Science.gov

Sample records for air launch carrier

  1. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  2. The Crossbow Air Launch Trade Space

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.; Sorensen, Kirk F.

    2006-01-01

    Effective air launching of a rocket is approached from a broad systems engineering viewpoint. The elementary reasons for why and how a rocket might be launched from a carrier aircraft are examined. From this, a carefully crafted set of guiding principles is presented. Rules are generated from a fundamental foundation, derived from NASA systems study analyses and from an academic vantage point. The Appendix includes the derivation of a revised Mass Multiplier Equation, useful in understanding the rocket equation as it applies to real vehicles, without the need of complicated weight and sizing programs. The rationale for air launching, being an enormously advantageous Earth-To-Orbit (ETO) methodology, is presented along with the realization that the appropriate air launch solution may lie in a very large class of carrier aircraft; the pod-hauler. Finally, a unique area of the system trade space is defined and branded Crossbow. Crossbow is not a specific hardware design for air launch, but represents a comprehensive vision for commercial, military and space transportation. This document serves as a starting point for future technical papers that evaluate the air launch hypotheses and assertions produced during the past several years of study on the subject.

  3. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  4. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  5. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  6. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  7. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  8. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  9. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  10. 14 CFR Section 04 - Air Carrier Groupings

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air Carrier Groupings Section 04 Section 04... REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Section 04 Air Carrier Groupings (a) All large certificated air carriers are placed into three basic air carrier groupings...

  11. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  12. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  13. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  14. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  15. 29 CFR 1202.13 - Air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Air carriers. 1202.13 Section 1202.13 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.13 Air carriers. By the... carrier by air engaged in interstate or foreign commerce, and every carrier by air transporting mail...

  16. 14 CFR 240.2 - Obligation of air carriers, foreign air carriers, and ticket agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Obligation of air carriers, foreign air carriers, and ticket agents. 240.2 Section 240.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... § 240.2 Obligation of air carriers, foreign air carriers, and ticket agents. Upon the demand of...

  17. 14 CFR 240.2 - Obligation of air carriers, foreign air carriers, and ticket agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Obligation of air carriers, foreign air carriers, and ticket agents. 240.2 Section 240.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT... § 240.2 Obligation of air carriers, foreign air carriers, and ticket agents. Upon the demand of...

  18. Overview of the Pegasus Air-Launched Space Booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.

    1989-09-01

    The Pegasus Air-Launched Space Booster is an innovative new space launch vehicle now under full-scale development in a privately-funded joint venture by Orbital Sciences Corporation (OSC) and Hercules Aerospace Company. Pegasus is a three-stage, solid-propellant, inertially-guided, all-composite winged vehicle that is launched at an altitude of 40,000 ft from its carrier aircraft. The 41,000 lb vehicle can deliver payloads as massive as 900 lb to low earth orbit. This status report on the Pegasus developemt program first details the advantages of the airborne launch concept, then describes the design and performance of the Pegasus vehicle and conlcludes with a review of the progress of the program from its conception in April 1987 through September 1989. First launch of Pegasus is scheduled for October 31, 1989, under contract to the Defense Advanced Research Projects Agency (DARPA). The second flight under the DARPA contract will be held several months later.

  19. 14 CFR 380.11 - Payment to direct air carrier(s).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... carrier(s). Except for air taxi operators and commuter air carriers (which are governed by 14 CFR 298.38) and Canadian charter air taxi operators (which are governed by 14 CFR 294.32), the direct air...

  20. NASA Dryden Towed Glider Air-Launch Concept

    NASA Video Gallery

    NASA Dryden Flight Research Center is developing a novel space access, rocket launching technique called the Towed Glider Air-Launch Concept. The idea is to build a relatively inexpensive, remotely...

  1. Optimal air-breathing launch vehicle design

    NASA Technical Reports Server (NTRS)

    Hattis, P. D.

    1981-01-01

    A generalized two-point boundary problem methodology, similar to techniques used in deterministic optimal control studies, is applied to the design and flight analysis of a two-stage air-breathing launch vehicle. Simultaneous consideration is given to configuration and trajectory by treating geometry, dynamic discontinuities, and time-dependent flight variables all as controls to be optimized with respect to a single mathematical performance measure. While minimizing fuel consumption, inequality constraints are applied to dynamic pressure and specific force. The optimal system fuel consumption and staging Mach number are found to vary little with changes in the inequality constraints due to substantial geometry and trajectory adjustments. Staging, from an air-breathing first stage to a rocket-powered second stage, consistently occurs near Mach 3.5. The dynamic pressure bound has its most pronounced effects on vehicle geometry, particularly the air-breathing propulsion inlet area, and on the first-stage altitude profile. The specific force has its greatest influence on the second-stage thrust history.

  2. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  3. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  5. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  6. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  7. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply...

  8. 14 CFR 04 - Air Carrier Groupings

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air Carrier Groupings Section 04 Section Section 04 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION..., Office of Airline Information, to assure the maintenance of appropriate standards for the grouping...

  9. Low Earth Orbit Raider (LER) winged air launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn

    1989-01-01

    The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.

  10. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan D.

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there exists a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a pointof- departure configuration, two independent design actions were undertaken. Both designs utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight propellant loading scenario. Results indicate many advantages such as payload delivery of approximately 47,000 lbm and significant mission flexibility including variable launch site inclination and launch window. However, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  11. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there existed a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a point-of-departure configuration, two independent design actions were undertaken. Both configurations utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V (?V) splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight refueling scenario. Results indicate many advantages such as large, relative payload delivery of approximately 47,000 lbm and significant mission flexibility, such as variable launch site inclination and launch window; however, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  12. 48. DETAIL VIEW OF AIR VENT AT 'CATFISH' LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. DETAIL VIEW OF AIR VENT AT 'CATFISH' LAUNCH PAD Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  13. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  14. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  15. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  16. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  17. 14 CFR 296.3 - Indirect cargo air carrier.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Indirect cargo air carrier. 296.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.3 Indirect cargo air carrier. An indirect cargo air carrier is any U.S. citizen who undertakes to engage indirectly in...

  18. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  19. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  20. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  1. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  2. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  3. Analysis and optimization of an air-launch-to-orbit separation

    NASA Astrophysics Data System (ADS)

    Sohier, Henri; Piet-Lahanier, Helene; Farges, Jean-Loup

    2015-03-01

    In an air-launch-to-orbit, a space rocket is launched from a carrier aircraft. Air-launch-to-orbit appears as particularly interesting for nano- and microsatellites which are generally launched as secondary loads, that is, placed in the conventional launch vehicle's payload section with a larger primary satellite. In an air-launch-to-orbit, a small satellite can be launched alone as a primary load, away from a carrier aircraft, aboard a smaller rocket vehicle, and in doing so, benefit from more flexible dates and trajectories. One of the most important phases of the mission is the separation between the carrier aircraft and the space rocket. A flight simulator including a large number of factors of uncertainties has been especially developed to study the separation, and a safety criteria has been defined with respect to store collision avoidance. It is used for a sensitivity analysis and an optimization of the possible trajectories. The sensitivity analysis first requires a screening method to select unessential factors that can be held constant. The Morris method is amongst the most popular screening methods. It requires limited calculations, but may result in keeping constant an essential factor which would greatly affect the results of the sensitivity analysis. This paper shows that this risk can be important in spite of recent improvements of the Morris method. It presents an adaptation of this method which divides this risk by a factor of ten on a standard test function. It is based on the maximum of the elementary effects instead of their average. The method focuses the calculations on the factors with a low impact, checking the convergence of this set of factors, and uses two different factor variations instead of one. This adaptation of the Morris method is used to limit the amount of the air-launch-to-orbit simulations and simplify the uncertainty domain for analysis by Sobol's method. The aerodynamic perturbations due to wind, the parameters defining the

  4. Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Martinovic, Zoran

    2009-01-01

    The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.

  5. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  6. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoking ban: air carriers. 252.3 Section... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air carriers shall prohibit smoking on all scheduled passenger flights....

  7. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  8. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  9. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoking ban: foreign air carriers. 252.5... PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers. (a) Foreign air carriers shall prohibit smoking on all scheduled passenger flight segments: (1) Between...

  10. Project MAKS air-launched spaceplane

    NASA Astrophysics Data System (ADS)

    Skorodelov, V. A.

    1992-01-01

    The U.S. Space Shuttle and the U.S.S.R. Buran are large spacecraft that are designed to carry large payloads. Obviously, these powerful, expensive systems are no good for tasks that require taking small to medium sized cargoes to and from orbit. Such tasks need a reusable, orbital airplane that has a smaller cargo capacity and costs less to operate. A design involving a multipurpose aerospace system, called by its developers MAKS, satisfies those requirements entirely. The Spiral-Buran-MAKS represents a coherent, continuous chain of designs involving reusable space transportation systems. It is a two-stage complex in which the modified AN-225 Mriya carrier aircraft is employed as the first reusable stage. The second stage consists of the reusable orbital airplane and an expendable external fuel tank filled with fuel for the sustainer engines of the orbiter.

  11. 14 CFR 158.65 - Reporting requirements: Collecting air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Reporting, Recordkeeping and Audits § 158.65 Reporting requirements: Collecting air carriers. (a) Each air carrier collecting PFCs for a public... carrier and airport involved, (ii) The total PFC revenue collected, (iii) The total PFC revenue...

  12. 14 CFR 158.65 - Reporting requirements: Collecting air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Reporting, Recordkeeping and Audits § 158.65 Reporting requirements: Collecting air carriers. (a) Each air carrier collecting PFCs for a public... carrier and airport involved, (ii) The total PFC revenue collected, (iii) The total PFC revenue...

  13. 14 CFR 158.65 - Reporting requirements: Collecting air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Reporting, Recordkeeping and Audits § 158.65 Reporting requirements: Collecting air carriers. (a) Each air carrier collecting PFCs for a public... carrier and airport involved, (ii) The total PFC revenue collected, (iii) The total PFC revenue...

  14. 14 CFR 158.65 - Reporting requirements: Collecting air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Reporting, Recordkeeping and Audits § 158.65 Reporting requirements: Collecting air carriers. (a) Each air carrier collecting PFCs for a public... carrier and airport involved, (ii) The total PFC revenue collected, (iii) The total PFC revenue...

  15. 14 CFR 158.65 - Reporting requirements: Collecting air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Reporting, Recordkeeping and Audits § 158.65 Reporting requirements: Collecting air carriers. (a) Each air carrier collecting PFCs for a public... carrier and airport involved, (ii) The total PFC revenue collected, (iii) The total PFC revenue...

  16. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoking ban: air carriers. 252.3 Section 252.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air...

  17. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoking ban: air carriers. 252.3 Section 252.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air...

  18. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoking ban: air carriers. 252.3 Section 252.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air...

  19. 14 CFR 252.3 - Smoking ban: air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: air carriers. 252.3 Section 252.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.3 Smoking ban: air carriers. Air...

  20. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  1. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  2. Pegasus Air-Launched Space Booster Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-01-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  3. Air-to-air view of STS-26 Discovery, OV-103, launch from KSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Air-to-air view of STS-26 Discovery, Orbiter Vehicle (OV) 103, launch taken by T. Haydee Laguna, an airline passenger bound for Paradise Island in the Bahamas. She sent the photo of what she called 'the most beautiful sight this side of Heaven' to NASA along with a congratulatory letter. OV-103 is a small dot as it rises through the clouds from Kennedy Space Center Launch Complex (LC) pad 39B with a exhaust plume trailing behind it.

  4. 14 CFR 252.5 - Smoking ban: foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoking ban: foreign air carriers. 252.5 Section 252.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS SMOKING ABOARD AIRCRAFT § 252.5 Smoking ban: foreign air carriers....

  5. 14 CFR 399.83 - Unfair or deceptive practice of air carrier, foreign air carrier, or ticket agent in orally...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Unfair or deceptive practice of air carrier, foreign air carrier, or ticket agent in orally confirming to prospective passenger reserved space on... orally confirming to prospective passenger reserved space on scheduled flights. It is the policy of...

  6. 41 CFR 301-10.134 - What is U.S. flag air carrier service?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What is U.S. flag air... Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.134 What is U.S. flag air carrier service? U.S. flag air carrier service is service provided on an air carrier which holds...

  7. 41 CFR 301-10.134 - What is U.S. flag air carrier service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What is U.S. flag air... Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.134 What is U.S. flag air carrier service? U.S. flag air carrier service is service provided on an air carrier which holds...

  8. 41 CFR 301-10.134 - What is U.S. flag air carrier service?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What is U.S. flag air... Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.134 What is U.S. flag air carrier service? U.S. flag air carrier service is service provided on an air carrier which holds...

  9. 41 CFR 301-10.134 - What is U.S. flag air carrier service?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What is U.S. flag air... Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.134 What is U.S. flag air carrier service? U.S. flag air carrier service is service provided on an air carrier which holds...

  10. 41 CFR 301-10.134 - What is U.S. flag air carrier service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What is U.S. flag air... Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.134 What is U.S. flag air carrier service? U.S. flag air carrier service is service provided on an air carrier which holds...

  11. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  12. Machine vision tracking of carrier-deck assets for improved launch safety

    NASA Astrophysics Data System (ADS)

    Davis, Brynmor J.; Kaszeta, Richard W.; Chambers, Robert D.; Pilvelait, Bruce R.; Magari, Patrick J.; Withers, Michael; Rossi, David

    2013-05-01

    We present an automated aircraft tracking system as a tool for improving carrier-deck safety. Using a single video stream, aircraft are tracked with relation to the deck, enabling the automatic evaluation of deck safety criteria. System operation involves matching observed image edge features to a calibrated projection of a 3D deck/aircraft model. By identifying the best-fit model, high accuracy 3D tracking is achieved. Testing with a 1:72-scale model indicates a full-scale accuracy on the order of 1 foot spatially and 1 degree in aircraft orientation. Further, our edge-matching based method is insensitive to illumination changes, robust to partial obscuration and highly parallelizable (with preliminary benchmarking indicating real-time feasibility). Automated aircraft tracking allows improved operational locations for launch control personnel and/or provides a second-look deck safety evaluation and, as such, represents a significant new tool for the assurance of carrier deck safety.

  13. 77 FR 38747 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Privacy Act statement in the Federal Register published on April 11, 2000 (65 FR 19477-78), or you may... implementing section 710 of AIR-21. See 68 FR 47798. The rule required air carriers that provide scheduled... regulations. See 70 FR 7392. The rule is codified at 14 CFR 234.13. Section 234.13 requires air carriers...

  14. Dyess Air Force Base, Atlas F Missle Site S8, Launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Dyess Air Force Base, Atlas F Missle Site S-8, Launch Control Center (LCC), Approximately 3 miles east of Winters, 500 feet southwest of Highway 17700, northwest of Launch Facility, Winters, Runnels County, TX

  15. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    SciTech Connect

    Bond, W.H.; Yi, A.C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize `waverider` aerodynamics show great promise to reduce the vehicle weight. 5 refs.

  16. Launch vehicle effluent measurements during the May 12, 1977, Titan 3 launch at Air Force Eastern Test Range

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Bendura, R. J.; Woods, D. C.

    1979-01-01

    Airborne effluent measurements and cloud physical behavior for the May 21, 1977, Titan 3 launch from the Air Force Eastern Test Range, Fla. are presented. The monitoring program included airborne effluent measurements in situ in the launch cloud, visible and infrared photography of cloud growth and physical behavior, and limited surface collection of rain samples. Airborne effluent measurements included concentrations of HCl, NO, NOx, and aerosols as a function of time in the exhaust cloud. For the first time in situ particulate mass concentration and aerosol number density were measured as a function of time and size in the size range of 0.05 to 25 micro meters diameter. Measurement results were similar to those of earlier launch monitorings. Maximum HCl and NOx concentrations ranged from 10 ppm and 500 ppb, respectively, several minutes after launch to about 1 ppm and 100 ppb at 45 minutes after launch.

  17. 77 FR 72432 - Application of Boutique Air, Inc. for Commuter Air Carrier Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Department of Transportation is directing all interested persons to show cause why it should not issue an order finding Boutique Air, Inc., fit, willing, and able, and awarding it commuter air carrier...

  18. Analysis of flight equipment purchasing practices of representative air carriers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The process through which representative air carriers decide whether or not to purchase flight equipment was investigated as well as their practices and policies in retiring surplus aircraft. An analysis of the flight equipment investment decision process in ten airlines shows that for the airline industry as a whole, the flight equipment investment decision is in a state of transition from a wholly informal process in earliest years to a much more organized and structured process in the future. Individual air carriers are in different stages with respect to the formality and sophistication associated with the flight equipment investment decision.

  19. Air-to-air view of STS-32 Columbia, OV-102, launch

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Columbia, Orbiter Vehicle (OV) 102, pierces a layer of low lying clouds as it makes its ascent to Earth orbit for a 10-day mission. In this air-to-air view, OV-102 rides atop the external tank (ET) with flames created by solid rocket boosters (SRBs) appearing directly underneath it and a long plume of exhaust smoke trailing behind it and extending to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A below. OV-102 left KSC LC Pad 39A at 7:34:59:98 am Eastern Standard Time (EST) some 24 hours after dubious weather at the return-to-landing site (RTLS) had cancelled a scheduled launch. The photo was taken by astronaut Michael L. Coats, acting chief of the Astronaut Office, from the Shuttle Training Aircraft (STA).

  20. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  1. 77 FR 67584 - Air Carrier Contract Maintenance Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478... TRANSPORTATION Federal Aviation Administration 14 CFR Parts 121 and 135 RIN 2120-AJ33 Air Carrier Contract... instructions for performing contract maintenance that are acceptable to the FAA and to include them in...

  2. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  3. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  4. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  5. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  6. 33 CFR 334.1290 - In Bering Sea, Shemya Island Area, Alaska; meteorological rocket launching facility, Alaskan Air...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Alaska; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. 334.1290 Section...; meteorological rocket launching facility, Alaskan Air Command, U.S. Air Force. (a) The danger zone. An arc of a...) Rockets will normally be launched one each day Monday through Friday between 9 a.m. and 3 p.m....

  7. 14 CFR 399.83 - Unfair or deceptive practice of air carrier, foreign air carrier, or ticket agent in orally...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., foreign air carrier, or ticket agent in orally confirming to prospective passenger reserved space on... orally confirming to prospective passenger reserved space on scheduled flights. It is the policy of the... prospective passenger by telephone or other means of communication that a reservation of space on a...

  8. X-24B launch - air drop from mothership

    NASA Technical Reports Server (NTRS)

    1974-01-01

    powered mission November 15, 1973. Among the final flights with the X-24B were two precise landings on the main concrete runway at Edwards, California, which showed that accurate unpowered reentry vehicle landings were operationally feasible. These missions were flown by Manke and Air Force Maj. Mike Love and represented the final milestone in a program that helped write the flight plan for the Space Shuttle program of today. After launch from the B-52 'mothership' at an altitude of about 45,000 feet, the XLR-11 rocket engine was ignited and the vehicle accelerated to speeds of more than 1,100 miles per hour and to altitudes of 60,000 to 70,000 feet. After the rocket engine was shut down, the pilots began steep glides towards the Edwards runway. As the pilots entered the final leg of their approach, they increased their rate of descent to build up speed and used this energy to perform a 'flare out' maneuver, which slowed their landing speed to about 200 miles per hour--the same basic approach pattern and landing speed of the Space Shuttles today. The final powered flight with the X-24B aircraft was on September 23, l975. The pilot was Bill Dana, and it was also the last rocket-powered flight flown at Dryden. It was also Dana who flew the last X-15 mission about seven years earlier. Top speed reached with the X-24B was 1,164 miles per hour (Mach 1.76) by Love on October 25, 1974. The highest altitude reached was 74,100 feet, by Manke on May 22, 1975. The X-24B is on public display at the Air Force Museum, Wright-Patterson AFB, Ohio. This roughly 20-second video clip shows the X-24B dropping from the B-52 mothership, after which the rocket engine ignites.

  9. 14 CFR 330.43 - What classes of air carriers are eligible under the set-aside?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What classes of air carriers are eligible...-Aside for Certain Carriers § 330.43 What classes of air carriers are eligible under the set-aside? There are two classes of eligible air carriers: (a) You are a Class I air carrier if you are an air...

  10. 14 CFR 330.43 - What classes of air carriers are eligible under the set-aside?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What classes of air carriers are eligible...-Aside for Certain Carriers § 330.43 What classes of air carriers are eligible under the set-aside? There are two classes of eligible air carriers: (a) You are a Class I air carrier if you are an air...

  11. 14 CFR 330.43 - What classes of air carriers are eligible under the set-aside?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What classes of air carriers are eligible...-Aside for Certain Carriers § 330.43 What classes of air carriers are eligible under the set-aside? There are two classes of eligible air carriers: (a) You are a Class I air carrier if you are an air...

  12. 14 CFR 330.43 - What classes of air carriers are eligible under the set-aside?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What classes of air carriers are eligible...-Aside for Certain Carriers § 330.43 What classes of air carriers are eligible under the set-aside? There are two classes of eligible air carriers: (a) You are a Class I air carrier if you are an air...

  13. 76 FR 61245 - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... the Federal Register. (Presidential Sig.) THE WHITE HOUSE, Washington, September 28, 2011 [FR Doc... Coverage for Commercial Air Carrier Service in Domestic and International Operations #0; #0; #0... Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International...

  14. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  15. 78 FR 50138 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... PanAir requesting a foreign air carrier permit to operate charter air transportation of property..., whether or not it constitutes part of a continuous operation that includes service to Panama. PanAir...

  16. 41 CFR 301-10.133 - What is a U.S. flag air carrier?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What is a U.S. flag air carrier? 301-10.133 Section 301-10.133 Public Contracts and Property Management Federal Travel Regulation... Carrier Transportation Use of United States Flag Air Carriers § 301-10.133 What is a U.S. flag air...

  17. 41 CFR 301-10.133 - What is a U.S. flag air carrier?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What is a U.S. flag air carrier? 301-10.133 Section 301-10.133 Public Contracts and Property Management Federal Travel Regulation... Carrier Transportation Use of United States Flag Air Carriers § 301-10.133 What is a U.S. flag air...

  18. 41 CFR 301-10.133 - What is a U.S. flag air carrier?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What is a U.S. flag air carrier? 301-10.133 Section 301-10.133 Public Contracts and Property Management Federal Travel Regulation... Carrier Transportation Use of United States Flag Air Carriers § 301-10.133 What is a U.S. flag air...

  19. 41 CFR 301-10.133 - What is a U.S. flag air carrier?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What is a U.S. flag air carrier? 301-10.133 Section 301-10.133 Public Contracts and Property Management Federal Travel Regulation... Carrier Transportation Use of United States Flag Air Carriers § 301-10.133 What is a U.S. flag air...

  20. 41 CFR 301-10.133 - What is a U.S. flag air carrier?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What is a U.S. flag air carrier? 301-10.133 Section 301-10.133 Public Contracts and Property Management Federal Travel Regulation... Carrier Transportation Use of United States Flag Air Carriers § 301-10.133 What is a U.S. flag air...

  1. 78 FR 42323 - Pilot Certification and Qualification Requirements for Air Carrier Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... rulemaking (ANPRM) entitled ``New Pilot Certification Requirements for Air Carrier Operations'' (75 FR 6164... Requirements for Air Carrier Operations NPRM (77 FR 12374), which published in the Federal Register on February... for Air Carrier Operations NPRM (77 FR 12374), the FAA proposed to amend the existing requirements...

  2. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  3. Supersonic Air-Breathing Stage For Commercial Launch Rocket

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Concept proposed to expand use of air-breathing, reusable stages to put more payload into orbit at less cost. Stage with supersonic air-breathing engines added to carry expendable stages from subsonic airplane to supersonic velocity. Carry payload to orbit. Expendable stages and payload placed in front of supersonic air-breathing stage. After releasing expendable stages, remotely piloted supersonic air-breathing stage returns to takeoff site and land for reuse. New concept extends use of low-cost reusable hardware and increases payload delivered from B-52.

  4. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air...-share service on Internet Web sites and elsewhere by air carriers, their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C. 41712. FOR FURTHER...

  5. Design of experiments based variation mode and effect analysis of a conceptual air launched SLV

    NASA Astrophysics Data System (ADS)

    Rafique, Amer Farhan; Zeeshan, Qasim; Kamran, Ali

    2014-12-01

    Conceptual design stage is where the knowledge about the variation in system is still quite vague and herein we intend to analyze and compare various probable design concepts for Air Launched SLV by the use of basic variation mode and effect analysis. In this paper we present a methodology for the Variation Mode and Effect Analysis using Latin Hypercube Sampling based Design of Experiments for the conceptual Air launched Satellite Launch Vehicle. Variations are induced in the Control Variables based on knowledge and experience. The methodology is used to quantify the effect of Noise Factors on the performance of a conceptual Air Launched SLV. The insertion altitude of the Air Launched SLV is the Key Performance Indicator. Preliminary results of the performance and analysis for the simulated experiments are presented here. The performance of the proposed procedure has been tested and, thus, validated by the Air Launched SLV design problem. The Design of Experiment based Variation mode and effect analysis approach is intended for initial conceptual design purposes, thus, providing an immediate insight to the performance of the system in general and quantification of the sensitivity of the key performance indicator in particular, subject to the variations in noise factors prior to the detailed design phase.

  6. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  7. Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations

    SciTech Connect

    Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.

    1996-06-03

    In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near the facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).

  8. 78 FR 77106 - U.S. Air Force Reminder Re: United Launch Alliance (ULA) Consent Order and Recent Change in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Government programs, (1) ULA afford all space vehicle manufacturers non-discriminatory treatment for launch... Department of the Air Force U.S. Air Force Reminder Re: United Launch Alliance (ULA) Consent Order and Recent... United Launch Alliance, L.L.C. (hereinafter referred to as the ``Respondents''), Docket No. C-4188,...

  9. Squid rocket science: How squid launch into air

    NASA Astrophysics Data System (ADS)

    O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney

    2013-10-01

    Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.

  10. 14 CFR 249.20 - Preservation of records by certificated air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Preservation of records by certificated air carriers. 249.20 Section 249.20 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS PRESERVATION OF AIR CARRIER RECORDS Preservation of Records by Carrier § 249.20 Preservation...

  11. 14 CFR 249.20 - Preservation of records by certificated air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS PRESERVATION OF AIR CARRIER RECORDS Preservation of Records by...; corporate organization records; financial data in support of subsidy claims; minutes of meetings; carrier... 1. General and subsidiary ledgers or their equivalents: (a) General ledgers; subsidiary or...

  12. 14 CFR 249.20 - Preservation of records by certificated air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS PRESERVATION OF AIR CARRIER RECORDS Preservation of Records by...; corporate organization records; financial data in support of subsidy claims; minutes of meetings; carrier... 1. General and subsidiary ledgers or their equivalents: (a) General ledgers; subsidiary or...

  13. 14 CFR 249.20 - Preservation of records by certificated air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS PRESERVATION OF AIR CARRIER RECORDS Preservation of Records by...; corporate organization records; financial data in support of subsidy claims; minutes of meetings; carrier... 1. General and subsidiary ledgers or their equivalents: (a) General ledgers; subsidiary or...

  14. 41 CFR 301-10.132 - Who is required to use a U.S. flag air carrier?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... U.S. flag air carrier? 301-10.132 Section 301-10.132 Public Contracts and Property Management...-TRANSPORTATION EXPENSES Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.132 Who is required to use a U.S. flag air carrier? Anyone whose air travel is financed by U.S. Government...

  15. 41 CFR 301-10.132 - Who is required to use a U.S. flag air carrier?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... U.S. flag air carrier? 301-10.132 Section 301-10.132 Public Contracts and Property Management...-TRANSPORTATION EXPENSES Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.132 Who is required to use a U.S. flag air carrier? Anyone whose air travel is financed by U.S. Government...

  16. 41 CFR 301-10.132 - Who is required to use a U.S. flag air carrier?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... U.S. flag air carrier? 301-10.132 Section 301-10.132 Public Contracts and Property Management...-TRANSPORTATION EXPENSES Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.132 Who is required to use a U.S. flag air carrier? Anyone whose air travel is financed by U.S. Government...

  17. 41 CFR 301-10.132 - Who is required to use a U.S. flag air carrier?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... U.S. flag air carrier? 301-10.132 Section 301-10.132 Public Contracts and Property Management...-TRANSPORTATION EXPENSES Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.132 Who is required to use a U.S. flag air carrier? Anyone whose air travel is financed by U.S. Government...

  18. 41 CFR 301-10.132 - Who is required to use a U.S. flag air carrier?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... U.S. flag air carrier? 301-10.132 Section 301-10.132 Public Contracts and Property Management...-TRANSPORTATION EXPENSES Common Carrier Transportation Use of United States Flag Air Carriers § 301-10.132 Who is required to use a U.S. flag air carrier? Anyone whose air travel is financed by U.S. Government...

  19. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  20. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  1. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  2. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  3. 14 CFR 330.9 - What are the limits on compensation to air carriers?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What are the limits on compensation to air... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR CARRIERS General Provisions § 330.9 What are the limits on compensation to air carriers? (a) You are eligible to...

  4. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  5. Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    NASA Technical Reports Server (NTRS)

    Schmaizer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN.

  6. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; Newman, John A.; Tyler, Erik D.; Sterling, William J.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  7. A multi-user carrier structure for deploying Pegasus-launched micro-satellites

    NASA Astrophysics Data System (ADS)

    King, J. A.; Beidleman, N. J.; Stoltz, P. M.

    A concept has been developed to place multiple microsatellites into different orbits utilizing a single Pegasus launch vehicle. This approach uses separable pallets with each having an integral propulsion system that can transport from one to six microsatellites into an orbit modified from the reference orbit provided by the launch vehicle. The propulsion and mechanical system designs are described and the capability of the Pegasus is discussed as it impacts the individual microsatellite payload mass. Examples are provided as to how the system can be employed to implement different mission options. It is shown that when a constellation of communications satellites is deployed by this method, global coverage may be provided at what is thought to be the lowest cost available today.

  8. CloudSat Preps for Launch at Vandenberg Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The CloudSat spacecraft sits encapsulated within its Boeing Delta launch vehicle dual payload attach fitting at Vandenberg Air Force Base, Calif. CloudSat will share its ride to orbit late next month with NASA's CALIPSO spacecraft. The two spacecraft are designed to reveal the secrets of clouds and aerosols.

  9. 78 FR 56768 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending August 24,...

  10. 78 FR 2711 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending November...

  11. 78 FR 9449 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending January 26,...

  12. 78 FR 75441 - Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... Office of the Secretary Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending Novermber 30, 2013....

  13. 78 FR 56768 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending August 31,...

  14. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS...

  15. 32 CFR 861.6 - DOD review of foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carrier under this part will be at the discretion of the CARB or higher authority. (a) Foreign air... the CARB in accordance with § 861.5. This includes foreign air carriers seeking to provide, or... requirement of § 861.4(e)(1). The CARB or higher authority may prescribe additional review...

  16. 14 CFR 135.76 - DOD Commercial Air Carrier Evaluator's Credentials: Admission to pilots compartment: Forward...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false DOD Commercial Air Carrier Evaluator's... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.76 DOD Commercial Air Carrier Evaluator's Credentials: Admission to pilots compartment: Forward observer's seat....

  17. 48 CFR 52.247-63 - Preference for U.S.-Flag Air Carriers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Preference for U.S.-Flag... Clauses 52.247-63 Preference for U.S.-Flag Air Carriers. As prescribed in 47.405, insert the following clause: Preference for U.S.-Flag Air Carriers (JUN 2003) (a) Definitions. As used in this...

  18. 48 CFR 52.247-63 - Preference for U.S.-Flag Air Carriers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Preference for U.S.-Flag... Clauses 52.247-63 Preference for U.S.-Flag Air Carriers. As prescribed in 47.405, insert the following clause: Preference for U.S.-Flag Air Carriers (JUN 2003) (a) Definitions. As used in this...

  19. 48 CFR 52.247-63 - Preference for U.S.-Flag Air Carriers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Preference for U.S.-Flag... Clauses 52.247-63 Preference for U.S.-Flag Air Carriers. As prescribed in 47.405, insert the following clause: Preference for U.S.-Flag Air Carriers (JUN 2003) (a) Definitions. As used in this...

  20. 48 CFR 52.247-63 - Preference for U.S.-Flag Air Carriers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Preference for U.S.-Flag... Clauses 52.247-63 Preference for U.S.-Flag Air Carriers. As prescribed in 47.405, insert the following clause: Preference for U.S.-Flag Air Carriers (JUN 2003) (a) Definitions. As used in this...

  1. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional Classification—Operating Expenses of Group I Air Carriers 5100Flying Operations. (a) This function shall...

  2. 32 CFR 861.6 - DOD review of foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carrier under this part will be at the discretion of the CARB or higher authority. (a) Foreign air... the CARB in accordance with § 861.5. This includes foreign air carriers seeking to provide, or... requirement of § 861.4(e)(1). The CARB or higher authority may prescribe additional review...

  3. 48 CFR 52.247-63 - Preference for U.S.-Flag Air Carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Preference for U.S.-Flag... Clauses 52.247-63 Preference for U.S.-Flag Air Carriers. As prescribed in 47.405, insert the following clause: Preference for U.S.-Flag Air Carriers (JUN 2003) (a) Definitions. As used in this...

  4. 14 CFR 399.12 - Negotiation by air carriers for landing rights in foreign countries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Government with foreign governments rather than by direct negotiation between an air carrier and a foreign... rights in foreign countries. 399.12 Section 399.12 Aeronautics and Space OFFICE OF THE SECRETARY... Relating to Operating Authority § 399.12 Negotiation by air carriers for landing rights in...

  5. 14 CFR 399.12 - Negotiation by air carriers for landing rights in foreign countries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Government with foreign governments rather than by direct negotiation between an air carrier and a foreign... rights in foreign countries. 399.12 Section 399.12 Aeronautics and Space OFFICE OF THE SECRETARY... Relating to Operating Authority § 399.12 Negotiation by air carriers for landing rights in...

  6. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  7. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  8. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  9. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... issued by the Federal Aviation Administration and the Department of State. An agency determination...

  10. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... issued by the Federal Aviation Administration and the Department of State. An agency determination...

  11. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... issued by the Federal Aviation Administration and the Department of State. An agency determination...

  12. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... issued by the Federal Aviation Administration and the Department of State. An agency determination...

  13. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... issued by the Federal Aviation Administration and the Department of State. An agency determination...

  14. 14 CFR 330.41 - What funds is the Department setting aside for eligible classes of air carriers?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for eligible classes of air carriers? 330.41 Section 330.41 Aeronautics and Space OFFICE OF THE... for eligible classes of air carriers? The Department is setting aside a sum of up to $35 million to compensate eligible classes of air carriers, for which application of a distribution formula containing...

  15. 14 CFR 330.41 - What funds is the Department setting aside for eligible classes of air carriers?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for eligible classes of air carriers? 330.41 Section 330.41 Aeronautics and Space OFFICE OF THE... for eligible classes of air carriers? The Department is setting aside a sum of up to $35 million to compensate eligible classes of air carriers, for which application of a distribution formula containing...

  16. 14 CFR 330.41 - What funds is the Department setting aside for eligible classes of air carriers?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for eligible classes of air carriers? 330.41 Section 330.41 Aeronautics and Space OFFICE OF THE... for eligible classes of air carriers? The Department is setting aside a sum of up to $35 million to compensate eligible classes of air carriers, for which application of a distribution formula containing...

  17. 14 CFR 330.41 - What funds is the Department setting aside for eligible classes of air carriers?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for eligible classes of air carriers? 330.41 Section 330.41 Aeronautics and Space OFFICE OF THE... for eligible classes of air carriers? The Department is setting aside a sum of up to $35 million to compensate eligible classes of air carriers, for which application of a distribution formula containing...

  18. 78 FR 16356 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Air Carrier Permits Filed Under Subpart B (formerly Subpart Q) during the Week Ending March 2, 2013... Carrier Permits were filed under Subpart B (formerly Subpart Q) of the Department of Transportation's... Applications, or Motion To Modify Scope: March 19, 2013. Description: Application of United Parcel Service...

  19. 76 FR 30990 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Foreign Air Carrier Permits Filed Under Subpart B (Formerly Subpart Q) During the Week Ending April 30... Carrier Permits were filed under Subpart B (formerly Subpart Q) of the Department of Transportation's... process the application by expedited procedures. Such procedures may consist of the adoption of a...

  20. Aerothermal test results from the first flight of the Pegasus air-launched space booster

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Curry, Robert E.; Haering, Edward A., Jr.; Kolodziej, Paul

    1991-01-01

    A survey of temperature measurements at speeds through Mach 8.0 on the first flight of the Pegasus air-launched booster system is discussed. In addition, heating rates were derived from the temperature data obtained on the fuselage in the vicinity of the wing shock interaction. Sensors were distributed on the wing surfaces, leading edge, and on the wing-body fairing or fillet. Side-by-side evaluations were obtained for a variety of sensor installations. Details of the trajectory reconstruction through first-stage separation are provided. Given here are indepth descriptions of the sensor installations, temperature measurements, and derived heating rates along with interpretations of the results.

  1. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  2. 14 CFR 399.91 - Air carrier participation in programs of technical assistance to airlines of less developed...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... preference for such carrier over a competing U.S. air carrier in matters of interline traffic, governmental... pursuant to a technical assistance contract financed by an agency of the U.S. Government. (b) Policy. It is the policy of the Board that all U.S. air carriers interested in performing contracts for...

  3. Launch vehicle effluent measurements during the August 20, 1977, Titan 3 launch at Air Force Eastern Test Range

    NASA Technical Reports Server (NTRS)

    Woods, D. C.; Bendura, R. J.; Wornom, D. E.

    1979-01-01

    Airborne effluent measurements within the launch cloud and visible and infrared measurements of cloud physical behavior are discussed. Airborne effluent measurements include concentrations of HCl, Cl2, NO, NOX, and particulates as a function of time during each sampling pass through the exhaust cloud. The particle size distribution was measured for each pass through the cloud. Mass concentration as a function of particle diameter was measured over the size range of 0.05- to 25 micron diameter, and particle number density was measured as a function of diameter over a size range of 0.5 to 7.5 micron. Effluent concentrations in the cloud ranged from about 30 ppm several minutes after launch to about 1 to 2 ppm at 100 minutes. Maximum Cl2 concentrations were about 40 to 55 ppb and by 20 minutes were less than 1.0 ppb. A tabulated listing of the airborne data is given in the appendix. Usable cloud imaging data were limited to the first 16 minutes after launch.

  4. 14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR...

  5. 14 CFR 323.18 - Carriers' obligations when terminating, suspending, or reducing air service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., suspending, or reducing air service. 323.18 Section 323.18 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS TERMINATIONS, SUSPENSIONS, AND REDUCTIONS OF SERVICE § 323.18 Carriers' obligations when terminating, suspending, or reducing air...

  6. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What data must air carriers submit concerning ASMs or RTMs? 330.31 Section 330.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR...

  7. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What data must air carriers submit concerning ASMs or RTMs? 330.31 Section 330.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR...

  8. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What data must air carriers submit concerning ASMs or RTMs? 330.31 Section 330.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR...

  9. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What data must air carriers submit concerning ASMs or RTMs? 330.31 Section 330.31 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR...

  10. 78 FR 32241 - U.S. Air Force Seeks Industry Input for National Security Space Launch Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Seeks Industry Input for National Security Space Launch Assessment... stabilization in your respective sectors? Any member of the public wishing to provide input to the United...

  11. Volatile organic components of air samples collected from Vertical Launch Missile capsules. Summary report

    SciTech Connect

    Tappan, D.V.; Knight, D.R.; Heyder, E.; Weathersby, P.K.

    1988-09-27

    Gas chromatographic/mass spectroscopic analyses are presented for the volatile organic components found in air samples collected from the inboard vents from Vertical Launch System (VLS) missile capsules aboard a 688 class submarine. Similar analyses were also conducted for a sample of the ship's high pressure air used to fill the missile tubes. A wide variety of organics was detected in the air from the missile capsules; and while no unique components have yet been identified, a significant contribution has been shown to be made by pressure-ventilation of the VLS capsules into the submarine atmosphere which is already heavily laden with volatile organic compounds. The most apparent conclusion from these preliminary analyses is that the mixtures of organic components in the air within VLS missile capsules vary greatly from capsule to capsule (and probably from time to time). Many such samples need to be investigated to provide sufficient information to judge the seriousness of the possibility of venting toxic components into the submarine atmosphere during the maintenance or firing of VLS missiles.

  12. 14 CFR 158.11 - Public agency request not to require collection of PFC's by a class of air carriers or foreign...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... collection of PFC's by a class of air carriers or foreign air carriers or for service to isolated communities... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) General § 158.11 Public agency request not to require collection of PFC's by a class of air carriers or foreign air carriers or for service...

  13. 14 CFR 158.11 - Public agency request not to require collection of PFC's by a class of air carriers or foreign...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... collection of PFC's by a class of air carriers or foreign air carriers or for service to isolated communities... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) General § 158.11 Public agency request not to require collection of PFC's by a class of air carriers or foreign air carriers or for service...

  14. 14 CFR 158.11 - Public agency request not to require collection of PFC's by a class of air carriers or foreign...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... collection of PFC's by a class of air carriers or foreign air carriers or for service to isolated communities... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) General § 158.11 Public agency request not to require collection of PFC's by a class of air carriers or foreign air carriers or for service...

  15. 14 CFR 158.11 - Public agency request not to require collection of PFC's by a class of air carriers or foreign...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... collection of PFC's by a class of air carriers or foreign air carriers or for service to isolated communities... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) General § 158.11 Public agency request not to require collection of PFC's by a class of air carriers or foreign air carriers or for service...

  16. 14 CFR 158.11 - Public agency request not to require collection of PFC's by a class of air carriers or foreign...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... collection of PFC's by a class of air carriers or foreign air carriers or for service to isolated communities... TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) General § 158.11 Public agency request not to require collection of PFC's by a class of air carriers or foreign air carriers or for service...

  17. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  18. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b....

  19. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b....

  20. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b....

  1. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to...

  2. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to...

  3. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to...

  4. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to...

  5. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b....

  6. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to...

  7. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b....

  8. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to...

  9. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to...

  10. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b....

  11. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b....

  12. 48 CFR 47.303-15 - F.o.b. designated air carrier's terminal, point of exportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false F.o.b. designated air... Contracts 47.303-15 F.o.b. designated air carrier's terminal, point of exportation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of exportation means free of expense to...

  13. 48 CFR 52.247-43 - F.o.b. Designated Air Carrier's Terminal, Point of Exportation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-43 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of exportation: F.o.b....

  14. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b....

  15. 48 CFR 52.247-44 - F.o.b. Designated Air Carrier's Terminal, Point of Importation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false F.o.b. Designated Air... CLAUSES Text of Provisions and Clauses 52.247-44 F.o.b. Designated Air Carrier's Terminal, Point of... the delivery term is f.o.b. designated air carrier's terminal, point of importation: F.o.b....

  16. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to...

  17. 48 CFR 47.303-16 - F.o.b. designated air carrier's terminal, point of importation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false F.o.b. designated air... Contracts 47.303-16 F.o.b. designated air carrier's terminal, point of importation. (a) Explanation of delivery term. F.o.b. designated air carrier's terminal, point of importation means free of expense to...

  18. Some aspects of user needs for an air-launched, expendable free-drifting buoy

    NASA Technical Reports Server (NTRS)

    Vukovich, F. M.

    1976-01-01

    Research objectives were determined based on user's needs in which an airlaunched, free-drifting buoy would significantly contribute to the accomplishment of these objectives. The objectives were formulated through discussions with individuals representing federal and state agencies and universities. The most immediate need was in continental shelf oceanography which required data to characterize circulation in a localized mesoscale region. A tentative plan for the North Carolina Outfall Study was presented. Data from air-launched, expendable free-drifting buoys would be used in this study not only to characterize the circulation off the North Carolina coast, but also to provide data by which a three-dimensional hydrodynamic model could be verified.

  19. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  20. Carriers

    MedlinePlus

    ... for those known to be at risk for genetic diseases. Reproductive Choices For couples who are carriers, reproductive decisions can be sensitive. A number of options are available, such as adoption, prenatal testing, and pre-implantation genetic diagnosis (PGD). PGD screens ...

  1. Design of a Flush Airdata System (FADS) for the Hypersonic Air Launched Option (HALO) Vehicle

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    This paper presents a design study for a pressure based Flush airdata system (FADS) on the Hypersonic Air Launched Option (HALO) Vehicle. The analysis will demonstrate the feasibility of using a pressure based airdata system for the HALO and provide measurement uncertainty estimates along a candidate trajectory. The HALO is a conceived as a man-rated vehicle to be air launched from an SR-71 platform and is proposed as a testbed for an airbreathing hydrogen scramjet. A feasibility study has been performed and indicates that the proposed trajectory is possible with minimal modifications to the existing SR71 vehicle. The mission consists of launching the HALO off the top of an SR-71 at Mach 3 and 80,000 ft. A rocket motor is then used to accelerate the vehicle to the test condition. After the scramjet test is completed the vehicle will glide to a lakebed runway landing. This option provides reusability of the vehicle and scramjet engine. The HALO design will also allow for various scramjet engine and flowpath designs to be flight tested. For the HALO flights, measurements of freestream airdata are considered to be a mission critical to perform gain scheduling and trajectory optimization. One approach taken to obtaining airdata involves measurement of certain parameters such as external atmospheric winds, temperature, etc to estimate the airdata quantities. This study takes an alternate approach. Here the feasibility of obtaining airdata using a pressure-based flush airdata system (FADS) methods is assessed. The analysis, although it is performed using the HALO configuration and trajectory, is generally applicable to other hypersonic vehicles. The method to be presented offers the distinct advantage of inferring total pressure, Mach number, and flow incidence angles, without stagnating the freestream flow. This approach allows for airdata measurements to be made using blunt surfaces and significantly diminishes the heating load at the sensor. In the FADS concept a

  2. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  3. Prospects for utilization of air liquefaction and enrichment system (ALES) propulsion in fully reusable launch vehicles

    NASA Technical Reports Server (NTRS)

    Bond, W. H.; Yi, A. C.

    1993-01-01

    A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  4. 14 CFR 330.27 - What information must certificated and commuter air carriers submit?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... proceeds from business recovery insurance or other insurance payments. You must not report as losses... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What information must certificated and commuter air carriers submit? 330.27 Section 330.27 Aeronautics and Space OFFICE OF THE...

  5. 3 CFR - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International Operations Presidential Documents Other Presidential Documents Memorandum of September 27, 2012 Provision of Aviation Insurance Coverage for...

  6. 3 CFR - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International Operations Presidential Documents Other Presidential Documents Memorandum of September 28, 2011 Provision of Aviation Insurance Coverage for...

  7. 3 CFR - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 3 The President 1 2011-01-01 2011-01-01 false Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International Operations Presidential Documents Other Presidential Documents Memorandum of September 29, 2010 Provision of Aviation Insurance Coverage for...

  8. 3 CFR - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 3 The President 1 2014-01-01 2014-01-01 false Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International Operations Presidential Documents Other Presidential Documents Memorandum of December 27, 2013 Provision of Aviation Insurance Coverage for...

  9. 75 FR 61485 - Regulatory Training Session With Air Carriers, EPA Regional Partners and Other Interested Parties...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... for Implementation of the Aircraft Drinking Water Rule AGENCY: Environmental Protection Agency (EPA... on the regulatory requirements of the Aircraft Drinking Water Rule (ADWR). Under the ADWR, by April 19, 2011, air carriers who meet the definition of ``public water systems'' under the Safe...

  10. 78 FR 2710 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ..., Inc. d/b/a National Airlines requesting an exemption and amended certificate of public convenience and... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and...

  11. 78 FR 50138 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... traffic between Aruba and the United States; (b) and other charters pursuant to the prior approval... Office of the Secretary Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits Notice of Applications for Certificates of Public Convenience and Necessity and...

  12. 75 FR 69734 - Application of Island Airlines, LLC for Commuter Air Carrier Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Island Airlines, LLC for Commuter Air Carrier Authorization AGENCY... it should not issue an order finding Island Airlines, LLC, fit, willing, and able, and awarding...

  13. 75 FR 61031 - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Sig.) THE WHITE HOUSE, Washington, September 29, 2010 [FR Doc. 2010-24900 Filed 9-30-10; 11:15 am... Memorandum of September 29, 2010--Provision of Aviation Insurance Coverage for Commercial Air Carrier Service...;The President ] Memorandum of September 29, 2010 Provision of Aviation Insurance Coverage...

  14. 78 FR 39435 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Member State of the European Union via any point or points in any Member State and via intermediate... rights made available to European Union carriers in the future. Barbara J. Hairston, Acting Program... any member of the European Common Aviation Area; (c) foreign charter cargo air transportation...

  15. 75 FR 18255 - Passenger Facility Charge Database System for Air Carrier Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Federal Aviation Administration Passenger Facility Charge Database System for Air Carrier Reporting AGENCY... interested parties of the availability of the Passenger Facility Charge (PFC) database system to report PFC... public agency. The FAA has developed a national PFC database system in order to more easily track the...

  16. 14 CFR 204.3 - Applicants for new certificate or commuter air carrier authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Transportation Safety Board Regulations, 49 CFR 830.2) experienced by the applicant, its personnel, or any... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Applicants for new certificate or commuter air carrier authority. 204.3 Section 204.3 Aeronautics and Space OFFICE OF THE SECRETARY,...

  17. 14 CFR 204.3 - Applicants for new certificate or commuter air carrier authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Transportation Safety Board Regulations, 49 CFR 830.2) experienced by the applicant, its personnel, or any... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Applicants for new certificate or commuter air carrier authority. 204.3 Section 204.3 Aeronautics and Space OFFICE OF THE SECRETARY,...

  18. 14 CFR 204.3 - Applicants for new certificate or commuter air carrier authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Transportation Safety Board Regulations, 49 CFR 830.2) experienced by the applicant, its personnel, or any... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Applicants for new certificate or commuter air carrier authority. 204.3 Section 204.3 Aeronautics and Space OFFICE OF THE SECRETARY,...

  19. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional... equipment as may be required to meet operating and safety standards; in inspecting or checking property...

  20. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional... equipment as may be required to meet operating and safety standards; in inspecting or checking property...

  1. 14 CFR 135.76 - DOD Commercial Air Carrier Evaluator's Credentials: Admission to pilots compartment: Forward...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Credentials: Admission to pilots compartment: Forward observer's seat. 135.76 Section 135.76 Aeronautics and... Commercial Air Carrier Evaluator's Credentials: Admission to pilots compartment: Forward observer's seat. (a.... (b) A forward observer's seat on the flight deck or forward passenger seat with headset or...

  2. 78 FR 44873 - Pilot Certification and Qualification Requirements for Air Carrier Operations; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... rule; correction. SUMMARY: The FAA is correcting a final rule published on July 15, 2013 (78 FR 42324... entitled, ``Pilot Certification and Qualification Requirements for Air Carrier Operations'' (78 FR 42324... requirements for an airline transport pilot (ATP) certificate in Sec. 61.159(a) by adding paragraph...

  3. 77 FR 12373 - Pilot Certification and Qualification Requirements for Air Carrier Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78) or you may visit http... rulemaking (ANPRM) entitled ``New Pilot Certification Requirements for Air Carrier Operations.'' (75 FR 6164... commercial pilots were adequate (75 FR 6164). In the ANPRM, the Agency asked whether all part 121...

  4. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (d) For travel between a gateway airport in the United States and a gateway airport abroad, passenger service by U.S.-flag air carrier shall not be considered available if— (1) The gateway airport abroad is... least 24 hours more than travel by a foreign-flag air carrier; or (2) The gateway airport abroad is...

  5. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (d) For travel between a gateway airport in the United States and a gateway airport abroad, passenger service by U.S.-flag air carrier shall not be considered available if— (1) The gateway airport abroad is... least 24 hours more than travel by a foreign-flag air carrier; or (2) The gateway airport abroad is...

  6. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (d) For travel between a gateway airport in the United States and a gateway airport abroad, passenger service by U.S.-flag air carrier shall not be considered available if— (1) The gateway airport abroad is... least 24 hours more than travel by a foreign-flag air carrier; or (2) The gateway airport abroad is...

  7. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  8. 77 FR 29984 - Federal Acquisition Regulation; Submission for OMB Review; U.S.-Flag Air Carriers Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... collection requirement concerning U.S. Flag Air Carriers Certification. A notice was published in the Federal Register at 77 FR 14354, on March 9, 2012. No comments were received. Public comments are particularly... Regulation; Submission for OMB Review; U.S.- Flag Air Carriers Statement AGENCY: Department of Defense...

  9. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and related statistics by small certificated air carriers. 298.63 Section 298.63 Aeronautics and Space... aircraft operating expenses and related statistics by small certificated air carriers. (a) Each small... Related Statistics.” This schedule shall be filed quarterly as prescribed in § 298.60. Data reported...

  10. 14 CFR 204.5 - Certificated and commuter air carriers undergoing or proposing to undergo substantial change in...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations, management, or ownership, including changes that may affect the air carrier's citizenship, shall... undergoing or proposing to undergo substantial change in operations, ownership, or management. 204.5 Section..., ownership, or management. (a) A certificated or commuter air carrier proposing a substantial change...

  11. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  12. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    NASA Technical Reports Server (NTRS)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. Therefore, NASA is developing the ability to evaluate the potential impact of various advanced technologies. By thoroughly understanding the economic impact of advanced aviation technologies and by evaluating how the new technologies will be used in the integrated aviation system, NASA aims to balance its aeronautical research program and help speed the introduction of high-leverage technologies. To meet these objectives, NASA is building the Aviation System Analysis Capability (ASAC). NASA envisions ASAC primarily as a process for understanding and evaluating the impact of advanced aviation technologies on the U.S. economy. ASAC consists of a diverse collection of models and databases used by analysts and other individuals from the public and private sectors brought together to work on issues of common interest to organizations in the aviation community. ASAC also will be a resource available to the aviation community to analyze; inform; and assist scientists, engineers, analysts, and program managers in their daily work. The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. Commercial air carriers, in particular, are an important stakeholder in this community. Therefore, to fully evaluate the implications of advanced aviation technologies, ASAC requires a flexible financial analysis tool that credibly links the technology of flight with the financial performance of commercial air carriers. By linking technical and financial information, NASA ensures that its technology programs will continue to benefit the user community. In addition, the analysis tool must be capable of being incorporated into the

  13. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for > 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at

  14. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were

  15. Supersonic aerodynamic trade data for a low-profile monoplanar missile concept. [air launched maneuvering missile design

    NASA Technical Reports Server (NTRS)

    Graves, E. B.; Robins, A. W.

    1979-01-01

    A monoplanar missile concept has been studied which shows promise of improving the aerodynamic performance of air-launched missiles. This missile concept has a constant eccentricity elliptical cross-section body. Since current guidance and propulsion technologies influence missile nose and base shapes, an experimental investigation has been conducted at Mach number 2.50 to determine the effects of variations in these shapes on the missile aerodynamics. Results of these tests are presented.

  16. 14 CFR 93.25 - Initial assignment of Arrival Authorizations to U.S. and Canadian air carriers for domestic and U...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Canadian air carriers for domestic and U.S./Canada transborder service. (a) The FAA shall assign to each U.S. and Canadian air carrier, conducting scheduled service at O'Hare, as of the effective date of... Authorizations to U.S. and Canadian air carriers for domestic and U.S./Canada transborder service. 93.25......

  17. 14 CFR 93.25 - Initial assignment of Arrival Authorizations to U.S. and Canadian air carriers for domestic and U...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Canadian air carriers for domestic and U.S./Canada transborder service. (a) The FAA shall assign to each U.S. and Canadian air carrier, conducting scheduled service at O'Hare, as of the effective date of... Authorizations to U.S. and Canadian air carriers for domestic and U.S./Canada transborder service. 93.25......

  18. Mapping Water Vapor Bands using AIRS Measurements for NPOESS/NPP VIIRS Pre-launch End-to-End Testing

    NASA Astrophysics Data System (ADS)

    Qu, J. J.; Hao, X.; Hauss, B.; Wang, C.; Xiong, J.

    2005-12-01

    NPOESS/NPP pre-launch end to end testing is very important for establishing the long-term high quality Environmental Data Records (EDRs). In our early studies, we have developed spatial and spectral mapping technology and demonstrated the AIRS-MODIS-VIIRS band mapping approaches successfully. In this paper, we will focus on VIIRS water vapor band mapping for proxy dataset generating based on our recently established proxy database which includes the AIRS simulated MODIS, AIRS simulated VIIRS and aggregated MODIS radiances/ brightness temperatures. We demonstrate the efficacy of this approach by presenting results of the cross-comparison of water vapor band measurements from AIRS, MODIS and simulated VIIRS. We also investigate the dependence of the quality of water vapor band mapping as a function of the surface emissivity spectrum, phenomenology, and atmospheric conditions. The same approach can be used to map CrIS to VIIRS for post-launch calibration and validation. It is also valuable to keep the continuity between MODIS and VIIRS water vapor measurements. This approach can provide increased confidence in evaluating EDR retrieval algorithms performances. It also can be used to map 6.75 μm band using AIRS or CrIS measurements for water vapor algorithm testing.

  19. LITERATURE SEARCH FOR METHODS FOR HAZARD ANALYSES OF AIR CARRIER OPERATIONS.

    SciTech Connect

    MARTINEZ - GURIDI,G.; SAMANTA,P.

    2002-07-01

    Representatives of the Federal Aviation Administration (FAA) and several air carriers under Title 14 of the Code of Federal Regulations (CFR) Part 121 developed a system-engineering model of the functions of air-carrier operations. Their analyses form the foundation or basic architecture upon which other task areas are based: hazard analyses, performance measures, and risk indicator design. To carry out these other tasks, models may need to be developed using the basic architecture of the Air Carrier Operations System Model (ACOSM). Since ACOSM encompasses various areas of air-carrier operations and can be used to address different task areas with differing but interrelated objectives, the modeling needs are broad. A literature search was conducted to identify and analyze the existing models that may be applicable for pursuing the task areas in ACOSM. The intent of the literature search was not necessarily to identify a specific model that can be directly used, but rather to identify relevant ones that have similarities with the processes and activities defined within ACOSM. Such models may provide useful inputs and insights in structuring ACOSM models. ACOSM simulates processes and activities in air-carrier operation, but, in a general framework, it has similarities with other industries where attention also has been paid to hazard analyses, emphasizing risk management, and in designing risk indicators. To assure that efforts in other industries are adequately considered, the literature search includes publications from other industries, e.g., chemical, nuclear, and process industries. This report discusses the literature search, the relevant methods identified and provides a preliminary assessment of their use in developing the models needed for the ACOSM task areas. A detailed assessment of the models has not been made. Defining those applicable for ACOSM will need further analyses of both the models and tools identified. The report is organized in four chapters

  20. 41 CFR 301-10.139 - May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? 301-10.139... Transportation Use of United States Flag Air Carriers § 301-10.139 May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? No. Foreign air carrier...

  1. 41 CFR 301-10.139 - May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? 301-10.139... Transportation Use of United States Flag Air Carriers § 301-10.139 May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? No. Foreign air carrier...

  2. 41 CFR 301-10.139 - May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? 301-10.139... Transportation Use of United States Flag Air Carriers § 301-10.139 May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? No. Foreign air carrier...

  3. 41 CFR 301-10.139 - May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? 301-10.139... Transportation Use of United States Flag Air Carriers § 301-10.139 May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? No. Foreign air carrier...

  4. 41 CFR 301-10.139 - May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? 301-10.139... Transportation Use of United States Flag Air Carriers § 301-10.139 May I travel by a foreign air carrier if the cost of my ticket is less than traveling by a U.S. flag air carrier? No. Foreign air carrier...

  5. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... In determining availability of a U.S.-flag air carrier, the following scheduling principles shall be followed unless their application would result in the last or first leg of travel to or from the...

  6. 48 CFR 47.403-1 - Availability and unavailability of U.S.-flag air carrier service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... In determining availability of a U.S.-flag air carrier, the following scheduling principles shall be followed unless their application would result in the last or first leg of travel to or from the...

  7. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certificated air carrier shall file BTS Form 298-C, Schedule F-2 “Report of Aircraft Operating Expenses and..., which is available from the BTS' Office of Airline Information. In the space provided for “Aircraft...

  8. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... certificated air carrier shall file BTS Form 298-C, Schedule F-2 “Report of Aircraft Operating Expenses and..., which is available from the BTS' Office of Airline Information. In the space provided for “Aircraft...

  9. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... certificated air carrier shall file BTS Form 298-C, Schedule F-2 “Report of Aircraft Operating Expenses and..., which is available from the BTS' Office of Airline Information. In the space provided for “Aircraft...

  10. 14 CFR 399.91 - Air carrier participation in programs of technical assistance to airlines of less developed...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... particular language and culture of the recipient country are important to the success of the project, weight... interfere with the primary business of the subsidized carrier which is to provide air transportation in...

  11. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  12. 14 CFR 221.201 - Statement of filing with foreign governments to be shown in air carrier's tariff filings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... tariff filings. (a) Every electronic tariff filed by or on behalf of an air carrier that contains fares... from an electronic tariff or portion thereof if the tariff publication that has been filed with...

  13. The Pegasus air-launched space booster payload interfaces and processing procedures for small optical payloads

    NASA Technical Reports Server (NTRS)

    Mosier, Marty; Harris, Gary; Whitmeyer, Charlie

    1991-01-01

    Pegasus and the PegaStar integrated spacecraft bus are described, and an overview of integration and launch operations is provided. Payload design issues include payload volume and mass capability, payload interfaces, and design loads. Vehicle and payload processing issues include integration and handling methods, facilities, contamination control, and launch operations. It is noted that Pegasus provides small satellite users with a cost-effective means for delivering payloads into the specific orbits at the optimal time to meet the most demanding mission requirements. PegaStar provides a flexible cost-effective means for providing long-term on-orbit support while minimizing total program risk and cost.

  14. Delta XTE Launch Activities and Scrub (Anomaly) at Cape Canaveral Air Station Complex 17

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center video presents launch activities of the Delta X-ray Timing Explorer and scrub aboard a McDonnell Douglas Delta II rocket from Complex 17. The primary objective of the Delta XTE is to study time variability and broadband spectral phenomena in the X-ray emission from astronomical sources. XTE is designed for a required lifetime of two years with a goal of five years and will be inserted into a low-Earth circular orbit at an altitude of 600 km. The launch was postponed due to unfavorable wind conditions aloft.

  15. [The application of air-lift loop column filling with porous carrier in wastewater treatment].

    PubMed

    Fan, Y; Ding, F; Yang, H; Chen, S; Zhang, W; Xing, X

    2001-09-01

    An air lift loop reactor filling with porous carrier particles was utilized as aeration column. Experiments were carried out in wide operating conditions. The experimental results showed that in the range of gas flow rate from 0.117 to 0.156 m3/(min.m3), a higher efficiency of removal of ammonium-N was achieved, and when the gas flow rate was above 0.039 m3/(min.m3), the COD was completely degraded in about 1 h. The filling ratio of the porous carriers in the column was an important factor for the removal of C and N compounds, and a filling ratio of 15% was proved to be most suitable in the operation ranges. The experimental results also indicated that the effect of aeration temperature on the removal efficiency was significant and the highest efficiency was obtained at around 25 degrees C. PMID:11769236

  16. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  18. 77 FR 53779 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...This action extends the comment period of an NPRM on the reporting of incidents involving animals during air transport that was published in the Federal Register on June 29, 2012. See 77 FR 38747. The Department of Transportation is extending the period for interested persons to submit comments on this rulemaking from August 28, 2012, to September 27, 2012. This extension is a result of a......

  19. Radiation exposure of air-carrier crew members. 2. Final report

    SciTech Connect

    Friedberg, W.; Snyder, L.; Faulkner, D.N.; Darden, E.B.; O Brien, K.

    1992-01-01

    The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposure from radioactive air cargo is also considered. Methods are provided to assess health risks from exposure to galactic radiation. On the flights studied, the highest dose of galactic radiation received annually by a crewmember who worked as many as 1,000 block hours a year would be less than half the annual limit recommended by the International Commission on Radiological Protection for a nonpregnant occupationally exposed adult. The radiation exposure of a pregnant crewmember who worked 70 block hours a month for 5 months would exceed the recommended 2-millisievert pregnancy limit on about one-third of the flights.

  20. The Carrier's Liability for Damage Caused by Delay in International Air Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kang Bin

    2003-01-01

    Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is

  1. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  2. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  3. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  4. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  5. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  6. 19 CFR 122.53 - Aircraft of foreign registry chartered or leased to U.S. air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... under the provisions of the Federal Aviation Administration regulations (14 CFR 121.153), shall be... to U.S. air carriers. 122.53 Section 122.53 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS International...

  7. Structural Sizing of a Horizontal Take-Off Launch Vehicle with an Air Collection and Enrichment System

    NASA Technical Reports Server (NTRS)

    McCurdy, David R.; Roche, Joseph M.

    2004-01-01

    In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.

  8. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  9. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  10. Downwind hazard calculations for space shuttle launches at Kennedy Space Center and Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Susko, M.; Hill, C. K.; Kaufman, J. W.

    1974-01-01

    The quantitative estimates are presented of pollutant concentrations associated with the emission of the major combustion products (HCl, CO, and Al2O3) to the lower atmosphere during normal launches of the space shuttle. The NASA/MSFC Multilayer Diffusion Model was used to obtain these calculations. Results are presented for nine sets of typical meteorological conditions at Kennedy Space Center, including fall, spring, and a sea-breeze condition, and six sets at Vandenberg AFB. In none of the selected typical meteorological regimes studied was a 10-min limit of 4 ppm exceeded.

  11. An air launched, highly responsive military transatmospheric vehicle (TAV), based on existing aerospace systems

    NASA Astrophysics Data System (ADS)

    Hampsten, Kenneth R.

    1996-03-01

    A novel vehicle design is presented that minimizes Research Development Test and Evaluation (RDT&E) cost. The proposed TAV can satisfy a broad range of military mission applications for the 21st century. TAV deployment is provided by a Rockwell B-1B bomber. Pre-launch orientation of the vehicle is centerline, underneath the B-1B forward weapon bays. Launch occurs at 30,000 ft, Mach 0.90, and at a flight path angle of 15-20 degrees. The TAV is a Two-Stage-To-Orbit (TSTO) vehicle utilizing Liquid Oxygen (LOX) and RP-1 (kerosene) propellants. The reusable upper stage, or TAV, incorporates a 130 cubic foot payload bay for mission specific equipment. The booster can either be expended, or potentially recovered for reuse. TAV reentry relies on a biconic aeroshell for the hypersonic flight phase and a parafoil for the subsonic, terminal recovery phase. Nominal mission performance is between 1,150-1,800 lbs of payload into a 100 nmi circular orbit.

  12. Ascent performance of an air-breathing horizontal-takeoff launch vehicle

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.; Shaughnessy, John D.; Cruz, Christopher I.; Naftel, J. C.

    1991-01-01

    Simulations are conducted to investigate a proposed NASA launch vehicle that is fully reusable, takes off horizontally, and uses airbreathing propulsion in a single stage. The propulsion model is based on a cycle analysis method, and the vehicle is assumed to be a rigid structure with distributed fuel, operating under a range of atmospheric conditions. The program to optimize simulated trajectories (POST) is modified to include a predictor-corrector guidance capability and then used to generate the trajectories. Significant errors are encountered during the unpowered coast phase due to uncertainty in the atmospheric density profile. The amount of ascent propellant needed is shown to be directly related to the thrust-vector angle and the location of the center of gravity of the vehicle because of the importance of aim-drag losses to total ideal velocity.

  13. Air-coupled seismic waves at long range from Apollo launchings.

    NASA Technical Reports Server (NTRS)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  14. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. The use of total simulator training in transitioning air-carrier pilots: A field evaluation

    NASA Technical Reports Server (NTRS)

    Randle, R. J., Jr.; Tanner, T. A.; Hamerman, J. A.; Showalter, T. H.

    1981-01-01

    A field study was conducted in which the performance of air carrier transitioning pilots who had landing training in a landing maneuver approved simulator was compared with the performance of pilots who had landing training in the aircraft. Forty-eight trainees transitioning to the B-727 aircraft and eighty-seven trainees transitioning to the DC-10 were included in the study. The study results in terms of both objectively measured performance indicants and observer and check-pilot ratings did not demonstrate a clear distinction between the two training groups. The results suggest that, for these highly skilled transitioning pilots, a separate training module in the aircraft may be of dubious value.

  16. Hearing Deficit in a Birth Cohort of U.S. Male Commuter Air Carrier and Air Taxi Pilots

    PubMed Central

    Qiang, Yandong; Rebok, George W.; Baker, Susan P.; Li, Guohua

    2009-01-01

    Purpose Long-term exposure to multiple risk factors in aviation may place pilots at excess risk of developing hearing deficits. We examined the incidence and risk factors for hearing deficit in a birth cohort of male commuter and air taxi pilots. Methods The subjects (N = 3019), who were 45–54 yr of age and held Class I medical certificates in 1987, were followed up from 1987 to 1997 through the medical certification system of the Federal Aviation Administration (FAA). In this study, hearing deficit refers to the FAA pathology code 220 (defective hearing, deafness, not elsewhere classified). Poisson regression modeling based on generalized estimation equations was used to assess the associations between pilot characteristics and the risk of developing hearing deficit. Results The 10-yr follow-up accumulated a total of 20,671 person-years and 574 incident cases of hearing deficit, yielding an incidence rate of 27.8 per 1000 person-years. Compared with age 45–49 yr, the risk of developing hearing deficit at age 50–54 yr, 55–59 yr, and 60–64 yr increased by 12% [adjusted relative risk (RR) 1.12, 95% confidence interval (CI) 0.98–1.30], 34% (RR 1.34, 95% CI 1.13–1.59), and 79% (RR 1.79, 95% CI 1.20–2.67), respectively. Conclusions Hearing deficit is prevalent among commuter air carrier and air taxi pilots and the risk of hearing deficit increases progressively with pilot age. Effective programs for preventing excess hearing loss in the pilot population are warranted. PMID:18998487

  17. Pilot Error in Air Carrier Mishaps: Longitudinal Trends Among 558 Reports, 1983–2002

    PubMed Central

    Baker, Susan P.; Qiang, Yandong; Rebok, George W.; Li, Guohua

    2009-01-01

    Background Many interventions have been implemented in recent decades to reduce pilot error in flight operations. This study aims to identify longitudinal trends in the prevalence and patterns of pilot error and other factors in U.S. air carrier mishaps. Method National Transportation Safety Board investigation reports were examined for 558 air carrier mishaps during 1983–2002. Pilot errors and circumstances of mishaps were described and categorized. Rates were calculated per 10 million flights. Results The overall mishap rate remained fairly stable, but the proportion of mishaps involving pilot error decreased from 42% in 1983–87 to 25% in 1998–2002, a 40% reduction. The rate of mishaps related to poor decisions declined from 6.2 to 1.8 per 10 million flights, a 71% reduction; much of this decrease was due to a 76% reduction in poor decisions related to weather. Mishandling wind or runway conditions declined by 78%. The rate of mishaps involving poor crew interaction declined by 68%. Mishaps during takeoff declined by 70%, from 5.3 to 1.6 per 10 million flights. The latter reduction was offset by an increase in mishaps while the aircraft was standing, from 2.5 to 6.0 per 10 million flights, and during pushback, which increased from 0 to 3.1 per 10 million flights. Conclusions Reductions in pilot errors involving decision making and crew coordination are important trends that may reflect improvements in training and technological advances that facilitate good decisions. Mishaps while aircraft are standing and during push-back have increased and deserve special attention. PMID:18225771

  18. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2013-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.

  19. Assessment and forecasting of lightning potential and its effect on launch operations at Cape Canaveral Air Force Station and John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Weems, J.; Wyse, N.; Madura, J.; Secrist, M.; Pinder, C.

    1991-01-01

    Lightning plays a pivotal role in the operation decision process for space and ballistic launches at Cape Canaveral Air Force Station and Kennedy Space Center. Lightning forecasts are the responsibility of Detachment 11, 4th Weather Wing's Cape Canaveral Forecast Facility. These forecasts are important to daily ground processing as well as launch countdown decisions. The methodology and equipment used to forecast lightning are discussed. Impact on a recent mission is summarized.

  20. Let's talk sex on the air: ReachOut launches radio campaign.

    PubMed

    This article reports on the launching of the National Radio and Public Relations Campaign to Promote Modern Methods of Contraception by the ReachOut AIDS Foundation Incorporated in the Philippines. ReachOut has tapped radio veteran Tiya Dely Magpayo as the official campaign spokesperson, thus, putting a mother's touch to a serious promotional drive to reach the far-flung areas of the country. It is noted that the project promotes the wider use of modern methods of contraception as its contribution to the Philippines Population Program goals of controlling the population rate. Since radio is the most patronized media in the country, ReachOut hopes that the radio soap opera format will attract the listeners to use contraceptives. The campaign encourages men and women of reproductive age to seek information and services regarding modern methods of contraception from health service providers in their respective areas. The Department of Health will provide the technical support to ensure that the campaign is keeping with the government's programs. PMID:12322659

  1. 41 CFR 301-10.135 - When must I travel using U.S. flag air carrier service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use of the U.S. flag air carrier would at least double your en route travel time; or (g) When the... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false When must I travel using... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL...

  2. 41 CFR 301-10.135 - When must I travel using U.S. flag air carrier service?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use of the U.S. flag air carrier would at least double your en route travel time; or (g) When the... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false When must I travel using... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL...

  3. 41 CFR 301-10.135 - When must I travel using U.S. flag air carrier service?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of the U.S. flag air carrier would at least double your en route travel time; or (g) When the... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false When must I travel using... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL...

  4. 41 CFR 301-10.135 - When must I travel using U.S. flag air carrier service?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true When must I travel using U.S. flag air carrier service? 301-10.135 Section 301-10.135 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Common...

  5. 41 CFR 301-10.135 - When must I travel using U.S. flag air carrier service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of the U.S. flag air carrier would at least double your en route travel time; or (g) When the... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false When must I travel using... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL...

  6. 75 FR 60493 - Advisory Circular 120-79A, Developing and Implementing an Air Carrier Continuing Analysis and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... Federal Aviation Administration Advisory Circular 120-79A, Developing and Implementing an Air Carrier... of Availability. SUMMARY: This notice announces the issuance and availability of Advisory Circular...''. This new advisory circular (AC) updates AC 120-79 originally issued on April 21, 2003. This new...

  7. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    NASA Astrophysics Data System (ADS)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  8. 14 CFR 211.20 - Initial foreign air carrier permit or transfer of a permit.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CFR part 205. State the name(s) of its insurance carrier(s). (i) Supply certified evidence, in English... the applicant has been involved in any safety or tariff violations or any fatal accidents. If...

  9. Effect of Air Exposure on Surface Properties, Electronic Structure, and Carrier Relaxation in PbSe Nanocrystals

    SciTech Connect

    Sykora, Milan; Koposov, Alexey Y.; McGuire, John A.; Schulze, Roland K.; Tretiak, Olexandr; Pietryga, Jeffrey M.; Klimov, Victor

    2010-04-27

    Effects of air exposure on surface properties, electronic structure, and carrier relaxation dynamics in colloidal PbSe nanocrystals (NCs) were studied using X-ray photoelectron spectroscopy, transmission electron microscopy, and steady-state and time-resolved photoluminescence (PL) spectroscopies. We show that exposure of NC hexane solutions to air under ambient conditions leads to rapid oxidation of NCs such that up to 50% of their volume is transformed into PbO, SeO{sub 2}, or PbSeO{sub 3} within 24 h. The oxidation is a thermally activated process, spontaneous at room temperature. The oxidation-induced reduction in the size of the PbSe “core” increases quantum confinement, causing shifts of the PL band and the absorption onset to higher energies. The exposure of NC solutions to air also causes rapid (within minutes) quenching of PL intensity followed by slow (within hours) recovery during which the PL quantum yield can reach values exceeding those observed prior to the air exposure. The short-term PL quenching is attributed to enhanced carrier trapping induced by adsorption of oxygen onto the NC surface, while the PL recovery at longer times is predominantly due to reduction in the efficiency of the “intrinsic” nonradiative interband recombination caused by the increase of the band gap in oxidized NCs. Although the analysis of subnanosecond relaxation dynamics in air-exposed NCs is complicated by a significant enhancement in fast carrier trapping, our picosecond PL measurements suggest that air exposure likely has only a weak effect on Auger recombination and also does not significantly affect the efficiency of carrier multiplication. We also show that the effects of air exposure are partially suppressed in PbSe/CdSe core/shell structures.

  10. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  11. Effluent monitoring of the December 10, 1974, Titan 3-E launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.

    1978-01-01

    Surface and airborne field measurements of the cloud behavior and effluent dispersion from a solid rocket motor launch vehicle are presented. The measurements were obtained as part of a continuing launch vehicle effluent monitoring program to obtain experimental field measurements in order to evaluate a model used to predict launch vehicle environmental impact. Results show that the model tends to overpredict effluent levels.

  12. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  13. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  14. Comparison of air-launched and ground-coupled configurations of SFCW GPR in time, frequency and wavelet domain

    NASA Astrophysics Data System (ADS)

    Van De Vijver, Ellen; De Pue, Jan; Cornelis, Wim; Van Meirvenne, Marc

    2015-04-01

    A stepped frequency continuous wave (SFCW) ground penetrating radar (GPR) system produces waveforms consisting of a sequence of sine waves with linearly increasing frequency. By adopting a wide frequency bandwidth, SFCW GPR systems offer an optimal resolution at each achievable measurement depth. Furthermore, these systems anticipate an improved penetration depth and signal-to-noise ratio (SNR) as compared to time-domain impulse GPRs, because energy is focused in one single frequency at a time and the phase and amplitude of the reflected signal is recorded for each discrete frequency step. However, the search for the optimal practical implementation of SFCW GPR technology to fulfil these theoretical advantages is still ongoing. In this study we compare the performance of a SFCW GPR system for air-launched and ground-coupled antenna configurations. The first is represented by a 3d-Radar Geoscope GS3F system operated with a V1213 antenna array. This array contains 7 transmitting and 7 receiving antennae resulting in 13 measurement channels at a spacing of 0.075 m and providing a total scan width of 0.975 m. The ground-coupled configuration is represented by 3d-Radar's latest-generation SFCW system, GeoScope Mk IV, operated with a DXG1212 antenna array. With 6 transmitting and 5 receiving antennae this array provides 12 measurement channels and an effective scan width of 0.9 m. Both systems were tested on several sites representative of various application environments, including a test site with different road specimens (Belgian Road Research Centre) and two test areas in different agricultural fields in Flanders, Belgium. For each test, data acquisition was performed using the full available frequency bandwidth of the systems (50 to 3000 MHz). Other acquisition parameters such as the frequency step and dwell time were varied in different tests. Analyzing the data of the different tests in time, frequency and wavelet domain allows to evaluate different performance

  15. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  16. 14 CFR 211.20 - Initial foreign air carrier permit or transfer of a permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The balance sheet summary shall state and identify: (i) Current assets; (ii) Flight equipment (after depreciation); (iii) Other assets; (iv) Total assets (sum of (i) through (iii)); (v) Current liabilities; (vi... CFR part 205. State the name(s) of its insurance carrier(s). (i) Supply certified evidence, in...

  17. 14 CFR 211.20 - Initial foreign air carrier permit or transfer of a permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) The balance sheet summary shall state and identify: (i) Current assets; (ii) Flight equipment (after depreciation); (iii) Other assets; (iv) Total assets (sum of (i) through (iii)); (v) Current liabilities; (vi... CFR part 205. State the name(s) of its insurance carrier(s). (i) Supply certified evidence, in...

  18. Initial carrier-envelope phase of few-cycle pulses determined by terahertz emission from air plasma

    NASA Astrophysics Data System (ADS)

    Xu, Rongjie; Bai, Ya; Song, Liwei; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-08-01

    The evolution of THz waveform generated in air plasma provides a sensitive probe to the variation of the carrier envelope phase (CEP) of propagating intense few-cycle pulses. Our experimental observation and calculation reveal that the number and positions of the inversion of THz waveform are dependent on the initial CEP, which is near 0.5π constantly under varied input pulse energies when two inversions of THz waveform in air plasma become one. This provides a method of measuring the initial CEP in an accuracy that is only limited by the stability of the driving few-cycle pulses.

  19. Carving a Niche for the No-Frills Carrier, Air Arabia, in Oil-Rich Skies

    NASA Technical Reports Server (NTRS)

    McKechnie, Donelda S.; Grant, Jim; Fahmi, Mona

    2007-01-01

    The concept of introducing a no-frills airline to the wealthy Arab region presented its risks. This independent study sought to position the new airline in the marketplace. After three focus groups and 400 self-administered surveys, safety (#1) and price (#2) are low-fare carrier considerations whereas safety (#1), punctuality (#2) and price (#3) apply for full-fare airlines. Recommended ways for the no-frills carrier to reach the market include newspaper ads, travel agent sales, online bookings, and call centers. Additionally, respondents appeared to evaluate this low-fare carrier as if it is a full-service airline.

  20. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  1. 78 FR 56983 - Agency Information Collection; Activity Under OMB Review: Foreign Air Carrier Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... was published (78 FR 25781, May 2, 2013). The agency did not receive any comments to its previous... (BTS) provide carriers with a computer program that allows them to compile and monitor, among...

  2. 14 CFR 330.31 - What data must air carriers submit concerning ASMs or RTMs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... all-cargo carrier, you must have submitted your RTM reports to the Department for the second calendar... correct an error that you document to the Department, you must not alter the ASM or RTM reports...

  3. 76 FR 38264 - Applications for Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... Carrier Permits Filed Under Subpart B (Formerly Subpart Q) During the Week Ending June 4, 2011 The...-2000-6796. Date Filed: June 2, 2011. Due Date for Answers, Conforming Applications, or Motion to Modify Scope: June 23, 2011. Description: Application of Aerolineas Santo Domingo, S.A. (``ASD'')...

  4. 78 FR 76701 - Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... and mail from any point or points behind any Member State(s) of the European Union, via any point or... European Union carriers under the U.S.-E.U. Open Skies Agreement. Barbara J. Hairston, Supervisory Dockets... or points in the United States and any point or points in any member of the European Common...

  5. 78 FR 20372 - Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... European Union carriers in the future. Docket Number: DOT-OST-2013-0057. Date Filed: March 20, 2013. Due... transportation of persons, property and mail from any point or points behind any Member State of the European Union, via any point or points in any Member State and via intermediate points to any point or points...

  6. 78 FR 53025 - Pilot Certification and Qualification Requirements for Air Carrier Operations; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... rule; correction. SUMMARY: The FAA is correcting a final rule published on July 15, 2013 (78 FR ] 42324... Carrier Operations'' (78 FR 42324). In that final rule, which became effective July 15, 2013, the FAA..., FR Doc. 2013-16849, published on July 15, 2013, at 78 FR 42324, make the following correction: 1....

  7. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman III Ballistic Missiles at Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The AMU determined the theoretical distributions that best fit the maximum wind speed and maximum wind shear datasets and applied this information when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition, the AMU included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on the day of launch. The AMU developed an interactive graphical user interface (GUI) in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for

  8. Ground cloud effluent measurements during the May 30, 1974, Titan 3 launch at the Air Force eastern test range

    NASA Technical Reports Server (NTRS)

    Bendura, R. J.; Crumbly, K. H.

    1977-01-01

    Surface-level exhaust effluent measurements of HCl, CO, and particulates, ground-cloud behavior, and some comparisons with model predictions for the launch of a Titan 3 rocket are presented along with a limited amount of airborne sampling measurements of other cloud species (O3, NO, NOX). Values above background levels for these effluents were obtained at 20 of the 30 instrument sites; these values were lower than model predictions and did not exceed public health standards. Cloud rise rate, stabilization altitude, and volume are compared with results from previous launches.

  9. 77 FR 69927 - Safety Advisory Notice: Safety Advisory for Shippers and Carriers of Air Bags

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ...PHMSA has been alerted by the National Highway Traffic Safety Administration (NHTSA) that counterfeit air bags have been sold as replacement parts to consumers and repair professionals. These counterfeit products may contain unapproved explosives and thus pose additional transportation risks when compared to air bags manufactured through legitimate means. Therefore, PHMSA is issuing this......

  10. 78 FR 73794 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to U.S. Air Force Launches...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... SEL (ASEL) of 96.5 dB (MSRS, 2008c). The Atlas V was predicted to create a sonic boom of as much as 7... actual sonic boom depends on meteorological conditions, which can vary by day and season and with the trajectory of the vehicle. A sonic boom greater than 1 psf was predicted for the initial Atlas V launch;...

  11. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Three-dimensional DEM-CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers.

    PubMed

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-02-01

    Air flow and particle-particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM-CFD (discrete element method-computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  13. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    PubMed Central

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-01-01

    Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  14. Pucksat Payload Carrier

    NASA Technical Reports Server (NTRS)

    Milam, M. Bruce; Young, Joseph P.

    1999-01-01

    There is an ever-expanding need to provide economical space launch opportunities for relatively small science payloads. To address this need, a team at NASA's Goddard Space Flight Center has designed the Pucksat. The Pucksat is a highly versatile payload carrier structure compatible for launching on a Delta II two-stage vehicle as a system co-manifested with a primary payload. It is also compatible for launch on the Air Force Medium Class EELV. Pucksat's basic structural architecture consists of six honeycomb panels attached to six longerons in a hexagonal manner and closed off at the top and bottom with circular rings. Users may configure a co-manifested Pucksat in a number of ways. As examples, co-manifested configurations can be designed to accommodate dedicated missions, multiple experiments, multiple small deployable satellites, or a hybrid of the preceding examples. The Pucksat has fixed lateral dimensions and a downward scaleable height. The dimension across the panel hexagonal flats is 62 in. and the maximum height configuration dimension is 38.5 in. Pucksat has been designed to support a 5000 lbm primary payload, with the center of gravity located no greater than 60 in. from its separation plane, and to accommodate a total co-manifested payload mass of 1275 lbm.

  15. Aircraft disinsection: A guide for military and civilian air carriers; Desinsectisation des aeronefs: Un guide a l`intention des responsables des transports aeriens civils et militaires

    SciTech Connect

    Ellis, R.A

    1996-05-01

    To prevent risks to air crews health, aircraft safety, and industry, Canada`s Department of National Defense (DND) has recently reviewed the potential problems associated with aircraft disinsection. Various directives for air crew, maintenance personnel and preventative medicine technicians to follow have been developed and updated periodically. This aircraft disinsection review is part of the latest effort to revise DND`s administrative orders on aircraft disinsection and could be a model for other military and civilian air carriers.

  16. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  17. Peak Wind Forecasts for the Launch-Critical Wind Towers on Kennedy Space Center/Cape Canaveral Air Force Station, Phase IV

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2011-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  18. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  19. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    NASA Astrophysics Data System (ADS)

    Borst, R. R.; Wood, B. D.

    1985-05-01

    The performance of a prototype three ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  20. A method for the determination of potentially profitable service patterns for commuter air carriers

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Kuhlthau, A. R.; Deptula, D. A.

    1975-01-01

    A methodology for estimating market conception was developed as a part of the short-haul air transportation program. It is based upon an analysis of actual documents which provide a record of known travel history. Applying this methodology a forecast was made of the demand for an air feeder service between Charlottesville, Virginia and Dulles International Airport. Local business travel vouchers and local travel agent records were selected to provide the documentation. The market was determined to be profitable for an 8-passenger Cessna 402B aircraft flying a 2-hour daily service pattern designed to mesh to the best extent possible with the connecting schedules at Dulles. The Charlottesville - Dulles air feeder service market conception forecast and its methodology are documented.

  1. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  2. 78 FR 68134 - Certificates of Public Convenience and Necessity and Foreign Air Carrier Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... the European Union, via any point or points in any EU Member State and via intermediate points, to any...) charter transportation authorized by any additional route ] rights made available to European Union... of the European Common Aviation Area; (iii) foreign charter air transportation of cargo between...

  3. 14 CFR 380.34a - Substitution of direct air carrier's security or depository agreement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... participant payments (including those for ground accommodations and services) and for the fulfillment of all...: (1) Payments by or on behalf of charter participants shall be allocated to the flight accounts... charter cost of the participant's air transportation on that flight. The portion of each payment...

  4. Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition

    SciTech Connect

    Jones, A.; Hambro, L.; Hooper, K.

    2008-07-01

    This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as well as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could be

  5. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  6. Carrier-envelope phase-dependent electronic conductivity in an air filament driven by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Lifeng; Lu, Xin; Teng, Hao; Xi, Tingting; Chen, Shiyou; He, Peng; He, Xinkui; Wei, Zhiyi

    2016-07-01

    The modulation of the electron conductivity in an air filament, which is produced by carrier-envelope phase (CEP) stabilized 7-fs laser pulses, is realized experimentally. Numerical results based on a coupled 3D+1 generalized nonlinear Schrödinger equation including the real electric-field dependent ionization model are in good agreement with those from the experiment. It is demonstrated that the CEP effect on the electron density originates from the CEP-induced modification of the electric field of the laser pulse, and this modification is amplified during nonlinear propagation. The results provide important information to help understand the physical mechanism of the filaments driven by few-cycle femtosecond laser pulses.

  7. Scout Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Scout Launch. James Hansen wrote: 'As this sequence of photos demonstrates, the launch of ST-5 on 30 June 1961 went well; however, a failure of the rocket's third stage doomed the payload, a scientific satellite known as S-55 designed for micrometeorite studies in orbit.'

  8. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  9. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  10. 78 FR 49729 - Takes of Marine Mammals Incidental to Specified Activities; U.S. Air Force Launches, Aircraft and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... has received a request from the U.S. Air Force (USAF) for authorization to take marine mammals... (MMPA), NMFS is announcing our receipt of the USAF's request for the development and implementation of... comments on the USAF's application and request. DATES: Comments and information must be received no...

  11. Airport noise complaint patterns and interviews of frequent complainers at two major air carrier airports

    NASA Astrophysics Data System (ADS)

    Jaggers, Nicholas; Eiff, Gary

    2005-09-01

    The complex and highly sensitive topic of aircraft noise and population annoyance continues to be a major inhibitor to airport development plans. The projected growth of air travel necessitates expanded capacity at many existing airports and the development and construction of new airports in order to accommodate burgeoning traveler needs. Concerns by citizens near major airports about their economic, health, and social welfare continue to generate community and individual declarations of annoyance and concern which threaten timely solutions to airport expansion plans. A deeper understanding of the nature of these concerns is important to more effectively cope with airport expansion concerns among adjacent communities and surrounding neighbors. This study analyzed existing noise complaints registered at Denver International Airport (DEN) and Fort Lauderdale/Hollywood International Airport (FLL) in an attempt to gain greater understanding of noise complaint drivers and public annoyance. Interviews of frequent complainers were utilized in order to gain richer data concerning individual annoyance issues.

  12. 14 CFR Appendix A to Part 212 - Certificated or Foreign Air Carrier's Surety Bond Under Part 212 of the Regulations of the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Surety Bond Under Part 212 of the Regulations of the Department of Transportation (14 CFR Part 212) A... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS Pt. 212... Regulations of the Department of Transportation (14 CFR Part 212) Know all persons by these presents, that...

  13. 14 CFR Appendix A to Part 212 - Certificated or Foreign Air Carrier's Surety Bond Under Part 212 of the Regulations of the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Surety Bond Under Part 212 of the Regulations of the Department of Transportation (14 CFR Part 212) A... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS Pt. 212... Regulations of the Department of Transportation (14 CFR Part 212) Know all persons by these presents, that...

  14. 14 CFR Appendix A to Part 212 - Certificated or Foreign Air Carrier's Surety Bond Under Part 212 of the Regulations of the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Surety Bond Under Part 212 of the Regulations of the Department of Transportation (14 CFR Part 212) A... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS Pt. 212... Regulations of the Department of Transportation (14 CFR Part 212) Know all persons by these presents, that...

  15. 14 CFR Appendix A to Part 212 - Certificated or Foreign Air Carrier's Surety Bond Under Part 212 of the Regulations of the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Surety Bond Under Part 212 of the Regulations of the Department of Transportation (14 CFR Part 212) A... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS Pt. 212... Regulations of the Department of Transportation (14 CFR Part 212) Know all persons by these presents, that...

  16. 14 CFR Appendix A to Part 212 - Certificated or Foreign Air Carrier's Surety Bond Under Part 212 of the Regulations of the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Surety Bond Under Part 212 of the Regulations of the Department of Transportation (14 CFR Part 212) A... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS Pt. 212... Regulations of the Department of Transportation (14 CFR Part 212) Know all persons by these presents, that...

  17. 26 CFR 40.6071(a)-3 - Time for an eligible air carrier to file a return for the third calendar quarter of 2001.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... return for the third calendar quarter of 2001. 40.6071(a)-3 Section 40.6071(a)-3 Internal Revenue... calendar quarter of 2001. (a) In general. If, in the case of an eligible air carrier, the quarterly return required under § 40.6011(a)-1(a) for the third calendar quarter of 2001 includes tax imposed by...

  18. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  19. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  20. NPP Launch

    NASA Video Gallery

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  1. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  2. 32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. DETAIL VIEW OF CAMERA PIT SOUTH OF LAUNCH PAD WITH CAMERA AIMED AT LAUNCH DECK; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  3. 3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 78. DETAIL OF COMMUNICATIONS PANEL ON LAUNCH ANALYST PANEL SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. DETAIL OF COMMUNICATIONS PANEL ON LAUNCH ANALYST PANEL SHOWING 20 CHANNEL-SELECTION SWITCHES, ROTARY DIAL, HEADSET, AND FOOT PEDAL - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES AT SOUTH SIDE OF MST, FROM STATION 93 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. 37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION 124 OF MST, SOUTH SIDE - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Filling the launch gap

    NASA Astrophysics Data System (ADS)

    Hoeser, S.

    1986-05-01

    Vehicles proposed to fill the gap in the U.S. space program's space transport needs for the next decade resulting from the January Challenger disaster, are discussed. Prior to the accident, the Air Force planned to purchase a Complementary Expendable Launch Vehicle system consisting of 10 single-use Titan-34D7 rockets. Another heavy lift booster now considered is the Phoenix H. Commercial launch vehicle systems projected to be available in the necessary time frame include the 215,000-pound thrust 4000-pound LEO payload capacity NASA Delta, the 11,300-pound LEO payload capacity Atlas Centaur the first ICBM, and the all-solid propellant expendable 2000-pound LEO payload Conestoga rocket. Also considered is the man-rated fully reusable Phoenix vertical take-off and vertical-landing launch vehicle.

  8. KSC Vertical Launch Site Evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, Lynne V.

    2007-01-01

    RS&H was tasked to evaluate the potential available launch sites for a combined two user launch pad. The Launch sites were to be contained entirely within current Kennedy Space Center property lines. The user launch vehicles to be used for evaluation are in the one million pounds of first stage thrust range. Additionally a second evaluation criterion was added early on in the study. A single user launch site was to be evaluated for a two million pound first stage thrust vehicle. Both scenarios were to be included in the report. To provide fidelity to the study criteria, a specific launch vehicle in the one million pound thrust range was chosen as a guide post or straw-man launch vehicle. The RpK K-1 vehicle is a current Commercial Orbital Transportation System (COTS), contract awardee along with the SpaceX Falcon 9 vehicle. SpaceX, at the time of writing, is planning to launch COTS and possibly other payloads from Cx-40 on Cape Canaveral Air Force Station property. RpK has yet to declare a specific launch site as their east coast US launch location. As such it was deemed appropriate that RpK's vehicle requirements be used as conceptual criteria. For the purposes of this study those criteria were marginally generalized to make them less specifiC.

  9. 14 CFR 272.9 - Selection of a carrier to provide essential air service and payment of compensation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO... provide the proposed essential air service; (4) The impact of the proposed service on service provided...

  10. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  11. 14 CFR 298.63 - Reporting of aircraft operating expenses and related statistics by small certificated air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... into a single classification; therefore, carriers are not required to report the fourth digit of an... to all salaries in this classification. (3) Line 13 “Departure Related (Station) Expense”...

  12. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. Magnetic Launch Assist Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. Summary of airborne chlorine and hydrogen chloride gas measurements for August 20 and September 5, 1977 Voyager launches at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.

    1978-01-01

    Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.

  15. STS-29: Pre-Launch Preparations/Launch and Landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows the crewmembers of STS-29, Commander Michael L. Coats, Pilot John E. Blaha, and Mission Specialists James P. Bagian, James F. Buchli, and Robert C. Springer, seated in the White Room with the traditional cake. The crew is seen performing various pre-launch activities including suit-up, and walk out to the Astro-van. This early morning launch shows countdown, main engine start, liftoff, booster separation, and various isolated footage of the launch from different cameras. Also presented are footage of the approach, gear touchdown, rollout at Edwards Air Force Base, and various isolated views of the landing.

  16. Advanced Launch Development Program status

    NASA Technical Reports Server (NTRS)

    Colgrove, Roger

    1990-01-01

    The Advanced Launch System is a joint NASA - Air Force program originally directed to define the concept for a modular family of launch vehicles, to continue development programs and preliminary design activities focused primarily on low cost to orbit, and to offer maturing technologies to existing systems. The program was restructed in the spring of 1990 as a result of funding reductions and renamed the Advanced Launch Development Program. This paper addresses the program's status following that restructuring and as NASA and the Air Force commence a period of deliberation over future space launch needs and the budgetary resources available to meet those needs. The program is currently poised to protect a full-scale development decision in the mid-1990's through the appropriate application of program resources. These resources are concentrated upon maintaining the phase II system contractor teams, continuing the Space Transportation Engine development activity, and refocusing the Advanced Development Program demonstrated activities.

  17. No Launch Before Its Time

    NASA Technical Reports Server (NTRS)

    Townsend, Bill

    2004-01-01

    Aura is an Earth-observing satellite developed to help us study the quality of the air we breathe. It will look at the state of the ozone and the atmospheric composition in regards to the Earth's changing climate. I headed to California on July 5, 2004. The plan was that the satellite would launch on the tenth, but we had a few problems getting it off. This was the fifty-ninth launch of my career, and it was also a little different than most of my previous launches. Most of the time it's weather that postpones a launch; there aren't usually that many technical issues this late in the game. This time. however, we had several problems, equally split between the launch vehicle and the spacecraft. I remember a member of the crew asking me, 'Is this normal?' And in my experience, it wasn't.

  18. Tabletop Experimental Track for Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. Loading of Launch Vehicle when Launching from Floating Launch Platform

    NASA Astrophysics Data System (ADS)

    Agarkov, A. V.; Pyrig, V. A.

    2002-01-01

    equator, which is a most effective way from payload capability standpoint. But mobility of the Launch Platform conditions an increase in LV loading as compared with onground launch. Therefore, to provide efficiency of lounching from LP requires solving certain issues to minimize LV loading at launch processing. The paper at hand describes ways to solve these issues while creating and operating the international space launch system Sea Launch, which provides commercial spacecraft launches onboard Zenit-3SL launch vehicle from the floating launch platform located at the equator in the Pacific. Methods to decrease these loads by selecting the optimum position of LP and by correcting LP trim and heel were described. In order to account for impact of weather changing (i.e. waves and winds) and launch support operations on the launch capability, a system of predicted load calculation was designed. By measuring LP roll and pitch parameters as well as wind speed and direction, the system defines loading at LV root section, compares it with the allowable value and, based on the compavision, forms a conclusion on launch capability. launches by Sea Launch.

  20. Successful launch of SOHO

    NASA Astrophysics Data System (ADS)

    1995-12-01

    "Understanding how the Sun behaves is of crucial importance to all of us on Earth. It affects our everyday lives" said Roger Bonnet, Director of Science at ESA, who witnessed SOHO's spectacular nighttime launch from Cape Canaveral. "When SOHO begins work in four months time, scientists will, for the first time, be able to study this star 24 hours a day, 365 days a year". The 12 instruments on SOHO will probe the Sun inside out, from the star's very centre to the solar wind that blasts its way through the solar system. It will even listen to sounds, like musical notes, deep within the star by recording their vibrations when they reach the surface. SOHO was launched from Cape Canaveral Air Station, Florida, atop an Atlas IIAS rocket, at 09:08 CET on Saturday 2 December 1995. The 1.6 tonne observatory was released into its transfer orbit from the rocket's Centaur upper stage about two hours after launch. It will take four months for the satellite to reach its final position, a unique vantage point, located 1.5 million kilometres from Earth, where the gravitational pull of the Earth and Sun are equal. From here, the Lagrange point, SOHO will have an unobstructed view of the Sun all year round. SOHO's launch was delayed from 23 November because a flaw was discovered in a precision regulator, which throttles the power of the booster engine on the Atlas rocket. The system was replaced and retested before the launch. SOHO is a project of international cooperation between ESA and NASA. The spacecraft was designed and built in Europe, NASA provided the launch and will operate the satellite from its Goddard Space Flight Center, Maryland. European scientists provided eight of the observatory's instruments and US scientists a further three. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for

  1. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  2. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  3. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  4. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. VOLUME 29, LAUNCH CONTROL CENTER (LCC) TITLE AND LOCATION SHEET. Sheet 29-01 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1996-01-01

    Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  7. Experimental measurements of the ground cloud effluents and cloud growth for the May 20, 1975, Titan 3C launch at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Storey, R. W., Jr.

    1977-01-01

    The experiment included surface level and airborne in situ cloud measurements of the exhaust effluents from the Titan IIIC solid rocket boosters. Simultaneous visible spectrum photographic pictures of the ground cloud as well as infrared imaging of the cloud were obtained to study the cloud rise, growth, and direction of travel within the earth's surface mixing layer. The NASA multilayer diffusion model predictions of cloud growth, direction of travel, and expected surface level effluent concentrations were made prior to launch and after launch using measured meteorological conditions. Prelaunch predictions were used to position the effluent monitoring instruments, and the postlaunch predictions were compared with the measured data. Measurement results showed that surface level effluent values were low, often below the detection limits of the instrumentation. The maximum surface level hydrogen chloride concentration measured 50 parts per billion at about 8 km from the launch pad. The maximum observed in-cloud (airborne measurement) hydrogen chloride concentration was 7 per million.

  8. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  9. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 1: Methodology, summary and conclusions

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are described in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent when conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume II contains the appendices referenced in Volume I, providing details of the experiment and the results, and the text of two reports written in support of the program.

  10. Pilots' use of a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier operations. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Chappell, Sheryl L.; Billings, Charles E.; Scott, Barry C.; Tuttell, Robert J.; Olsen, M. Christine; Kozon, Thomas E.

    1989-01-01

    Pilots' use of and responses to a traffic alert and collision-avoidance system (TCAS 2) in simulated air carrier line operations are discribed in Volume 1. TCAS 2 monitors the positions of nearby aircraft by means of transponder interrogation, and it commands a climb or descent which conflicting aircraft are projected to reach an unsafe closest point-of-approach within 20 to 25 seconds. A different level of information about the location of other air traffic was presented to each of three groups of flight crews during their execution of eight simulated air carrier flights. A fourth group of pilots flew the same segments without TCAS 2 equipment. Traffic conflicts were generated at intervals during the flights; many of the conflict aircraft were visible to the flight crews. The TCAS equipment successfully ameliorated the seriousness of all conflicts; three of four non-TCAS crews had hazardous encounters. Response times to TCAS maneuver commands did not differ as a function of the amount of information provided, nor did response accuracy. Differences in flight experience did not appear to contribute to the small performance differences observed. Pilots used the displays of conflicting traffic to maneuver to avoid unseen traffic before maneuver advisories were issued by the TCAS equipment. The results indicate: (1) that pilots utilize TCAS effectively within the response times allocated by the TCAS logic, and (2) that TCAS 2 is an effective collision avoidance device. Volume 2 contains the appendices referenced in Volume 1, providing details of the experiment and the results, and the text of two reports written in support of the program.

  11. Deep Impact on Launch Pad

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Deep Impact awaits launch from Cape Canaveral Air Force Station, Fla. on Jan. 12, 2005.

    The spacecraft will travel to comet Tempel 1 and release an impactor, creating a crater on the surface of the comet. Scientists believe the exposed materials may give clues to the formation of our solar system.

  12. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  13. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. 75 FR 8178 - Application of Rugby Aviation LLC D/B/A Northwest Sky Ferry for Commuter Air Carrier Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Rugby Aviation LLC D/B/A Northwest Sky Ferry for Commuter Air... persons to show cause why it should not issue an order finding Rugby ] Aviation, LLC d/b/a Northwest...

  15. Benefits and limitations of composites in carrier-based aircraft

    NASA Technical Reports Server (NTRS)

    Mcerlean, Donald P.

    1992-01-01

    There are many unique aspects of Navy air missions that lead to the differentiation between the design and performance of ship and shore-based aircraft. The major aspects are discussed from which essentially all Navy aircraft design requirements derive. (1) Navy aircraft operate from carriers at sea imposes a broad spectrum of physical conditions, constraints, and requirements ranging from the harsh sea environment, the space limitations of a carrier, takeoff and landing requirements as well as for endurance at long distances from the carrier. (2) Because the carrier and its airwing are intended to be capable of responding to a broad range of contingencies, mission flexibility is essential (maximum weapon carriage, rapid reconfiguration, multiple mission capability). (3) The embarked aircraft provides the long range defense of the battle group against air, surface and subsurface launched antiship missiles. (4) The carrier and its aircraft must operate independently and outside of normal supply lines. Taking into account these aspects, the use of composite materials in the design and performance of naval aircraft is outlined, also listing advantages and disadvantages.

  16. 5. Launch closure, close up of track and concrete apron, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Launch closure, close up of track and concrete apron, view towards north - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  17. 3. Launch closure, close up of motor and controls, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Launch closure, close up of motor and controls, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  18. 49. Interior of launch support building, buck boost transformer at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Interior of launch support building, buck boost transformer at center, view towards southwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  19. 6. Launch closure, close up of closure motor, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Launch closure, close up of closure motor, view towards north - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  20. 24. Personnel access ladder, from upper level of launch facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Personnel access ladder, from upper level of launch facility - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  1. 25. Personnel access ladder, from lower level of launch facility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Personnel access ladder, from lower level of launch facility - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  2. 53. Interior of launch support building, brine chiller, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Interior of launch support building, brine chiller, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  3. 83. Shock absorber attaching "egg" to the launch control center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. Shock absorber attaching "egg" to the launch control center, southwest corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  4. 25. View down launch tube, showing shock absorption system. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. View down launch tube, showing shock absorption system. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  5. 48. Bottom of shock absorber, bottom of launch tube, soda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Bottom of shock absorber, bottom of launch tube, soda bottle liter at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  6. 86. Shock absorber, top of launch control center, southeast corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. Shock absorber, top of launch control center, southeast corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  7. 29. Launch Control Center, view looking in, alert crew mannequin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Launch Control Center, view looking in, alert crew mannequin at end of Launch Control Center. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  8. Towed Twin-Fuselage Glider Launch System (CGI Animation)

    NASA Video Gallery

    The towed glider is an element of the novel rocket-launching concept of the Towed Glider Air-Launch System (TGALS). The TGALS demonstration’s goal is to provide proof-of-concept of a towed, airborn...

  9. 29. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERSSTRUCTURAL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERS-STRUCTURAL, FOUNDATIONS, GUY ANCHOR AND RAIL DETAILS, MARCH 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  10. 28. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERSCIVIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERS-CIVIL, MARCH 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. 5. VIEW OF LAUNCH DECK PROJECTING OVER FLAME DEFLECTOR WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF LAUNCH DECK PROJECTING OVER FLAME DEFLECTOR WITH BASE OF UMBILICAL MAST AT LEFT; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  12. 15. SOUTH SIDE OF LAUNCH DECK SHOWING NEW AUXILIARY FLAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SOUTH SIDE OF LAUNCH DECK SHOWING NEW AUXILIARY FLAME DUCTS UNDER CONSTRUCTION, UMBILICAL MAST AT RIGHT; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  13. 30. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERSSTRUCTURAL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of engineering drawing. LAUNCH COMPLEX 17: UMBILICAL TOWERS-STRUCTURAL, TOWER ELEVATIONS AND DETAILS, MARCH 1965. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  14. 6. ROOF DETAIL OF MIRROR MOUNTS FOR VIEWING LAUNCH FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. ROOF DETAIL OF MIRROR MOUNTS FOR VIEWING LAUNCH FROM INSIDE BLOCKHOUSE, PAD A IN BACKGROUND; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. 29. Photocopy of engineering drawing. CASTOR IV MODIFICATIONS LAUNCH COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of engineering drawing. CASTOR IV MODIFICATIONS LAUNCH COMPLEX 17A: LEVEL 17A PLATFORMS-STRUCTURAL, 1973. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 28. Photocopy of engineering drawing. CASTOR IV MODIFICATIONS LAUNCH COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Photocopy of engineering drawing. CASTOR IV MODIFICATIONS LAUNCH COMPLEX 17A: LEVEL 1A PLATFORMS-STRUCTURAL, 1973. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  17. 70. Commander's launch control console, plexiglass shield down, looking southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. Commander's launch control console, plexiglass shield down, looking southeast, filing cabinet in corner - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  18. Space-X Launches Falcon 9 on Demonstration Flight

    NASA Video Gallery

    SpaceX's Falcon 9 rocket and Dragon spacecraft launched from Launch Complex 40 at Cape Canaveral Air Force Station at 10:43 a.m. EST on Wednesday, Dec. 8. This is first demonstration flight for NAS...

  19. Reusable Launch Vehicle Technology Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  20. Reusable launch vehicle technology program

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  1. The Scout Launch Vehicle program

    NASA Technical Reports Server (NTRS)

    Foster, L. R., Jr.; Urash, R. G.

    1981-01-01

    The Scout Launch Vehicle Program to utilize solid propellant rockets by the DOD and to provide a reliable, low cost vehicle for scientific and applications aircraft is discussed. The program's history is reviewed and a vehicle description is given. The Vandenberg Air Force Base and the San Marco launch sites are described, and capabilities such as payload weight, orbital inclinations, payload volume and mission integration time spans are discussed. Current and future plans for improvement, including larger heat shields and individual rocket motors are also reviewed.

  2. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  3. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  4. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  5. Mortar launched surveillance system

    NASA Astrophysics Data System (ADS)

    Lewis, Carl E.; Carlton, Lindley A.

    2001-02-01

    Accurate Automation Corporation has completed the conceptual design of a mortar launched air vehicle system to perform close range or over-the-horizon surveillance missions. Law enforcement and military units require an organic capability to obtain real time intelligence information of time critical targets. Our design will permit law enforcement to detect, classify, locate and track these time critical targets. The surveillance system is a simple, unmanned fixed-winged aircraft deployed via a conventional mortar tube. The aircraft's flight surfaces are deployed following mortar launch to permit maximum range and time over target. The aircraft and sensor system are field retrievable. The aircraft can be configured with an engine to permit extended time over target or range. The aircraft has an integrated surveillance sensor system; a programmable CMOS sensor array. The integrated RF transmitted to capable of down- linking real-time video over line-of-sight distances exceeding 10 kilometers. The major benefit of the modular design is the ability to provide surveillance or tracking quickly at a low cost. Vehicle operational radius and sensor field coverage as well as design trade results of vehicle range and endurance performance and payload capacity at operational range are presented for various mortar configurations.

  6. New Horizons Launch Contingency Effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  7. Mars Science Laboratory Launch Pad Thermal Control

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Bame, David

    2011-01-01

    This paper will describe the challenges faced in accommodating the warm Multi Mission Radioisotope Thermoelectric Generator (MMRTG) during the pre-launch phases of integration, launch pad operations as well as during launch. Predictions of temperatures during these phases will be presented when all the cooling systems (HRS and A/C) are operational. In-air tests conducted on the spacecraft in December 2008 to simulate the launch conditions were very successful and showed that all components would be within their allowable limits during these phases. Results of these tests will be shared in this paper.

  8. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TARIFFS General § 221.2 Carrier's duty. (a) Must file tariffs. (1) Except as provided in paragraph... carrier or foreign air carrier, when through service and through rates shall have been established, and... collect or receive a greater or less or different compensation for foreign air transportation or for...

  9. 14 CFR 221.2 - Carrier's duty.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS TARIFFS General § 221.2 Carrier's duty. (a) Must file tariffs. (1) Except as provided in paragraph... carrier or foreign air carrier, when through service and through rates shall have been established, and... collect or receive a greater or less or different compensation for foreign air transportation or for...

  10. 14 CFR 271.4 - Carrier costs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Carrier costs. 271.4 Section 271.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS GUIDELINES FOR SUBSIDIZING AIR CARRIERS PROVIDING ESSENTIAL AIR TRANSPORTATION § 271.4 Carrier costs. (a) The reasonable costs...

  11. First geosynchronous weather satellite prepared for launch

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Synchronous Meteorological Satellite (SMS), which is scheduled for launch 16 May 1974 is described along with the data transmission system. The Carrier Balloon System is discussed. The primary type of data to be obtained in conjunction with SMS and Nimbus F are meteorological, oceanographic, seismic, and tsunami information. The Space Environment Monitoring System is also described.

  12. Ceremony celebrates 50 years of rocket launches

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  13. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  14. IRIS Launch Animation

    NASA Video Gallery

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  15. Space Launch System Animation

    NASA Video Gallery

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  16. Shuttle Era: Launch Directors

    NASA Video Gallery

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  17. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  18. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05760, KSC-Launch Support Equipment Engineering Division, January 1967. GENERAL ARRANGEMENT. Sheet 1 of 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. 2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. 50. SOUTHEAST CORNER OF LAUNCH PAD. RAIL AND BUMPER IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. SOUTHEAST CORNER OF LAUNCH PAD. RAIL AND BUMPER IN CENTER OF PHOTOGRAPH; FIRE SUPPRESSION NOZZLES ON RIGHT; THRUST SECTION HEATER DUCT ON LEFT. COMMUNICATIONS HOOKUP FOR THE MST LEFT OF DUCT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF MST, FACING SOUTHEAST, AND LAUNCH PAD TAKEN FROM NORTHEAST PHOTO TOWER WITH WINDOW OPEN. FEATURES LEFT TO RIGHT: SOUTH TELEVISION CAMERA TOWER, SOUTHWEST PHOTO TOWER, LAUNCHER, UMBILICAL MAST, MST, AND OXIDIZER APRON. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM MST BASE. LAUNCHER IS BEHIND UMBILICAL MAST AND RAIL SYSTEM IS PARALLEL TO MAST ON RIGHT AND LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM LAUNCHER; SOUTH FACE OF MST IN BACKGROUND. RAIL SYSTEM FROM BASE OF MST PARALLEL TO MAST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 85. VIEW FROM SOUTHWEST OF FUEL PIPELINE TO LAUNCH DECK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. VIEW FROM SOUTHWEST OF FUEL PIPELINE TO LAUNCH DECK. SOUTHEAST CORNER OF SKID 2 VISIBLE ON LEFT. DOORS OF ROOMS ON SOUTHWEST SIDE OF LSB (BLDG. 770) VISIBLE IN CENTER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 51. VIEW OF EAST SIDE OF LAUNCH DECK; MAIN PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. VIEW OF EAST SIDE OF LAUNCH DECK; MAIN PANEL CONTAINS UMBILICAL MAST POWER CONNECTORS; RAIL AND FIRE SUPPRESSION NOZZLES IN FOREGROUND; TELEVISION CAMERA AND CAMERA TOWER IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC DETAILS OF POWER OPERATED LOUVERS. Sheet 29-54 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. 49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. VIEW OF EAST SIDE OF LAUNCH PAD. THRUST SECTION HEATER AND DUCTS ON RIGHT; UMBILICAL MAST POWER CONNECTORS ON LEFT; RAIL SYSTEM AND FIRE SUPPRESSION NOZZLES IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  9. An evolutionary approach to space launch commercialization

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    The findings and recommendations of this study fall into two groups: Department of Defense (DoD) space launch procurement and DoD steps to strengthen U.S. launch competitiveness. Our analytic results support the choices that the Air Force and the Navy have made since 1985 in the methods of procuring launch services and in the degree of government oversight stipulated in these launch contracts. We further found that the Air Force's upcoming Medium Launch Vehicle-3 (MLV-3) procurement is DoD's most suitable major program to be procured with commercial practices over the next ten years. We recommend that the MLV-3 Request For Proposal (RFP) include commercial launches as an option and that the Air Force consider this option. To help strengthen launch competitiveness, we recommend that DoD concentrate its new launcher development on the most commercially relevant (MCR) range, which is the capability to lift 10,000 to 50,000 lbs of payload into low earth orbits (LEO's).

  10. National Launch System comparative economic analysis

    NASA Technical Reports Server (NTRS)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  11. 76 FR 43825 - Launch Safety: Lightning Criteria for Expendable Launch Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... States Air Force. DATES: The direct final rule published June 8, 2011 (76 FR 33139) is effective on July... flight of an expendable launch vehicle through or near an electrified environment in or near a...

  12. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  13. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  14. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  15. Launch operations efficiency

    NASA Technical Reports Server (NTRS)

    Diloreto, Clem; Fischer, Carl; Atkins, Bob

    1988-01-01

    The paper discusses launch operations from a program perspective. Launch operations cost is a significant part of program cost. New approaches to launch operations, integrated with lessons learned, have the potential to increase safety and reliability as well as reduce cost. Operational efficiency must be an initial program goal. Design technology and management philosophy must be implemented early to ensure operational cost goals. Manufacturing cost and launch cost are related to operational efficiency. True program savings can be realized through implementation of launch operations cost saving approaches which do not correspondingly increase cost in other program areas such as manufacturing and software development and maintenance. Launch rate is a key factor in the cost/flight analysis and the determination of launch operations efficiency goals.

  16. 19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. MUELLER FIRE HYDRANT NEAR LAUNCHING PAD IN STATION "0". - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  17. Cost effective launch technology for communications satellites

    NASA Astrophysics Data System (ADS)

    Taylor, T. C.; Overman, A.

    1984-10-01

    The present investigation is concerned with the possibility to reduce the costs for placing satellites in orbit by making use of an 'Air Launch' system. It is pointed out that the launching of rockets to orbit from aircraft in flight has been done successfully. It is suggested to modify the existing technology for the purpose of launching communications satellites and other payloads to orbit. Thus, the Air Launch Concept combines aircraft and missile technologies to produce a method of transport to orbit. A heavy lift cargo aircraft is employed to fly a rocket and the satellite payload to a specific location at the service ceiling of the aircraft. Attention is given to aspects of cost reduction, commercial and technical benefits, the anticipated market, and technical details.

  18. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  19. 54. Interior of launch support building, fuel transfer pump at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Interior of launch support building, fuel transfer pump at lower left, instrument air compressor at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  20. Launch facilities as infrastructure

    NASA Astrophysics Data System (ADS)

    Trial, Mike

    The idea is put forth that launch facilities in the U.S. impose inefficiencies on launch service providers due to the way they have been constructed. Rather than constructing facilities for a specific program, then discarding them when the program is complete, a better use of the facilities investment would be in constructing facilities flexible enough for use by multiple vehicle types over the course of a 25-year design lifetime. The planned National Launch System (NLS) program offers one possible avenue for the federal government to provide a nucleus of launch infrastructure which can improve launch efficiencies. The NLS goals are to develop a new space launch system to meet civil and national needs. The new system will be jointly funded by DOD and NASA but will actively consider commercial space needs. The NLS will improve reliability, responsiveness, and mission performance, and reduce operating costs. The specifics of the infrastructure concept are discussed.

  1. Aqua 10 Years After Launch

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2013-01-01

    A little over ten years ago, in the early morning hours of May 4, 2002, crowds of spectators stood anxiously watching as the Delta II rocket carrying NASA's Aqua spacecraft lifted off from its launch pad at Vandenberg Air Force Base in California at 2:55 a.m. The rocket quickly went through a low-lying cloud cover, after which the main portion of the rocket fell to the waters below and the rockets second stage proceeded to carry Aqua south across the Pacific, onward over Antarctica, and north to Africa, where the spacecraft separated from the rocket 59.5 minutes after launch. Then, 12.5 minutes later, the solar array unfurled over Europe, and Aqua was on its way in the first of what by now have become over 50,000 successful orbits of the Earth.

  2. TDRS is ready for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA's Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot- diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system's existing S- and Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit.

  3. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  5. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  6. GPM: Waiting for Launch

    NASA Video Gallery

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  7. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  8. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation

    NASA Astrophysics Data System (ADS)

    Miloshevich, Larry M.; VöMel, Holger; Whiteman, David N.; Lesht, Barry M.; Schmidlin, F. J.; Russo, Felicita

    2006-05-01

    A detailed assessment of radiosonde water vapor measurement accuracy throughout the tropospheric column is needed for assessing the impact of observational error on applications that use the radiosonde data as input, such as forecast modeling, radiative transfer calculations, remote sensor retrieval validation, climate trend studies, and development of climatologies and cloud and radiation parameterizations. Six operational radiosonde types were flown together in various combinations with a reference-quality hygrometer during the Atmospheric Infrared Sounder (AIRS) Water Vapor Experiment-Ground (AWEX-G), while simultaneous measurements were acquired from Raman lidar and microwave radiometers. This study determines the mean accuracy and variability of the radiosonde water vapor measurements relative to simultaneous measurements from the University of Colorado (CU) Cryogenic Frostpoint Hygrometer (CFH), a reference-quality standard of known absolute accuracy. The accuracy and performance characteristics of the following radiosonde types are evaluated: Vaisala RS80-H, RS90, and RS92; Sippican Mark IIa; Modem GL98; and the Meteolabor Snow White hygrometer. A validated correction for sensor time lag error is found to improve the accuracy and reduce the variability of upper tropospheric water vapor measurements from the Vaisala radiosondes. The AWEX data set is also used to derive and validate a new empirical correction that improves the mean calibration accuracy of Vaisala measurements by an amount that depends on the temperature, relative humidity, and sensor type. Fully corrected Vaisala radiosonde measurements are found to be suitably accurate for AIRS validation throughout the troposphere, whereas the other radiosonde types are suitably accurate under only a subset of tropospheric conditions. Although this study focuses on the accuracy of nighttime radiosonde measurements, comparison of Vaisala RS90 measurements to water vapor retrievals from a microwave radiometer

  9. 14 CFR 271.5 - Carrier revenues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Carrier revenues. 271.5 Section 271.5... revenues. (a) The projected passenger revenue for a carrier providing essential air service at an eligible... reasonableness of a carrier's passenger revenue projections will be evaluated by: (1) Comparing the...

  10. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  11. Foreign launch competition growing

    NASA Astrophysics Data System (ADS)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  12. NASA launch schedule

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The National Aeronautics and Space Administration (NASA) has a record-setting launch schedule for 1984—10 space shuttle flights (see Table 1), 10 satellite deployments from the space shuttle in orbit and 12 unmanned missions using expendable launch vehicles. Also scheduled is the launch on March 1 for the National Oceanic and Atmospheric Administration of Landsat D‧, the nation's second earth resources satellite.The launch activity will begin February 3 with the launch of shuttle mission 41-B using the orbiter Challenger. Two communications satellites will be deployed from 41-B: Westar-VI, for Western Union, and Palapa B-2 for the government of Indonesia. The 8-day mission will feature the first shuttle landing at Kennedy Space Center in Florida; and the first flight of the Manned Maneuvering Unit, a self-contained, propulsive backpack that will allow astronauts to move about in space without being tethered to the spacecraft.

  13. 2011 Mars Science Laboratory Trajectory Reconstruction and Performance from Launch Through Landing

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2013-01-01

    The Mars Science Laboratory (MSL) mission successfully launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) from the Eastern Test Range (ETR) at Cape Canaveral Air Force Station (CCAFS) in Florida at 15:02:00 UTC on November 26th, 2011. At 15:52:06 UTC, six minutes after the MSL spacecraft separated from the Centaur upper stage, the spacecraft transmitter was turned on and in less than 20 s spacecraft carrier lock was achieved at the Universal Space Network (USN) Dongara tracking station located in Western Australia. MSL, carrying the most sophisticated rover ever sent to Mars, entered the Martian atmosphere at 05:10:46 SpaceCraft Event Time (SCET) UTC, and landed inside Gale Crater at 05:17:57 SCET UTC on August 6th, 2012. Confirmation of nominal landing was received at the Deep Space Network (DSN) Canberra tracking station via the Mars Odyssey relay spacecraft at 05:31:45 Earth Received Time (ERT) UTC. This paper summarizes in detail the actual vs. predicted trajectory performance in terms of launch vehicle events, launch vehicle injection performance, actual DSN/USN spacecraft lockup, trajectory correction maneuver performance, Entry, Descent, and Landing events, and overall trajectory and geometry characteristics.

  14. STS-51 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Space Shuttle Discovery takes off from Launch Pad 39B at the Kennedy Space Center, Florida, to begin Mission STS-51 on 12 September 1993. The 57th shuttle mission began at 7:45 a.m. EDT, and lasted 9 days, 20 hours, 11 minutes, 11 seconds, while traveling a total distance of 4,106,411 miles. The Advanced Communications Technology Satellite (ACTS) was one of the projects deployed. This satellite serves as a test bed for advanced experimental communications satellite concepts and technology. Another payload on this mission was the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) telescope mounted on the Shuttle Pallet Satellite (SPAS) payload carrier. ORFEUS was designed to investigate very hot and very cold matter in the universe. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into

  15. Operational considerations for reusable launch vehicles

    SciTech Connect

    Adelgren, R.G.; Ray, D.; Lashinski, P.

    1997-01-01

    The reusable launch vehicle single stage to orbit concept is a long term goal of the space program. With the reusable concept, government and industry hope to reduce the cost of spacelift and provide fast reliable access to space. For a viable reusable concept, certain operational areas should be well thought out and considered. For instance, {open_quotes}aircraft like{close_quotes} operations should be a goal of the reusable launch vehicle concept. This paper outlines some initial operational considerations for a reusable launch vehicle. The operational areas considered are viewed from the standpoint of operationally testing the system in the areas of effectiveness and suitability. This paper represents thoughts and ideas of the authors and does not represent official Air Force or Air Force Operational Test and Evaluation Center policies, positions, or direction. {copyright} {ital 1997 American Institute of Physics.}

  16. GPM Launch Coverage

    NASA Video Gallery

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  17. Advanced launch system

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1991-01-01

    The Advanced Launch System (ALS) is presented. The costs, reliability, capabilities, infrastructure are briefly described. Quality approach, failure modes, structural design, technology benefits, and key facilities are outlined. This presentation is represented by viewgraphs.

  18. Expedition 27 Launch

    NASA Video Gallery

    NASA astronaut Ron Garan and Russian cosmonauts Andrey Borisenko and Alexander Samokutyaev launch in their Soyuz TMA-21 spacecraft from the Baikonur Cosmodrome in Kazakhstan on April 4, 2011 (April...

  19. IRVE 3 Launch

    NASA Video Gallery

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  20. Launch of Juno!

    NASA Video Gallery

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  1. Commercial space launches

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    While the space shuttle is expected to be the principle Space Transportation System (STS) of the United States, the Reagan Administration is moving ahead with the President's declared space policy of encouraging private sector operation of expendable launch vehicles (ELV's). With the signing of the “Commercial Space Launch Law” on October 30, the administration hopes that it has opened up the door for commercial ventures into space by streamlining regulations and coordinating applications for launches. The administration considers the development and operation of private sector ELV's as an important part of an overall U.S. space policy, complementing the space shuttle and government ELV's. The law follows by nearly a year the creation of the Office of Commercial Space Transportation at the U.S. Department of Transportation (DOT), which will coordinate applications for commercial space launches.

  2. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  3. Hi-C Launch

    NASA Video Gallery

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  4. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  5. NASA Now: Glory Launch

    NASA Video Gallery

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  6. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  7. Dynamics Explorer launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Simultaneously launched from the WSMC, two satellites are to be placed into polar, copolar orbit in order to acquire data on the coupling phenomena between Earth's lower thermosphere and the magnetosphere, as part of the Solar-Terrestrial Program. The mission sequence, instruments, and science data processing system are described as well as the characteristics of the Delta 3913 launch vehicle, and payload separation staging.

  8. GPM Core Observatory Launch Animation

    NASA Video Gallery

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  9. 44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 7. Launch closure, transporter/erector halfway up, view towards northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Launch closure, transporter/erector halfway up, view towards northwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  12. 8. Launch closure, transporter/erector nearly vertical, view towards northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Launch closure, transporter/erector nearly vertical, view towards northwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  13. Towed Twin-Fuselage Glider Launch System (CGI Animation Version 2)

    NASA Video Gallery

    The towed glider is an element of the novel rocket-launching concept of the Towed Glider Air-Launch System (TGALS). The TGALS demonstration’s goal is to provide proof-of-concept of a towed, airborn...

  14. Spacecraft and launch systems for TACSAT applications

    NASA Astrophysics Data System (ADS)

    Schade, Chris; Rye, Gilbert D.; Meurer, Robert H.

    1993-02-01

    The ability of a tactical communication satellite (TACSAT) space system to fulfill its mission application with the desired capability, responsiveness, reliability, and survivability, while at the same time achieving low cost objectives, is a tremendous challenge that can only be met if all of the system segments - launch, space, and ground - contribute to meeting mission unique requirements. The emerging concepts for the development, deployment, and operation of cost-effective TACSAT space systems are especially dependent on the flexibility and operability of their launch vehicle and spacecraft bus systems. Orbital Sciences Corporation (OSC) has privately developed two flexible yet cost-effective space launch vehicles--Pegasus (TM) and Taurus (TM)--with significant and unique operational capabilities that enable TACSAT space systems to meet these challenges. The Defense Advanced Research Projects Agency (DARPA) has sponsored the first launch of both systems, with follow-on launches scheduled in support of U.S. Air Force, NASA, SDIO, and commercial programs. In addition, OSC has developed a flexible, cost-effective, spacecraft bus--PegaStar (TM)--that makes common use of the Pegasus or Taurus final stage avionics and structure in an integrated systems approach, thereby optimizing the mass and volume available for payload sensors. PegaStar spacecraft for the Air Force and NASA are now in engineering and production.

  15. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH & LOW BAY, SECTION F-F. Sheet 33-30 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  16. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, SOUTH ELEVATION. Sheet 14-20 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  17. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH & LOW BAY, SECTION A-A. Sheet 33-25 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, WEST ELEVATION. Sheet 14-17 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, TRAVERSE SECTION C-C. Sheet 14-26 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, LONGINTUDINAL SECTION N-N. Sheet 14-33 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, NORTH ELEVATION. Sheet 14-18 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, HIGH BAY AREA, EAST ELEVATION. Sheet 14-19 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. 22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. 1. Launch facility, delta 6, approach road and gate, pole ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Launch facility, delta 6, approach road and gate, pole marking the hardened intersite cable system in right center, commercial power pole outside fence in left center, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

  5. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 79K00081, John F. Kennedy Space Center, December 1969. SYS FUNCTIONAL DRAWING. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  6. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 79K00088, John F. Kennedy Space Center, November 1969. SYS FUNCTIONAL DRAWING. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 79K00088, John F. Kennedy Space Center, November 1969. SYS FUNCTIONAL DRAWING. Sheet 5 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. 55. Interior of launch support building, diesel motor generator at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Interior of launch support building, diesel motor generator at center left, diesel electric unit at upper center, batteries at bottom center, view towards northwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  9. 31. Lower level, battery at extreme lower right, launch tube ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Lower level, battery at extreme lower right, launch tube heater control panel at right, looking east - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  10. 52. Interior of launch support building, hydraulic pumping unit at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Interior of launch support building, hydraulic pumping unit at lower center, service disconnect at right, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  11. 50. Interior of launch support building, service disconnect at bottom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Interior of launch support building, service disconnect at bottom center, repeater rack at right, view towards southwest - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  12. 51. Interior of launch support building, minuteman power processor at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Interior of launch support building, minuteman power processor at lower left, power distribution panel at center, old diesel control panel at lower right, diesel battery at upper right, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  13. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. VOLUME 14, HIGH BAY – ARCHITECTURAL, TITLE SHEET. Sheet 14-01 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  14. 2. GENERAL VIEW OF LAUNCH PAD B SHOWING (LEFT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF LAUNCH PAD B SHOWING (LEFT TO RIGHT) MOBILE SERVICE STRUCTURE, CONSTRUCTION CRANE, NEW CONCRETE FLAME DEFLECTORS AND FLUME, AND UMBILICAL MAST; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  15. 23. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MST AND UMBILICAL MAST 'A': SERVICE PIPING, MST PLANS, LEVELS 8-9, DETAILS, ELEVATIONS, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  16. 31. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17, UMBILICAL MAST 'A'-ARCHITECTURAL ELEVATOR PLANS, SECTION AND DETAILS, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28501, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  17. 20. GENERAL VIEW OF LAUNCH PAD B SHOWING UMBILICAL MAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. GENERAL VIEW OF LAUNCH PAD B SHOWING UMBILICAL MAST CENTER AND NEW BLAST BERM FOR NEW TANK FARM AT RIGHT VIEW TO NORTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  18. 4. Inside perimeter fence, view towards east and launch closure, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Inside perimeter fence, view towards east and launch closure, sensor EMP antenna left center - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

  19. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05761, Marion Power Shovel Company, October 1963. CRAWLER TRUCK ASSEMBLY-FIELD WELDMENT SECTIONS & DETAILS. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05761, Marion Power Shovel Company, October 1963. CRAWLER TRUCK ASSEMBLY-SIDE VIEW. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL