, Ingo; Savenije, Hubert; Gordon, Line

    2016-04-01

    Human society have radically transformed the land surface of the Earth and through that altered the hydrological cycle in various way. In this research, we quantify and analyse the global changes to terrestrial moisture recycling from anthropogenic driven modifications in land cover and land use. We simulate evaporation and moisture recycling in potential, historical, and current land cover and land use scenarios by coupling a global hydrological model (STEAM) with a moisture tracking scheme (WAM-2layers). Moreover, we investigate where and when rainfall change occurs, assuming that change in moisture recycling translates into change in rainfall. Although changes in the hydrological flows are limited at the global and annual average, the spatial and temporal differences are significant. Propagation of land use change into rainfall change appears non-uniformly distributed. In particular, disappearance of vegetation appears to reduce the dry season length and affect the dry season rainfall more than the average. Thus, land use change in certain regions potentially affects agricultural development in downwind regions by altering the total rainfall as well as the dry season length. This study shows how land resources and water availability are tightly connected also over large distances, and points to the need to study land use change and climate change in conjunction.

  11. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands.

    PubMed

    Wei, Xinchao; Wei, Honghong; Viadero, Roger C

    2011-02-01

    Abandoned mine land (AML) is one of the legacies of historic mining activities, causing a wide range of environmental problems worldwide. A stream monitoring study was conducted for a period of 7 years to evaluate the water quality trend in a Mid-Appalachian watershed, which was heavily impacted by past coal mining and subsequently reclaimed by reforestation and revegetation. GIS tools and multivariate statistical analyses were applied to characterize land cover, to assess temporal trends of the stream conditions, and to examine the linkages between water quality and land cover. In the entire watershed, 15.8% of the land was designated as AML reclaimed by reforestation (4.9%) and revegetation (10.8%). Statistic analysis revealed sub-watersheds with similar land cover (i.e. percentage of reclaimed AML) had similar water quality and all tested water quality variables were significantly related to land cover. Based on the assessment of water quality, acid mine drainage was still the dominant factor leading to the overall poor water quality (low pH, high sulfate and metals) in the watershed after reclamation was completed more than 20 years ago. Nevertheless, statistically significant improvement trends were observed for the mine drainage-related water quality variables (except pH) in the reclaimed AML watershed. The lack of pH improvement in the watershed might be related to metal precipitation and poor buffering capacity of the impacted streams. Furthermore, water quality improvement was more evident in the sub-watersheds which were heavily impacted by past mining activities and reclaimed by reforestation, indicating good reclamation practice had positive impact on water quality over time.

  12. The ontogeny of metabolic rate and thermoregulatory capabilities of northern fur seal, Callorhinus ursinus, pups in air and water.

    PubMed

    Donohue, M J; Costa, D P; Goebel, M E; Baker, J D

    2000-03-01

    Young pinnipeds, born on land, must eventually enter the water to feed independently. The aim of this study was to examine developmental factors that might influence this transition. The ontogeny of metabolic rate and thermoregulation in northern fur seal, Callorhinus ursinus, pups was investigated at two developmental stages in air and water using open-circuit respirometry. Mean in-air resting metabolic rate (RMR) increased significantly from 113+/-5 ml O(2 )min(-)(1) (N=18) pre-molt to 160+/-4 ml O(2 )min(-)(1) (N=16; means +/- s.e.m.) post-molt. In-water, whole-body metabolic rates did not differ pre- and post-molt and were 2.6 and 1.6 times in-air RMRs respectively. Mass-specific metabolic rates of pre-molt pups in water were 2.8 times in-air rates. Mean mass-specific metabolic rates of post-molt pups at 20 degrees C in water and air did not differ (16.1+/-1.7 ml O(2 )min(-)(1 )kg(-)(1); N=10). In-air mass-specific metabolic rates of post-molt pups were significantly lower than in-water rates at 5 degrees C (18.2+/-1.1 ml O(2 )min(-)(1 )kg(-)(1); N=10) and 10 degrees C (19.4+/-1.7 ml O(2 )min(-)(1 )kg(-)(1); N=10; means +/- s.e.m.). Northern fur seal pups have metabolic rates comparable with those of terrestrial mammalian young of similar body size. Thermal conductance was independent of air temperature, but increased with water temperature. In-water thermal conductance of pre-molt pups was approximately twice that of post-molt pups. In-water pre-molt pups matched the energy expenditure of larger post-molt pups while still failing to maintain body temperature. Pre-molt pups experience greater relative costs when entering the water regardless of temperature than do larger post-molt pups. This study demonstrates that the development of thermoregulatory capabilities plays a significant role in determining when northern fur seal pups enter the water.

  13. Metrics for Nitrate Contamination of Ground Water at CAFO Land Application Site - Arkansas Dairy Study

    EPA Science Inventory

    Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/ L at significant depths. This...

  14. Metrics for nitrate contamination of ground water at CAFO land application sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land application of manure from concentrated animal feeding operations (CAFOs) may lead to contamination of ground water with nitrate. CAFOs routinely apply animal manure according to nutrient management plans (NMPs). The objective of this research was to determine if NMPs protect ground water from ...

  15. Statistical comparisons of ground-water quality underlying different land uses in central Florida

    SciTech Connect

    Rutledge, A.T.; German, E.R. Geological Survey, Altamonte Springs, FL )

    1988-09-01

    Human activities at land surface can affect the quality of water recharging groundwater systems. Because ground water is the principal source of drinking water in many areas, it is necessary to know the relation between land use and ground-water quality. This study is 1 of 7 being made throughout the US as part of the Toxic Waste - Ground-Water Contamination Program of the US Geological Survey. This report documents statistical comparisons of ground-water quality for three test areas in central Florida: (1) a control area where land use is minimal, (2) a citrus-growing area where effects of agriculture may be expected, and (3) a phosphate-mining area where effects of mining activities may be expected. This study addresses water-quality conditions in the surficial aquifer, which consists of sand and shell beds of Pleistocene and Holocene age. The two developed areas are representative of land uses that characterize large areas of Florida, and the control area is representative of near-pristine conditions that exist over a large area, so results of this study may be transferable. The water-quality variables of interest include physical properties, major ions, nutrients, and trace elements.

  16. Effects of land use on fresh waters: Agriculture, forestry, mineral exploitation, urbanisation

    SciTech Connect

    Solbe, J.F.

    1986-01-01

    This book offers a broad consideration of the effects of land use on fresh waters above and below ground. Experts address a wide range of issues in relation to the four major uses of land. Taken from an international conference held at the University of Stirling in 1985, coverage includes sewerage and waste-water treatment, long-term contamination of aquifers below cities, mineral exploitation, use of water in food production, wood production and more. Remedies and areas requiring further study are outlined.

  17. Land Area Change and Fractional Water Maps in the Chenier Plain, Louisiana, following Hurricane Rita (2005)

    USGS Publications Warehouse

    Palaseanu-Lovejoy, Monica; Kranenburg, Christine J.; Brock, John C.

    2010-01-01

    In this study, we estimated the changes in land and water coverage of a 1,961-square-kilometer (km2) area in Louisiana's Chenier Plain. The study area is roughly centered on the Sabine National Wildlife Refuge, which was impacted by Hurricane Rita on September 24, 2005. The objective of this study is twofold: (1) to provide pre- and post-Hurricane Rita moderate-resolution (30-meter (m)) fractional water maps based upon multiple source images, and (2) to quantify land and water coverage changes due to Hurricane Rita.

  18. A comparison of synoptic-scale development characteristics for over-water and over-land cases of explosive cyclone development

    NASA Technical Reports Server (NTRS)

    Lupo, Anthony R.; Smith, Phillip J.

    1992-01-01

    The Zwack and Okossi (1986) equation is here demonstrated to be an effective tool for the diagnosis of synoptic-scale cyclone development, and is noted to indicate that cyclonic vorticity advection is the most consistent contributor to the explosive development of a given cyclone. Warm air advection and latent heat release also contributed to explosive development in varying degrees. The adiabatic temperature changes forced by vertical motion opposed the development of both over-water and over-land cyclone development.

  19. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  20. Comparison of two methods for delineating land use near monitoring wells used for assessing quality of shallow ground water

    USGS Publications Warehouse

    Lorenz, D.L.; Goldstein, R.M.; Cowdery, T.K.; Stoner, J.D.

    2003-01-01

    Two methods were compared for delineating land use near shallow monitoring wells. These wells were used to assess the effects of agricultural cropland on the quality of recently recharged ground water in two sand and gravel aquifers located near land surface. The two methods for delineating land use near wells were (1) the sector method, which used potentiometric-surface maps to estimate average flow direction and a ground-water-flow model to estimate maximum length of contributing area to the monitoring well within an upgradient sector; and (2) the circle method, which used a 500- meter radius circle around the well based on a national empirical analysis. Land uses were compiled for 29 wells in each of two surficial aquifers in the Red River of the North Basin within the area defined by each method. Land use near each well was interpreted from orthorectified photographs and site inspection for both delineation methods. Land use near individual wells characterized by each method varied greatly, which can affect the results of statistical correlations between land use and water quality. Land use determined by the circle method related more closely to the land use for each entire study area. Land use determined by the sector method (within 200 meters from the wells) compared more favorably to ground-water quality based on nitrate concentrations. The maximum length of contributing areas to wells estimated in this study may be of value for other studies of unconsolidated sand and gravel aquifers with similar hydrogeological characteristics of permeability, water-table slopes, recharge, and depth to water. The additional effort required for estimating the model delineation of land use and land cover for the sector method must be weighed against the improved confidence in statistical correlation between land use and the quality of shallow ground water. Improved scientific confidence and understanding of relations between land use and quality of ground water may encourage

  1. Land-subsidence and ground-water storage monitoring in the Tucson Active Management Area, Arizona

    USGS Publications Warehouse

    Pool, Don R.; Winster, Daniel; Cole, K.C.

    2000-01-01

    The Tucson Active Management Area (TAMA) comprises two basins--Tucson Basin and Avra Valley. The TAMA has been directed by Arizona ground-water law to attain an annual balance between groundwater withdrawals and recharge by the year 2025. This balance is defined by the statute as "safe yield." Current ground-water withdrawals exceed recharge, resulting in conditions of ground-water overdraft, which causes removal of water from ground-water storage and subsidence of the land surface. Depletion of storage and associated land subsidence will not be halted until all discharge from the system, both natural and human induced, is balanced by recharge. The amount of the ground-water overdraft has been difficult to estimate until recently because it could not be directly measured. Overdraft has been estimated using indirect water-budget methods that rely on uncertain estimates of recharge. As a result, the status of the ground-water budget could not be known with great certainty. Gravity methods offer a means to directly measure ground-water overdraft through measurement of changes in the gravitational field of the Earth that are caused by changes in the amount of water stored in the subsurface. Changes in vertical position also affect the measured gravity value and thus subsidence also must be monitored. The combination of periodic observations of gravity and vertical positions provide direct measures of changes in stored ground water and land subsidence.

  2. Hanford Federal Facility state of Washington leased land

    SciTech Connect

    Not Available

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

  3. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  4. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  5. Volatilization of chemicals from tap water to indoor air from contaminated water used for showering

    SciTech Connect

    Moya, J. . National Center for Environmental Assessment); Howard-Reed, C.; Corsi, R.L. . Dept. of Civil Engineering)

    1999-07-15

    Volatile organic compounds (VOCs) may enter indoor air during the use of contaminated tap water. When this occurs, occupants can become exposed to potentially toxic VOCs via the inhalation route. The propensity for VOCs to volatilize into indoor air during the routine use of showers was investigated. A series of mass transfer experiments were conducted while a shower was operated within an enclosed chamber. Acetone, ethyl acetate, toluene, ethylbenzene, and cyclohexane were used as volatile tracers. Chemical-specific stripping efficiencies and mass transfer coefficients were determined. An assessment of the importance of gas-phase resistance to mass transfer from water to air was also completed. Chemical-specific stripping efficiencies ranged from 6.3% (for acetone) to 80% (for cyclohexane) for household showers used under normal conditions. As described in this paper, data resulting from this study allow for the determination of overall mass transfer coefficients, and corresponding volatilization rates, for any showering event and chemical of interest. As such, the information presented herein should lead to improved estimates of human inhalation exposure to toxic chemicals that volatilize from water to indoor air.

  6. Methyl tert-Butyl Ether (MTBE) in Ground Water, Air, and Precipitation at North Windham, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Peckenham, John M.

    2000-01-01

    Thirty-one monitoring wells in the Windham aquifer in North Windham, Maine, were sampled for methyl tert-butyl ether (MTBE) from July 1998 to May 1999. MTBE was detected in 35 percent of the wells sampled in the Windham aquifer. MTBE was detected in 64 percent of wells in the high-yielding part of the aquifer; these wells account for 82 percent of all wells with detectable MTBE. Land cover also was found to be associated with MTBE in the wells in the study area, with the urban and low-density residential areas having more MTBE than undeveloped areas. The median concentration in wells with detectable MTBE was 1.13 micrograms per liter. Air and precipitation samples were collected in North Windham along with ground-water samples. Air samples were collected every 10 days from December 1998 to July 1999 (20 samples). MTBE was present in all 20 air samples collected, at concentrations ranging from 0.03 ppbv (parts per billion by volume) to 1.0 ppbv. Before Maine opted out of the reformulated gasoline (RFG) program in the spring of 1999, median concentrations in air at the North Windham site were 0.25 ppbv. After Maine stopped using RFG, the median concentration in air dropped to 0.09 ppbv. No MTBE was detected in four samples of precipitation at North Windham. The lack of rainfall during the study period prevented the collection of an adequate number of samples, and technical difficulties negated the results of some of the analyses of the samples that were collected. Based on the equilibrium partitioning of MTBE from the air into rain, the hypothetical average concentration of MTBE in rainfall during months when recharge typically occurs (March-April and October-December) would be approximately 0.3 to 0.4 micrograms per liter during the time that RFG was being used in Maine. After the phaseout of RFG, the maximum average concentration of MTBE in rainfall during these months would be approximately 0.1 micrograms per liter. The distribution and concentrations of MTBE that

  7. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    USGS Publications Warehouse

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  8. Air-water gas exchange by waving vegetation stems

    NASA Astrophysics Data System (ADS)

    Foster-Martinez, M. R.; Variano, E. A.

    2016-07-01

    Exchange between wetland surface water and the atmosphere is driven by a variety of motions, ranging from rainfall impact to thermal convection and animal locomotion. Here we examine the effect of wind-driven vegetation movement. Wind causes the stems of emergent vegetation to wave back and forth, stirring the water column and facilitating air-water exchange. To understand the magnitude of this effect, a gas transfer velocity (k600 value) was measured via laboratory experiments. Vegetation waving was studied in isolation by mechanically forcing a model canopy to oscillate at a range of frequencies and amplitudes matching those found in the field. The results show that stirring due to vegetation waving produces k600 values from 0.55 cm/h to 1.60 cm/h. The dependence of k600 on waving amplitude and frequency are evident from the laboratory data. These results indicate that vegetation waving has a nonnegligible effect on gas transport; thus, it can contribute to a mechanistic understanding of the fluxes underpinning biogeochemical processes.

  9. [A review on research of land surface water and heat fluxes].

    PubMed

    Sun, Rui; Liu, Changming

    2003-03-01

    Many field experiments were done, and soil-vegetation-atmosphere transfer(SVAT) models were stablished to estimate land surface heat fluxes. In this paper, the processes of experimental research on land surface water and heat fluxes are reviewed, and three kinds of SVAT model(single layer model, two layer model and multi-layer model) are analyzed. Remote sensing data are widely used to estimate land surface heat fluxes. Based on remote sensing and energy balance equation, different models such as simplified model, single layer model, extra resistance model, crop water stress index model and two source resistance model are developed to estimate land surface heat fluxes and evapotranspiration. These models are also analyzed in this paper.

  10. Land use effect on invertebrate assemblages in Pampasic streams (Buenos Aires, Argentina).

    PubMed

    Solis, Marina; Mugni, Hernán; Hunt, Lisa; Marrochi, Natalia; Fanelli, Silvia; Bonetto, Carlos

    2016-09-01

    Agriculture and livestock may contribute to water quality degradation in adjacent waterbodies and produce changes in the resident invertebrate composition. The objective of the present study was to assess land use effects on the stream invertebrate assemblages in rural areas of the Argentine Pampa. The four sampling events were performed at six sites in four streams of the Pampa plain; two streams were sampled inside a biosphere reserve, and another one was surrounded by extensive livestock fields. The fourth stream was sampled at three sites; the upstream site was adjacent to agricultural plots, the following site was adjacent to an intensive livestock plot and the downstream site was adjacent to extensive breeding cattle plots. Higher pesticide concentrations were found at the site adjacent to agricultural plots and higher nutrient concentrations at the sites adjacent to agricultural and intensive breeding cattle plots. The invertebrate fauna were also different at these sites. Multivariate analysis showed a relationship between nutrient concentrations and taxonomic composition. Amphipoda (Hyalella curvispina) was the dominant group in the reserve and extensive breeding cattle sites, but was not present in the agricultural site. Also, Chironomidae were absent from the agricultural site while present at other sites. Gasteropoda (Biomphalaria peregrina), Zygoptera, and Hirudinea were dominant at the most impacted agricultural and intensive breeding cattle sites. PMID:27581006

  11. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    NASA Technical Reports Server (NTRS)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  12. Coupled hydrologic and land use change models for decision making on land and water resources in the Upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Yalew, Seleshi; van der Zaag, Pieter; Mul, Marloes; Uhlenbrook, Stefan; Teferi, Ermias; van Griensven, Ann; van der Kwast, Johannes

    2013-04-01

    Hydrology of a basin, alongside climate change, is well documented to impact and to be impacted by land use/land cover change processes. The need to understand the impacts of hydrology on land use change and vice- versa cannot be overstated especially in basins such as the Upper Blue Nile in Ethiopia, where the vast majority of farmers depend on rain-fed agriculture. A slight fluctuation in rainy seasons or an increase or decrease in magnitude of precipitation can easily trigger drought or flooding. On the other hand, ever growing population and emerging economic development, among others, is likely to continually alter land use/land cover change, thereby affecting hydrological processes. With the intention of identifying and analyzing interactions and future scenarios of the hydrology and land use/land cover, we carried out a case study on a meso-scale catchment, in the Upper Blue Nile basin. A land use model using SITE (SImulation of Terrestrial Environments) was built for analyzing land use trends from aerial land cover photographs of 1957 and simulate until 2009 based on socio-economic as well as biophysical factors. Major land use drivers in the catchment were identified and used as input to the land use model. Separate land use maps were produced using Landsat images of 1972, 1986, 1994 and 2009 for historical calibration of the land use model. By the same token, a hydrological model for the same catchment was built using the SWAT (Soil and Water Assessment Tool) model. After calibration of the two independent models, they were loosely coupled for analyzing the changes in either of the models and impacts on the other. Among other details, the coupled model performed better in identifying limiting factors from both the hydrology as well as from the land use perspectives. For instance, the simulation of the uncoupled land use model alone (without inputs from SWAT on the water budget of each land use parcel) continually considered a land use type such as a wet

  13. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  14. [Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland].

    PubMed

    Cheng, Li-Ping; Liu, Wen-Zhao

    2012-03-01

    In this study, the precipitation over the Loess Tableland in Changwu County of Shaanxi Province and the soil water in 0-20 m loess profiles under different land use patterns on the Tableland were sampled, and their isotope compositions were analyzed, aimed to understand the characteristics of stable isotopes in the soil water and the mechanisms of the soil water movement. In the study area, the equation of the local meteoric water line (LMWL) was deltaD = 7.39 delta180 + 4.34 (R2 = 0.94, n = 71), and the contents of the stable isotopes in the precipitation had an obvious seasonal variation of high in winter and spring and low in summer and autumn. The contents of the stable isotopes in the soil water were fell on the underside of the LMWL, and higher than those in the precipitation from July to October, indicating that the soil water was mainly replenished by the precipitation with lower stable isotope contents in summer and autumn. In the soil profiles of different land use patterns, the stable isotope contents in soil water tended to be the same with the increasing soil depth; while under the same land use patterns, the water's stable isotope composition in shallow soil layers changed greatly with time, but changed less with increasing depth. Through the comparison of the stable isotope contents in precipitation and in soil water, it was observed that the piston flow and preferential flow on the Tableland were coexisted in the process of precipitation infiltration, and the occurrence of the preferential flow had a certain relation with land use pattern. Generally, the soil desiccation caused by the negative water balance resulted from the artificial plantations of high water consumption could reduce the probability of preferential flow occurrence, whereas the precipitation infiltration in the form of preferential flow could easily occur on the farmland or natural grassland so that the soil water in deep layers or the ground water could be replenished.

  15. Hydrologic control on water trade in dry land areas

    NASA Astrophysics Data System (ADS)

    Pande, S.

    2009-12-01

    Water resource (and agriculture) in arid/semi arid areas, especially in developing countries, is increasingly under pressure in the face of global change. While expansion of physical infrastructure such as expansion of irrigation or dam structures can help, many (such as International Monetary Fund) have emphasized introduction of other adaptive mechanisms, such as the use of financial instruments, to smooth out fluctuations in water availability (or agricultural income) caused by (even increasing) erraticity in rainfall patterns. One such mechanism is water trade, where a downstream agent makes a payment to an upstream agent for additional natural flow and if the upstream agent agrees she releases additional flow by changing her landuse pattern. However, such a mechanism is fraught with questions ranging from region to region physical and financial viability of trade in water, role of hydrology in its viability, to the challenges of implementing it in developing countries. Answers to such questions are of utmost importance if water trade is to be considered as a serious coping mechanism. This paper delves on the role that hydrology, specifically hydrologic properties, plays in viability of water trade in a region. We consider water management at basin level, each of the agents (here a ‘representative’ water use, for eg. a farmer) occupies a sub-catchment within a basin and hydrology underlying each such agent is represented by a lumped single linear reservoir model. This allows us to consider non-steady state conditions at monthly scale while calculating prices of water trade securities between contiguous agents based on partial equilibrium modeling. A novel result from this innovative approach is that equilibrium pricing of water trade depends on “effective” hydraulic conductivity of the basin as well as erraticity in rainfall. We implement and present the results for basins in Gujarat and Rajasthan, two semi-arid states in western India that are most

  16. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPERTY REAL ESTATE HANDBOOK Disposal Clearance of Explosive Hazards and Other Contamination from Proposed... the lands are entirely free of dangerous materials or other contamination. AFLC will compare...

  17. Contemporary changes of water resources, water and land use in Central Asia based on observations and modeling.

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Prousevitch, A.; Sokolik, I. N.; Lammers, R. B.

    2015-12-01

    Water is a key agent in Central Asia ultimately determining human well-being, food security, and economic development. There are complex interplays among the natural and anthropogenic drivers effecting the regional hydrological processes and water availability. Analysis of the data combined from regional censuses and remote sensing shows a decline in areas of arable and irrigated lands and a significant decrease in availability of arable and irrigated lands per capita across all Central Asian countries since the middle of 1990thas the result of post-Soviet transformation processes. This change could lead to considerable deterioration in food security and human system sustainability. The change of political situation in the region has also resulted in the escalated problems of water demand between countries in international river basins. We applied the University of New Hampshire - Water Balance Model - Transport from Anthropogenic and Natural Systems (WBM-TrANS) to understand the consequences of changes in climate, water and land use on regional hydrological processes and water availability. The model accounts for sub-pixel land cover types, glacier and snow-pack accumulation/melt across sub-pixel elevation bands, anthropogenic water use (e.g. domestic and industrial consumption, and irrigation for most of existing crop types), hydro-infrastructure for inter-basin water transfer and reservoir/dam regulations. A suite of historical climate re-analysis and temporal extrapolation of MIRCA-2000 crop structure datasets has been used in WBM-TrANS for this project. A preliminary analysis of the model simulations over the last 30 years has shown significant spatial and temporal changes in hydrology and water availability for crops and human across the region due to climatic and anthropogenic causes. We found that regional water availability is mostly impacted by changes in extents and efficiency of crop filed irrigation, especially in highly arid areas of Central Asia

  18. Extinction depth and evapotranspiration from ground water under selected land covers.

    PubMed

    Shah, Nirjhar; Nachabe, Mahmood; Ross, Mark

    2007-01-01

    In many landscapes, vegetation extracts water from both the unsaturated and the saturated zones. The partitioning of evapotranspiration (ET) into vadose zone evapotranspiration and ground water evapotranspiration (GWET) is complex because it depends on land cover and subsurface characteristics. Traditionally, the GWET fraction is assumed to decay with increasing depth to the water table (DTWT), attaining a value of 0 at what is termed the extinction depth. A simple assumption of linear decay with depth is often used but has never been rigorously examined using unsaturated-saturated flow simulations. Furthermore, it is not well understood how to relate extinction depths to characteristics of land cover and soil texture. In this work, variable saturation flow theory is used to simulate GWET for three land covers and a range of soil properties under drying soil conditions. For a water table within half a meter of the land surface, nearly all ET is extracted from ground water due to the close hydraulic connection between the unsaturated and the saturated zones. For deep-rooted vegetation, the decoupling of ground water and vadose zone was found to begin at water table depths between 30 and 100 cm, depending on the soil texture. The decline of ET with DTWT is better simulated by an exponential decay function than the commonly used linear decay. A comparison with field data is consistent with the findings of this study. Tables are provided to vary the extinction depth for heterogeneous landscapes with different vegetation cover and soil properties.

  19. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  20. Microscopic dynamics of nanoparticle monolayers at air-water interface.

    PubMed

    Bhattacharya, R; Basu, J K

    2013-04-15

    We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (Π) and isothermal compression modulus (ϵ) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Φ∼0.82. We observe non-monotonic variation in both ϵ and the dynamic heterogeneity, characterized by the dynamical susceptibility χ4 with Φ, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. PMID:23411354

  1. Land surface water cycles observed with satellite sensors

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Njoku, E. G.; Brakenridge, G. R.; Kim, Y.

    2005-01-01

    Acceleration of the global water cycle may lead to increased global precipitation, faster evaporation and a consequent exacerbation of hydrologic extreme. In the U.S. national assessment of the potential consequences of climate variability and change, two GCMs (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S. particularly during winter (Felzer and Heard, 1999). Increased precipitation potentially has important impacts on agricultural and water use in the southeast U.S. (Hatch et al., 1999) and in the central Great Plains (Nielsen, 1997). A hurricane model predicts a 40% precipitation increase for severe hurricanes affecting southeastern Florida, which provokes substantially greater flooding that could negate most of the benefits of present water-management practices in this basin (Gutowski et al., 1994). Thus, it is important to observe the hydroclimate on a continuous longterm basis to address the question of increased precipitation in the enhanced water cycle.

  2. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.

    PubMed Central

    Ginsberg, L; Gershfeld, N L

    1985-01-01

    Dispersions of dimyristoylphosphatidylcholine (DMPC) in water have been reported to form a structure at 29 degrees C at the equilibrium air/water surface with a molecular density equal to that of a typical bilayer. In this study, the water permeability of this structure has been evaluated by measuring the rate of water evaporation from DMPC dispersions in water in the temperature range where the surface film density exceeds that of a monolayer. Evaporation rates for the lipid dispersions did not deviate from those for lipid-free systems throughout the entire temperature range examined (20-35 degrees C) except at 29 degrees C, where a barrier to evaporation was detected. This strengthens the view that the structure that forms at this temperature has the properties of a typical bilayer. PMID:3978199

  3. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    A simple model of large-scale land (continental) water and energy balances is presented. The model is an extension of an earlier scheme with a record of successful application in climate modeling. The most important changes from the original model include 1) introduction of non-water-stressed stomatal control of transpiration, in order to correct a tendency toward excessive evaporation: 2) conversion from globally constant parameters (with the exception of vegetation-dependent snow-free surface albedo) to more complete vegetation and soil dependence of all parameters, in order to provide more realistic representation of geographic variations in water and energy balances and to enable model-based investigations of land-cover change; 3) introduction of soil sensible heat storage and transport, in order to move toward realistic diurnal-cycle modeling; 4) a groundwater (saturated-zone) storage reservoir, in order to provide more realistic temporal variability of runoff; and 5) a rudimentary runoff-routing scheme for delivery of runoff to the ocean, in order to provide realistic freshwater forcing of the ocean general circulation model component of a global climate model. The new model is tested with forcing from the International Satellite Land Surface Climatology Project Initiative I global dataset and a recently produced observation-based water-balance dataset for major river basins of the world. Model performance is evaluated by comparing computed and observed runoff ratios from many major river basins of the world. Special attention is given to distinguishing between two components of the apparent runoff ratio error: the part due to intrinsic model error and the part due to errors in the assumed precipitation forcing. The pattern of discrepancies between modeled and observed runoff ratios is consistent with results from a companion study of precipitation estimation errors. The new model is tuned by adjustment of a globally constant scale factor for non-water

  4. Effects of Urban Land Forcing on Local and Downwind Air Quality, a Case Study for East Asia

    NASA Astrophysics Data System (ADS)

    Wei, T.; Liu, J.; Ban-Weiss, G. A.

    2015-12-01

    Urban land surfaces are distinct from natural surfaces as their unique radiative, thermal, hydrologic and aerodynamic properties. In this study, we have investigated the response of a range of meteorological and air quality indicators to urban land expansion based on the Weather Research and Forecasting model coupled with chemistry (WRF/Chem). Specifically, we simulate the climate and air quality impacts of four hypothetical urbanization scenarios during the month of July from 2008 to 2012 over eastern China, a region experiencing the fastest urbanization. We find that as urban land expanses, though emissions are held constant, concentrations of CO, elemental carbon (EC), and PM2.5 tend to decrease near the surface (below ~500 m), but increase at higher altitudes (1-3 km), resulting in a reduced vertical concentration gradient. On the contrary, the O3 burden averaged over all newly urbanized grid cells consistently increases from the surface to a height of about 4 km. The responses of pollutant concentrations to the spatial extent of urbanization are linear near the surface, but nonlinear (or intensified) at higher altitudes. The perturbations in boundary layer height, 2-m temperature and 2-m relative humidity also increase linearly with the spatial extent of urban land expansion (R2 >0.96). Our work indicates that as large tracts of new urban land emerge, the influence of urban expansion on meteorology and air pollution would be significantly amplified. An improved integrated process rate (IPR) analysis scheme is implemented in WRF/Chem to investigate the non-negligible and unique role of urban land forcing in impacting the advection, turbulent mixing, and dry/wet removal of pollutants. IPR indicates that, for primary pollutants, the enhanced sink (source) caused by turbulent mixing and vertical advection in the lower (upper) atmosphere could be a key factor in changes to simulated vertical profiles. The evolution of secondary pollutants is further largely

  5. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  6. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  7. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  8. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  9. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  10. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  11. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water...

  12. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  13. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  14. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean...

  15. Remote sensing of land use and water quality relationships - Wisconsin shore, Lake Michigan

    NASA Technical Reports Server (NTRS)

    Haugen, R. K.; Marlar, T. L.

    1976-01-01

    This investigation assessed the utility of remote sensing techniques in the study of land use-water quality relationships in an east central Wisconsin test area. The following types of aerial imagery were evaluated: high altitude (60,000 ft) color, color infrared, multispectral black and white, and thermal; low altitude (less than 5000 ft) color infrared, multispectral black and white, thermal, and passive microwave. A non-imaging hand-held four-band radiometer was evaluated for utility in providing data on suspended sediment concentrations. Land use analysis includes the development of mapping and quantification methods to obtain baseline data for comparison to water quality variables. Suspended sediment loads in streams, determined from water samples, were related to land use differences and soil types in three major watersheds. A multiple correlation coefficient R of 0.85 was obtained for the relationship between the 0.6-0.7 micrometer incident and reflected radiation data from the hand-held radiometer and concurrent ground measurements of suspended solids in streams. Applications of the methods and baseline data developed in this investigation include: mapping and quantification of land use; input to watershed runoff models; estimation of effects of land use changes on stream sedimentation; and remote sensing of suspended sediment content of streams. High altitude color infrared imagery was found to be the most acceptable remote sensing technique for the mapping and measurement of land use types.

  16. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  17. Cruise-Efficient Short Takeoff and Landing (CESTOL): Potential Impact on Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Couluris, G. J.; Signor, D.; Phillips, J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is investigating technological and operational concepts for introducing Cruise-Efficient Short Takeoff and Landing (CESTOL) aircraft into a future US National Airspace System (NAS) civil aviation environment. CESTOL is an aircraft design concept for future use to increase capacity and reduce emissions. CESTOL provides very flexible takeoff, climb, descent and landing performance capabilities and a high-speed cruise capability. In support of NASA, this study is a preliminary examination of the potential operational impact of CESTOL on airport and airspace capacity and delay. The study examines operational impacts at a subject site, Newark Liberty Intemational Airport (KEWR), New Jersey. The study extends these KEWR results to estimate potential impacts on NAS-wide network traffic operations due to the introduction of CESTOL at selected major airports. These are the 34 domestic airports identified in the Federal Aviation Administration's Operational Evolution Plan (OEP). The analysis process uses two fast-time simulation tools to separately model local and NAS-wide air traffic operations using predicted flight schedules for a 24-hour study period in 2016. These tools are the Sen sis AvTerminal model and NASA's Airspace Concept Evaluation System (ACES). We use both to simulate conventional-aircraft-only and CESTOL-mixed-with-conventional-aircraft operations. Both tools apply 4-dimension trajectory modeling to simulate individual flight movement. The study applies AvTerminal to model traffic operations and procedures for en route and terminal arrival and departures to and from KEWR. These AvTerminal applications model existing arrival and departure routes and profiles and runway use configurations, with the assumption jet-powered, large-sized civil CESTOL aircraft use a short runway and standard turboprop arrival and departure procedures. With these rules, the conventional jet and CESTOL aircraft are procedurally

  18. Cost analysis of water and sediment diversions to optimize land building in the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Kenney, Melissa A.; Hobbs, Benjamin F.; Mohrig, David; Huang, Hongtai; Nittrouer, Jeffrey A.; Kim, Wonsuck; Parker, Gary

    2013-06-01

    Land loss in the Mississippi River delta caused by subsidence and erosion has resulted in habitat loss and increased exposure of settled areas to storm surge risks. There is debate over the most cost-efficient and geomorphologically feasible projects to build land by river diversions, namely, whether a larger number of small, or a lesser number of large, engineered diversions provide the most efficient outcomes. This study uses an optimization framework to identify portfolios of diversions that are efficient for three general restoration objectives: maximize land built, minimize cost, and minimize water diverted. The framework links the following models: (1) a hydraulic water and sediment diversion model that, for a given structural design for a diversion, estimates the volume of water and sediment diverted; (2) a geomorphological land-building model that estimates the amount of land built over a time period, given the volume of water and sediment; and (3) a statistical model of investment cost as a function of diversion depth and width. An efficient portfolio is found by optimizing one objective subject to constraints on achievement of the other two; then by permuting those constraints, we find distinct portfolios that represent trade-offs among the objectives. Although the analysis explores generic relationships among size, cost, and land building (and thus does not consider specific project proposals or locations), the results demonstrate that large-scale land building (>200 km2) programs that operate over a time span of 50 years require deep diversions because of the enhanced efficiency of sand extraction per unit water. This conclusion applies whether or not there are significant scale economies or diseconomies associated with wider and deeper diversions.

  19. Effects of future climate and land use scenarios on riverine source water quality.

    PubMed

    Delpla, Ianis; Rodriguez, Manuel J

    2014-09-15

    Surface water quality is particularly sensitive to land use practices and climatic events that affect its catchment. The relative influence of a set of watershed characteristics (climate, land use, morphology and pedology) and climatic variables on two key water quality parameters (turbidity and fecal coliforms (FC)) was examined in 24 eastern Canadian catchments at various spatial scales (1 km, 5 km, 10 km and the entire catchment). A regression analysis revealed that the entire catchment was a better predictor of water quality. Based on this information, linear mixed effect models for predicting turbidity and FC levels were developed. A set of land use and climate scenarios was considered and applied within the water quality models. Four land use scenarios (no change, same rate of variation, optimistic and pessimistic) and three climate change scenarios (B1, A1B and A2) were tested and variations for the near future (2025) were assessed and compared to the reference period (2000). Climate change impacts on water quality remained low annually for this time horizon (turbidity: +1.5%, FC: +1.6%, A2 scenario). On the other hand, the influence of land use changes appeared to predominate. Significant benefits for both parameters could be expected following the optimistic scenario (turbidity: -16.4%, FC: -6.3%; p < 0.05). However, pessimistic land use scenario led to significant increases on an annual basis (turbidity: +11.6%, FC: +15.2%; p < 0.05). Additional simulations conducted for the late 21st century (2090) revealed that climate change impacts could become equivalent to those modeled for land use for this horizon.

  20. The aesthetics of water and land: a promising concept for managing scarce water resources under climate change.

    PubMed

    Tielbörger, Katja; Fleischer, Aliza; Menzel, Lucas; Metz, Johannes; Sternberg, Marcelo

    2010-11-28

    The eastern Mediterranean faces a severe water crisis: water supply decreases due to climate change, while demand increases due to rapid population growth. The GLOWA Jordan River project generates science-based management strategies for maximizing water productivity under global climate change. We use a novel definition of water productivity as the full range of services provided by landscapes per unit blue (surface) and green (in plants and soil) water. Our combined results from climatological, ecological, economic and hydrological studies suggest that, in Israel, certain landscapes provide high returns as ecosystem services for little input of additional blue water. Specifically, cultural services such as recreation may by far exceed that of food production. Interestingly, some highly valued landscapes (e.g. rangeland) appear resistant to climate change, making them an ideal candidate for adaptive land management. Vice versa, expanding irrigated agriculture is unlikely to be sustainable under global climate change. We advocate the inclusion of a large range of ecosystem services into integrated land and water resources management. The focus on cultural services and integration of irrigation demand will lead to entirely different but productive water and land allocation schemes that may be suitable for withstanding the problems caused by climate change.

  1. Relay cropping for improved air and water quality.

    PubMed

    Schepers, James S; Francis, Dennis D; Shanahan, John F

    2005-01-01

    Using plants to extract excess nitrate from soil is important in protecting against eutrophication of standing water, hypoxic conditions in lakes and oceans, or elevated nitrate concentrations in domestic water supplies Global climate change issues have raised new concerns about nitrogen (N) management as it relates to crop production even though there may not be an immediate threat to water quality. Carbon dioxide (CO2) emissions are frequently considered the primary cause of global climate change, but under anaerobic conditions, animals can contribute by expelling methane (CH4) as do soil microbes. In terms of the potential for global climate change, CH4 is approximately 25 times more harmful than CO2. This differential effect is minuscule compared to when nitrous oxide (N2O) is released into the atmosphere because it is approximately 300 times more harmful than CO2. N2O losses from soil have been positively correlated with residual N (nitrate, NO3-) concentrations in soil. It stands to reason that phytoremediation via nitrate scavenger crops is one approach to help protect air quality, as well as soil and water quality. Winter wheat was inserted into a seed corn/soybean rotation to utilize soil nitrate and thereby reduce the potential for nitrate leaching and N2O emissions. The net effect of the 2001-2003 relay cropping sequence was to produce three crops in two years, scavenge 130 kg N/ha from the root zone, produce an extra 2 Mg residue/ha, and increase producer profitability by approximately 250 dollars/ha. PMID:15948582

  2. Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling.

    NASA Astrophysics Data System (ADS)

    Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.

    2004-10-01

    A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.


  3. Effects of land use on quality of water in stratified-drift aquifers in Connecticut

    USGS Publications Warehouse

    Grady, Stephen J.

    1994-01-01

    Human activities associated with agricultural, residential, commercial, and industrial land uses have affected the quality of water in the four stratified-drift aquifers examined in Connecticut. A study to evaluate quantitatively the effects of human activities, expressed as land use, on regional ground-water quality was initiated in 1984 as part of the U.S. Geological Survey's Toxic Waste-round-Water Contamination Program. Water-quality data were collected from 116 shallow stainless-steel wells installed beneath or immediately downgradient from seven types of land use areas within the Pootatuck, Pomperaug, Farmington, and Hockanum River valleys in Connecticut. Analysis of variance on the ranked concentrations of 21 largely uncensored or slightly censored constituents, and contingency-table analysis of the frequency of detection of 49 moderately to highly censored constituents indicate that 27 water-quality variables differ at the 0.05 level of significance for samples from at least one land use area. For most constituents, concentrations or detection frequencies are lowest in samples from the undeveloped areas, which characterize background water-quality conditions. The effect of agricultural land use on groundwater quality reflects tillage practices; tilled areas affect the water quality to a greater degree than do untilled areas. Twenty percent of the wells in the tilled agricultural areas yielded water with concentrations of nitrate plus nitrite-nitrogen exceeding 10 milligrams per liter. Atrazine detections in one-third of the wells in areas of tilled agricultural land use were significantly more common than in the undeveloped areas. Ground-water quality beneath sewered residential areas is more severely affected by inorganic and organic nonpoint-source contaminants than is water quality beneath unsewered residential areas. Median concentrations or detection frequencies of most physical properties and inorganic constituents of ground water are higher in

  4. Impact of Land-use Dynamics on Water Resources of Upper Kharun Catchment (UKC), India

    NASA Astrophysics Data System (ADS)

    Kumar, N.

    2015-12-01

    Land-use and its spatial pattern and dynamics strongly influence water resources and demand which are the crucial elements to be considered in water management. The core of integrated water resources management consists of coordinating water supply and demand in a given socio-economic-ecological context and guided by a set of objectives (for example: sustainability, equity, impact awareness, stakeholder involvement). Fulfilling the coordinating function requires reliable information on the water balance components today and future developments which are under the strong influence of land-use dynamics. The information needs to be gained by simulation runs based on hydrological modeling tools with high resolution input regarding land-use (and further features of the basin relevant to runoff generation and precipitation). This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal land-use mapping that considers and integrates the intra annual variation within a single map and hence better represents an area with different level of urbanization and multiple crop rotations. Due to its relevant impact on the water balance special attention is paid to aspects of irrigation. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the respective parts of the study area. On the UKC scale, the impact of land-use change on the water balance until 2021 is small. However, the impact on water resources is clearly visible and significant at sub-catchment level (increase: surface runoff; decrease: percolation; decrease: groundwater contribution to streamflow and increase: actual evapotranspiration), where expanding urban areas and intensification of

  5. Introduction to special section on impacts of land use change on water resources

    USGS Publications Warehouse

    Stonestrom, D.A.; Scanlon, B.R.; Zhang, L.

    2009-01-01

    Changes in land use have potentially large impacts on water resources, yet quantifying these impacts remains among the more challenging problems in hydrology. Water, food, energy, and climate are linked through complex webs of direct and indirect effects and feedbacks. Land use is undergoing major changes due not only to pressures for more efficient food, feed, and fiber production to support growing populations but also due to policy shifts that are creating markets for biofuel and agricultural carbon sequestration. Hydrologic systems embody flows of water, solutes, sediments, and energy that vary even in the absence of human activity. Understanding land use impacts thus necessitates integrated scientific approaches. Field measurements, remote sensing, and modeling studies are shedding new light on the modes and mechanisms by which land use changes impact water resources. Such studies can help deconflate the interconnected influences of human actions and natural variations on the quantity and quality of soil water, surface water, and groundwater, past, present, and future. Copyright 2009 by the American Geophysical Union.

  6. [Relationships between river water quality and land use type at watershed scale].

    PubMed

    Yang, Sha-Sha; Tang, Cui-Wen; Liu, Li-Juan; Li, Xiao-Yu; Ye, Yin

    2013-07-01

    Based on the remote sensing images of 54 water quality monitoring stations within the Suzi River watershed, the riparian buffer zones at 6 scales were constructed by ArcGIS, and the 8 landscape indices at landscape and class levels were calculated with FRAGSTATS software. A correlation analysis on the landscape indices and river water quality was made from the viewpoints of landscape space pattern and composition. In the watershed, the landscape pattern in different riparian buffer zones had different effects on the river water quality. When the distance of the buffer zones was less than 300 m, the main landscape types were dry land, construction land, and paddy filed, and their area ratio, patch number, patch density, maximum patch index, maximum shape index, and aggregation index were higher. In these buffer zones, farmlands had higher connectedness, and thus, had greater effects on the river water quality. When the distance of the buffer zones was more than 300 m, forest land had a larger area ratio and a higher connectedness, which would benefit the improvement of river water quality to some extent. In the watershed, farmland and construction land played a key role in affecting the river water quality.

  7. The Public Discourse about Land Use and Water Quality: Themes in Newspapers in the Upper Mississippi River Basin

    ERIC Educational Resources Information Center

    Schmid, Andrea N.; Thompson, Jan R.; Bengston, David N.

    2007-01-01

    Effective educational and management programs to improve water quality will require an improved understanding of public perceptions of the relationship between land use and water quality. We analyzed a large database of newspaper articles in the Upper Mississippi River Basin to assess the public discourse about water quality and land use, and…

  8. Thermoregulation of pregnant women during aerobic exercise on land and in the water.

    PubMed

    McMurray, R G; Katz, V L; Meyer-Goodwin, W E; Cefalo, R C

    1993-03-01

    Seven women in their 25th week of pregnancy exercised for 20 minutes on a cycle ergometer at 70% of their maximal heart rate on land and in the water (30 degrees C) to compare thermoregulatory responses. Rectal temperatures increased 0.5 +/- 0.1 degrees C during the land trial and only 0.2 +/- 0.1 degrees C during the water trial (p < 0.05). Mean body temperature rose 0.6 +/- 0.2 degrees C during the land trial, but declined -0.3 +/- 0.1 degrees C during the water trials (p < 0.05). Land exercise caused greater heat storage and sweat loss. The results suggest that normal pregnant women can maintain thermal balance during 20 minutes of exercise at 70% maximal heart rate, whether on land or in the water. Thus, for normal, average fit, pregnant women who wish to participate in a moderate exercise program, heat stress is probably not a major concern.

  9. [Characteristics of Caragana microphylla sap flow and water consumption under different weather conditions on Horqin sandy land of northeast China].

    PubMed

    Yue, Guang-Yang; Zhao, Ha-Lin; Zhang, Tong-Hui; Yun, Jian-Ying; Niu, Li; He, Yu-Hui

    2007-10-01

    Employing heat balance Dynamax packaged sap flow measuring system and automatic weather recording system, the sap flow of artificial Caragana microphylla community on Horqin sandy land of northeast China was monitored consecutively in 2006, and the photosynthetically effective radiation, air temperature, relative humidity and wind velocity were measured synchronously. According to the manual records of weather conditions, four most representative weather conditions were gathered up to analyze the relationships of C. microphylla sap flow and its single branch water consumption with test meteorological factors. The results showed that under high air temperature and intense radiation on sunny days, the diurnal variation of C. microphylla sap flow appeared a broad peak curve, so as to adapt the circumstance of drought and water shortage via lower transpiration. The diurnal variations of sap flow and its dominant affecting factors differed with weather conditions, and photosynthetically effective radiation was always the dominant factor affecting the sap flow. The variation of the sap flow was the result of comprehensive effects of multi-meteorological factors, and the overall variation trend of water consumption of single branch was declined in the order of sunny days > cloudy days > windy days > rainy days, with the mean value being 459, 310, 281 and 193 mg x d(-1), respectively.

  10. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    NASA Astrophysics Data System (ADS)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of

  11. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.

    PubMed

    Viau, Emily J; Goodwin, Kelly D; Yamahara, Kevan M; Layton, Blythe A; Sassoubre, Lauren M; Burns, Siobhán L; Tong, Hsin-I; Wong, Simon H C; Lu, Yuanan; Boehm, Alexandria B

    2011-05-01

    This work aimed to understand the distribution of five bacterial pathogens in O'ahu coastal streams and relate their presence to microbial indicator concentrations, land cover of the surrounding watersheds, and physical-chemical measures of stream water quality. Twenty-two streams were sampled four times (in December and March, before sunrise and at high noon) to capture seasonal and time of day variation. Salmonella, Campylobacter, Staphylococcus aureus, Vibrio vulnificus, and V. parahaemolyticus were widespread -12 of 22 O'ahu streams had all five pathogens. All stream waters also had detectable concentrations of four fecal indicators and total vibrio with log mean ± standard deviation densities of 2.2 ± 0.8 enterococci, 2.7 ± 0.7 Escherichia coli, 1.1 ± 0.7 Clostridium perfringens, 1.2 ± 0.8 F(+) coliphages, and 3.6 ± 0.7 total vibrio per 100 ml. Bivariate associations between pathogens and indicators showed enterococci positively associated with the greatest number of bacterial pathogens. Higher concentrations of enterococci and higher incidence of Campylobacter were found in stream waters collected before sunrise, suggesting these organisms are sensitive to sunlight. Multivariate regression models of microbes as a function of land cover and physical-chemical water quality showed positive associations between Salmonella and agricultural and forested land covers, and between S. aureus and urban and agricultural land covers; these results suggested that sources specific to those land covers may contribute these pathogens to streams. Further, significant associations between some microbial targets and physical-chemical stream water quality (i.e., temperature, nutrients, turbidity) suggested that organism persistence may be affected by stream characteristics. Results implicate streams as a source of pathogens to coastal waters. Future work is recommended to determine infectious risks of recreational waterborne illness related to O'ahu stream exposures and to

  12. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  13. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.

  14. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  15. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  16. Water Footprints of Cellulosic Bioenergy Crops: Implications for Production on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Bhardwaj, A. K.; Basso, B.; Abraha, M. G.; Robertson, G. P.

    2014-12-01

    Water availability often limits crop production, even in relatively humid climates, and crops vary in their water demand and water use efficiency. Crop production for biofuel (ethanol or biodiesel) offers an alternative to fossil energy sources but requires large amounts of land, and is therefore a more viable option if such crops could be produced on marginal lands that often have soils of poor water-holding capacity. The selection of an appropriate crop requires information on its water demand, water use efficiency, and drought tolerance, but such information is incompletely available for the suite of cellulosic biofuel crops currently under consideration. This study analyzed soil moisture profiles (time-domain reflectometry) to estimate evapotranspiration and water use efficiency of three leading candidate crops for cellulosic bioenergy production (switchgrass, Miscanthus, and maize) grown in a relatively humid climate (Midwestern United States) over four years (2010-13). These field observations of water use by these annual and perennial crops reveal their water use efficiency for biomass and biofuel production. Total growing season water use was remarkably consistent among crops and across years of varying soil water availability, including very favorable precipitation years as well as a drought year (2012). Water use efficiency was more variable and, for maize, depends on whether the maize serves for both grain and cellulosic biofuel production.

  17. Effects of land use and hydrogeology on the water quality of alluvial aquifers in eastern Iowa and southern Minnesota, 1997

    USGS Publications Warehouse

    Savoca, Mark E.; Sadorf, Eric M.; Linhart, S. Mike; Akers, Kim K.B.

    2000-01-01

    Factors other than land use may contribute to observed differences in water quality between and within agricultural and urban areas. Nitrate, atrazine, deethylatrazine, and deisopropylatrazine concentrations were signi

  18. Relation of Shallow Water Quality in the Central Oklahoma Aquifer to Geology, Soils, and Land Use

    USGS Publications Warehouse

    Rea, Alan H.; Christenson, Scott C.; Andrews, William J.

    2001-01-01

    The purpose of this report is to identify, describe, and explain relations between natural and land-use factors and ground-water quality in the Central Oklahoma aquifer NAWQA study unit. Natural factors compared to water quality included the geologic unit in which the sampled wells were completed and the properties of soils in the areas surrounding the wells. Land-use factors included types of land use and population densities surrounding sampled wells. Ground-water quality was characterized by concentrations of inorganic constituents, and by frequencies of detection of volatile organic compounds and pesticides. Water-quality data were from samples collected from wells 91 meters (300 feet) or less in depth as part of Permian and Quaternary geologic unit survey networks and from an urban survey network. Concentrations of many inorganic constituents were significantly related to geology. In addition, concentrations of many inorganic constituents were greater in water from wells from the Oklahoma City urban sampling network than in water from wells from low-density survey networks designed to evaluate ambient water quality in the Central Oklahoma aquifer study unit. However, sampling bias may have been induced by differences in hydrogeologic factors between sampling networks, limiting the ability to determine land-use effects on concentrations of inorganic constituents. Frequencies of detection of pesticide and volatile organic compounds (VOC's) in ground-water samples were related to land use and population density, with these compounds being more frequently detected in densely-populated areas. Geology and soil properties were not significantly correlated to pesticide or VOC occurrence in ground water. Lesser frequencies of detection of pesticides in water from wells in rural areas may be due to low to moderate use of those compounds on agricultural lands in the study unit, with livestock production being the primary agricultural activity. There are many possible

  19. Stable isotope composition of land snail body water and its relation to environmental waters and shell carbonate

    SciTech Connect

    Goodfriend, G.A.; Magaritz, M.; Gat, J.R. )

    1989-12-01

    Day-to-day and within-day (diel) variations in {delta}D and {delta}{sup 18}O of the body water of the land snail, Theba pisana, were studied at a site in the southern coastal plain of Israel. Three phases of variation, which relate to isotopic changes in atmospheric water vapor, were distinguished. The isotopic variations can be explained by isotopic equilibration with atmospheric water vapor and/or uptake of dew derived therefrom. During the winter, when the snails are active, there is only very minor enrichment in {sup 18}O relative to equilibrium with water vapor or dew, apparently as a result of metabolic activity. But this enrichment becomes pronounced after long periods of inactivity. Within-day variation in body water isotopic composition is minor on non-rain days. Shell carbonate is enriched in {sup 18}O by ca. 1-2% relative to equilibrium with body water. In most regions, the isotopic composition of atmospheric water vapor (or dew) is a direct function of that of rain. Because the isotopic composition of snail body water is related to that of atmospheric water vapor and the isotopic composition of shell carbonate in turn is related to that of body water, land snail shell carbonate {sup 18}O should provide a reliable indication of rainfall {sup 18}O. However, local environmental conditions and the ecological properties of the snail species must be taken into account.

  20. Estimation of land subsidence caused by loss of smectite-interlayer water in shallow aquifer systems

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Wuing; Lin, Wen-Sheng; Cheng, Li-Hsin

    2006-04-01

    Traditionally, land subsidence that results from groundwater over-pumping has often been described by the theory of consolidation. The mechanism of land subsidence due to the dehydration of clay minerals is not well addressed. A model of the “hydration state of smectite”, and a “solid solution model of smectite dehydration”, incorporating a thermodynamic solid solution model and laboratory results concerning clay-water systems of swelling pressure, hydration state and basal spacing in smectite interlayer, are employed to examine the effect of the release of water from the smectite interlayer on land subsidence in the coastal area of the Chou-Shui River alluvial fan and the Yun Lin offshore industrial infrastructure complex in Taiwan. The results indicate that 9.56-22.80% of the total cumulative land subsidence to a depth of 300 m is consistent with smectite dehydration following the over-pumping of groundwater. This dehydration-related land subsidence occurred to a depth of 0-60 m, with subsidence due to smectite dehydration accounting for 6.20-13.32% of the primary consolidation. Additionally, the total amount of subsidence resulting from both smectite dehydration and primary consolidation is consistent with the subsidence observed in the field. This study reveals that smectite dehydration appears to be important in assessing and predicting land subsidence in shallow aquifer systems.