Science.gov

Sample records for air leak rates

  1. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  2. Predictors of alveolar air leaks.

    PubMed

    Loran, David B; Woodside, Kenneth J; Cerfolio, Robert J; Zwischenberger, Joseph B

    2002-08-01

    Persistent air leaks are caused by the failure of the postoperative lung to achieve a configuration that is physiologically amenable to healing. The raw pulmonary surface caused by the dissection of the fissure often is separated from the pleura, and the air leak fails to close. Additionally, higher air flow thorough an alveolar-pleural fistula seems to keep the fistula open. Other factors that interfere with wound healing, such as steroid use, diabetes, or malnutrition, can result in persistence of the leak. A thoracic surgeon can minimize the incidence of air leak through meticulous surgical technique and can identify patients in whom the balance of risks (Table 1) and benefits warrant operative intervention based on an understanding of the underlying pathophysiology.

  3. Variable gas leak rate valve

    DOEpatents

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  4. 40 CFR 1065.644 - Vacuum-decay leak rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak...

  5. 40 CFR 1065.644 - Vacuum-decay leak rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak...

  6. 40 CFR 1065.644 - Vacuum-decay leak rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak...

  7. 40 CFR 1065.644 - Vacuum-decay leak rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak...

  8. 40 CFR 1065.644 - Vacuum-decay leak rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Vacuum-decay leak rate. 1065.644 Section 1065.644 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.644 Vacuum-decay leak...

  9. The Prevention and Management of Air Leaks Following Pulmonary Resection.

    PubMed

    Burt, Bryan M; Shrager, Joseph B

    2015-11-01

    Alveolar air leaks are a common problem in the daily practice of thoracic surgeons. Prolonged air leak following pulmonary resection is associated with increased morbidity, increased length of hospital stay, and increased costs. This article reviews the evidence for the various intraoperative and postoperative options to prevent and manage postoperative air leak.

  10. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  11. Experiences with leak rate calculations methods for LBB application

    SciTech Connect

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G.

    1997-04-01

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  12. Neonatal air leak syndrome and the role of high-frequency ventilation in its prevention.

    PubMed

    Jeng, Mei-Jy; Lee, Yu-Sheng; Tsao, Pei-Chen; Soong, Wen-Jue

    2012-11-01

    Air leak syndrome includes pulmonary interstitial emphysema, pneumothorax, pneumomediastinum, pneumopericardium, pneumoperitoneum, subcutaneous emphysema, and systemic air embolism. The most common cause of air leak syndrome in neonates is inadequate mechanical ventilation of the fragile and immature lungs. The incidence of air leaks in newborns is inversely related to the birth weight of the infants, especially in very-low-birth-weight and meconium-aspirated infants. When the air leak is asymptomatic and the infant is not mechanically ventilated, there is usually no specific treatment. Emergent needle aspiration and/or tube drainage are necessary in managing tension pneumothorax or pneumopericardium with cardiac tamponade. To prevent air leak syndrome, gentle ventilation with low pressure, low tidal volume, low inspiratory time, high rate, and judicious use of positive end expiratory pressure are the keys to caring for mechanically ventilated infants. Both high-frequency oscillatory ventilation (HFOV) and high-frequency jet ventilation (HFJV) can provide adequate gas exchange using extremely low tidal volume and supraphysiologic rate in neonates with acute pulmonary dysfunction, and they are considered to have the potential to reduce the risks of air leak syndrome in neonates. However, there is still no conclusive evidence that HFOV or HFJV can help to reduce new air leaks in published neonatal clinical trials. In conclusion, neonatal air leaks may present as a thoracic emergency requiring emergent intervention. To prevent air leak syndrome, gentle ventilations are key to caring for ventilated infants. There is insufficient evidence showing the role of HFOV and HFJV in the prevention or reduction of new air leaks in newborn infants, so further investigation will be necessary for future applications.

  13. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal

    NASA Technical Reports Server (NTRS)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.

    2011-01-01

    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the

  14. Protecting brazing furnaces from air leaks

    NASA Technical Reports Server (NTRS)

    Armenoff, C. T.; Mckown, R. D.

    1980-01-01

    Inexpensive inert-atmosphere shielding protects vacuum brazing-furnace components that are likely to spring leak. Pipefittings, gages, and valves are encased in transparent plastic shroud inflated with argon. If leak develops, harmless argon will enter vacuum chamber, making it possible to finish ongoing brazing or heat treatment before shutting down for repair.

  15. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    SciTech Connect

    Rahman, S.; Ghadiali, N.; Paul, D.; Wilkowski, G.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crack size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.

  16. Clinical challenges of persistent pulmonary air-leaks--case report.

    PubMed

    van Zeller, M; Bastos, P; Fernandes, G; Magalhães, A

    2014-01-01

    Air leaks are a common problem after pulmonary resection and can be a source of significant morbidity and mortality. The authors describe the case of a 68-year-old male patient who presented with a persistent air-leak after pulmonary resection. Watchful waiting, surgical procedures, as well as medical therapy like pleurodesis and implantation of endobronchial one-way valves on the bronchial segments identified using systematic occlusion of the bronchial segments, were all tried unsuccessfully. During that time the patient remained hospitalized with a chest tube. The instillation of methylene blue through the chest tube was used to identify the segments leading to the persistent air-leak; this enabled successful endobronchial valve placement which sufficiently reduced the size of the air-leak so that the chest tube could be removed. Nonsurgical approaches seem promising and, for some patients may be the only treatment option after all conventional treatments have failed or are considered too high risk.

  17. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  18. Reduction of persistent air leak with endoscopic valve implants.

    PubMed

    Toma, Tudor P; Kon, Onn Min; Oldfield, William; Sanefuji, Reina; Griffiths, Mark; Wells, Frank; Sivasothy, Siva; Dusmet, Michael; Geddes, Duncan M; Polkey, Michael I

    2007-09-01

    The standard management of air leaks due to persistent bronchopleural fistula involves chest drainage and occasionally pleurodesis, with intractable cases requiring surgical decortication or surgical repair. However, some of these patients may be at high risk for surgery, particularly if they have already had thoracic surgery or have other medical problems; for this group there is a need for less invasive methods of stopping or reducing air leaks. Emphasys endobronchial valves (EBV) are occlusive devices designed primarily for endoscopic lung volume reduction in emphysema. Because the device is a one-way inspiratory airway blocker, it is possible that it could be used in controlling persistent air leaks while maintaining the drainage of secretions. Two cases are reported of persistent air leaks that were managed by endoscopic occlusion with EBV. In one case complete stoppage of the air leak was achieved with immediate clinical benefits. The second patient died 5 days after treatment from additional complications apparently not related to the procedure. Endobronchial blockage may be a useful salvage procedure for patients with persistent air leak for whom there is no other treatment available.

  19. Locating and sealing air leaks in multiroomed buildings

    NASA Technical Reports Server (NTRS)

    Britton, J. M.

    1968-01-01

    Industrial, nontoxic smoke bombs are used in multiroomed buildings to locate and fill discovered leak areas with polyurethane foam. All obvious air escape routes are sealed and the room is then pressurized to a minimum of 0.1 inch water above the pressure of adjoining rooms.

  20. LEAK: A source term generator for evaluating release rates from leaking vessels

    SciTech Connect

    Clinton, J.H.

    1994-09-01

    An interactive computer code for estimating the rate of release of any one of several materials from a leaking tank or broken pipe leading from a tank is presented. It is generally assumed that the material in the tank is liquid. Materials included in the data base are acetonitrile, ammonia, carbon tetrachloride, chlorine, chlorine trifluoride, fluorine, hydrogen fluoride, nitric acid, nitrogen tetroxide, sodium hydroxide, sulfur hexafluoride, sulfuric acid, and uranium hexafluoride. Materials that exist only as liquid and/or vapor over expected ranges of temperature and pressure can easily be added to the data base file. The Fortran source code for LEAK and the data file are included with this report.

  1. Management of Prolonged Pulmonary Air Leaks With Endobronchial Valve Placement

    PubMed Central

    Doelken, Peter; Pupovac, Stevan; Ata, Ashar; Fabian, Tom

    2016-01-01

    Background: Prolonged pulmonary air leaks (PALs) are associated with increased morbidity and extended hospital stay. We sought to investigate the role of bronchoscopic placement of 1-way valves in treating this condition. Methods: We queried a prospectively maintained database of patients with PAL lasting more than 7 days at a tertiary medical center. Main outcome measures included duration of chest tube placement and hospital stay before and after valve deployment. Results: Sixteen patients were eligible to be enrolled from September 2012 through December 2014. One patient refused to give consent, and in 4 patients, the source of air leak could not be identified with bronchoscopic balloon occlusion. Eleven patients (9 men; mean age, 65 ± 15 years) underwent bronchoscopic valve deployment. Eight patients had postoperative PAL and 3 had a secondary spontaneous pneumothorax. The mean duration of air leak before valve deployment was 16 ± 12 days, and the mean number of implanted valves was 1.9 (median, 2). Mean duration of hospital stay before and after valve deployment was 18 and 9 days, respectively (P = .03). Patients who had more than a 50% decrease in air leak on digital monitoring had the thoracostomy tube removed within 3–6 days. There were no procedural complications related to deployment or removal of the valves. Conclusions: Bronchoscopic placement of 1-way valves is a safe procedure that could help manage patients with prolonged PAL. A prospective randomized trial with cost-efficiency analysis is necessary to better define the role of this bronchoscopic intervention and demonstrate its effect on air leak duration. PMID:27647978

  2. The application of capnography to differentiate peri-chest tube air leak from parenchymal leak following pulmonary surgery

    PubMed Central

    Walker, William S.

    2014-01-01

    Prolonged air leak is a common complication of pulmonary resection. However, while a bubbling chest drain is commonly related to parenchymal air leakage, it may also be caused by air entering the pleural cavity via an incomplete seal of the tissues at the chest tube insertion site. Examination alone is not sufficient to guide the surgeon as to which of the above complications is responsible for drain bubbling. We describe a simple method, whereby a CO2 monitoring device is attached to the chest drain to determine whether the air loss observed is in fact due to a pulmonary air leak. PMID:24790853

  3. Air pollutant penetration through airflow leaks into buildings

    SciTech Connect

    Liu, De-Ling

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  4. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    SciTech Connect

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  5. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    SciTech Connect

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs.

  6. A Novel Technique to Treat Air Leak Following Lobectomy: Intrapleural Infusion of Plasma

    PubMed Central

    Konstantinou, Froso; Potaris, Konstantinos; Syrigos, Konstantinos N.; Tsipas, Panteleimon; Karagkiouzis, Grigorios; Konstantinou, Marios

    2016-01-01

    Background Persistent air leak following pulmonary lobectomy can be very difficult to treat and results in prolonged hospitalization. We aimed to evaluate the efficacy of a new method of postoperative air leak management using intrapleurally infused fresh frozen plasma via the chest tube. Material/Methods Between June 2008 and June 2014, we retrospectively reviewed 98 consecutive patients who underwent lobectomy for lung cancer and postoperatively developed persistent air leak treated with intrapleural instillation of fresh frozen plasma. Results The study identified 89 men and 9 women, with a median age of 65.5 years (range 48–77 years), with persistent postoperative air leak. Intrapleural infusion of fresh frozen plasma was successful in stopping air leaks in 90 patients (92%) within 24 hours, and in 96 patients (98%) within 48 hours, following resumption of the procedure. In the remaining 2, air leak ceased at 14 and 19 days. Conclusions Intrapleural infusion of fresh frozen plasma is a safe, inexpensive, and remarkably effective method for treatment of persistent air leak following lobectomy for lung cancer. PMID:27079644

  7. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  8. Determination of crack morphology parameters from service failures for leak-rate analyses

    SciTech Connect

    Wilkowski, G.; Ghadiali, N.; Paul, D.

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  9. Extracellular matrix pleural tent for persistent air leak and air space in a child after upper lobectomy.

    PubMed

    McConnell, Patrick I

    2015-01-01

    Creation of a pleural tent is effective in reducing persistent air leaks after pulmonary resection. I report a case of a pleural-like tent being created out of extracellular matrix to treat a persistent air leak in child after upper lobectomy for a large congenital pulmonary airway malformation type II. Over the next year, ipsilateral lung expansion and growth occurred with near complete resolution of the apical air space.

  10. ORNL Develops Novel, Nontoxic System That Seeks Air Leaks in Occupied Buildings

    ScienceCinema

    Hun, Diana

    2016-12-14

    Oak Ridge National Laboratory scientists demonstrate their novel, nontoxic fluorescent air leak detection system that uses a vitamin- and water-based solution to quickly locate cracks in occupied buildings without damaging property.

  11. ORNL Develops Novel, Nontoxic System That Seeks Air Leaks in Occupied Buildings

    SciTech Connect

    Hun, Diana

    2016-12-06

    Oak Ridge National Laboratory scientists demonstrate their novel, nontoxic fluorescent air leak detection system that uses a vitamin- and water-based solution to quickly locate cracks in occupied buildings without damaging property.

  12. Air leak: An unusual manifestation of organizing pneumonia secondary to bleomycin

    PubMed Central

    Namitha, R; Nimisha, KP; Yusuf, Nasser; Rauf, CP

    2017-01-01

    Organizing pneumonia (OP) is a less common interstitial lung disease with varying clinical picture. The development of pulmonary air leak in a case of OP is an extremely rare complication. Here, we report the case of a 46-year-old female with carcinoma ovary, postchemotherapy who developed respiratory distress with pneumomediastinum, and subcutaneous emphysema. Lung biopsy showed evidence of OP. This turned out to be a rare case of OP, secondary to bleomycin chemotherapy, presenting with pulmonary air leak. PMID:28360468

  13. Evaluation and refinement of leak-rate estimation models. Revision 1

    SciTech Connect

    Paul, D.D.; Ahmad, J.; Scott, P.M.; Flanigan, L.F.; Wilkowski, G.M.

    1994-06-01

    Leak-rate estimation models are important elements in developing a leak-beforebreak methodology in piping integrity and safety analyses. Existing thermalhydraulic and crack-opening-area models used in current leak-rate estimations have been incorporated into a single computer code for leak-rate estimation. The code is called SQUIRT, which stands for Seepage Quantification of Upsets In Reactor Tubes. The SQUIRT program has been validated by comparing its thermalhydraulic predictions with the limited experimental data that have been published on two-phase flow through slits and cracks, and by comparing its crack-opening-area predictions with data from the Degraded Piping Program. In addition, leak-rate experiments were conducted to obtain validation data for a circumferential fatigue crack in a carbon steel pipe girth weld.

  14. Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.; Wasowski, Janice L.; Robbie, Malcolm G.; Erker, Arthur H.; Drlik, Gary J.; Mayer, John J.

    2010-01-01

    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges.

  15. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  16. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  17. Intrabronchial Valve Treatment for Prolonged Air Leak: Can We Justify the Cost?

    PubMed Central

    Podgaetz, Eitan; Zamora, Felix; Gibson, Heidi; Andrade, Rafael S.; Hall, Eric; Dincer, H. Erhan

    2016-01-01

    Background. Prolonged air leak is defined as an ongoing air leak for more than 5 days. Intrabronchial valve (IBV) treatment is approved for the treatment of air leaks. Objective. To analyze our experience with IBV and valuate its cost-effectiveness. Methods. Retrospective analysis of IBV from June 2013 to October 2014. We analyzed direct costs based on hospital and operating room charges. We used average costs in US dollars for the analysis not individual patient data. Results. We treated 13 patients (9 M/4 F), median age of 60 years (38 to 90). Median time from diagnosis to IBV placement was 9.8 days, time from IBV placement to chest tube removal was 3 days, and time from IBV placement to hospital discharge was 4 days. Average room and board costs were $14,605 including all levels of care. IBV cost is $2750 per valve. The average number of valves used was 4. Total cost of procedure, valves, and hospital stay until discharge was $13,900. Conclusion. In our limited experience, the use of IBV to treat prolonged air leaks is safe and appears cost-effective. In pure financial terms, the cost seems justified for any air leak predicted to last greater than 8 days. PMID:27445523

  18. USING AN ADAPTER TO PERFORM THE CHALFANT-STYLE CONTAINMENT VESSEL PERIODIC MAINTENANCE LEAK RATE TEST

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Trapp, D.

    2011-06-03

    Recently the Packaging Technology and Pressurized Systems (PT&PS) organization at the Savannah River National Laboratory was asked to develop an adapter for performing the leak-rate test of a Chalfant-style containment vessel. The PT&PS organization collaborated with designers at the Department of Energy's Pantex Plant to develop the adapter currently in use for performing the leak-rate testing on the containment vessels. This paper will give the history of leak-rate testing of the Chalfant-style containment vessels, discuss the design concept for the adapter, give an overview of the design, and will present results of the testing done using the adapter.

  19. [Measurement of air leak volume after lung surgery using web-camera].

    PubMed

    Onuki, Takamasa; Matsumoto, T

    2005-05-01

    Persistent air leak from the lung is one of the major complications after lung operations, especially in the latest thoracic surgery, where a shorter hospital stay tends to be necessary. However, air leak volume has been rarely measured clinically because accustomed tools of gas flow meter were types which needed contact measure, and those were unstable in long-term use and high cost. We tried to measure air leak volume as follows: (1) Bubble was made in the water seal part of a drain bag. (2) The movement of bubbles was recorded with a web-camera. (3) The data from the movie was analyzed by Linux computer on-line. We believe this method is clinically applicable as a routine work after lung surgery because of non-contact type of measurements, its stableness in long-term, easiness to be handled, and reasonable in cost.

  20. Bronchoscopic treatment of complex persistent air leaks with endobronchial one-way valves.

    PubMed

    Fiorelli, Alfonso; Costanzo, Saveria; Carelli, Emanuele; Di Costanzo, Emilio; Santini, Mario

    2016-04-01

    We reported a case series including 5 patients with persistent air-leaks refractory to standard treatment. All patients were unfit for surgery for the presence of co-morbidities and/or severe respiratory failure due to underlying lung diseases. They were successfully treated with bronchoscopic placement of endobronchial one-way valves. Air-leaks stopped in the first 24 h after the procedure in three patients and 3 and 5 days later, respectively, in the remaining two. No complications were observed and follow-up was uneventful in all patients but one died 25 days after the procedure for systemic sepsis due to peritonis. Patients with important, refractory air leaks having clinical repercussions and unfit for surgery should be early reviewed for bronchoscopic valves treatment.

  1. Treatment of recalcitrant air leaks: the combined latissimus dorsi-serratus anterior flap.

    PubMed

    Woo, Evan; Tan, Bien-Keem; Lim, Chong-Hee

    2009-08-01

    Pleural space problems after lung resection and persistent air leaks are among the commonest challenges posed to thoracic surgeons. Surgical repair of air leaks are indicated when conventional tube thoracostomy has failed to solve the problem. We would like to propose the novel application of the combined latissimus dorsi-serratus anterior transposition flap for selected cases of air leaks that are recalcitrant to conventional treatment. We discuss its indications and the surgical technique. Five patients underwent the procedure between 2004 and 2007. They were male patients aged between 32 and 70 years. Four patients had alveolar-pleural fistulas resulting in persistent air leaks while the fifth patient had, in addition, a space problem following lung volume reduction surgery. All patients had prolonged treatment with chest drains without success. With the patient in a lateral decubitus position, a lazy-S incision was used to expose the entire latissimus dorsi and the proximal slips of the serratus anterior muscles. They were raised as pedicled flaps and transferred in tandem. The latissimus dorsi was introduced into the pleural cavity via a thoracic window and used to reinforce the fistula repair. The serratus anterior muscle closed the rib window. In all cases, the lungs reexpanded and chest drains were removed within 5 days post surgery. There were no recurrent air leaks at 1-year follow-up with all patients. Conservative treatment in all our patients was unsuccessful. The dual flap technique has the advantage of allowing normal ventilation while providing a seal over the alveolar-pleural fistula. The muscle bulk of the latissimus dorsi fills the pleural dead space and the serratus anterior muscle seals the axilla preventing subcutaneous emphysema. There was minimal morbidity associated with the use of this dual muscle flap technique. This technique is an effective treatment option for recalcitrant air leaks.

  2. Management of residual pleural space and air leaks after major pulmonary resection.

    PubMed

    Korasidis, Stylianos; Andreetti, Claudio; D'Andrilli, Antonio; Ibrahim, Mohsen; Ciccone, Annamaria; Poggi, Camilla; Siciliani, Alessandra; Rendina, Erino A

    2010-06-01

    Postoperative air leaks associated with residual pleural space is a well known complication contributing to prolong hospitalization. Many techniques have been proposed for the treatment of this complication. Between 1999 and 2009, 39 patients with air leaks associated with residual pleural space (>3 cm at chest X-ray) persisting over three days after major lung resection were enrolled in this study. All patients were treated with combined pneumoperitoneum and autologus blood patch. Pneumoperitoneum is obtained by the injection of 30 ml/kg of air under the diaphragm, using a Verres needle through the periumbilical area. The blood patch is obtained by instillating 100 ml of autologus blood through the chest tubes. No patients experienced complications related to the procedure. Obliteration of pleural space was obtained in all the patients at a maximum of 96 h postoperatively. Air leaks stopped in all the cases at a maximum of 144 h from surgery. Chest tube was removed 24 h after the air leakage disappearance. Our 10-year experience supports the early, combined use of pneumoperitoneum and blood patch whenever pleural space and air leaks present after major pulmonary resection. This approach may be recommended because of its easiness, safety, effectiveness, and the low costs.

  3. Using airborne measurements and modelling to determine the leak rate of the Elgin platform in 2012

    NASA Astrophysics Data System (ADS)

    Mobbs, Stephen D.; Bauguitte, Stephane J.-B.; Wellpott, Axel; O'Shea, Sebastian

    2013-04-01

    On the 25th March 2012 the French multinational oil and gas company Total reported a gas leak at the Elgin gas field in the North Sea following an operation on well G4 on the wellhead platform. During operations to plug and decommission the well methane leaked out which lead to the evacuation of the platform. Total made immense efforts to quickly stop the leak and on the 16th May 2012 the company announced the successful "Top kill". The UK's National Centre for Atmospheric Science (NCAS) supported the Total response to the leak with flights of the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft. Between the 3rd of April and the 4th of May five missions were flown. The FAAM aircraft was equipped with a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200, Los Gatos Research Inc., US) to measure CH4 mixing ratios with an accuracy of 0.07±2.48 ppbv. The measurement strategy used followed closely NOAA's during the Deepwater Horizon (DWH) spill in the Gulf of Mexico in 2010. The basis of the method is to sample the cross-wind structure of the plume at different heights downwind of the source. The measurements were then fitted to a Gaussian dispersion model which allowed the calculation of the leak rate. The first mission was flown on the 30th March 2012 only 5 days after Total reported the leak. On this day maximum CH4 concentrations exceeded 2800 ppbv. The plume was very distinct and narrow especially near the platform (10km) and it showed almost perfect Gaussian characteristics. Further downwind the plume was split up into several filaments. On this day the CH4 leak rate was estimated to be 1.1 kg/s. Between the 1st and 2nd mission (03/04/2012) the leak rate decreased significantly to about 0.5 kg/s. From the 2nd flight onwards only a minor decrease in leak rate was calculated. The last mission - while the platform was still leaking - was flown on the 4th of May, when the leak rate was estimated to be 0.3 kg/s. The FAAM aircraft measurements

  4. An Experimental Investigation of Leak Rate Performance of a Subscale Candidate Elastomer Docking Space Seal

    NASA Technical Reports Server (NTRS)

    Garafolo, Nicholas G.; Daniels, Christopher C.

    2011-01-01

    A novel docking seal was developed for the main interface seal of NASA s Low Impact Docking System (LIDS). This interface seal was designed to maintain acceptable leak rates while being exposed to the harsh environmental conditions of outer space. In this experimental evaluation, a candidate docking seal assembly called Engineering Development Unit (EDU58) was characterized and evaluated against the Constellation Project leak rate requirement. The EDU58 candidate seal assembly was manufactured from silicone elastomer S0383-70 vacuum molded in a metal retainer ring. Four seal designs were considered with unique characteristic heights. The leak rate performance was characterized through a mass point leak rate method by monitoring gas properties within an internal control volume. The leakage performance of the seals were described herein at representative docking temperatures of -50, +23, and +50 C for all four seal designs. Leak performance was also characterized at 100, 74, and 48 percent of full closure. For all conditions considered, the candidate seal assemblies met the Constellation Project leak rate requirement.

  5. Intrapleural instillation of autologous blood for persistent air leak in spontaneous pneumothorax- is it as effective as it is safe?

    PubMed Central

    2010-01-01

    Objective The aim of the present study was to evaluate the efficacy of autologous blood pleurodesis in the management of persistent air leak in spontaneous pneumothorax. Patients and methods A number of 15 patients (10 male and 5 female) were included in this prospective study between March 2005 and December 2009. The duration of the air leak exceeded 7 days in all patients. The application of blood pleurodesis was used as the last preoperative conservative method of treatment in 12 patients. One patient refused surgery and two were ineligible for operation due to their comorbidities. A blood sample of 50 ml was obtained from the patient's femoral vein and immediately introduced into the chest tube. Results A success rate of 27% was observed having the air leak sealed in 4 patients in less than 24 hours. Conclusion Despite our disappointingly poor outcome, the authors believe that the procedure's safety, convenience and low cost establish it as a worth trying method of conservative treatment for patients with the aforementioned pathology for whom no other alternative than surgery would be a choice. PMID:20716367

  6. Assessment of crack opening area for leak rates

    SciTech Connect

    Sharples, J.K.; Bouchard, P.J.

    1997-04-01

    This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.

  7. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  8. The anticipation and management of air leaks and residual spaces post lung resection

    PubMed Central

    Marzluf, Beatrice A.

    2014-01-01

    The incidence of any kind of air leaks after lung resections is reportedly around 50% of patients. The majority of these leaks doesn’t require any specific intervention and ceases within a few hours or days. The recent literature defines a prolonged air leak (PAL) as an air leak lasting beyond postoperative day 5. PAL is associated with a generally worse outcome with a more complicated postoperative course anxd prolonged hospital stay and increased costs. Some authors therefore consider any PAL as surgical complication. PAL is the most prevalent postoperative complication following lung resection and the most important determinant of postoperative length of hospital stay. A low predicted postoperative forced expiratory volume in 1 second (ppoFEV1) and upper lobe disease have been identified as significant risk factors involved in developing air leaks. Infectious conditions have also been reported to increase the risk of PAL. In contrast to the problem of PAL, there is only limited information from the literature regarding apical spaces after lung resection, probably because this common finding rarely leads to clinical consequences. This article addresses the pathogenesis of PAL and apical spaces, their prediction, prevention and treatment with a special focus on surgery for infectious conditions. Different predictive models to identify patients at higher risk for the development of PAL are provided. The discussion of surgical treatment options includes the use of pneumoperitoneum, blood patch, intrabronchial valves (IBV) and the flutter valve, and addresses the old question, whether or not to apply suction to chest tubes. The discussed prophylactic armentarium comprises of pleural tenting, prophylactic intraoperative pneumoperitoneum, sealing of the lung, buttressing of staple lines, capitonnage after resection of hydatid cysts, and plastic surgical options. PMID:24624291

  9. Anorexia nervosa with massive pulmonary air leak and extraordinary propagation.

    PubMed

    Jensen, V M; Støving, R K; Andersen, P E

    2017-02-07

    A rare case combining pneumothorax, pneumomediastinum, pneumopericardium, pneumoperitoneum, pneumorrhachis, air in retroperitoneum and extensive subcutaneous emphysema simultaneously in a severely anorectic male with BMI 9.2 (22.8 kg) and multiple vomitings is presented. This unusual condition was treated successfully with conservative medical approach in a specialized somatic unit for anorexia nervosa.

  10. The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs.

    PubMed

    St-Pierre, J; Brand, M D; Boutilier, R G

    2000-05-01

    Futile cycling of protons across the mitochondrial inner membrane accounts for 20 % or more of the total standard metabolic rate of a rat. Approximately 15 % of this total is due to proton leakage inside the skeletal muscle alone. This study examined whether the rate of proton leak is down-regulated as a part of a coordinated response to energy conservation during metabolic depression in cold-submerged frogs. We compared the proton leak rate of skeletal muscle mitochondria isolated from frogs at different stages of hibernation (control, 1 month and 4 months of submergence in normoxia and hypoxia). The kinetics of mitochondrial proton leak rate was unaltered throughout normoxic and hypoxic submergence. The state 4 respiration rates did not differ between control animals and frogs hibernating in normoxia. In contrast, the state 4 respiration rates obtained from frogs submerged in hypoxic water for 4 months were half those of control animals. This 50 % reduction in respiration rate in hypoxic hibernation was due to a reduction in electron transport chain activity and consequent decrease in mitochondrial membrane potential. We conclude that proton leak rate is reduced during metabolic depression as a secondary result of a decrease in electron transport chain activity, but that the proton conductance is unchanged. In addition, we show that the rate of proton leakage and the activity of the electron transport chain are lower in frogs than in rats, strengthening the observation that mitochondria from ectotherms have a lower proton conductance than mitochondria from endotherms.

  11. Anastomotic leak rate after low anterior resection for rectal cancer after chemoradiation therapy.

    PubMed

    Phillips, Benjamin R; Harris, Lisa J; Maxwell, Pinckney J; Isenberg, Gerald A; Goldstein, Scott D

    2010-08-01

    Anastomotic leak may be the most concerning complication after colorectal anastomosis. To compare open with laparoscopic rectal resection, we must have accurate leak rates in patients who have received neoadjuvant chemoradiation therapy to serve as a benchmark for comparison. All patients who had preoperative chemoradiation therapy with rectal resection and low pelvic anastomosis for cancer in a single colorectal practice over a 7-year period were retrospectively reviewed. All patients had proximal diversion and a contrast enema study before stoma reversal. Eighty-seven consecutive patients were included in the study. Average age was 58 years. Fifty-nine per cent of patients were male. Sixty-six per cent were smokers. Pathologic T stage was 5 per cent T0, 16 per cent T1, 28 per cent T2, 47 per cent T3, and 5 per cent T4. Seventy-five per cent of patients were pathologically lymph node-negative. Average time to stoma reversal was 122 days. Total anastomotic leak rate was 10.3 per cent (8% clinical leaks). Five (56%) patients with leak successfully underwent reversal of their diverting stoma (average time to reversal, 290 days). Patients who had the complication of anastomotic leakage had less likelihood of stoma reversal and a significantly prolonged time to stoma reversal.

  12. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

    SciTech Connect

    Duncan, A

    2005-12-19

    This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this examination. Leak rates were measured to be on the order of 0.01 gallons/minute for completely filled pipe (vertically positioned) and 0.25 gallons/minute for partially filled pipe (horizontally positioned). This measurement was for water at 16 feet head pressure and with minimal corrosion or biofilm present. The effect of the grout fill on the inside surface biofilm of the pipes is the subject of a previous memorandum.

  13. Influence of wetting effect at the outer surface of the pipe on increase in leak rate - experimental results and discussion

    SciTech Connect

    Isozaki, Toshikuni; Shibata, Katsuyuki

    1997-04-01

    Experimental and computed results applicable to Leak Before Break analysis are presented. The specific area of investigation is the effect of the temperature distribution changes due to wetting of the test pipe near the crack on the increase in the crack opening area and leak rate. Two 12-inch straight pipes subjected to both internal pressure and thermal load, but not to bending load, are modelled. The leak rate was found to be very susceptible to the metal temperature of the piping. In leak rate tests, therefore, it is recommended that temperature distribution be measured precisely for a wide area.

  14. Leak Rate Performance of Silicone Elastomer O-Rings Contaminated with JSC-1A Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    Contamination of spacecraft components with planetary and foreign object debris is a growing concern. Face seals separating the spacecraft cabin from the debris filled environment are particularly susceptible; if the seal becomes contaminated there is potential for decreased performance, mission failure, or catastrophe. In this study, silicone elastomer O-rings were contaminated with JSC- 1A lunar regolith and their leak rate performance was evaluated. The leak rate values of contaminated O-rings at four levels of seal compression were compared to those of as-received, uncontaminated, O-rings. The results showed a drastic increase in leak rate after contamination. JSC-1A contaminated O-rings lead to immeasurably high leak rate values for all levels of compression except complete closure. Additionally, a mechanical method of simulant removal was examined. In general, this method returned the leak rate to as-received values.

  15. Measuring Air Leaks into the Vacuum Space of Large Liquid Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Nurge, Mark

    2012-01-01

    Large cryogenic liquid hydrogen tanks are composed of inner and outer shells. The outer shell is exposed to the ambient environment while the inner shell holds the liquid hydrogen. The region between these two shells is evacuated and typically filled with a powderlike insulation to minimize radiative coupling between the two shells. A technique was developed for detecting the presence of an air leak from the outside environment into this evacuated region. These tanks are roughly 70 ft (approx. equal 21 m) in diameter (outer shell) and the inner shell is roughly 62 ft (approx. equal 19 m) in diameter, so the evacuated region is about 4 ft (approx. equal 1 m) wide. A small leak's primary effect is to increase the boil-off of the tank. It was preferable to install a more accurate fill level sensor than to implement a boil-off meter. The fill level sensor would be composed of an accurate pair of pressure transducers that would essentially weigh the remaining liquid hydrogen. This upgrade, allowing boil-off data to be obtained weekly instead of over several months, is ongoing, and will then provide a relatively rapid indication of the presence of a leak.

  16. Air-Sea Methane Flux after the Deepwater Horizon Oil Leak

    NASA Astrophysics Data System (ADS)

    McAdoo, J.; Sweeney, C.; Kiene, R. P.; McGillis, W. R.

    2012-12-01

    One of the key questions associated with the Deepwater Horizon's (DWH) oil leak involves understanding how much of its methane is still entrained in deep waters. Analysis of air-sea fluxes reveals a slight decrease in average aqueous CH4 from 3.3 nM in June to 3.1 and 2.8 nM in August and September, respectively. The flux estimate showed higher methane flux to the atmosphere after the blowout was capped (3.8 μmol m-2 d-1 in August) compared to 0.024 μmol m-2 d-1 during the leak. Almost all observations were within the range of historical levels. The exception was one large peak to the southwest of the wellhead, but its contribution to atmospheric methane is found to be insignificant compared to the total amount of methane released by the leak. This result supports findings that DWH methane remained entrained in the deep waters and consequently is available for biological degradation and threatens to deplete oxygen, adding further stress to an area that already suffers from anoxic-induced dead zones.

  17. Pharmaceutical container/closure integrity. III: Validation of the helium leak rate method for rigid pharmaceutical containers.

    PubMed

    Kirsch, L E; Nguyen, L; Gerth, R

    1997-01-01

    Validation of a helium leak rate method for pharmaceutical container/closure integrity quality assurance required the demonstration that this physical testing method was as good or better than microbial immersion challenge testing in detecting potential integrity failures. One lot of rubber-stoppered, broth-filled glass vials also containing defective vials with known leaks were subjected to both helium leak rate and microbial challenge testing. The defective vials were prepared by affixing glass micropipettes (0.1 to 10 microns) into the vial side walls. The validation lot included a 10% seeded defect rate of which about 50% contained leaks with a predicted probability of failing a microbial challenge (> 10%). Helium tracer was placed in the test units by charging them for 4 hours under a 40 psi helium pressure. The critical leak rate after charging was determined to be 10(-7) standard cc/second, and test units with measured leak rates greater than this value were considered helium leak rate failures. Microbial immersion challenge was conducted by exposing the test units in a bath inoculated with 10(9-10) viable E. coli and B. diminuta organisms for 24 hours followed by a 13 day (35 degrees C) incubation. Microbial failures were determined visually. The helium and microbial leak test methods were compared statistically using mean failure rates. The mean helium failure rate was 6.9%, whereas the mean microbial failure rate was 2.8%. The difference between helium and microbial failure rates was significantly greater than zero. Thus, helium leak rate testing was demonstrated to be a suitable pharmaceutical container/closure integrity method for microbial quality assurance of rigid containers.

  18. Verification of International Space Station Component Leak Rates by Helium Accumulation Method

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D.; Smith, Sherry L.

    2003-01-01

    Discovery of leakage on several International Space Station U.S. Laboratory Module ammonia system quick disconnects (QDs) led to the need for a process to quantify total leakage without removing the QDs from the system. An innovative solution was proposed allowing quantitative leak rate measurement at ambient external pressure without QD removal. The method utilizes a helium mass spectrometer configured in the detector probe mode to determine helium leak rates inside a containment hood installed on the test component. The method was validated through extensive developmental testing. Test results showed the method was viable, accurate and repeatable for a wide range of leak rates. The accumulation method has been accepted by NASA and is currently being used by Boeing Huntsville, Boeing Kennedy Space Center and Boeing Johnson Space Center to test welds and valves and will be used by Alenia to test the Cupola. The method has been used in place of more expensive vacuum chamber testing which requires removing the test component from the system.

  19. On the probability of exceeding allowable leak rates through degraded steam generator tubes

    SciTech Connect

    Cizelj, L.; Sorsek, I.; Riesch-Oppermann, H.

    1997-02-01

    This paper discusses some possible ways of predicting the behavior of the total leak rate through the damaged steam generator tubes. This failure mode is of special concern in cases where most through-wall defects may remain In operation. A particular example is the application of alternate (bobbin coil voltage) plugging criterion to Outside Diameter Stress Corrosion Cracking at the tube support plate intersections. It is the authors aim to discuss some possible modeling options that could be applied to solve the problem formulated as: Estimate the probability that the sum of all individual leak rates through degraded tubes exceeds the predefined acceptable value. The probabilistic approach is of course aiming at reliable and computationaly bearable estimate of the failure probability. A closed form solution is given for a special case of exponentially distributed individual leak rates. Also, some possibilities for the use of computationaly efficient First and Second Order Reliability Methods (FORM and SORM) are discussed. The first numerical example compares the results of approximate methods with closed form results. SORM in particular shows acceptable agreement. The second numerical example considers a realistic case of NPP in Krsko, Slovenia.

  20. Prolonged length of stay associated with air leak following pulmonary resection has a negative impact on hospital margin

    PubMed Central

    Wood, Douglas E; Lauer, Lisa M; Layton, Andrew; Tong, Kuo B

    2016-01-01

    Background Protracted hospitalizations due to air leaks following lung resections are a significant source of morbidity and prolonged hospital length of stay (LOS), with potentially significant impact on hospital margins. This study aimed to evaluate the relationship between air leaks, LOS, and financial outcomes among discharges following lung resections. Materials and methods The Medicare Provider Analysis and Review file for fiscal year 2012 was utilized to identify inpatient hospital discharges that recorded International Classification of Diseases (ICD-9) procedure codes for lobectomy, segmentectomy, and lung volume reduction surgery (n=21,717). Discharges coded with postoperative air leaks (ICD-9-CM codes 512.2 and 512.84) were defined as the air leak diagnosis group (n=2,947), then subcategorized by LOS: 1) <7 days; 2) 7–10 days; and 3) ≥11 days. Median hospital charges, costs, payments, and payment-to-cost ratios were compared between non-air leak and air leak groups, and across LOS subcategories. Results For identified patients, hospital charges, costs, and payments were significantly greater among patients with air leak diagnoses compared to patients without (P<0.001). Hospital charges and costs increased substantially with prolonged LOS, but were not matched by a proportionate increase in hospital payments. Patients with LOS <7, 7–10, and ≥11 days had median hospital charges of US $57,129, $73,572, and $115,623, and costs of $17,594, $21,711, and $33,786, respectively. Hospital payment increases were substantially lower at $16,494, $16,307, and $19,337, respectively. The payment-to-cost ratio significantly lowered with each LOS increase (P<0.001). Higher inpatient hospital mortality was observed among the LOS ≥11 days subgroup compared with the LOS <11 days subgroup (P<0.001). Conclusion Patients who develop prolonged air leaks after lobectomy, segmentectomy, or lung volume reduction surgery have the best clinical and financial outcomes

  1. Use of free subcutaneous fat pad for reduction of intraoperative air leak in thoracoscopic pulmonary resection cases with lung cancer.

    PubMed

    Shintani, Yasushi; Inoue, Masayoshi; Nakagiri, Tomoyuki; Okumura, Meinoshin

    2014-08-01

    Intraoperative alveolar air leaks occur in patients with non-small-cell lung cancer (NSCLC) following a pulmonary resection using thoracoscopic surgery. We showed the efficacy of covering damaged lung tissue with a subcutaneous fat pad for preventing postoperative air leak. Thoracoscopic surgery was performed for NSCLC patients with three incisions along with a 3-4 cm anterior utility incision. When an air leak originated from deep within the pulmonary parenchyma or was large, a subcutaneous fat pad ∼2 × 2 cm in size was harvested from the utility incision and placed on the damaged lung tissue with fibrin glue and 2-3 mattress sutures. Subcutaneous fat pads were used for 50 patients with NSCLC during thoracoscopic surgery procedures. There were no intraoperative complications in any of the patients. A prolonged air leak (>7 days) was noted in 3 (6%) of the 50 patients. Air leak was diminished at 1.5 ± 2.6 postoperative days and the chest tubes removed at 3.2 ± 2.8 postoperative days. Reinforcement of damaged lung tissues by use of subcutaneous free fat pads is a safe and intriguing procedure in NSCLC patients who underwent a pulmonary resection in thoracoscopic surgery.

  2. Video-rate spectral imaging of gas leaks in the longwave infrared

    NASA Astrophysics Data System (ADS)

    Hagen, Nathan; Kester, Robert T.; Morlier, Christopher G.; Panek, Jeffrey A.; Drayton, Paul; Fashimpaur, Dave; Stone, Paul; Adams, Elizabeth

    2013-05-01

    We have recently constructed and tested a gas cloud imager which demonstrates the rst-ever video-rate detection (15 frames/sec) of gas leaks using an uncooled LWIR detector array. Laboratory and outdoor measurements, taken in collaboration with BP Products North America Inc. and IES Inc., show detection sensitivities comparable to existing cooled systems for detecting hydrocarbon gases. Gases imaged for these experiments include methane, propane, propylene, ethane, ethylene, butane, and iso-butylene, but any gases with absorption features in the LWIR band could potentially be detected, such as sarin and other toxic gases. These results show that practical continuous monitoring of gas leaks with uncooled imaging sensors is now possible.

  3. Assessments of fluid friction factors for use in leak rate calculations

    SciTech Connect

    Chivers, T.C.

    1997-04-01

    Leak before Break procedures require estimates of leakage, and these in turn need fluid friction to be assessed. In this paper available data on flow rates through idealized and real crack geometries are reviewed in terms of a single friction factor k It is shown that for {lambda} < 1 flow rates can be bounded using correlations in terms of surface R{sub a} values. For {lambda} > 1 the database is less precise, but {lambda} {approx} 4 is an upper bound, hence in this region flow calculations can be assessed using 1 < {lambda} < 4.

  4. Measuring Pinhole Leaks - A Novel Method

    NASA Technical Reports Server (NTRS)

    Dunn, Carol Anne

    2009-01-01

    Both of the shuttle pads have one of these large liquid hydrogen tanks and the Shuttle program is currently using both pads. However, just recently, there has been increasing concerns over possible air leaks from the outside into the evacuated region. A method to detect leaks involving measuring the change in the boil-off rate of the liquid hydrogen in the tank.

  5. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  6. In vivo evaluation of a new sealant material on a rat lung air leak model.

    PubMed

    Kobayashi, H; Sekine, T; Nakamura, T; Shimizu, Y

    2001-01-01

    The ability of an albumin-based hydrogel sealant (ABHS) to prevent air leakage through the suture line after pulmonary surgery was evaluated by comparison with that of a fibrin glue (FG). As an air-leak model, a rat lung was used in which a standard incision was made and the burst pressure for ABHS and FG was measured. The average burst pressures at time 0 for the FG and ABHS groups were 30.8+/-15.2 and 77.5 +/-19.1 mmHg, respectively. At Day 3, the value of ABHS (76.3 +/- 15.8 mmHg) was still significantly higher (P<0.05) than that of FG (60.0 +/- 21.9 mmHg). At Day 7, no statistical difference was observed between the FG group(71.2 +/- 18.6 mmHg) and the ABHS group(88.8 +/- 11.7 mmHg). Histological examination of the incision at Day 14 revealed that neither sealant was not visible at the incision site, and there was no evidence of adverse tissue reaction. It was concluded that ABHS had good sealing properties and is an alternative to FG for air leakage treatment in pulmonary surgery.

  7. Measuring Small Leak Holes

    NASA Technical Reports Server (NTRS)

    Koch, D. E.; Stephenson, J. G.

    1983-01-01

    Hole sizes deduced from pressure measurements. Measuring apparatus consists of pitot tube attached to water-filled manometer. Compartment tested is pressurized with air. Pitot probe placed at known distance from leak. Dynamic pressure of jet measured at that point and static pressure measured in compartment. Useful in situations in which small leaks are tolerable but large leaks are not.

  8. Experimental Evaluation of Pool Fire Suppression Performance of Sodium Leak Collection Tray in Open Air

    SciTech Connect

    Parida, F.C.; Rao, P.M.; Ramesh, S.S.; Malarvizhi, B.; Gopalakrishnan, V.; Rao, E.H.V.M.; Kasinathan, N.; Kannan, S.E.

    2006-07-01

    In the event of sodium leakage from heat transfer circuits of fast breeder reactors (FBR), liquid sodium catches fire in ambient air leading to production of flame, smoke and heat. One of the passive fire protection methods involves immediate collection of the leaking sodium to a sodium hold-up vessel (SHV) covered with a sloping cover tray (SCT) having a few drain pipes and one vent pipe (as in Fig. 1). As soon as the liquid sodium falls on the sloping cover tray, gravity guides the sodium through drain pipes into the bottom tray in which self-extinction occurs due to oxygen starvation. This sodium fire protection equipment called leak collection tray (LCT) works without the intervention of an operator and external power source. A large number of LCTs are strategically arranged under the sodium circulating pipe lines in the FBR plants to serve as passive suppression devices. In order to test the efficacy of the LCT, four tests were conducted. Two tests were with LCT having three drain pipes and rest with one. In each experiment, nearly 40 kg of hot liquid sodium at 550 deg. C was discharged on the LCT in the open air. Continuous on-line monitoring of temperature at strategic locations ({approx} 28 points) were carried out. Colour video-graphy was employed for taking motion pictures of various time-dependent events like sodium dumping, appearance of flame and release of smoke through vent pipes. After self-extinction of sodium fire, the LCT was allowed to cool overnight in an argon atmosphere. Solid samples of sodium debris in the SCT and SHV were collected by manual core drilling machine. The samples were subjected to chemical analysis for determination of unburnt and burnt sodium. The results of the four tests revealed an interesting feature: LCT with three drain pipes showed far lower sodium collection efficiency and much higher sodium combustion than that with just one drain pipe. Thermal fluctuations in temperature sensor located near the tip of the drain pipe

  9. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect

    Brickstad, B.; Bergman, M.

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  10. Sellar Reconstruction and Rates of Delayed Cerebrospinal Fluid Leak after Endoscopic Pituitary Surgery

    PubMed Central

    Sanders-Taylor, Chris; Anaizi, Amjad; Kosty, Jennifer; Zimmer, Lee A.; Theodosopoulos, Phillip V.

    2015-01-01

    Objectives Delayed cerebrospinal fluid (CSF) leaks are a complication in transsphenoidal surgery, potentially causing morbidity and longer hospital stays. Sella reconstruction can limit this complication, but is it necessary in all patients? Design Retrospective review. Setting Single-surgeon team (2005–2012) addresses this trend toward graded reconstruction. Participants A total of 264 consecutive patients with pituitary adenomas underwent endoscopic transsphenoidal resections. Sellar defects sizable to accommodate a fat graft were reconstructed. Main outcomes Delayed CSF leak and autograft harvesting. Results Overall, 235 (89%) had reconstruction with autograft (abdominal fat, septal bone/cartilage) and biological glue. Delayed CSF leak was 1.9%: 1.7%, and 3.4% for reconstructed and nonreconstructed sellar defects, respectively (p = 0.44). Complications included one reoperation for leak, two developed meningitis, and autograft harvesting resulted in abdominal hematoma in 0.9% and wound infection in 0.4%. Conclusion In our patients, delayed CSF leaks likely resulted from missed intraoperative CSF leaks or postoperative changes. Universal sellar reconstruction can preemptively treat missed leaks and provide a barrier for postoperative changes. When delayed CSF leaks occurred, sellar reconstruction often allowed for conservative treatment (i.e., lumbar drain) without repeat surgery. We found universal reconstruction provides a low risk of delayed CSF leak with minimal complications. PMID:26225317

  11. Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study

    NASA Astrophysics Data System (ADS)

    Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy

    2016-11-01

    The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).

  12. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  13. Assessment of Remote Sensing Technologies for Location of Hydrogen and Helium Leaks

    NASA Technical Reports Server (NTRS)

    Sellar, R. Glenn; Wang, Danli

    2000-01-01

    The objective of this initial phase of this research effort is to: 1) Evaluate remote sensing technologies for location of leaks of gaseous molecular hydrogen (H2) and gaseous helium (He) in air, for space transportation applications; and 2) Develop a diffusion model that predicts concentration of H2 or He gas as a function of leak rate and distance from the leak.

  14. Chlorofluorocarbon leak detection technology

    SciTech Connect

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  15. Guidelines to achieve seals with minimal leak rates for HWR-NPR coolant system components

    SciTech Connect

    Finn, P.A.

    1991-03-01

    Seal design practices that are acceptable in pressurized-water and boiling-water reactors in the United States are not usable for the Heavy Water Reactor-New Production Reactor (HWR-NPR) because of the stringent requirement on tritium control for the atmosphere within its containment building. To maintain an atmosphere in which workers do not need protective equipment, the components of the coolant system must have a cumulative leak rate less than 0.00026 L/s. Existing technology for seal systems was reviewed with regard to flange, elastomer, valve, and pump design. A technology data base for the designers of the HWR-NPR coolant system was derived from operating experience and seal development work on reactors in the United States, Canada, and Europe. This data base was then used to generate guidelines for the design of seals and/or joints for the HWR-NPR coolant system. Also discussed are needed additional research and development, as well as the necessary component qualification tests for an effective quality control program. 141 refs., 21 figs., 14 tabs.

  16. Air leak seal for lung dissection plane with diode laser irradiation: monitoring heat-denature with auto-fluorescence

    NASA Astrophysics Data System (ADS)

    Gotoh, Maya; Arai, Tsunenori

    2008-02-01

    We studied the monitoring of heat-denature by autofluorescence spectrum from lung dissection plane during laser air leak sealing procedure. In order to seal the air leakage from lung in thoracotomy, we proposed novel laser sealing method with the combination of the diode laser (810nm wavelength) irradiation and indocyanine green staining (peak absorption wavelength: 805 nm). This sealing method is expected to preserve the postoperative ventilatory capacity and achieve minimally invasive surgery. We previously reported that this laser sealing only requires thin sealing margin (less than 300 μm in thickness) compared with that of the suturing or stapling. The most serious issue on the laser air leak sealing might be re-air-leakage due to rigid surface layer caused by excessive heat-denature, such as carbonization. We should achieve laser air leak sealing minimizing the degree of heat denature. Dissection planes of isolated porcine lung with /without the diode laser irradiation were prepared as samples. We measured the auto-fluorescence from these samples using a spectrometer. When the diode laser was irradiated with 400J/cm2, the surface of diode laser irradiated lung was fully carbonized. The ration of auto-fluorescence emission of 450nm / 500 nm, with 280 nm excitation wavelength was decreased less tha 50 % of initial value. That of 600 nm / 500 nm was increased over 700 % of initial value. The decreasing of the 450 nm auto-fluorescence intensity might be attributed to the heat-denaturing of the interstitial collagen in lung. However, increasing of the 600 nm didn't specify the origins, we suppose it might be originated from heat-denature substance, like carbonization. We could establish the useful monitoring for lung heat-denaturing with simple methodology. We think the auto-fluorescence measurement can be helpful not only for understanding the sealing mechanism, but also for controlling the degree of heat-denaturing during the procedure.

  17. Leak Rate Test for a Fiber Beam Monitor Contained in a Vacuum for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    O'Mara, Bridget; Lane, Noel; Gross, Eisen; Gray, Frederick; Muon g-2 Collaboration

    2014-09-01

    The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions and have determined the leak rate of the FBMs within the constructed vacuum apparatus. This leak rate will be reported, along with preliminary results from tests of the light output from the scintillating fibers. The muon g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment with a precision of 0.14 parts per million (ppm). The measurement will build on the Brookhaven-based E821 experiment, which yielded results suggesting new physics such as supersymmetry. The Fiber Beam Monitors (FBMs) are used in the experiment to determine the position and observe the motion of a muon beam and monitor the properties of the beam over time. The FBMs support a 9 cm × 8 cm ``harp'' with 7 scintillating fibers separated from each other by 13 mm, each with a diameter of 0.5 mm. The experiment requires a vacuum of less than 1 ×10-6 Torr to prevent trapping of electrons ionized from the residual gas by the electrostatic quadrupoles. To meet this requirement the FBMs must have a leak rate of less than 5 ×10-5 Torr L/s. We have constructed a vacuum system to simulate these conditions

  18. Leak detection/verification

    SciTech Connect

    Krhounek, V.; Zdarek, J.; Pecinka, L.

    1997-04-01

    Loss of coolant accident (LOCA) experiments performed as part of a Leak Before Break (LBB) analysis are very briefly summarized. The aim of these experiments was to postulate the leak rates of the coolant. Through-wall cracks were introduced into pipes by fatigue cycling and hydraulically loaded in a test device. Measurements included coolant pressure and temperature, quantity of leaked coolant, displacement of a specimen, and acoustic emission. Small cracks were plugged with particles in the coolant during testing. It is believed that plugging will have no effect in cracks with leak rates above 35 liters per minute. The leak rate safety margin of 10 is sufficient for cracks in which the leak rate is more than 5 liters per minute.

  19. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  20. Development and verification of methods for predicting flow rates through leaks in valves and couplings

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1993-01-01

    This is the final report of a research effort which addresses the title problem. The report discusses two broad models of flows, which represent the following extreme cases: (1) inertia-dominated flow, where friction is relatively insignificant; and (2) friction-dominated flow where inertia is insignificant. In class (2), the leak channel might consist of the gap between a scratch in a plastic seal and a polished metal plate against which the seal is pressed. Here, the cross section of the leak channel is modeled as a flat bottomed crescent. A publication generated under the present grant period presents an exact solution of the equations of fully-developed laminar pipe flow of a liquid in the case of a crescent beneath a hyperbolic arc. A Master's thesis project supported by the present grant presents the corresponding solution beneath a circular arc. A second publication reviews the flow of a gas through the same channel, which may be analyzed by a standard one-dimensional model (Fanno flow) for an engineering approximation. Finally, the report discusses the design and progress in the fabrication of a leak-test cell, in which one may measure the flow of fluid through a controlled flaw in a seal. The aim of such measurements is to furnish data for comparison with the predictions of the theory.

  1. Permanent underwater leak detector

    NASA Astrophysics Data System (ADS)

    Costello, L.; McStay, D.; Moodie, D.; Kane, D.

    2009-07-01

    A new optoelectronic sensor for the real time monitoring of key components such as valves and connectors within the subsea production equipment for leaks of hydraulic fluid is reported. The sensor is capable of detecting low concentrations of such fluids, allowing the early detection of small leaks, and the ability to monitor the evolution of the leak-rate with time, hence providing an important new tool in complying with environmental requirements, enabling early intervention and optimising subsea production

  2. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... 40 Protection of Environment 11 2014-07-01 2014-07-01 false How must I monitor for leaks to... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  3. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... 40 Protection of Environment 11 2012-07-01 2012-07-01 false How must I monitor for leaks to... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  4. The unsettled world of leak rate physics: 1 atm large-volume considerations do not apply to MEMS packages: a practitioner's perspective

    NASA Astrophysics Data System (ADS)

    Kullberg, Richard C.; Jonath, Arthur; Lowry, Robert K.

    2012-03-01

    The world of leak testing, and the applicable physics, is unsettled. While globally lower MIL-STD leak rate criteria are under consideration even for 1 atm-large volume packages, industry is conversely moving rapidly into very small volume MEMS and vacuum packaging for advanced devices. These changes point out serious conceptual disconnects between the reality of properly characterizing a leak and the conceptual tools used to ensure the desired lifetime. The physical understandings and associated tool sets used to test and model the leaks are described. We modeled two actual packages, a large, ~200 cc volume multichip module for aerospace applications and a small ~0.01cc volume MEMS package for sensor applications. Impacts of various physical models of leak flow into a package are compared to include Fickian Diffusion, The Davy Model, Howl-Mann, and an empirically derived model based on Kr-85 leak testing as called out in the most recent edition of MIL-STD-883. As shown in the comparisons, simple He leak testing and physical models based thereon fall apart in the small volume MEMS packaging space.

  5. Pharmaceutical container/closure integrity. II: The relationship between microbial ingress and helium leak rates in rubber-stoppered glass vials.

    PubMed

    Kirsch, L E; Nguyen, L; Moeckly, C S; Gerth, R

    1997-01-01

    Helium leak rate measurements were quantitatively correlated to the probability of microbial ingress for rubber-stoppered glass vials subjected to immersion challenge. Standard 10-mL tubing glass vials were modified by inserting micropipettes of various sizes (0.1 to 10 microns nominal diameter) into a side wall hole and securing them with epoxy. Butyl rubber closures and aluminum crimps were used to seal the vials. The test units were sealed in a helium-filled glove bag, then the absolute helium leak rates were determined. The test units were disassembled, filled with media, resealed, and autoclaved. The test units were thermally treated to eliminate airlocks within the micropipette lumen and establish a liquid path between microbial challenge media and the test units' contents. Microbial challenge was performed by immersing the test units in a 35 degrees C bath containing magnesium ion and 8 to 10 logs of viable P. diminuta and E. coli for 24 hours. The test units were then incubated at 35 degrees C for an additional 13 days. Microbial ingress was detected by turbidity and plating on blood agar. The elimination of airlocks was confirmed by the presence of magnesium ions in the vial contents by atomic absorption spectrometry. A total of 288 vials were subjected to microbial challenge testing. Those test units whose contents failed to show detectable magnesium ions were eliminated from further analysis. At large leak rates, the probability of microbial ingress approached 100% and at very low leak rates microbial ingress rates were 0%. A dramatic increase in microbial failure occurred in the leak rate region 10(-4.5) to 10(-3) std cc/sec, which roughly corresponded to leak diameters ranging from 0.4 to 2 microns. Below a leak rate of 10(-4.5) std cc/sec the microbial failure rate was < 10%. The critical leak rate in our studies, i.e. the value below which microbial ingress cannot occur because the leak is too small, was observed to be between 10(-5) and 10(-5.8) std

  6. Digital versus traditional air leak evaluation after elective pulmonary resection: a prospective and comparative mono-institutional study

    PubMed Central

    Nigra, Victor Auguste; Lanza, Giovanni; Costardi, Lorena; Bora, Giulia; Solidoro, Paolo; Cristofori, Riccardo Carlo; Molinatti, Massimo; Lausi, Paolo Olivo; Ruffini, Enrico; Oliaro, Alberto; Guerrera, Francesco

    2015-01-01

    Background The increased demand to reduce costs and hospitalization in general pushed several institution worldwide to develop fast-tracking protocols after pulmonary resections. One of the commonest causes of protracted hospital stay remains prolonged air leaks (ALs). We reviewed our clinical practice with the aim to compare traditional vs. digital chest drainages in order to evaluate which is the more effective to correctly manage the chest tube after pulmonary resection. Methods All patients submitted to elective pulmonary resection for lung malignancies, between April to December, 2014 in our General Thoracic Surgery Department were included in the study. The primary outcome was the chest tube duration, the secondary the postoperative overall hospitalization. Significant differences between traditional and digital groups were investigated with logistic regression models. Numerical variables between the groups were compared by means of the unpaired Wilcoxon-Mann-Whitney test. Results Both series of patients were comparable for clinical, surgical and pathological characteristics. Chest tube duration showed to be significantly shorter in the digital group (3 vs. 5 days, P=0.0009), while the hospitalization was longer in traditional one [8 vs. 7 days in digital drainage (DD); P=0.0385]. No chest drainage replacement was required at 30-day, in both groups. Conclusions We were able to demonstrate that patients managed with a digital system experienced a shorter chest tube duration as well as a lower overall hospital length of stay, compared to those who received the traditional drainage (TD). PMID:26623093

  7. Leak checking in ISABELLE

    SciTech Connect

    Briggs, J.; Halama, H.J.

    1981-01-01

    The Intersecting Storage Accelerator (ISABELLE) contains two completely independent vacuum systems. One known as Beam Vacuum operates at 1 x 10/sup -11/ Torr and maintains a very clean environment for the circulating proton beam. The other system known as Insulating Vacuum maintains superconducting magnet vessels at a pressure below 1 x 10/sup -6/ Torr. In this system all gasses except helium are cryocondensed on the cold surfaces of superconducting magnets and cryogenic circuits. Turbomolecular pumps pump the inadvertent small helium leaks. The helium background both in the MagCOOL area and in the ISABELLE tunnel limits the sensitivity of conventional leak detectors. Leak detection in ISABELLE is one of the most important functions, since there are thousands of bellows and welds operating at 4 K and at 15 atmosphere pressure and that many welds can only be leak checked at room temperature. Leak rates are known to increase by 4 orders of magnitude when cooled from 300 K to 4 K. Thus the required 10/sup -10/ Torr liters s/sup -1/ sensitivity is essential for proper operation and methods and equipment which permit the location of such leaks in large systems have been developed and tested on the First Cell and the refrigerators. They produced a completely leak free system, i.e. the helium background did not change when all pumps were closed for 24 hours. These methods and the equipment are discussed in detail.

  8. Automated leak test systems

    SciTech Connect

    Cordaro, J.V.; Thompson, W.D.; Reeves, G.

    1997-09-15

    An automated leak test system for tritium shipping containers has been developed at Westinghouse Savannah River Co. (WSRC). The leak detection system employs a computer controlled helium detector which allows an operator to enter key information when prompted. The software for controlling the tests and the equipment apparatus were both designed and manufactured at the Savannah River Technology Center within WSRC. Recertification Test: Every twelve months, the pressure vessel portion of the shipping container itself must undergo a rigorous recertification leak test. After an empty pressure vessel (shipping container) is assembled, it is placed into one of six stainless steel belljars for helium leak testing. The belljars are fashioned in row much the same as assembly line arrangement. Post-load Test: A post-load leak test is performed upon reservoirs that have been filled with tritium and placed inside the shipping containers mentioned above. These leak tests are performed by a rate-of-rise method where the area around the shipping container seals is evacuated, valved off from the vacuum pump, and then the vacuum pressure is monitored over a two-minute period. The Post Load Leak Test is a quality verification test to ensure that the shipping container has been correctly assembled. 2 figs.

  9. Acceptance test procedure for the 105-KW isolation barrier leak rate

    SciTech Connect

    McCracken, K.J.

    1995-05-19

    This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals. This Acceptance Test Procedure (ATP) has been prepared in accordance with CM-6-1 EP 4.2, Standard Engineering Practices.

  10. Superfluid helium leak sealant study

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.

    1981-01-01

    Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.

  11. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    EPA Pesticide Factsheets

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  12. Leak rate estimation of a resistive plate chamber gap by monitoring absolute pressure

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Datar, V. M.; Kalmani, S. D.; Majumder, G.; Mondal, N. K.; Satyanarayana, B.

    2016-11-01

    The differential pressure of a conventional manometer is highly dependent on the atmospheric pressure. The measurements with a manometer for an extended time period show a large variation due to solar atmospheric tides. However, the measurements of absolute pressure, both outside and inside of a resistive plate chamber (RPC), are independent of each other. By monitoring the absolute pressures, both outside and inside of a RPC, along with the temperature, its leakage rate can be estimated. During the test period, the supporting button spacers inside a RPC may get detached due to some manufacturing defect. This effect can be detected clearly by observing the sudden fall of pressure inside the chamber.

  13. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  14. Assessment of volume and leak measurements during CPAP using a neonatal lung model.

    PubMed

    Fischer, H S; Roehr, C C; Proquitté, H; Wauer, R R; Schmalisch, G

    2008-01-01

    Although several commercial devices are available which allow tidal volume and air leak monitoring during continuous positive airway pressure (CPAP) in neonates, little is known about their measurement accuracy and about the influence of air leaks on volume measurement. The aim of this in vitro study was the validation of volume and leak measurement under CPAP using a commercial ventilatory device, taking into consideration the clinical conditions in neonatology. The measurement accuracy of the Leoni ventilator (Heinen & Löwenstein, Germany) was investigated both in a leak-free system and with leaks simulated using calibration syringes (2-10 ml, 20-100 ml) and a mechanical lung model. Open tubes of variable lengths were connected for leak simulation. Leak flow was measured with the flow-through technique. In a leak-free system the mean relative volume error +/-SD was 3.5 +/- 2.6% (2-10 ml) and 5.9 +/- 0.7% (20-60 ml), respectively. The influence of CPAP level, driving flow, respiratory rate and humidification of the breathing gas on the volume error was negligible. However, an increasing F(i)O(2) caused the measured tidal volume to increase by up to 25% (F(i)O(2) = 1.0). The relative error +/- SD of the leak measurements was -0.2 +/- 11.9%. For leaks > 19%, measured tidal volume was underestimated by more than 10%. In conclusion, the present in vitro study showed that the Leoni allowed accurate volume monitoring under CPAP conditions similar to neonates. Air leaks of up to 90% of patient flow were reliably detected. For an F(i)O(2) > 0.4 and for leaks > 19%, a numerical correction of the displayed volume should be performed.

  15. Measurement of Submerged Oil/Gas Leaks using ROV Video

    NASA Astrophysics Data System (ADS)

    Shaffer, Franklin; de Vera, Giorgio; Lee, Kenneth; Savas, Ömer

    2013-11-01

    Drilling for oil or gas in the Gulf of Mexico is increasing rapidly at depths up to three miles. The National Commission on the Deepwater Horizon Oil Leak concluded that inaccurate estimates of the leak rate from the Deepwater Horizon caused an inadequate response and attempts to cap the leak to fail. The first response to a submerged oil/gas leak will be to send a Remotely Operated Vehicle (ROV) down to view the leak. During the response to the Deepwater Horizon crisis, the authors Savas and Shaffer were members of the Flow Rate Technical Group's Plume Team who used ROV video to develop the FRTG's first official estimates of the oil leak rate. Savas and Shaffer developed an approach using the larger, faster jet features (e.g., turbulent eddies, vortices, entrained particles) in the near-field developing zone to measure discharge rates. The authors have since used the Berkeley Tow Tank to test this approach on submerged dye-colored water jets and compressed air jets. Image Correlation Velocimetry has been applied to measure the velocity of visible features. Results from tests in the Berkeley Tow Tank and submerged oil jets in the OHMSETT facility will be presented.

  16. Sensitivities of Soap Solutions in Leak Detection

    NASA Technical Reports Server (NTRS)

    Stuck, D.; Lam, D. Q.; Daniels, C.

    1985-01-01

    Document describes method for determining minimum leak rate to which soap-solution leak detectors sensitive. Bubbles formed at smaller leak rates than previously assumed. In addition to presenting test results, document discusses effects of joint-flange configurations, properties of soap solutions, and correlation of test results with earlier data.

  17. Preservation of the Myofascial Cuff During Posterior Fossa Surgery to Reduce the Rate of Pseudomeningocele Formation and Cerebrospinal Fluid Leak: A Technical Note

    PubMed Central

    Felbaum, Daniel R; Anaizi, Amjad; Mason, Robert B; Jean, Walter C; Voyadzis, Jean M

    2016-01-01

    Introduction: Suboccipital craniotomy is a workhorse neurosurgical operation for approaching the posterior fossa but carries a high risk of pseudomeningocele and cerebrospinal fluid (CSF) leak. We describe our experience with a simple T-shaped fascial opening that preserves the occipital myofascial cuff as compared to traditional methods to reduce this risk. Methods: A single institution, retrospective review of prospectively collected database was performed of patients that underwent a suboccipital craniectomy or craniotomy. Patient data was reviewed for craniotomy or craniectomy, dural graft, and/or sealant use as well as CSF complications. A pseudomeningocele was defined as a subcutaneous collection of cerebrospinal fluid palpable clinically and confirmed on imaging. A CSF leak was defined as a CSF-cutaneous fistula manifested by CSF leaking through the wound. All patients underwent regular postoperative visits of two weeks, one month, and three months. Results: Our retrospective review identified 33 patients matching the inclusion criteria. Overall, our cohort had a 21% (7/33) rate of clinical and radiographic pseudomeningocele formation with 9% (3/33) requiring surgical revision or a separate procedure. The rate of clinical and radiographic pseudomeningocele formation in the myofascial cuff preservation technique was less than standard techniques (12% and 31%, respectively). Revision or further surgical procedures were also reduced in the myofascial cuff preservation technique vs. the standard technique (6% vs 13%). Conclusions: Preservation of the myofascial cuff during posterior fossa surgery is a simple and adoptable technique that reduces the rate of pseudomeningocele formation and CSF leak as compared with standard techniques.   PMID:28133584

  18. Hermetic Seal Leak Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor)

    2013-01-01

    The present invention is a hermetic seal leak detection apparatus, which can be used to test for hermetic seal leaks in instruments and containers. A vacuum tight chamber is created around the unit being tested to minimize gas space outside of the hermetic seal. A vacuum inducing device is then used to increase the gas chamber volume inside the device, so that a slight vacuum is pulled on the unit being tested. The pressure in the unit being tested will stabilize. If the stabilized pressure reads close to a known good seal calibration, there is not a leak in the seal. If the stabilized pressure reads closer to a known bad seal calibration value, there is a leak in the seal. The speed of the plunger can be varied and by evaluating the resulting pressure change rates and final values, the leak rate/size can be accurately calculated.

  19. Instrumentation system to implement leak test program

    SciTech Connect

    Turner, W.J.; Brown, R.; Rael, D.

    1997-05-01

    HVAC equipment, gloveboxes, and other types of enclosures are required to meet rigid well-defined leak rates when they are to be installed in a nuclear facility. This paper describes two implementations of an instrumentation system that is used to test leak rates on heating, ventilation, and air conditioning (HVAC) plenums, gloveboxes, and experimental chambers, etc. One of the implementations used a programmable logic controller (PLC). The other used what is probably a simpler system based on FlexNet{reg_sign} modules. The emphasis on both systems was on automatic data collection, automatic report generation, and validation of the test results to ERDA 76-21 and ASME-N510. The data are collected using input modules connected to the PLC in one case. In the other case the data are collected using the FlexNet{reg_sign} modules. In both cases, the data are stored and the reports are generated in a spreadsheet.

  20. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  1. Mitochondrial proton leak rates in the slow, oxidative myotomal muscle and liver of the endothermic shortfin mako shark (Isurus oxyrinchus) and the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata).

    PubMed

    Duong, Cindy A; Sepulveda, Chugey A; Graham, Jeffrey B; Dickson, Kathryn A

    2006-07-01

    Mitochondrial proton leak was assessed as a potential heat source in the slow, oxidative (red) locomotor muscle and liver of the shortfin mako shark (Isurus oxyrinchus), a regional endotherm that maintains the temperature of both tissues elevated above ambient seawater temperature. We hypothesized that basal proton leak rates in red muscle and liver mitochondria of the endothermic shortfin mako shark would be greater than those of the ectothermic blue shark (Prionace glauca) and leopard shark (Triakis semifasciata). Respiration rate and membrane potential in isolated mitochondria were measured simultaneously at 20 degrees C using a Clark-type oxygen electrode and a lipophilic probe (triphenylmethylphosphonium, TPMP(+)). Succinate-stimulated respiration was titrated with inhibitors of the electron transport chain, and the non-linear relationship between respiration rate and membrane potential was quantified. Mitochondrial densities of both tissues were measured by applying the point-contact method to electron micrographs so that proton leak activity of the entire tissue could be assessed. In all three shark species, proton leak occurred at a higher rate in red muscle mitochondria than in liver mitochondria. For each tissue, the proton leak curves of the three species overlapped and, at a membrane potential of 160 mV, mitochondrial proton leak rate (nmol H(+) min(-1) mg(-1) protein) did not differ significantly between the endothermic and ectothermic sharks. This finding indicates that red muscle and liver mitochondria of the shortfin mako shark are not specialized for thermogenesis by having a higher proton conductance. However, mako mitochondria did have higher succinate-stimulated respiration rates and membrane potentials than those of the two ectothermic sharks. This means that under in vivo conditions mitochondrial proton leak rates may be higher in the mako than in the ectothermic species, due to greater electron transport activity and a larger proton gradient

  2. Aerospace Payloads Leak Test Methodology

    NASA Technical Reports Server (NTRS)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  3. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  4. Hydrogen leak detection in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G

    1992-01-01

    This study focuses on a helium gas jet flowing into room air. Measurements of helium concentration and velocity in the jet-air mixture are reported. The objective is to learn about jet characteristics so that dynamically similar hydrogen leaks may be located in the Space Shuttle. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers to monitor the shuttle environment for leaks. The mass spectrometers are fed by long sample tubes which draw gas from the payload bay, mid body, aft engine compartment and external tank. The overall purpose of this study is to improve the HGDS especially in its potential for locating hydrogen leaks. A rapid-response leak detection experiment was designed, built, and tested, following on the work done in this program last summer. The apparatus included a Perkin Elmer MGA-1200 mass spectrometer and air velocity transducer, both monitored by a Macintosh IIFX computer using LabVIEW software. A jet of helium flowing into the lab air simulated a gas leak. Steady helium or hydrogen-nitrogen jets were logged for concentration and velocity, and the power spectral density of each was computed. Last year, large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MGA-1200 was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MGA data. No peaks were detected in the power spectrum, so in the present study, 10 Hz bandwidth-averaged power levels were examined at regular frequency intervals. The practical consequences of last year's study are as follows: sampling frequency should be increased above the present rate of 1 sample per second so that transients could be observed and analyzed with frequency response methods. Many more experiments and conditions were observed in this second summer, including the effects of orifice diameter

  5. Passive vapor monitoring of underground storage tanks for leak detection.

    PubMed

    Weber, D; Schwille, F

    1991-02-01

    Passive vapor monitoring of underground storage tanks (USTs) containing volatile hydrocarbons at locations external to the tank (an external system) is touted as a fast and effective method of leak detection. However, major gaps remain in our knowledge of the physical processes that relate a measured vapor concentration to the leak rate, thus making network design according to a quantitative design criterion nearly impossible, and differentiation between surface spills and a leaking UST requires certain levels of sophistication in the leak detection system and in the analysis that are not usually available. Heavier-than-air vapors from the constituents of stored hydrocarbons could result in a density-driven convective propagation component that complicates the design of leak detection systems, and finally, detection times are highly sensitive to concentration detection threshold levels set by the system. The use of inadequate systems and analyses can lead to either wasted efforts or excessive subsurface contamination. This paper discusses the physical processes involved, explores the above aspects of external passive vapor leak detection design, and suggests some alternatives as they pertain to gasoline service stations.

  6. Leak detection using structure-borne noise

    NASA Technical Reports Server (NTRS)

    Holland, Stephen D. (Inventor); Chimenti, Dale E. (Inventor); Roberts, Ronald A. (Inventor)

    2010-01-01

    A method for detection and location of air leaks in a pressure vessel, such as a spacecraft, includes sensing structure-borne ultrasound waveforms associated with turbulence caused by a leak from a plurality of sensors and cross correlating the waveforms to determine existence and location of the leak. Different configurations of sensors and corresponding methods can be used. An apparatus for performing the methods is also provided.

  7. Gelatin based on Power-gel.TM. as solders for Cr.sup.4+laser tissue welding and sealing of lung air leak and fistulas in organs

    DOEpatents

    Alfano, Robert R.; Tang, Jing; Evans, Jonathan M.; Ho, Peng Pei

    2006-04-25

    Laser tissue welding can be achieved using tunable Cr.sup.4+ lasers, semiconductor lasers and fiber lasers, where the weld strength follows the absorption spectrum of water. The use of gelatin and esterified gelatin as solders in conjunction with laser inducted tissue welding impart much stronger tensile and torque strengths than albumin solders. Selected NIR wavelength from the above lasers can improve welding and avoid thermal injury to tissue when used alone or with gelatin and esterified gelatin solders. These discoveries can be used to enhance laser tissue welding of tissues such as skin, mucous, bone, blood vessel, nerve, brain, liver, pancreas, spleen, kidney, lung, bronchus, respiratory track, urinary tract, gastrointestinal tract, or gynecologic tract and as a sealant for pulmonary air leaks and fistulas such as intestinal, rectal and urinary fistulas.

  8. Air Leakage Rates in Typical Air Barrier Assemblies

    SciTech Connect

    Hun, Diana E.; Atchley, Jerald Allen; Childs, Phillip W.

    2016-11-01

    Estimates for 2010 indicate that infiltration in residential buildings was responsible for 2.85 quads of energy (DOE 2014), which is about 3% of the total energy consumed in the US. One of the mechanisms being implemented to reduce this energy penalty is the use of air barriers as part of the building envelope. These technologies decrease airflow through major leakage sites such as oriented strand board (OSB) joints, and gaps around penetrations (e.g., windows, doors, pipes, electrical outlets) as indicated by Hun et al. (2014). However, most air barrier materials do not properly address leakage spots such as wall-to-roof joints and wall-to-foundation joints because these are difficult to seal, and because air barrier manufacturers usually do not provide adequate instructions for these locations. The present study focuses on characterizing typical air leakage sites in wall assemblies with air barrier materials.

  9. Evaluation of advanced and current leak detection system

    SciTech Connect

    Kupperman, D.S.

    1987-01-01

    US Nuclear Regulatory Commission Guide 1.45 recommends the use of at least three different detection methods in reactors to detect leakage. Monitoring of both sump-flow and airborne particulate radioactivity is mandatory. A third method can involve either monitoring of condensate flow rate from air coolers or monitoring of airborne gaseous radioactivity. Although the methods currently used for leak detection reflect the state of the art, other techniques may be developed and used. Since the recommendations of Regulatory Guide 1.45 are not mandatory, Licensee Event Report Compilations have been reviewed to help establish actual capabilities for leak detection. The review of reports which had previously covered the period June 1985 to August 1986, has been extended. The total number of events of significance is now 83. These reports have provided documented, sometimes detailed summaries of reactor leaks.

  10. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  11. Leak detection by acoustic emission monitoring. Phase 1: Feasibility study

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Bernard; Winder, A. A.

    1994-05-01

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors.

  12. Leak detection capability in CANDU reactors

    SciTech Connect

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  13. Long-life leak standard assembly

    DOEpatents

    Basford, James A.; Mathis, John E.; Wright, Harlan C.

    1982-01-01

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be "baked-out" in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  14. Enhanced Sealing by Hydrophobic Modification of Alaska Pollock-Derived Gelatin-Based Surgical Sealants for the Treatment of Pulmonary Air Leaks.

    PubMed

    Mizuta, Ryo; Taguchi, Tetsushi

    2016-11-15

    Pulmonary air leaks are medical complications of thoracic surgery for which fibrin sealant is the main treatment. In this study, innovative sealants based on hydrophobically modified Alaska pollock-derived gelatin (hm-ApGltn) and a poly(ethylene)glycol-based 4-armed cross-linker (4S-PEG) have been developed and their burst strengths have been evaluated using fresh rat lung. The developed sealants show higher lung burst strength compared with the nonmodified original ApGltn (Org-ApGltn)-based sealant and a commercial fibrin sealant. The maximum burst strength of the hm-ApGltn-based sealant is 1.6-fold higher than the Org-ApGltn-based sealant (n = 5, p < 0.05), and 2.1-fold higher than the commercial fibrin sealant (n = 5, p < 0.05). Cell culture experiments show that modification of ApGltn with cholesteryl or stearoyl groups effectively enhances anchoring to the cell surface. In addition, binding constants between hm-ApGltn and extracellular matrix proteins such as fibronectin and fibrillin are increased. Therefore, the new hm-ApGltn/4S-PEG-based sealant has the potential for applications in thoracic surgery.

  15. Sealing Nitrogen Tetroxide Leaks

    NASA Technical Reports Server (NTRS)

    Garrard, George G.; Houston, Donald W.; Scott, Frank D.

    1990-01-01

    Use of Furmanite FSC-N-6B sealant in clam-shell sealing device makes it possible to stop leaks of nitrogen tetroxide through defective or improperly-seated plumbing fittings. Devised to stop leaks in vent line of small rocket motor on Space Shuttle. Also used on plumbing containing hydrazine and other hazardous fluids, and repair withstands severe temperature, vibration, and shock. Leaks stopped in place, without draining or replacement of leaking parts.

  16. Leak detector uses ultrasonics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Keir, A. R.

    1978-01-01

    Probe located on outer wall of vacuum-jacketed fluid lines detects leaks on inner wall. Probe picks up and amplifies vibrations that occur when gas rushes through leak and converts them to audible signal or CRT display. System is considerably simpler to use than helium leak detectors and allows rapid checks to be made as part of routine maintenance.

  17. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    DTIC Science & Technology

    2015-03-26

    Department of Systems Engineering and Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...this thesis: the Federal Reserve Foreign Exchange Rate – H.10, the Global Insight forecasts, the Chicago Mercantile Exchange (CME) as taken through...foreign currency units per U.S. dollar for each day of the previous week (Board of Governors of the Federal Reserve System , 2015). Table 3 is a

  18. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... checks. (a) Vacuum side leak check. (1) Any location within the analysis system where a vacuum leak could affect the test results must be checked. (2) The maximum allowable leakage rate on the vacuum side is...

  19. 40 CFR 86.328-79 - Leak checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... checks. (a) Vacuum side leak check. (1) Any location within the analysis system where a vacuum leak could affect the test results must be checked. (2) The maximum allowable leakage rate on the vacuum side is...

  20. Leaks in nuclear grade high efficiency aerosol filters

    SciTech Connect

    Scripsick, Ronald Clyde

    1994-07-01

    Nuclear grade high efficiency aerosol filters, also known as high efficiency particulate air (HEPA) filters, are commonly used in air cleaning systems for removal of hazardous aerosols. Performance of the filter units is important in assuring health and environmental protection. The filter units are constructed from pleated packs of fiberglass filter media sealed into rigid frames. Results of previous studies on such filter units indicate that their performance may not be completely predicted by ideal performance of the fibrous filter media. In this study, departure from ideal performance is linked to leaks existing in filter units and overall filter unit performance is derived from independent performance of the individual filter unit components. The performance of 14 nuclear grade HEPA filter units (size 1, 25 cfm) with plywood frames was evaluated with a test system that permitted independent determination of penetration as a function of particle size for the whole filter unit, the filter unit frame, and the filter media pack. Tests were performed using a polydisperse aerosol of di-2-ethylhexyl phthalate with a count median diameter of 0.2 {mu}m and geometric standard deviation of 1.6. Flow rate and differential pressure were controlled from 1% to 100% of design values. Particle counts were made upstream and downstream of the filter unit with an optical particle counter (OPC). The OPC provided count information in 28 size channels over the particle diameter range from 0.1 to 0.7 μm. Results provide evidence for a two component leak model of filler unit performance with: (1) external leaks through filter unit frames, and (2) internal leaks through defects in the media and through the seal between the media pack and frame. For the filter units evaluated, these leaks dominate overall filter unit performance over much of the flow rate and particle size ranges tested.

  1. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  2. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  3. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  4. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  5. Propelling Charge Container Leak Rate

    DTIC Science & Technology

    1979-08-01

    effective leakage hole size for the total population of 349 containers does not exceed 1.2 mils. L 4 5Based upon the work of Somerville as reported...1977. 4. Paul N. Somerville , Tables for Obtaining Non-rarametric Tolerance Limits, Annals of Mathematical Statistics, Vol 29, Nc,. 2, pp 5991- 601, June...1958. 5. Mary Natrella, "Engineering design Handbook, Experimental Statistics," SEction 5, Tables. US Army Materiel rommand, AMCP 706-114, July 1963

  6. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  7. Apparatus for detecting leaks

    DOEpatents

    Booth, Eugene T.

    1976-02-24

    A method and apparatus for determining the position of and estimating the size of leaks in an evacuating apparatus comprising the use of a testing gas such as helium or hydrogen flowing around said apparatus whereby the testing gas will be drawn in at the site of any leaks.

  8. Pressure Change Measurement Leak Testing Errors

    SciTech Connect

    Pryor, Jeff M; Walker, William C

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  9. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  10. Leak detection by acoustic emission monitoring. Phase 1. Feasibility study. Final report, August 1987-March 1988

    SciTech Connect

    Lichtenstein, B.; Winder, A.A.

    1994-05-26

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors. Acoustic, Leak detection, Underground tank, Pipeline.

  11. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  12. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  13. Schlieren optics for leak detection

    NASA Technical Reports Server (NTRS)

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  14. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  15. Versatile radar measurement of the electron loss rate in air

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-01

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 108 s-1 attachment rate is in very good agreement with predictions based on literature data.

  16. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  17. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  18. Leak detection aid

    DOEpatents

    Steeper, T.J.

    1989-12-26

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port. 2 figs.

  19. Leak detection aid

    DOEpatents

    Steeper, Timothy J.

    1989-01-01

    A leak detection apparatus and method for detecting leaks across an O-ring sealing a flanged surface to a mating surface is an improvement in a flanged surface comprising a shallow groove following O-ring in communication with an entrance and exit port intersecting the shallow groove for injecting and withdrawing, respectively, a leak detection fluid, such as helium. A small quantity of helium injected into the entrance port will flow to the shallow groove, past the O-ring and to the exit port.

  20. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  1. Blind Leak Detection for Closed Systems

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter; Johnson, Ricky; Todd, Douglas; Russell, Samuel; Walker, James

    2003-01-01

    exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation. Other applications for this thermographic inspection system are the Reinforced-Carbon-Carbon (RCC) leading edge of the Space Shuttle orbiter and braze joint integrity.

  2. Air Controlman 3 and 2: Naval Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The Rate Training Manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement in the Air Controlman (AC) rating to Air Controlman Third and Second Class. Chapter 1 discusses air controlman qualifications, the enlisted rating structure, the Air Controlman rating, references…

  3. Non-zero basal oxygen flow a hazard to anesthesia breathing circuit leak test.

    PubMed

    Tokumine, Joho; Sugahara, Kazuhiro; Gushiken, Kouji; Ohta, Minoru; Matsuyama, Tomoaki; Saikawa, Satoko

    2005-04-01

    The non-zero basal flow (BF) of oxygen in anesthesia machines has been set to supply the basal metabolic requirement of oxygen. However, there is no scientific evidence of its necessity. In this study we sought to clarify whether non-zero BF affects leak detection during preanesthetic inspections. Twenty-five participants performed leak tests on anesthesia machines to detect breathing circuit leaks. Artificial leak-producing devices were used to create leaks from 0 to 1.0 L/min. The investigator randomly chose the leak device and connected it into the breathing circuit. Participants, blinded as to the presence or the type of leak producing device, then tested the breathing circuit for leaks. The conventional breathing system leak test was performed with and without BF. The results of leak detection in each leak procedure were analyzed statistically. The leak detection rate of leak test with BF was less than without BF (P < 0.01). We demonstrated that non-zero BF of oxygen decreases the leak detection rate and is an obstacle for leak detection, especially for small leaks. Therefore, we recommend that breathing circuit leak tests should be performed in the absence of BF of oxygen.

  4. Gaseous leak detector

    DOEpatents

    Juravic, Jr., Frank E.

    1988-01-01

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  5. Improved gaseous leak detector

    DOEpatents

    Juravic, F.E. Jr.

    1983-10-06

    In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.

  6. 40 CFR 63.424 - Standards: Equipment leaks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Equipment leaks. 63.424 Section 63.424 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS....424 Standards: Equipment leaks. (a) Each owner or operator of a bulk gasoline terminal or...

  7. Zero-Spring-Rate Mechanism/Air Suspension Cart

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Cooley, Victor M.

    1991-01-01

    Compact mechanism suspends articulating flexible structures with minimal constraints. Zero-spring-rate mechanism (ZSRM) air suspension cart used to suspend flexible, "mass-critical" articles like lightweight spacecraft undergoing such large motions as slewing, translation, and telescoping/retraction. Suspends flexible article undergoing large rigid-body motion concurrent with vibratory motion, with minimal interaction between suspended article and suspending hardware. Adaptive to active control, which reduces undesirable effects caused by friction, nonlinearity, and mass coupling. Practical for most suspension applications.

  8. Air exchange rates in new energy-efficient manufactured housing

    SciTech Connect

    Hadley, D.; Bailey, S.

    1990-10-01

    During the 1989--1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the whole-house system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem. 6 refs., 6 figs., 5 tabs.

  9. DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION.

    SciTech Connect

    DIETZ,R.N.

    1998-10-20

    The approximately 200,000-mile fuel pipeline system in the U.S. operates at flow rates up to 2.5 x 10{sup 6}gallons per hour (GPH). Most commercial technologies only provide on-line leak detection at about 0.3% of flow rate, i.e., about 7,500 GPH or larger. Detection of leaks at about 1 GPH or so is desirable both from a regulatory and leak-prevention standpoint. Brookhaven's commercially-accepted perfluorocarbon tracer (PFT) technology for underground leak detection of utility industry dielectric fluids at leak rates less than 0.1 GPH, with new enhancements, will be able to cost-effectively detect fuel pipeline system leaks to about 1 GPH--3 orders-of-magnitude better than any on-line system. The magnitude of detected leaks would be calculable as well. Proposed mobile surveys (such as those used periodically in the gas pipeline industry) at about 110 to 120 miles per day would allow such small leaks to be detected at 10-ppb tagging levels (less than $1,500 of PFT for a 48-hour tag at the maximum transport rate) under worst-case meteorological dispersion conditions. Smaller leaks could be detected by proportionately larger tagging concentrations. Leaks would be pinpointed by subsequent conventional barholing and vapor analyses. There are no health nor safety issues associated with the use of the proposed technological approach nor any consequential environmental impacts associated with the proposed magnitudes of PFT tagging.

  10. Detection of interstate liquids pipeline leaks: Feasibility evaluation

    SciTech Connect

    Dietz, R.N.; Senum, G.I.

    1998-10-20

    The approximately 200,000-mile fuel pipeline system in the US operates at flow rates up to 2.5 {times} 10{sup 6} gallons per hour (GPH). Most commercial technologies only provide on-line leak detection at about 0.3% of flow rate, i.e., about 7,500 GPH or larger. Detection of leaks at about 1 GPH or so is desirable both from a regulatory and leak-prevention standpoint. Brookhaven`s commercially-accepted perfluorocarbon tracer (PFT) technology for underground leak detection of utility industry dielectric fluids at leak rates less than 0.1 GPH, with new enhancements, will be able to cost-effectively detect fuel pipeline system leaks to about 1 GPH--3 orders-of-magnitude better than any on-line system. The magnitude of detected leaks would be calculable as well. Proposed mobile surveys (such as those used periodically in the gas pipeline industry) at about 110 to 120 miles per day would allow such small leaks to be detected at 10-ppb tagging levels (less than $1,500 of PFT for a 48-hour tag at the maximum transport rate) under worst-case meteorological dispersion conditions. Smaller leaks could be detected by proportionately larger tagging concentrations. Leaks would be pinpointed by subsequent conventional barholing and vapor analyses. There are no health nor safety issues associated with the use of the proposed technological approach nor any consequential environmental impacts associated with the proposed magnitudes of PFT tagging.

  11. Modeling leaks from liquid hydrogen storage systems.

    SciTech Connect

    Winters, William Stanley, Jr.

    2009-01-01

    This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

  12. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching. (authors)

  13. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  14. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  15. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  16. PORTABLE IMAGING DEVICES FOR INDUSTRIAL LEAK DETECTION AT PETROLEUM REFINERIES AND CHEMICAL PLANTS

    EPA Science Inventory

    Undiscovered gas leaks, or fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. Industrial Leak Detection and Repair (LDAR) pro...

  17. SEALING SIMULATED LEAKS

    SciTech Connect

    Michael A. Romano

    2004-09-01

    This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.

  18. Long-life leak standard assembly. [Patent application

    DOEpatents

    Basford, J.A.; Mathis, J.E.; Wright, H.C.

    1980-11-12

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be baked-out in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  19. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  20. Steam-leak cost estimation using thermographically acquired pipe temperature data

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.; MacNamara, Neal A.

    1997-04-01

    Predictive maintenance practitioners readily diagnose steam leaks through drain using infrared thermography, often supplemented with ultrasonic probe verification. Typically, a pipe carries the leaking steam to a flash tank or directly to the condenser. Thus, the energy used to create the steam is what is lost, not the steam itself. However, the cost of steam production is not inexpensive. We have found steam leaks we estimate cost $30 K/year. As a part of the Electric Power Research Institute's (EPRI's) Boiler, Condenser and Steam Cycle Applications Project, the EPRI M&D (Monitoring & Diagnostic) Centers have begun acquiring steam leak data at several electric utilities. Estimates of steam leak costs are key to evaluating cost savings and recommendation of corrective action, but are hampered by lack of knowledge of the steam flow in the line. These lines are usually not instrumented because typically there is no flow. Consequently, we must derive an indirect method of estimating steam flow. This can be done for uninsulated pipes given knowledge of the pipe surface temperature gradient over a known distance. For single phase conditions, the mass flow of steam equals the heat lost from a length of pipe divided by the temperature drop along the length and the heat capacity of the steam. Pipe heat loss is calculated knowing the pipe diameter, pipe surface temperature, ambient air temperature and using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) tabulated values. The temperatures are derived from thermographic data. Distances can also be derived from thermal imaging radiometer data, depending on the type of system employed. To facilitate calculation of steam leak cost estimates, we have developed a Microsoft ExcelTM spreadsheet macro. The user can interface directly with the spreadsheet, entering appropriate temperatures, distances, pipe diameter, heat rate, cost of power, etc. Or, the analyst can use thermal imaging radiometer

  1. Air exchange rates from atmospheric CO2 daily cycle.

    PubMed

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-04-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained.

  2. Air quality assessment and control of emission rates.

    PubMed

    Skiba, Yuri N; Parra-Guevara, David; Belitskaya, Davydova Valentina

    2005-12-01

    Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection-diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

  3. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  4. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  5. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  6. Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy.

    PubMed

    Hori, M; Hayano, R S; Fukuta, M; Koyama, T; Nobusue, H; Tanaka, J

    2009-10-01

    We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.

  7. The Leaking-Toilet Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2008-01-01

    Leaking toilets can cost homeowners big dollars--often before it is even realized. Homeowners do not necessarily hear it leaking. It just does, and when the water bill comes due, it can be a most unpleasant surprise. This article presents a classroom challenge to try to develop leak-detection ideas that would be inexpensive and easily added to…

  8. Margins in high temperature leak-before-break assessments

    SciTech Connect

    Budden, P.J.; Hooton, D.G.

    1997-04-01

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  9. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  10. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  11. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1993-12-01

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.

  12. Heart rate, heart rate variability and behaviour of horses during air transport.

    PubMed

    Munsters, C C B M; de Gooijer, J-W; van den Broek, J; van Oldruitenborgh-Oosterbaan, M M Sloet

    2013-01-05

    Heart rate (HR), HR variability (HRV) and behaviour score (BS) of nine horses were evaluated during an eight-hour air transport between The Netherlands and New York. HR and HRV parameters were calculated every five minutes during the air transport. Compared with transit (40±3), mean HRs were higher during loading into the jet stall (67±21, P<0.001), loading into the aircraft (47±6, P=0.011), taxiing (50±8, P=0.001), and during periods of in-flight turbulence (46±7, P=0.017). During the flight, individual horses showed differences in mean HR (P=0.005) and peak HR (P<0.001). By contrast with HR data, HRV data did not differ between stages or horses. BS was highest during turbulence (3.2±0.4). However, behaviour did not always correspond with HR measurements: the least responsive horse had the highest HR. Loading into the jet stall caused the highest increase in HR and was considered the most stressful event. During transit, HR was generally comparable with resting rates. Previous studies have shown that loading and transporting by road caused more elevation in HR than during loading and transporting by air. HRV data were not found to be useful, and caution is needed when interpreting HRV data. Not every horse exhibited stress through visible (evasive) behaviour, and HR measurements may provide an additional tool to assess stress in horses.

  13. Intelligent Leak Detection System

    SciTech Connect

    Mohaghegh, Shahab D.

    2014-10-27

    apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situ CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise

  14. Improved Portable Ultrasonic Leak Detectors

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Strobel, James P.; Luaces, Frank

    1995-01-01

    Improved portable ultrasonic leak detector features three interchangeable ultrasonic-transducer modules, each suited for operation in unique noncontact or contact mode. One module equipped with ultrasound-collecting horn for use in scanning to detect leaks from distance; horn provides directional sensitivity pattern with sensitivity multiplied by factor of about 6 in forward direction. Another module similar, does not include horn; this module used for scanning close to suspected leak, where proximity of leak more than offsets loss of sensitivity occasioned by lack of horn. Third module designed to be pressed against leaking vessel; includes rugged stainless-steel shell. Improved detectors perform significantly better, smaller, more rugged, and greater sensitivity.

  15. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  16. Endoscopic stenting for laparoscopic sleeve gastrectomy leaks

    PubMed Central

    Aydın, Mehmet Timuçin; Alahdab, Yeşim Özen; Aras, Orhan; Karip, Bora; Onur, Ender; İşcan, Yalın; Memişoğlu, Kemal

    2016-01-01

    Objective Laparoscopic sleeve gastrectomy is a widely accepted and effective bariatric surgery method. The rate of leakage at the staple-line has been reported to be between 1.5 and 5%. Aside from the use of percutaneous drainage, re-laparoscopy, or abdominal sepsis control by laparotomy, endoscopic esophagogastric stent placement is increasingly preferred as a treatment method. Because laparoscopic sleeve gastrectomy is a widely used modality in our hospital, we aimed to evaluate the rate of leaks and the results of stent placements in our patients. Material and Methods Between January 1st 2010 and August 31st 2014, laparoscopic sleeve gastrectomy was performed on 236 patients by three surgeons. The demographic information and postoperative discharge summaries were collected and analyzed with the permission of the hospital ethics committee. Information about leak treatment management was also collected. Results Leaks after laparoscopic sleeve gastrectomy in four patients were stented in the first postoperative month. Short (12 cm) Hanora® (M.I.Tech, Gyeonggi-do, Korea) self-expandable coated stents were placed in two patients, and long (24 cm) Hanora® self-expandable coated stents were placed in the other two. The stents were removed after one month in two patients, two and a half months later in one, and five months later in another patient. The leaks were demonstrated to be healed in all patients after stent removal. Endoscopic stent revision was performed in one patient due to migration of the stent and in another for stent breakage. Conclusion The success rate of treatment of leaks after laparoscopic sleeve gastrectomy by stent placement has been variable in the literature. The success in early stent placement has been shown to be related to physician expertise. According to the results of our patients, we suggest that endoscopic stent placement in the early stage after controlling sepsis is an effective method in the management of leaks. PMID:28149125

  17. Aspects of leak detection

    SciTech Connect

    Chivers, T.C.

    1997-04-01

    A requirement of a Leak before Break safety case is that the leakage from the through wall crack be detected prior to any growth leading to unacceptable failure. This paper sets out to review some recent developments in this field. It does not set out to be a comprehensive guide to all of the methods available. The discussion concentrates on acoustic emission and how the techniques can be qualified and deployed on operational plant.

  18. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  19. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  20. Single-Shell Tank Leak Integrity Summary

    SciTech Connect

    Harlow, D. G.; Girardot, C. L.; Venetz, T. J.

    2015-03-26

    This document summarizes and evaluates the information in the Hanford Tri-Party Agreement Interim Milestone M-045-91F Targets completed between 2010 and 2015. 1) Common factors of SST liner failures (M-045-91F-T02), 2) the feasibility of testing for ionic conductivity between the inside and outside of SSTs (M-045-91F-T03, and 3) the causes, locations, and rates of leaks from leaking SSTs (M-045-91F-T04).

  1. Leak test fitting

    DOEpatents

    Pickett, P.T.

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  2. Leak test fitting

    DOEpatents

    Pickett, Patrick T.

    1981-01-01

    A hollow fitting for use in gas spectrometry leak testing of conduit joints is divided into two generally symmetrical halves along the axis of the conduit. A clip may quickly and easily fasten and unfasten the halves around the conduit joint under test. Each end of the fitting is sealable with a yieldable material, such as a piece of foam rubber. An orifice is provided in a wall of the fitting for the insertion or detection of helium during testing. One half of the fitting also may be employed to test joints mounted against a surface.

  3. Variable leak gas source

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  4. 40 CFR 63.1255 - Standards: Equipment leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Standards: Equipment leaks. 63.1255 Section 63.1255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  5. 40 CFR 63.1363 - Standards for equipment leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Standards for equipment leaks. 63.1363 Section 63.1363 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  6. 40 CFR 63.148 - Leak inspection provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Leak inspection provisions. 63.148 Section 63.148 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... part 60, appendix A. (4) Calibration gases shall be as follows: (i) Zero air (less than 10 parts...

  7. SSME propellant path leak detection

    NASA Technical Reports Server (NTRS)

    Crawford, Roger; Shohadaee, Ahmad Ali

    1989-01-01

    The complicated high-pressure cycle of the space shuttle main engine (SSME) propellant path provides many opportunities for external propellant path leaks while the engine is running. This mode of engine failure may be detected and analyzed with sufficient speed to save critical engine test hardware from destruction. The leaks indicate hardware failures which will damage or destroy an engine if undetected; therefore, detection of both cryogenic and hot gas leaks is the objective of this investigation. The primary objective of this phase of the investigation is the experimental validation of techniques for detecting and analyzing propellant path external leaks which have a high probability of occurring on the SSME. The selection of candidate detection methods requires a good analytic model for leak plumes which would develop from external leaks and an understanding of radiation transfer through the leak plume. One advanced propellant path leak detection technique is obtained by using state-of-the-art technology infrared (IR) thermal imaging systems combined with computer, digital image processing, and expert systems for the engine protection. The feasibility of IR leak plume detection is evaluated on subscale simulated laboratory plumes to determine sensitivity, signal to noise, and general suitability for the application.

  8. Peer Ratings: Scoring Strategy Development and Reliability Demonstration on Air Force Basic Trainees. Final Report.

    ERIC Educational Resources Information Center

    Borman, Walter C.; Rosse, Rodney L.

    As an alternative for or adjunct to paper-and-pencil tests for predicting personnel performance, the United States Air Force studied the use of peer ratings as an evaluative tool. Purpose of this study was to evaluate the psychometric characteristics of peer ratings among Air Force basic trainees. Peer ratings were obtained from more than 27,000…

  9. Development of perfluorocarbon tracer technology for underground leak location.

    PubMed

    Hassoun, S; McBride, T; Russell, D A

    2000-10-01

    A method has been developed for the atmospheric sampling and analysis of four perfluorocarbon tracer (PFT) compounds simultaneously at the parts per trillion (ppt) level. PFTs were pre-concentrated using adsorbent tube air sampling. Analysis was achieved by thermal desorption (TD) and gas chromatography (GC) with electron capture detection (ECD). Efficient separation of the PFTs from the other sample constituents was achieved by use of a capillary porous layer open tubular (PLOT) GC column without the need to cool the GC oven to sub-ambient temperatures using liquid coolants (M. de Bortoli and E. Pecchio, J. High Resolut. Chromatogr., 1985, 8, 422) or for a catalytic destruction step to remove interferents (T. W. D'Ottavio, R. W. Goodrich and R. N. Dietz, Environ. Sci. Technol., 1986, 20, 100). Results from test field trials with two volatile PFTs that were buried to simulate an underground leaking cable were successful. The PFTs were detected above ground level to pinpoint the leak position. The highest tracer concentrations were detected within 1 m of the simulated leak positions 2 days after tracer burial. The developed technology was applied to an oil leaking high voltage electricity cable. One PFT was added to the cable oil which enabled detection of the oil leak to within 3 m. The reported method has many advantages over currently used leak detection methods and could, in the future, be applied to the detection of underground leaks in a variety of cables and pipes.

  10. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  11. Quantifying Urban Natural Gas Leaks from Street-level Methane Mapping: Measurements and Uncertainty

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Ham, J. M.; Griebenow, C.; Schumacher, R. S.; Salo, J.

    2013-12-01

    Leaks from the natural gas pipeline system are a significant source of anthropogenic methane in urban settings. Detecting and repairing these leaks will reduce the energy and carbon footprints of our cities. Gas leaks can be detected from spikes in street-level methane concentrations measured by analyzers deployed on vehicles. While a spike in methane concentration indicates a leak, an algorithm (e.g., inverse model) must be used to estimate the size of the leak (i.e., flux) from concentration data and supporting meteorological information. Unfortunately, this drive-by approach to leak quantification is confounded by the complexity of urban roughness, changing weather conditions, and other incidental factors (e.g., traffic, vehicle speed, etc.). Furthermore, the vehicle might only pass through the plume one to three times during routine mapping. The objective of this study was to conduct controlled release experiments to better quantify the relationship between mobile methane concentration measurements and the size and location of the emission source (e.g., pipeline leakage) in an urban environment. A portable system was developed that could release methane at known rates between 10 and 40 LPM while maintaining concentrations below the lower explosive limit. A mapping vehicle was configured with fast response methane analyzers, GPS, and meteorological instruments. Portable air-sampling tripods were fabricated that could be deployed at defined distances downwind from the release point and automatically-triggered to collect grab samples. The experimental protocol was as follows: (1) identify an appropriate release point within a city, (2) release methane at a known rate, (3) measure downwind street-level concentrations with the vehicle by making multiple passes through the plume, and (4) collect supporting concentration and meteorological data with the static tripod samplers deployed in the plume. Controlled release studies were performed at multiple locations and

  12. Engineering study of tank leaks related to hydraulic retrieval of sludge from tank 241-C-106. Revision 1

    SciTech Connect

    Lowe, S.S.; Carlos, W.C.; Irwin, J.J.; Khaleel, R.; Kline, N.W.; Ludowise, J.D.; Marusich, R.M.; Rittman, P.D.

    1993-06-09

    This study evaluates hydraulic retrieval (sluicing) of the waste in single-shell tank 241-C-106 with respect to the likelihood of tank leaks, gross volumes of potential leaks, and their consequences. A description of hydraulic retrieval is developed to establish a baseline for the study. Leak models are developed based on postulated leak mechanisms to estimate the amount of waste that could potentially leak while sluicing. Transport models describe the movement of the waste constituents in the surrounding soil and groundwater after a leak occurs. Environmental impact and risk associated with tank leaks are evaluated. Transport of leaked material to the groundwater is found to be dependent on the rate of recharge of moisture in the soil for moderate-sized leaks. Providing a cover over the tank and surrounding area would eliminate the recharge. The bulk of any leaked material would remain in the vicinity of the tank for remedial action.

  13. Management of CSF Leaks Following Vestibular Schwannoma Surgery

    PubMed Central

    Mangus, Brannon D.; Rivas, Alejandro; Yoo, Mi Jin; Alvarez, JoAnn; Wanna, George B.; Haynes, David S.; Bennett, Marc L.

    2011-01-01

    Objective To evaluate the incidence and treatment of CSF leaks after resection of vestibular schwannomas and to propose a treatment algorithm for their management. Study Design Retrospective chart review. Setting Tertiary referral center. Patients Review of 1,922 subjects who underwent resection of vestibular schwannomas from 1970 through 2010. Intervention Surgical resection of vestibular schwannoma. Main Outcome Measures Patient demographics, surgical approach used, CSF leak incidence, meningitis, treatment and success in the management of CSF leaks. Results Postoperative CSF leaks were observed in 12.9% of our patients. There was no significant difference between the type of approach and the presence of CSF leak with translabyrinthine, suboccipital and middle fossa CSF leak rates of 12%, 12%, and 13% respectively (p=0.07). Patients presented with a wound leak or rhinorrhea almost equally. Ultimately, 92% of patients with rhinorrhea underwent surgical intervention. The probability of a patient with rhinorrhea requiring a second intervention was higher when the initial intervention was conservative rather than surgical. However, the probability of a patient with a wound leak requiring a second intervention was essentially the same when initially treated conservatively or surgically. Conclusion Our data suggests that there is no difference in CSF leak rates between the different surgical approaches. The appropriate treatment strategy is dependent on the presentation of the CSF. While conservative treatment is effective for managing wound leaks, it is less effective in managing patients with rhinorrhea. Therefore, surgical treatments should play an early role in the treatment algorithm of patients with CSF rhinorrhea. PMID:21970847

  14. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  15. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  16. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  17. Modeling the Progression of Epithelial Leak Caused by Overdistension

    PubMed Central

    Hamlington, Katharine L.; Ma, Baoshun; Smith, Bradford J.; Bates, Jason H. T.

    2016-01-01

    Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung. PMID:26951764

  18. CSNI specialist meeting on leak-before-break in nuclear reactor piping: proceedings

    SciTech Connect

    Not Available

    1984-08-01

    On September 1 and 2, 1983, the CSNI subcommittee on primary system integrity held a special meeting in Monterey, California, on the subject of leak-before-break in nuclear reactor piping systems. The purpose of the meeting was to provide an international forum for the exchange of ideas, positions, and research results; to identify areas requiring additional research and development; and to determine the general attitude toward acceptance of the leak-before-break concept. The importance of the leak-before-break issue was evidenced by excellent attendance at the meeting and through active participation by the meeting attendees. Approximately 125 people representing fifteen different nations attended the meeting. The meeting was divided into four technical sessions addressing the following areas: Application of Piping Fracture Mechanics to Leak-Before Break, Leak Rate and Leak Detection, Leak-Before-Break Studies, Methods and Results, Current and Proposed Positions on Leak-Before-Break.

  19. Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks.

    PubMed

    von Fischer, Joseph C; Cooley, Daniel; Chamberlain, Sam; Gaylord, Adam; Griebenow, Claire J; Hamburg, Steven P; Salo, Jessica; Schumacher, Russ; Theobald, David; Ham, Jay

    2017-04-04

    Information about the location and magnitudes of natural gas (NG) leaks from urban distribution pipelines is important for minimizing greenhouse gas emissions and optimizing investment in pipeline management. To enable rapid collection of such data, we developed a relatively simple method using high-precision methane analyzers in Google Street View cars. Our data indicate that this automated leak survey system can document patterns in leak location and magnitude within and among cities, even without wind data. We found that urban areas with prevalent corrosion-prone distribution lines (Boston, MA, Staten Island, NY, and Syracuse, NY), leaked approximately 25-fold more methane than cities with more modern pipeline materials (Burlington, VT, and Indianapolis, IN). Although this mobile monitoring method produces conservative estimates of leak rates and leak counts, it can still help prioritize both leak repairs and replacement of leak-prone sections of distribution lines, thus minimizing methane emissions over short and long terms.

  20. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  1. Complications of rectal anastomoses with end-to-end anastomosis (EEA) stapling instrument. Clinical and radiological leak rates and some practical hints.

    PubMed Central

    Dorricott, N. J.; Baddeley, R. M.; Keighley, M. R.; Lee, J.; Oates, G. D.; Alexander-Williams, J.

    1982-01-01

    The complications and results of rectal anastomoses carried out with the end-to-end anastomosis (EEA) stapling instrument on 50 patients by 5 consultant surgeons are recorded. There was a clinical leakage rate of 6% and a radiological leakage rate of 20% assessed by water-soluble contrast enema. The technique has advantages compared with hand-suture by allowing low anastomoses and preservation of sphincters and is accompanied by an acceptably low leakage rate. Despite the cost of disposable cartridges these advantages make the technique economical because of the avoidance of colostomies and reduction in hospital stay. Images FIG. 1 FIG. 2 PMID:7044253

  2. An ultrasonic array sensor for spacecraft leak direction finding.

    PubMed

    Holland, Stephen D; Roberts, Ron; Chimenti, D E; Song, Jun Ho

    2006-12-01

    We have developed an ultrasonic array sensor useable for locating air leaks in manned spacecraft and have found that this sensor locates leaks in a 1-m(2) plate to within 2 cm. The sensor consists of a 63-element multiplexed array plus a reference element, all constructed from a single PZT disc and a printed circuit board. Cross-correlations of signals from the array elements with signals from the single reference element provide a measurement of the leak noise passing through the spacecraft skin under the array. A spatial Fourier transform reveals the dominant direction of propagation. Triangulation from multiple sensor locations can be used to find the source of the leak.

  3. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  4. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  5. Environmental policy -- A leaking drum?

    SciTech Connect

    Bishop, J.

    1995-07-01

    Twenty years ago, the US had virtually no overall environmental policy. Since then, one has evolved as a result of accumulated legislation, much of which was crafted in reaction to specific events, typically real or potential disasters. The familiar names of Love Canal, Times Beach, Bhopal and others are the symbolic anchor points of that evolution, which yielded Superfund, the Resource Conservation and Recovery Act, the Superfund Amendments and Reauthorization Act, and other environmental statutes. The laws in each case were developed in response to particular environmental and health issues--clean water for drinking and recreation, unpolluted air, safe production of chemicals and chemical-based products. The result was a growing body of environmental legislation that eventually became an accumulate of requirements lacking internal consistency or coherence. Because policymaking followed, rather than guided, legislative actions, the policy itself became inconsistent and sometimes illogical. Like a drum that gradually and indiscriminately is filled with a mixture of mutually reactive chemicals, environmental policy increasingly became a volatile source of concern for those industries in whose midst it had been placed. Lately, there is growing consensus that the drum not only has been overfilled, it also is leaking.

  6. Spatiotemporally‐Resolved Air Exchange Rate as a Modifier of Acute Air Pollution‐Related Morbidity in AtlantaMorbidity in Atlanta

    EPA Science Inventory

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site c...

  7. Cerebrospinal fluid leaks following septoplasty.

    PubMed

    Venkatesan, Naren N; Mattox, Douglas E; Del Gaudio, John M

    2014-12-01

    We conducted a retrospective review to identify the characteristics of cerebrospinal fluid (CSF) leak in patients who had undergone septoplasty and in selected patients who had experienced a spontaneous CSF leak. CSF leak is a known but infrequently reported complication of septoplasty; to the best of our knowledge, only 4 cases have been previously published in the literature. A review of our institution's database revealed 3 cases of postseptoplasty CSF leak. We reviewed all the available data to look for any commonalities among these 7 cases. In addition, we reviewed 6 cases of spontaneous CSF leak selected from our database for the same purpose. For all patients, we noted the side of the cribriform plate defect, its size and, for the postseptoplasty cases, the interval between the septoplasty and the leak repair. Overall, we found that leaks were much more common on the right side than on the left. The sizes of the leaks in the 2 postseptoplasty groups were comparable (mean: 14.0 × 6.4 mm). The interval between septoplasty and leak repair ranged from 2.5 to 20 years in our cases and from 3 days to 22 weeks in the previously published cases. All 3 of the postseptoplasty patients in our database presented with clear rhinorrhea. Two of the 3 patients had meningitis; 1 of these 2 also had pneumocephalus. Of the 6 cases of spontaneous CSF leaks, 4 occurred on the right and 2 on the left; the average size of the defect was 5.8 mm in the greatest dimension. The finding that cribriform plate defects after septoplasty were typically right-sided likely reflects the prevalence of left-sided surgical approaches. Also, the fact that the defects were larger in the postseptoplasty cases than in the spontaneous cases is likely attributable to the torque effect toward the thin skull base that occurs when the perpendicular plate is twisted during septoplasty.

  8. Effects of energy-efficient ventilation rates on indoor air quality at an Ohio elementary school

    NASA Astrophysics Data System (ADS)

    Berk, J. V.; Young, R.; Hollowell, C. D.; Turiel, I.; Pepper, J.

    1980-04-01

    A mobile laboratory was used to monitor air outdoors and at three indoor sites (two classrooms and a large multipurpose room); tests were made at three different ventilation rates. The parameters measured were outside air flow rates, odor perception, microbial burden, particulate mass, total aldehydes, carbon dioxide, ozone, and nitrogen oxides. The results of these measurements are given and compared with the existing outdoor air quality standards. Carbon dioxide concentrations increased as the ventilation rate decreased, but still did not exceed current standards. Odor perceptibility increased slightly at the lowest ventilation rate. Other pollutants showed very low concentrations, which did not change with reductions in ventilation rate.

  9. Development of a fiber optic chemical dosimeter network for use in the remote detection of hydrazine propellant vapor leaks at Cape Canaveral Air Force Station

    NASA Astrophysics Data System (ADS)

    Klimcak, Charles M.; Radhakrishnan, Gouri; Delcamp, Spencer B.; Chan, Y.; Jaduszliwer, B.; Moss, Steven C.

    1994-10-01

    Fiber optic chemical dosimeters are being developed for use in the remote detection of toxic rocket propellant vapors, (hydrazine and its derivatives, and nitrogen tetroxide) that are used at Air Force and civilian rocket launch sites. The dosimeters employ colorimetric indicators that react selectively and irreversibly with the propellant vapors to yield chemical compounds that absorb laser light launched into a fiber optic network. The dosimeters are fabricated by dispersing the reagent within either a porous cladding or a porous distal end coating, that is prepared by a low temperature sol-gel technique. Remote field- scale detection of hydrazine vapor in a few hundreds of ppb-min integrated dose regime has been demonstrated with a network that is approximately equals 1 kilometer in length and the use of a low power (10 mW) diode laser. We have also assembled a computer model of a multimode fiber optic dosimeter network for prediction of the operational capabilities of a multiplexed system containing 100 dosimeters. The model was encoded in both spreadsheet and BASIC formats. It was used to evaluate the performance of a field-scale, remote fiber optic detection system incorporating discrete chemical vapor dosimeters in serial, parallel, or hybrid serial/parallel topologies. Additionally, we have begun exploratory work utilizing chemical reagents that react reversibly with hydrazine vapor to develop hydrazine vapor concentration sensors that could be deployed in a similar fashion on a remote fiber optic network to detect hydrazine vapor in the ppb regime.

  10. Expandable coating cocoon leak detection system

    NASA Technical Reports Server (NTRS)

    Hauser, R. L.; Kochansky, M. C.

    1972-01-01

    Development of system and materials for detecting leaks in cocoon protective coatings are discussed. Method of applying materials for leak determination is presented. Pressurization of system following application of materials will cause formation of bubble if leak exists.

  11. A Leak Monitor for Industry

    NASA Technical Reports Server (NTRS)

    1996-01-01

    GenCorp Aerojet Industrial Products, Lewis Research Center, Marshall Space Flight Center, and Case Western Reserve University developed a gas leak detection system, originally for use with the Space Shuttle propulsion system and reusable launch vehicles. The Model HG200 Automated Gas Leak Detection System has miniaturized sensors that can identify extremely low concentrations of hydrogen without requiring oxygen. A microprocessor-based hardware/software system monitors the sensors and displays the source and magnitude of hydrogen leaks in real time. The system detects trace hydrogen around pipes, connectors, flanges and pressure tanks, and has been used by Ford Motor Company in the production of a natural gas-powered car.

  12. Natural gas pipeline leaks across Washington, DC.

    PubMed

    Jackson, Robert B; Down, Adrian; Phillips, Nathan G; Ackley, Robert C; Cook, Charles W; Plata, Desiree L; Zhao, Kaiguang

    2014-01-01

    Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions.

  13. Management of low colorectal anastomotic leak: Preserving the anastomosis.

    PubMed

    Blumetti, Jennifer; Abcarian, Herand

    2015-12-27

    Anastomotic leak continues to be a dreaded complication after colorectal surgery, especially in the low colorectal or coloanal anastomosis. However, there has been no consensus on the management of the low colorectal anastomotic leak. Currently operative procedures are reserved for patients with frank purulent or feculent peritonitis and unstable vital signs, and vary from simple fecal diversion with drainage to resection of the anastomosis and closure of the rectal stump with end colostomy (Hartmann's procedure). However, if the patient is stable, and the leak is identified days or even weeks postoperatively, less aggressive therapeutic measures may result in healing of the leak and salvage of the anastomosis. Advances in diagnosis and treatment of pelvic collections with percutaneous treatments, and newer methods of endoscopic therapies for the acutely leaking anastomosis, such as use of the endosponge, stents or clips, have greatly reduced the need for surgical intervention in selected cases. Diverting ileostomy, if not already in place, may be considered to reduce fecal contamination. For subclinical leaks or those that persist after the initial surgery, endoluminal approaches such as injection of fibrin sealant, use of endoscopic clips, or transanal closure of the very low anastomosis may be utilized. These newer techniques have variable success rates and must be individualized to the patient, with the goal of treatment being restoration of gastrointestinal continuity and healing of the anastomosis. A review of the treatment of low colorectal anastomotic leaks is presented.

  14. Management of low colorectal anastomotic leak: Preserving the anastomosis

    PubMed Central

    Blumetti, Jennifer; Abcarian, Herand

    2015-01-01

    Anastomotic leak continues to be a dreaded complication after colorectal surgery, especially in the low colorectal or coloanal anastomosis. However, there has been no consensus on the management of the low colorectal anastomotic leak. Currently operative procedures are reserved for patients with frank purulent or feculent peritonitis and unstable vital signs, and vary from simple fecal diversion with drainage to resection of the anastomosis and closure of the rectal stump with end colostomy (Hartmann’s procedure). However, if the patient is stable, and the leak is identified days or even weeks postoperatively, less aggressive therapeutic measures may result in healing of the leak and salvage of the anastomosis. Advances in diagnosis and treatment of pelvic collections with percutaneous treatments, and newer methods of endoscopic therapies for the acutely leaking anastomosis, such as use of the endosponge, stents or clips, have greatly reduced the need for surgical intervention in selected cases. Diverting ileostomy, if not already in place, may be considered to reduce fecal contamination. For subclinical leaks or those that persist after the initial surgery, endoluminal approaches such as injection of fibrin sealant, use of endoscopic clips, or transanal closure of the very low anastomosis may be utilized. These newer techniques have variable success rates and must be individualized to the patient, with the goal of treatment being restoration of gastrointestinal continuity and healing of the anastomosis. A review of the treatment of low colorectal anastomotic leaks is presented. PMID:26730283

  15. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  16. Apparatus and method for detecting leaks in piping

    DOEpatents

    Trapp, Donald J.

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  17. Leak test fixture and method for using same

    DOEpatents

    Hawk, Lawrence S.

    1976-01-01

    A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.

  18. Leak detection with expandable coatings

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Developed and evaluated is a system for leak detection that can be easily applied over separable connectors and that expands into a bubble or balloon if a leak is present. This objective is accomplished by using thin films of Parafilm tape wrapped over connectors, which are then overcoated with a special formulation. The low yield strength and the high elongation of the envelope permit bubble formation if leakage occurs. This system is appropriate for welds and other hardware besides separable connectors. The practical limit of this system appears to be for leaks exceeding 0.000001 cc/sec. If this envelope is used to trap gases for mass spectrometer inspection, leaks in the range of ten to the minus 8th power cc/sec. may be detectable.

  19. Soil Surface Leak Detection From Carbon Storage Sites Using ∆(CO2:O2) Measurements

    NASA Astrophysics Data System (ADS)

    Alam, M. M.; Norman, A. L.; Layzell, D. B.

    2015-12-01

    The early detection and remediation of CO2 leaks from Carbon Capture and Storage (CCS) sites is essential for the safety and public support of the technology. A model that integrates gas diffusion, mass flow and biological processes in soils was developed and used to predict the ∆CO2 and ∆O2 concentration differential between the soil surface and the bulk atmosphere under a wide range of environmental conditions that include temperature, soil gas and water content, soil respiratory quotient and rate of O2 uptake, soil porosity and CO2 leakage rate. The results predicted that measurement of ∆(CO2:O2) measurements at the soil surface relative to air should be able to detect a CCS leak as low as 2 µmol/m2/sec. To test this hypothesis, a gas analysis system was designed and constructed. It should allow a series of experiments under controlled conditions to test all aspects of the model. It is hoped that the results from this work will ultimately lead to the development of a new instrument and protocol for the early detection of CO2 leaks from a geological storage sites.

  20. Leak test adapter for containers

    DOEpatents

    Hallett, Brian H.; Hartley, Michael S.

    1996-01-01

    An adapter is provided for facilitating the charging of containers and leak testing penetration areas. The adapter comprises an adapter body and stem which are secured to the container's penetration areas. The container is then pressurized with a tracer gas. Manipulating the adapter stem installs a penetration plug allowing the adapter to be removed and the penetration to be leak tested with a mass spectrometer. Additionally, a method is provided for using the adapter.

  1. A HYBRID THERMAL VIDEO AND FTTR SPECTROMETER FOR RAPIDLY LOCATING AND CHARACTERIZING GAS LEAKS

    EPA Science Inventory

    Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. An efficient, accurate and cost-effecti...

  2. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  3. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  4. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  5. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  6. Modeling exposure close to air pollution sources in naturally ventilated residences: association of turbulent diffusion coefficient with air change rate.

    PubMed

    Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M

    2011-05-01

    For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.

  7. 40 CFR 1065.345 - Vacuum-side leak verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....345 Section 1065.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065...) Measurement principles. A leak may be detected either by measuring a small amount of flow when there should...

  8. Temporal Variations of Air Dose Rates in East Fukushima During Japanese Fiscal Years 2012 and 2013.

    PubMed

    Akimoto, Kazuhiro

    2017-01-01

    Temporal variations of ambient air dose rates in eastern Fukushima prefecture during Japanese fiscal years 2012 and 2013 are analyzed. The average overall variation rate of air dose rates in east Fukushima during the examined period is found to be 0.49 (51% down) compared to the theoretically predicted value 0.65 (35% down) based on physical decay of radioactive cesium nuclides. On average, local dose rates declined almost linearly for the relatively short period. Temporal characteristics of air dose rates may be classified into variation rates, peaks, spikes, and oscillations. During the examined period, a typical dose-rate curve formed a long-term peak in summer that lasted one through a few months as well as a long-term spike in winter that lasted likewise. Otherwise, occasional short-term peaks and short-term spikes, in addition to long-term oscillations, were observed. Air dose rates may be effectively modulated at short timescales mainly by precipitation. Moreover, it is likely that winds may oscillate air dose rates due to resuspension of radio-dusts.

  9. Correlation of mutagenic assessment of Houston air particulate extracts in relation to lung cancer mortality rates

    SciTech Connect

    Walker, R.D.; Connor, T.H.; MacDonald, E.J.; Trieff, N.M.; Legator, M.S.; MacKenzie, K.W. Jr.; Dobbins, J.G.

    1982-08-01

    Air particulate extracts from a series of solvents were tested in the Ames mutagen detection system and were found to be mutagenic in varying degrees as a function of the particulate collection site in Houston, Texas. The mutagenicity level at seven sites was compared with age-adjusted mortality rates in the same areas. Significant correlation was found with the lung cancer mortality rates but not with mortality rates for other causes. These findings support the hypothesis of a contribution of urban air particulate to the lung cancer rates. Furthermore, these findings suggest that an index of the mutagenicity of air particulate is a more powerful measure of the human health hazard of air pollution than the traditional indices of particulate concentration.

  10. Refinement of the Air Force Systems Command Production Rate Model

    DTIC Science & Technology

    1989-09-01

    the recommended modified formulations. The relationship between production rate and production ratio has a definite influence on the model’s ability to...1984 7 36 21.954 370.00 1985 8 48 21.017 412.00 A- 3 Table A.2.8 F-15E Cost/Quantity Data Fiscal Year Lot Quntit Recurring Unit Cost LPP 1986 1 60

  11. Spatiotemporally-Resolved Air Exchange Rate as a Modifier of Acute Air Pollution-Related Morbidity

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  12. Variations of the ambient dose equivalent rate in the ground level air.

    PubMed

    Lebedyte, M; Butkus, D; Morkŭnas, G

    2003-01-01

    The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.

  13. Experimental investigation of the influence of different leaking gases on the heat transfer in a HVMLI cryogenic tank after SCLIV

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Wang, R. S.

    2012-07-01

    This paper presented an experimental investigation of the influence of different leaking gases on the heat transfer process in a high-vacuum-multilayer-insulation (HVMLI) cryogenic tank after sudden catastrophic loss of insulation vacuum (SCLIV). The experiments were conducted with the breakdown of the insulation vacuum with nitrogen, air, helium, oxygen, argon, carbon dioxide and the gas mixture of argon and carbon dioxide. The maximum value of the venting rate and heat flux could be ordered as following: CO2 > O2 > Ar > the gas mixture > He > Air > N2, while the average value of the venting rate and heat flux could be ordered as following: O2 > Ar > He > the gas mixture > CO2 > Air > N2. The temperature distribution indicated that phase change heat transfer happened in the insulation jacket after the five different gases including air, argon, the gas mixture of argon and carbon dioxide, oxygen and carbon dioxide were introduced into the insulation jacket.

  14. Mitigated Transfer Line Leaks that Result in Surface Pools and Spray Leaks into Pits

    SciTech Connect

    HEY, B.E.

    1999-12-07

    This analysis provides radiological and toxicological consequence calculations for postulated mitigated leaks during transfers of six waste compositions. Leaks in Cleanout Boxes equipped with supplemental covers and leaks in pits are analyzed.

  15. Development of cost effective fenceline monitoring methods to support advanced leak detection and repair strategies

    EPA Science Inventory

    Improved mitigation of fugitive emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and greenhouse gas (GHG) emissions is an important emerging topic in many industrial sectors. Efficacious leak detection and repair (LDAR) programs of the future yiel...

  16. Leak testing of IR sensor dewars to 1E-15 std He/s

    NASA Astrophysics Data System (ADS)

    Sasaki, Y. Tito; Bergquist, Lyle E.

    1990-09-01

    The results of tests for leakage performed on ten IR sensor dewars are presented, and the design principles of the new testing devices are discussed. The ultrasensitive leak detector used for testing is compared to conventional detectors. The superfine leak calibrator consisting of a tracer gas supply, an aliquot volume, a pressure transducer, temperature gage, and valves was used to measure leak rates in the E-4 to E-12 std cc He/s range. The testing method is explained, including the gases used, the quadrupole mass analyzer, the reference leak calibration, and the temperature coefficient of the reference leak. The test results of the IR sensor dewars are shown: seven showed leak rates in the E-15 std cc He/s range, two had no detectable leaks, and one had a mid-range E-14 leak. The shelf lives of the dewars are calculated based on the results. The vacuum integrity of small IR sensor dewars can be reliably tested to the range of 1E-15 std cc He/s using the ultrasensitive leak detector and the superfine leak calibrator.

  17. Non-Rated Air Force Line Officer Attrition Rates Using Survival Analysis

    DTIC Science & Technology

    2015-03-26

    required and expected . Additionally, the experience they gather throughout their careers is invaluable to the success of the Air Force and cannot be...The service commitments and career paths tend to be relatively equal within this group, so the attrition behavior was expected to be approximately the... females , given that they are in the same yeargroup, career field, etc. Although the actual reason cannot be determined based on this data, one can attribute

  18. [On the question of occurrence and the problem of hygiene rating of fungal air pollution of the environment of residential and public buildings].

    PubMed

    Gubernskiĭ, Iu D; Beliaeva, N N; Kalinina, N V; Mel'nikova, A I; Chuprina, O V

    2013-01-01

    Comprehensive sanitary examinations of fungal pollution of the environment of residential and public buildings were performed. There is established the occurrence of sensitization of the population associated with the fungal contamination of the wallings of buildings and presence of viable mold spores in the indoor air environment. Major factors determining the degree of fungal contamination of indoor environments: increasing humidity of indoor air due to leaks and bays, the area of enclosure structures and the temperature factor have been identified.

  19. Hazardous Gas Leak Analysis in the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1991-01-01

    Helium tests of the main propulsion system in the Space Shuttle and on hydrogen leaks are examined. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers (MS) to monitor the shuttle environment for leaks. The mass spectrometers are fed by long tubes to sample gas from the payload bay, mid-body, aft engine compartment, and external tank. The purpose is to improve the HGDS, especially in its potential for locating cryogen leaks. Pre-existing leak data was analyzed for transient information to determine if the leak location could be pinpointed from test data. A rapid response leak detection experiment was designed, built, and tested. Large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MS was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MS data. One conclusion is that the backup HGDS sampling frequency should be increased above the present rate of 1 sample per second.

  20. Mapping urban pipeline leaks: methane leaks across Boston.

    PubMed

    Phillips, Nathan G; Ackley, Robert; Crosson, Eric R; Down, Adrian; Hutyra, Lucy R; Brondfield, Max; Karr, Jonathan D; Zhao, Kaiguang; Jackson, Robert B

    2013-02-01

    Natural gas is the largest source of anthropogenic emissions of methane (CH(4)) in the United States. To assess pipeline emissions across a major city, we mapped CH(4) leaks across all 785 road miles in the city of Boston using a cavity-ring-down mobile CH(4) analyzer. We identified 3356 CH(4) leaks with concentrations exceeding up to 15 times the global background level. Separately, we measured δ(13)CH(4) isotopic signatures from a subset of these leaks. The δ(13)CH(4) signatures (mean = -42.8‰ ± 1.3‰ s.e.; n = 32) strongly indicate a fossil fuel source rather than a biogenic source for most of the leaks; natural gas sampled across the city had average δ(13)CH(4) values of -36.8‰ (± 0.7‰ s.e., n = 10), whereas CH(4) collected from landfill sites, wetlands, and sewer systems had δ(13)CH(4) signatures ~20‰ lighter (μ = -57.8‰, ± 1.6‰ s.e., n = 8). Repairing leaky natural gas distribution systems will reduce greenhouse gas emissions, increase consumer health and safety, and save money.

  1. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  2. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  3. K{sub Air} and H*(10) Rate Constants for Gamma Emitters

    SciTech Connect

    Vega-Carrillo, H. R.; Juarez, R. Rodriguez; Manzanares-Acuna, E.; Davila, V. M. Hernandez; Mercado, G. A.

    2008-08-11

    Monte Carlo calculations have been carried out to estimate the Air Kerma rate constant and the Ambient dose equivalent rate constant for 139 monoenergetic photon sources. The factor that relates activity to air kerma rate or to ambient dose equivalent is useful to estimate the dose from a photon emitter source. Here 139 point-like and monoenergetic gamma-ray sources, ranging from 0.01 to 10 MeV were utilized in Monte Carlo calculations to estimate both gamma factors. These factors were utilized to calculate the air kerma-and-ambient dose equivalent rate constants for {sup 137}Cs-{sup 137m}Ba, {sup 198}Au, {sup 60}Co, and {sup 131}I, whose values were compared with those published in the literature.

  4. The ISS 2B PVTCS Ammonia Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  5. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  6. Ryanodine receptors as leak channels.

    PubMed

    Guerrero-Hernández, Agustín; Ávila, Guillermo; Rueda, Angélica

    2014-09-15

    Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.

  7. Pipe Leak Detection Technology Development

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  8. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  9. LOCATING LEAKS WITH ACOUSTIC TECHNOLOGY

    EPA Science Inventory

    Many water distribution systems in this country are almost 100 years old. About 26 percent of piping in these systems is made of unlined cast iron or steel and is in poor condition. Many methods that locate leaks in these pipes are time-consuming, costly, disruptive to operations...

  10. Cooling Rates of Humans in Air and in Water: An Experiment

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2012-12-01

    In a previous article I analyzed in detail the physical factors resulting in greater cooling rates of objects in still water than in still air, emphasizing cooling of the human body. By cooling rate I mean the rate of decrease of core temperature uncompensated by metabolism. I concluded that the "correct ratio for humans is closer to 2 than to 10." To support this assertion I subsequently did experiments, which I report following a digression on hypothermia.

  11. Stochastic Consequence Analysis for Waste Leaks

    SciTech Connect

    HEY, B.E.

    2000-05-31

    This analysis evaluates the radiological consequences of potential Hanford Tank Farm waste transfer leaks. These include ex-tank leaks into structures, underneath the soil, and exposed to the atmosphere. It also includes potential misroutes, tank overflow

  12. Rapid leak detection with liquid crystals

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.

    1978-01-01

    Small leaks in vacuum lines are detected by applying liquid-crystal coating, warming suspected area, and observing color change due to differential cooling by leak jet. Technique is used on inside or outside walls of vacuum-jacketed lines.

  13. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  14. Airing It Out.

    ERIC Educational Resources Information Center

    Fitzemeyer, Ted

    2000-01-01

    Discusses how proper maintenance can help schools eliminate sources contributing to poor air quality. Maintaining heating and air conditioning units, investigating bacterial breeding grounds, fixing leaking boilers, and adhering to ventilation codes and standards are discussed. (GR)

  15. Standard Leak Calibration Facility software system

    SciTech Connect

    McClain, S.K.

    1989-06-01

    A Standard Leak Calibration Facility Software System has been developed and implemented for controlling, and running a standard Leak Calibration Facility. Primary capabilities provided by the software system include computer control of the vacuum system, automatic leak calibration, and data acquisition, manipulation, and storage.

  16. Air pollutant emission rates for sources at the Deaf Smith County repository site

    SciTech Connect

    Not Available

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs.

  17. Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.

  18. EFFECT OF AIR-POLLUTION CONTROL ON DEATH RATES IN DUBLIN, IRELAND: AN INTERVENTION STUDY. (R827353C006)

    EPA Science Inventory

    Background Particulate air pollution episodes have been associated with increased daily death. However, there is little direct evidence that diminished particulate air pollution concentrations would lead to reductions in death rates. We assessed the effect of ...

  19. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  20. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  1. Contribution of climate and air pollution to variation in coronary heart disease mortality rates in England.

    PubMed

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999-2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment--temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England.

  2. Contribution of Climate and Air Pollution to Variation in Coronary Heart Disease Mortality Rates in England

    PubMed Central

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999–2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment - temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England. PMID:22427884

  3. Hydrogen Leak Detection Sensor Database

    NASA Technical Reports Server (NTRS)

    Baker, Barton D.

    2010-01-01

    This slide presentation reviews the characteristics of the Hydrogen Sensor database. The database is the result of NASA's continuing interest in and improvement of its ability to detect and assess gas leaks in space applications. The database specifics and a snapshot of an entry in the database are reviewed. Attempts were made to determine the applicability of each of the 65 sensors for ground and/or vehicle use.

  4. MCO combustible gas management leak test acceptance criteria

    SciTech Connect

    SHERRELL, D.L.

    1999-05-11

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

  5. Spacecraft Leak Location Using Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Reusser, R. S.; Chimenti, D. E.; Holland, S. D.; Roberts, R. A.

    2010-02-01

    Guided ultrasonic waves, generated by air escaping through a small hole, have been measured with an 8×8 piezoelectric phased-array detector. Rapid location of air leaks in a spacecraft skin, caused by high-speed collisions with small objects, is essential for astronaut survival. Cross correlation of all 64 elements, one pair at a time, on a diced PZT disc combined with synthetic aperture analysis determines the dominant direction of wave propagation. The leak location is triangulated by combining data from two or more detector. To optimize the frequency band selection for the most robust direction finding, noise-field measurements of a plate with integral stiffeners have been performed using laser Doppler velocimetry. We compare optical and acoustic measurements to analyze the influence of the PZT array detector and its mechanical coupling to the plate.

  6. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  7. THE EFFECT OF OPENING WINDOWS ON AIR CHANGE RATES IN TWO HOMES

    EPA Science Inventory

    Over 300 air change rate experiments were completed in two occupied residences: a two-story detached house in Redwood City, CA and a three-story townhouse in Reston, VA. A continuous monitor was used to measure the decay of sulfur hexafluoride tracer gas over periods of 1 to 1...

  8. Comprehensive quantitative analysis on privacy leak behavior.

    PubMed

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects.

  9. Comprehensive Quantitative Analysis on Privacy Leak Behavior

    PubMed Central

    Fan, Lejun; Wang, Yuanzhuo; Jin, Xiaolong; Li, Jingyuan; Cheng, Xueqi; Jin, Shuyuan

    2013-01-01

    Privacy information is prone to be leaked by illegal software providers with various motivations. Privacy leak behavior has thus become an important research issue of cyber security. However, existing approaches can only qualitatively analyze privacy leak behavior of software applications. No quantitative approach, to the best of our knowledge, has been developed in the open literature. To fill this gap, in this paper we propose for the first time four quantitative metrics, namely, possibility, severity, crypticity, and manipulability, for privacy leak behavior analysis based on Privacy Petri Net (PPN). In order to compare the privacy leak behavior among different software, we further propose a comprehensive metric, namely, overall leak degree, based on these four metrics. Finally, we validate the effectiveness of the proposed approach using real-world software applications. The experimental results demonstrate that our approach can quantitatively analyze the privacy leak behaviors of various software types and reveal their characteristics from different aspects. PMID:24066046

  10. Prediction of Gas Leak Tightness of Superplastically Formed Products

    SciTech Connect

    Snippe, Corijn H. C.; Meinders, T.

    2010-06-15

    In some applications, in this case an aluminium box in a subatomic particle detector containing highly sensitive detecting devices, it is important that a formed sheet should show no gas leak from one side to the other. In order to prevent a trial-and-error procedure to make this leak tight box, a method is set up to predict if a formed sheet conforms to the maximum leak constraint. The technique of superplastic forming (SPF) is used in order to attain very high plastic strains before failure. Since only a few of these boxes are needed, this makes, this generally slow, process an attractive production method. To predict the gas leak of a superplastically formed aluminium sheet in an accurate way, finite element simulations are used in combination with a user-defined material model. This constitutive model couples the leak rate with the void volume fraction. This void volume fraction is then dependent on both the equivalent plastic strain and the applied hydrostatic pressure during the bulge process (backpressure).

  11. Develop Efficient Leak Proof M1 Abrams Plenum Seal

    DTIC Science & Technology

    2014-05-07

    SBIR report, M1 Abrams, plenum seal, turbine blade wear, FOD leakage, turbine failure, air cleaner plenum box, seal design, efficient leak proof seal...premature and excessive turbine blade wear. This in turn leads to a reduced time interval between turbine rebuilds and an estimated $3-$4 million in...Comparison – As drawn vs. actual installation ........................................... 9 Figure 5: Assembly model of M1 Turbine and related components

  12. Leak Location in Plates Using Spatial Fourier Transform Based Analysis

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Strei, M.; Song, J.; Chimenti, D. E.

    2005-04-01

    The location of air leaks in plate-like structures is examined using a spatial Fourier transform based analysis. Noise data is collected over 2-D spatial arrays at sensor locations, from which mean cross-correlations are compiled. Propagation properties, transit times, and energy distribution among modes are extracted through spatial Fourier transformation of these data. A simple algorithm to determine source location using a reduced set of transform data is demonstrated experimentally, based upon extraction of energy propagation direction.

  13. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  14. Potential role of infrared imaging for detecting facial seal leaks in filtering facepiece respirator users.

    PubMed

    Harber, Philip; Su, Jing; Badilla, Alejandro D; Rahimian, Rombod; Lansey, Kirsten R

    2015-01-01

    Infrared imaging (IRI) can detect airflow through and near respirator masks based upon temperature differences between ambient and exhaled air. This study investigated the potential usefulness of IRI for detecting leaks and providing insight into the sites and significance of leaks. Subjects (n = 165) used filtering facepiece N95 respirators (N95 FFR) in the course of a research study concerning training modalities. Short sequence video infrared images were obtained during use and with intentionally introduced facial seal leaks. Fit factor (FF) was measured with condensation nuclei count methods. IRI detected leaks were scored on a four-point scale and summarized as the Total Leak Score (TLS) over six coding regions and the presence or absence of a "Big Leak" (BL) in any location. A semi-automated interpretation algorithm was also developed. IRI detected leaks are particularly common in the nasal region, but these are of limited significance. IR imaging could effectively identify many large leaks. The TLS was related to FF. Although IRI scores were related to FF, the relationship is insufficiently close for IRI to substitute for quantitative fit-testing. Using FFRs infrared techniques have potential for identifying situations with very inadequate respiratory protection.

  15. Low-Leak, High-Flow Poppet Valve

    NASA Technical Reports Server (NTRS)

    Tervo, John N.

    1995-01-01

    Valve with conical poppet modified to incorporate smooth transition to segment of sphere at upstream end of cone. Constitutes sealing surface of poppet; results in leak rate equivalent to ball-type poppet, and extremely low flow losses. Also enables use of loose fit for guiding poppet, with resulting lower manufacturing cost, high reliability, and long operating life.

  16. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  17. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  18. The effects of air pollutants on the mortality rate of lung cancer and leukemia.

    PubMed

    Dehghani, Mansooreh; Keshtgar, Laila; Javaheri, Mohammad Reza; Derakhshan, Zahra; Oliveri Conti, Gea; Zuccarello, Pietro; Ferrante, Margherita

    2017-03-24

    World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (P<0.05). Therefore, special attention should be paid to sources of these pollutants and we need better management to decrease air pollutant concentrations through, e.g., using clean energy respect to fossil fuels, better management of urban traffic planning, and the improvement of public transport service and car sharing.

  19. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    PubMed

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies.

  20. [Calculating method for the necessary lamps and sterile rate in a tube-shaped ultraviolet air washer].

    PubMed

    Xu, Z; Chen, C; Shen, J

    1998-05-01

    It has much more advantage to use the cylindric ultraviolet air washer than to use the ordinary ultraviolet lamps. There was a calculation method for determining necessary lamps in a rectangled ultraviolet air washer, but it had a limiting condition. This paper developed two calculating methods for determining necessary lamps and its sterile rate in a tube-shaped ultraviolet air washer. The sterile rate can be extracted with any parameter. Necessary lamps can also be extracted with its sterile rate.

  1. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    SciTech Connect

    Giovanis, Eleftherios

    2015-06-15

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM{sub 2.5}) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  2. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  3. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    SciTech Connect

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; Veinot, Kenneth G.; Leggett, Richard Wayne; Eckerman, Keith F.; Easterly, Clay E.; Hertel, Nolan E.

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.

  4. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  5. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  6. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  7. Analog Binaural Circuits for Detecting and Locating Leaks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2003-01-01

    Very-large-scale integrated (VLSI) analog binaural signal-processing circuits have been proposed for use in detecting and locating leaks that emit noise in the ultrasonic frequency range. These circuits would be designed to function even in the presence of intense lower-frequency background noise that could include sounds associated with flow and pumping. Each of the proposed circuits would include the approximate electronic equivalent of a right and a left cochlea plus correlator circuits. A pair of transducers (microphones or accelerometers), corresponding to right and left ears, would provide the inputs to their respective cochleas from different locations (e.g., from different positions along a pipe). The correlation circuits plus some additional external circuits would determine the difference between the times of arrival of a common leak sound at the two transducers. Then the distance along the pipe from either transducer to the leak could be estimated from the time difference and the speed of sound along the pipe. If three or more pairs of transducers and cochlear/correlator circuits were available and could suitably be positioned, it should be possible to locate a leak in three dimensions by use of sound propagating through air.

  8. Association Between Air Temperature and Cancer Death Rates in Florida: An Ecological Study.

    PubMed

    Hart, John

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory - that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings.

  9. Measurement of HOx• production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (•OH and HO2 •) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOx• production rate in indoor air caused by radon decay. Average HOx• production rate was found to be (4.31±0.07) x 105 HOx• per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx•)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx•] formed from the radiolysis procedure. This G value implies that HOx• produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOx• production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for •OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial •OH produced from the photolysis of O3/H2O.

  10. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  11. Leak-detection device is {open_quotes}all ears{close_quotes}

    SciTech Connect

    Malm, H.; Halpern, F.

    1996-04-01

    Ultrasonic detection devices for locating air or liquid leaks are described. Standard packages consist of a hand-held detection instrument, high-impedance headphones, a localization sound probe, an ultrasound transmitter, and a precision contact probe. The ultrasonic vibrations are converted into either an audible frequency or a digital readout. The use of ultrasonic devices in leak testing single-wall underground storage tanks is detailed.

  12. [Where is a leak point detected by "the low flow leak test" of anesthetic machines?].

    PubMed

    Omija, K; Tokumine, J; Iha, H; Uehara, M; Nitta, K; Okuda, Y

    1997-10-01

    "The low flow leak test" is recommended for pre-anesthetic inspection of anesthetic machines. We carried out anesthesia compression tests as a standard. Even in that case, often the low flow leak test does not meet the standard. We investigated the point where there is a leak in the anesthetic machine. Observing the leak that fluctuates each time there is detachment or attachment of the canister, the primary cause of the leak is thought to be related to the canister. It is important to carry out an inspection of the canister if the low flow leak test does not meet the standard.

  13. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    NASA Astrophysics Data System (ADS)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2017-01-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature (T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  14. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  15. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials.

    PubMed

    Moriske, H J; Ebert, G; Konieczny, L; Menk, G; Schöndube, M

    1998-08-01

    The decay of ozone in indoor air was measured in a closed chamber after contact with different building materials and residential surfaces. The tested materials were: vinyl wall paper, woodchip paper, plywood, latex paint, fitted carpet, and plaster. In the summer of 1996, the entry of ozone from ambient air into indoor air during ventilation and the ozone decay in indoor air, after windows had been closed again, were studied. Measurements were done in a residential house on the outskirts of Berlin. The following results were gained: the chamber measurements showed a decay of ozone after contact with most of the materials put inside the chamber. Higher decay rates have been obtained for wall papers, plywood, fitted carpet and plaster. As described in the literature, ozone is able to react with olefines inside the materials and is able to form formaldehyde and other components. This formation of formaldehyde could also be confirmed in our investigations. Thus, in most cases, the formaldehyde concentrations were lower than the German guideline value of 0.1 ppm. The formation of formaldehyde could be prevented when a special wall paper that was coated with activated carbon was used. In the house, a complete ozone diffusion into indoor air took place during ventilation within 30 min. After closing the windows, the ozone concentrations decreased to the basic level before ventilation within 60-90 min.

  16. US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites.

    PubMed

    Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G

    2017-02-22

    Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.

  17. Smoking, air pollution, and the high rates of lung cancer in Shenyang, China

    SciTech Connect

    Xu, Z.Y.; Blot, W.J.; Xiao, H.P.; Wu, A.; Feng, Y.P.; Stone, B.J.; Sun, J.; Ershow, A.G.; Henderson, B.E.; Fraumeni, J.F. Jr. )

    1989-12-06

    A case-control study involving interviews with 1,249 patients with lung cancer and 1,345 population-based controls was conducted in Shenyang, an industrial city in northeastern China, where mortality rates are high among men and women. Cigarette smoking was found to be the principal cause of lung cancer in this population, accounting for 55% of the lung cancers in males and 37% in females. The attributable risk percentage among females is high compared to elsewhere in China, largely because of a higher prevalence of smoking among women. After adjustment for smoking, there were also significant increases in lung cancer risk associated with several measures of exposure to air pollutants. Risks were twice as high among those who reported smoky outdoor environments, and increased in proportion to years of sleeping on beds heated by coal-burning stoves (kang), and to an overall index of indoor air pollution. Threefold increases in lung cancer risk were found among men who worked in the nonferrous smelting industry, where heavy exposures to inorganic arsenic have been reported. The associations with both smoking and indoor air pollution were stronger for squamous cell and small cell carcinomas than for adenocarcinoma of the lung. Risks due to smoking or air pollution were not greatly altered by adjustment for consumption of fresh vegetables or sources of beta carotene or retinol, prior chronic lung diseases, or education level. The findings suggest that smoking and environmental pollution combine to account for the elevated rates of lung cancer mortality in Shenyang.

  18. Effect of laminar air flow and clean-room dress on contamination rates of intravenous admixtures.

    PubMed

    Brier, K L; Latiolais, C J; Schneider, P J; Moore, T D; Buesching, W J; Wentworth, B C

    1981-08-01

    The effect of laminar air flow conditions and clean-room dress on the microbial contamination rates of intravenous admixtures was investigated. Intravenous admixtures were prepared by one investigator using aseptic technique under four environmental conditions: laminar air flow conditions with clean-room dress; laminar air flow without clean-room dress; clean table top with clean-room dress; and clean table top without clean-room dress. In each environmental condition, 350 admixtures were compounded. Negative-control samples (n = 150) were also tested, as were 10 positive-control samples. Samples were tested in each of two growth media and incubated at 35 degrees C for 14 days or until growth occurred. The incidence of contamination of admixtures compounded in laminar air flow conditions was significantly less than the contamination of those compounded on a clean table top (p less than 0.05) regardless of the operator's dress. The incidence of contamination of admixtures compounded while wearing clean-room dress was not significantly different from those prepared while not wearing clean-room dress regardless of the environment in which the admixture was prepared. The overall low level of contamination [0.79% (11/1400)] was inconclusive regarding the effect of dress on the incidence of contamination when admixtures were prepared under LAF conditions. It is concluded that, when one adheres to aseptic technique, the environment in which admixtures are compounded is the most important variable affecting the microbial contamination rate.

  19. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts.

    PubMed

    Giovanis, Eleftherios

    2015-06-01

    This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009-2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM2.5) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000-$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  20. Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water.

    PubMed

    Bellamy, M B; Veinot, K G; Hiller, M M; Dewji, S A; Eckerman, K F; Easterly, C E; Hertel, N E; Leggett, R W

    2016-05-05

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.

  1. Mathematical Modeling of Radiocesium Migration and Air Dose Rate Changes in Eastern Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Kitamura, A.; Sakuma, K.; Kurikami, H.; Malins, A.; Okumura, M.; Itakura, M.; Yamada, S.; Machida, M.

    2015-12-01

    Radioactive cesium that was deposited over Fukushima Prefecture after the accident at the Fukushima Daiichi nuclear power plant station is one of the major concerns regarding health physics today. Its migration is primarily by soil erosion and sediment transport within surface water during times of heavy rainfall and flooding. In order to predict the future distribution of radioactive cesium and resulting air dose rate at any location in Fukushima, we have integrated a number of mathematical models covering different time and spatial scales. In this presentation we report our overall scheme of prediction starting from sediment and radioactive cesium movement and resulting long term air dose rate changes. Specifically, we present simulation results of sediment movement and radioactive cesium migration using semi-empirical and physics based watershed models, and that of sediment and radioactive cesium behavior in a dam reservoir using one and two dimensional river simulation models. The model's results are compared with ongoing field monitoring.

  2. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  3. 40 CFR 65.146 - Nonflare control devices used for equipment leaks only.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Nonflare control devices used for... (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.146 Nonflare control devices used for equipment leaks...

  4. 40 CFR 63.1088 - In what situations may I delay leak repair, and what actions must I take for delay of repair?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water...

  5. 40 CFR 63.1088 - In what situations may I delay leak repair, and what actions must I take for delay of repair?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water...

  6. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  7. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, G.R.

    1994-09-06

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  8. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, Ganapatic R.

    1994-01-01

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  9. Safety upgrades plug car leaks

    SciTech Connect

    Not Available

    1993-08-01

    To lessen the chance of a chemical leak occurring during rail transport, some companies are improving tank car sturdiness and safety by adding such features as top-loading valves, on-board monitoring devices, and thicker, more impact-resistant hulls. Results include a dramatic drop in the number of rail incidents and leak tank cars. Chemicals Division of Olin Corporation (Stamford, Connecticut) has assigned its name to a new fleet of chlorine, caustic soda and toluene diisocyanate (TDI) tank cars. Each car carries the company's Care[trademark]Car registered trademark. The upgrade is part of a company-wide quality improvement process started in 1986. The company requires acoustic emissions (AE) testing on all hazardous materials tank cars. If an area has a defect, it expands and makes a slight sound when subjected to stress. In an AE test, cars are subject to simulated bumps and jolts as in rail shipment. Electronic sensors transfer any stress noises onto a computer screen, where an operator can pinpoint the trouble source.

  10. Determination of collisional quenching rate coefficients of metastable nitrogen molecules by air pollutants

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Itoh, Haruo

    2009-10-01

    It has already been investigated on the determination of the collisional quenching rate coefficients of the metastable nitrogen molecules N2(A^3σu^+ ) by some air pollutants [1] in our laboratory. In this report, we present the result on the collisional quenching rate coefficient of N2(A^3σu^+ ) by formaldehyde (CH2O) using a theoretical procedure that takes into account the reflection of metastables at the boundary. As far as we know, this report is the first result of the collisional quenching rate coefficients of N2(A^3σu^+ ) by CH2O. Formaldehyde is a colorless gas with the foul odor, and elements of the adhesive, paints, and preservative, etc. It is widely used for construction materials such as houses, because it is low cost. It is released from paint of construction materials in air, and, in that case, it is known as one of the causative agents of so-called ``Sick building syndrome'' to influence the human body harmfully even if it is a low concentration. The obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by CH2O is (4.7±0.4) x 10-12 cm^3/s. Because the collisional quenching rate coefficient by CH2O is large, it is understood that CH2O receives energy easily from N2(A^3σu^+ ). In addition, we reports on the obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by some air pollutants. [1] S. Suzuki, T.Suzuki and H.Itoh: Proc. of XXVIII ICPIG (Prague, Czech Republic), (2007) 1P01-40.

  11. Chemical response of methane/air diffusion flames to unsteady strain rate

    SciTech Connect

    Im, H.G.; Chen, J.H.; Chen, J.Y.

    1998-03-01

    Effects of unsteady strain rate on the response of methane/air diffusion flames are studied. The authors use the finite-domain opposed flow configuration in which the nozzle exit velocity is imposed as a function of time. The GRI mechanism v2.11 is used for the detailed methane/air chemistry. The response of individual species to monochromatic oscillation in strain rate with various frequencies reveals that the fluctuation of slow species, such as CO and NO{sub x}, is more rapidly suppressed as the flow time scale decreases. It is also observed that the maximum CO concentration is very insensitive to the variation in the scalar dissipation rate. An extinction event due to an abrupt imposition of high strain rates is also simulated by an impulsive velocity with various frequencies. For a fast impulse, a substantial overshoot in NO{sub 2} concentration is observed after extinction. Finally, the overall fuel burning rate shows a nonmonotonic response to the variation in characteristic unsteady time scale, while the emission indices for NO{sub x} shows monotonic decay in response as frequency is increased.

  12. NDE of stainless steel and on-line leak monitoring of LWRs

    SciTech Connect

    Kupperman, D.S.; Claytor, T.N.; Mathieson, T.; Prine, D.W.

    1985-10-01

    The GARD/ANL acoustic leak detection system is under evaluation in the laboratory. Results of laboratory tests with simulated acoustic leak signals and acoustic signals from field-induced intergranular stress corrosion cracks (IGSCCs) indicate that cross-correlation techniques can be used to locate the position of a leak. Leaks from a 2-in. ball valve and a flange were studied and compared with leaks from IGSCCs and fatigue cracks. The dependence of acoustic signal on flow rate and frequency for the valve and the flange was comparable to that of fatigue cracks (thermal and mechanical) and different from that of IGSCCs. Two pipe-to-endcap weldments with overlays were examined. Because the amount of cracking in the specimens was limited, the emphasis was on trying understand the nature of crack overcalling. Four 60-mm-thick cast stainless steel plates with microstructures ranging from equiaxed to primarily columnar grains have been examined with ultrasonic waves. 13 refs., 23 figs.

  13. Massive Cerebrospinal Fluid Leak of the Temporal Bone

    PubMed Central

    Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection. PMID:27597915

  14. Massive Cerebrospinal Fluid Leak of the Temporal Bone.

    PubMed

    Iannella, Giannicola; Manno, Alessandra; Pasqualitto, Emanuela; Ciofalo, Andrea; Angeletti, Diletta; Pasquariello, Benedetta; Magliulo, Giuseppe

    2016-01-01

    Cerebrospinal fluid (CSF) leakage of the temporal bone region is defined as abnormal communications between the subarachnoidal space and the air-containing spaces of the temporal bone. CSF leak remains one of the most frequent complications after VS surgery. Radiotherapy is considered a predisposing factor for development of temporal bone CSF leak because it may impair dural repair mechanisms, thus causing inadequate dural sealing. The authors describe the case of a 47-year-old man with a massive effusion of CSF which extended from the posterior and lateral skull base to the first cervical vertebrae; this complication appeared after a partial enucleation of a vestibular schwannoma (VS) with subsequent radiation treatment and second operation with total VS resection.

  15. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    SciTech Connect

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  16. [The current state of leak in anesthetic machines detected by low flow leak tests].

    PubMed

    Uehara, M; Tokumine, J; Iha, H; Nitta, K; Okuda, Y

    1999-05-01

    To assess the current state of leak in anesthetic machines, we selected 66 units of anesthetic machines for inspection and repair from various medical institutions. Based on a newly designed inspection flow chart a low flow leak test for internal circuits of the anesthetic machines was performed. The conventional low flow leak test was also performed for smooth detection of leak for rational evaluation. Only 39% of the anesthetic machines met the standard of the low flow leak tests, and leak was detected in the remaining 61%. The average residual leak mounted to 0.97 l.min-1, with the maximum of 5.3 l.min-1. Canisters, corrugated tubes, and vaporizers were considered the primary causes of leak. After the inspection and repair, leak in 77.5% of the anesthetic machines either disappeared or decreased and the average residual leak dropped to 0.34 l.min-1. However, 47% of the anesthetic machines still failed to meet the standard of the low flow leak tests. To further improve the situation, more detailed inspection and repair are necessary especially for precise detection of the cause of leak in the internal circuit of anesthetic machines which often remains undetected.

  17. Argon Spill Trough Bellows - Leak Test

    SciTech Connect

    Jaques, A.; /Fermilab

    1990-04-30

    The four argon spill trough bellows were leak tested with helium during the week of March 12, 1990. Three passed without incident, but the fourth was found to have a leak in the weld at one of the ring/clamps. The hole was approximately 1/32-inch in diameter (a likely result of a welding burn through) and located on an inflexible portion of the bellows, the ring/clamp. Frank Juravic, who conducted the tests, suggested using grey structural epoxy to plug the leak. The epoxy is metallic with some inherent flexibility. The epoxy was applied and the bellows retested in the same manner as before. The repair was a success as the bellows proved to be leaktight. The bellows were then put in their original shipping crates and placed in storage at Lab C. Included in this report is the manufacturer's spec sheets on the bellows, a copy of the Quality Control Report form and a sketch of the test setup with an explanation of the procedure. On the bellows data sheet entitled 'Analysis of Stress in Bellows', the analysis output is obtained through a theoretical bellows program that uses quadratic equations to approximate characteristic curves for such data as axial, lateral and angular movement and spring rates. The program is best suited for bellows with a wall thickness of at least 0.015-inch and an operating pressure significantly above atmospheric. Thus EJS Inc. warned that the output data would not be very accurate in some instances. The data given on the EJS Inc. sketch sheet should be taken as accurate, though, for it was taken from the actual bellows delivered. The 72-inch length includes the 64.64-inch of bellows section, the (3) 1/2-inch ring/clamps and the (2) 1-1/2-inch end bands. The remainder of the discrepancy is accounted for by a 2.75-inch factory elongation of the bellows from the original free length. The 40-inch compression capability includes the 2.75-inch of factory elongation, the program determined 31.9-inch of compression from free length and 5.35-inch of

  18. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  19. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect

    Shah, Vikram Naginbhai; Ware, Arthur Gates; Atwood, Corwin Lee; Sattison, Martin Blaine; Hartley, Robert Scott; Hsu, C.

    1999-08-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number of rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  20. Assessment of Field Experience Related to Pressurized Water Reactor Primary System Leaks

    SciTech Connect

    A. G. Ware; C. Hsu; C. L. Atwood; M. B. Sattison; R. S. Hartley; V. N. Shah

    1999-02-01

    This paper presents our assessment of field experience related to pressurized water reactor (PWR) primary system leaks in terms of their number and rates, how aging affects frequency of leak events, the safety significance of such leaks, industry efforts to reduce leaks, and effectiveness of current leak detection systems. We have reviewed the licensee event reports to identify the events that took place during 1985 to the third quarter of 1996, and reviewed related technical literature and visited PWR plants to analyze these events. Our assessment shows that USNRC licensees have taken effective actions to reduce the number of leak events. One main reason for this decreasing trend was the elimination or reportable leakages from valve stem packing after 1991. Our review of leak events related to vibratory fatigue reveals a statistically significant decreasing trend with age (years of operation), but not in calendar time. Our assessment of worldwide data on leakage caused by thermal fatigue cracking is that the fatigue of aging piping is a safety significant issue. Our review of leak events has identified several susceptible sites in piping having high safety significance; but the inspection of some of these sites is not required by the ASME Code. These sites may be included in the risk-informed inspection programs.

  1. Predicting Residential Air Exchange Rates from Questionnaires and Meteorology: Model Evaluation in Central North Carolina

    PubMed Central

    2010-01-01

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h−1) and 40% (0.17 h−1) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h−1). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies. PMID:21069949

  2. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  3. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  4. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  5. Modified perfluorocarbon tracer method for measuring effective multizone air exchange rates.

    PubMed

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-09-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.

  6. Effect of outside air ventilation rate on volatile organic compound concentrations in a call center

    NASA Astrophysics Data System (ADS)

    Hodgson, A. T.; Faulkner, D.; Sullivan, D. P.; DiBartolomeo, D. L.; Russell, M. L.; Fisk, W. J.

    A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m 2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO 2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO 2 generation rates were 0.0068-0.0092 l s -1. The per occupant isoprene generation rates of 0.2-0.3 mg h -1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source

  7. Leak checker data logging system

    DOEpatents

    Gannon, J.C.; Payne, J.J.

    1996-09-03

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.

  8. Leak checker data logging system

    DOEpatents

    Gannon, Jeffrey C.; Payne, John J.

    1996-01-01

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.

  9. EPA Needs Leak Detectives in Texas

    EPA Pesticide Factsheets

    DALLAS - (March 15, 2016) Every year more than one trillion gallons of water are wasted by easy-to-fix household leaks. The U.S. Environmental Protection Agency (EPA) is encouraging consumers to Be a leak detective during WaterSense's eighth annua

  10. EPA Needs Leak Detectives in New Mexico

    EPA Pesticide Factsheets

    DALLAS - (March 15, 2016) Every year more than one trillion gallons of water are wasted by easy-to-fix household leaks. The U.S. Environmental Protection Agency (EPA) is encouraging consumers to Be a Leak Detective during WaterSense's eighth annua

  11. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  12. Leak detection in spacecraft using structure-borne noise with distributed sensors

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Roberts, Ron; Chimenti, D. E.; Strei, Michael

    2005-04-01

    We have developed and tested in the laboratory a method for in-orbit detection and location of air leaks in manned spacecraft that uses only a small number of sensors distributed arbitrarily on the inner surface of the spacecraft skin. Then, structure-borne ultrasound in the range of 300-600 kHz is monitored from each of the sensors. When cross correlations between measured sensor waveforms indicate the presence of a leak, these correlations are compared with a large dynamically generated database of simulated correlations to locate the the leak on the pressure vessel. A series of experimental tests were performed and at worst the method identified some false locations, but the true location of the leak always appeared.

  13. Leak detection for underground storage tanks

    SciTech Connect

    Durgin, P.B. ); Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases.

  14. Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks

    NASA Technical Reports Server (NTRS)

    2013-01-01

    In 1990, NASA grounded its space shuttle fleet. The reason: leaks detected in the hydrogen fuel systems of the Space Shuttles Atlantis and Columbia. Unless the sources of the leaks could be identified and fixed, the shuttles would not be safe to fly. To help locate the existing leaks and check for others, Kennedy Space Center engineers used portable ultrasonic detectors to scan the fuel systems. As a gas or liquid escapes from a leak, the resulting turbulence creates ultrasonic noise, explains Gary Mohr, president of Elmsford, New York-based UE Systems Inc., a long-time leader in ultrasonic detector technologies. "In lay terms, the leak is like a dog whistle, and the detector is like the dog ear." Because the ultrasound emissions from a leak are highly localized, they can be used not only to identify the presence of a leak but also to help pinpoint a leak s location. The NASA engineers employed UE s detectors to examine the shuttle fuel tanks and solid rocket boosters, but encountered difficulty with the devices limited range-certain areas of the shuttle proved difficult or unsafe to scan up close. To remedy the problem, the engineers created a long-range attachment for the detectors, similar to "a zoom lens on a camera," Mohr says. "If you are on the ground, and the leak is 50 feet away, the detector would now give you the same impression as if you were only 25 feet away." The enhancement also had the effect of reducing background noise, allowing for a clearer, more precise detection of a leak s location.

  15. Viscous flow effects on hydrogen leaks from cracks in the Orbiter Challenger main engines

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.

    1984-01-01

    An analytical model was developed to provide additional insight and understanding of the factors that influence the simulation and prediction of leak rates from small cracks in pressurized containers. Specifically, the analysis was aimed at developing an analytical model capable of predicting the hydrogen leak rates from a crack in the combustion chamber coolant discharge manifold on main engine 1 of the Orbiter Challenger that was discovered during flight readiness firings 1 and 2. This model was based on viscous pipe flow analyses and calibrated for the crack geometry by using helium leak-rate data obtained from both low- and high-pressure tests used to simulate the flight readiness firing test conditions. In addition, this model includes the effects of crack width changes caused by different working stresses associated with the different test conditions. Because of the combination of the small crack dimensions and the wide range of pressures used for the test conditions, either laminar or turbulent viscous effects dominated the flows at all test conditions. This model was used to illustrate the sensitivity of the predicted leak rates to considerations of test conditions, viscous flow effects, and geometric features of the crack. In addition, the model was certified by comparing the hydrogen leak-rate prediction for the flight readiness firing test condition to the actual measured leak rate. The prediction was within 9 percent of the measured value.

  16. The International Space Station 2B Photovoltaic Thermal Control System (PVTCS) Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony N.

    2014-01-01

    As early as 2004, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B electrical power channel began slowly leaking ammonia overboard. Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity (EVA) during the STS-134 Space Shuttle mission. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. In mid-2012, the leak rate increased from 1.5lbm/year to approximately 5lbm/year. As a result, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to an adjacent dormant thermal control system. This EVA, US EVA 20, was successfully executed on November 1, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a different radiator than what the system was designed to utilize. Data monitoring over the next several months showed that the isolated radiator had not been leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the crew noticing the leak, US EVA 21 was in progress to replace the coolant pump - the only remaining replaceable leak source. This was successful, and telemetry monitoring has shown that indeed the coolant pump was the leak source and was thus isolated from the running 2B PVTCS. This paper will explore the management of the 2B PVTCS leak from the operations perspective.

  17. Airplane transport isolators may loose leak tightness after rapid cabin decompression.

    PubMed

    Albrecht, Roland; Kunz, Andres; Voelckel, Wolfgang G

    2015-02-08

    Air medical transport of patients suffering of highly infectious diseases is typically performed employing portable isolation chambers. Although the likelihood of decompression flight emergencies is low, sustainability of the devices used is crucial. When a standard isolation unit was subjected to an explosive cabin decompression of 493 hPa, simulating a 32808 ft flight level accident, leak tightness of the unit was lost due to rupture of the bag caused by over expansion. When the pressure chamber experiment was repeated with a modified unit, distension was minimized by an additional compensation air bag, thus ensuring leak tightness.

  18. The physics of confined flow and its application to water leaks, water permeation and water nanoflows: a review

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; Rigozzi, Michelle K.; McKenzie, David R.

    2016-02-01

    This review assesses the current state of understanding of the calculation of the rate of flow of gases, vapours and liquids confined in channels, in porous media and in permeable materials with an emphasis on the flow of water and its vapour. One motivation is to investigate the relation between the permeation rate of moisture and that of a noncondensable test gas such as helium, another is to assist in unifying theory and experiment across disparate fields. Available theories of single component ideal gas flows in channels of defined geometry (cylindrical, rectangular and elliptical) are described and their predictions compared with measurement over a wide range of conditions defined by the Knudsen number. Theory for two phase flows is assembled in order to understand the behaviour of four standard water leak configurations: vapour, slug, Washburn and liquid flow, distinguished by the number and location of phase boundaries (menisci). Air may or may not be present as a background gas. Slip length is an important parameter that greatly affects leak rates. Measurements of water vapour flows confirm that water vapour shows ideal gas behaviour. Results on carbon nanotubes show that smooth walls may lead to anomalously high slip lengths arising from the properties of ‘confined’ water. In porous media, behaviour can be matched to the four standard leaks. Traditional membrane permeation models consider that the permeant dissolves, diffuses and evaporates at the outlet side, ideas we align with those from channel flow. Recent results on graphite oxide membranes show examples where helium which does not permeate while at the same time moisture is almost unimpeded, again a result of confined water. We conclude that while there is no a priori relation between a noncondensable gas flow and a moisture flow, measurements using helium will give results within two orders of magnitude of the moisture flow rate, except in the case where there is anomalous slip or confined

  19. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  20. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  1. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  2. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  3. Demonstration of rapid and sensitive module leak certification for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dietz, R. N.; Goodrich, R. W.

    1991-01-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 (+ or -) 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 (+ or -) 0.7, -0.4 (+ or -) 0.3, and 76 (+ or -) 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on (Delta)p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc.

  4. Precision blood-leak detector with high long-time stability

    NASA Astrophysics Data System (ADS)

    Georgiadis, Christos; Kleuver, Wolfram

    1999-11-01

    With this publication a precision blood-leak-detector is presented. The blood-leak-detector is used for recognition of fractures in the dialyzer of a kidney-machine. It has to detect safely a blood flow of ml/min to exclude any risk for the patient. A lot of systems exist for blood-leak-detection. All of them use the same principle. They detect the light absorption in the dialyze fluid. The actual used detectors are inferior to the new developed sensor in resolution and long-time stability. Regular test of the existing systems and high failure rates are responsible for the high maintenance.

  5. Demonstration of rapid and sensitive module leak certification for space station freedom

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W. )

    1991-03-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus minus} 0.7, {minus}0.4 {plus minus} 0.3, and 76 {plus minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

  6. Demonstration of rapid and sensitive module leak certification for space station freedom. Final report

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W.

    1991-03-01

    A leak detection and quantification demonstration using perflurocarbon tracer (PFT) technology was successfully performed at the NASA Marshall Space Flight Center on January 25, 1991. The real-time Dual Trap Analyzer (DTA) at one-half hour after the start of the first run gave an estimated leak rate of 0.7 mL/min. This has since been refined to be 1.15 {plus_minus} 0.09 mL/min. The leak rates in the next three runs were determined to be 9.8 {plus_minus} 0.7, {minus}0.4 {plus_minus} 0.3, and 76 {plus_minus} 6 mL/min, respectively. The theory on leak quantification in the steady-state and time-dependent modes for a single zone test facility was developed and applied to the above determinations. The laboratory PFT analysis system gave a limit-of-detection (LOD) of 0.05 fL for ocPDCH. This is the tracer of choice and is about 100-fold better than that for the DTA. Applied to leak certification, the LOD is about 0.00002 mL/s (0.000075 L/h), a 5 order-of-magnitude improvement over the original leak certification specification. Furthermore, this limit can be attained in a measurement period of 3 to 4 hours instead of days, weeks, or months. A new Leak Certification Facility is also proposed to provide for zonal (three zones) determination of leak rates. The appropriate multizone equations, their solutions, and error analysis have already been derived. A new concept of seal-integrity certification has been demonstrated for a variety of controlled leaks in the range of module leak testing. High structural integrity leaks were shown to have a linear dependence of flow on {Delta}p. The rapid determination of leak rates at different pressures is proposed and is to be determined while subjecting the module to other external force-generating parameters such as vibration, torque, solar intensity, etc. 13 refs.

  7. Leak Detection by Acoustic Emission Monitoring. Phase 1. Feasibility Study

    DTIC Science & Technology

    1994-05-26

    considered the soil composition- and structure , the leak depth and rate, the acoustic array geometry on the 12 PHASE I 03 SflAIASTrNAflc C’ 111 ATON 90111...First Conference on Acoustic Emission/ Microseismic Activilty in Geologic Structures and Materials. H.R. Hardy, Jr. and F.W. Leighton, 2ditors. Trans...Recognition and Acoustical Imaging , Newport Beach, California, February 4-6. 1987. 29. M.C. Junger and D. Feit. Sounds, Structures , and Their Interaction, The

  8. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  9. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    PubMed

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  10. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.

  11. Effect of air pollutants on the photosynthetic and dark respiration rates of Phaseolus vulgaris

    SciTech Connect

    Borgman, L.M.

    1982-01-01

    The effects of continuous fumigations with pollutant gases on net and gross photosynthesis, dark respiration, respiration/gross photosynthesis ratios, root/shoot ratios, and chloroplast ultrastructure were examined. Plants of Phaseolus vulgaris L. Blue Lakes, were grown in paired plexi-glass chambers. Photosynthetic and respiration rates of 12-19 day-old plants were measured by infrared gas analysis. The plants were dried and root/shoot ratios calculated. A significant increase (28.9%) in gross photosynthesis of plants exposed to 10 ppm. CO was evident compared to the controls. Although net photosynthesis was not significantly affected by 0.035-0.04 ppm NO/sub 2/, gross photosynthesis, dark respiration, and R/G were significantly greater than in controls. Concentrations of 0.04-0.005 SO/sub 2/ resulted in significantly greater respiration and R/G ratios. This procedure resulted in significantly reduced net and gross photosynthetic rates. Ozone exposures of 10-20 ppm for eight hours a day, five days a week, resulted in progressively lower net and gross photosynthetic rates as the week progressed and R/G ratios were significantly higher. Ozone exposures of 6-8 ppm reduced net and gross photosynthetic rates significantly. Average root/shoot ratios of all exposed plants were significantly greater (14.8%) than those grown in pollutant-free air. The concentrations employed were comparable to the federal air pollution standards. It was concluded that these low levels of pollutant gases are capable of altering physiological activities which may result in reduced yield.

  12. Nitrogen leak test of Strategic Petroleum Reserve Cavern Bayou Choctaw 2

    SciTech Connect

    Goin, K.L.

    1983-10-01

    A nitrogen leak test was made of the Strategic Petroleum Reserve Bayou Choctaw Cavern 2. Results of the test are inadequate for estimating the cavern leak rate with a high level of confidence. The interpretation of test results believed to be the most reasonable indicates an average nitrogen loss rate of 300 bbls/yr with an 84-percent probability the loss rate does not exceed 1950 bbls/yr. With maximum oil loss rates estimated at one third of nitrogen volume loss rates, corresponding oil loss rates are 100 and 650 bbls/yr. 3 references, 8 figures.

  13. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  14. Vacuum leak detection for double bottom tanks

    SciTech Connect

    Hagen, T.; Rials, R.

    1995-12-31

    Double bottom tanks offer strong leak detection advantages. By incorporating the use of vacuum detection between the two bottoms, the tank bottoms can be verified leak free after construction and during tank use. Utilizing vacuum leak detection requires special considerations. In 1992 a tank construction company built 10 tanks for an oil company in Ponca City, Oklahoma. Each of these tanks were built with a double bottom. This paper provides insight into the planning, construction and testing of this type of double bottom design.

  15. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    SciTech Connect

    Edwards, D.J.

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  16. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    SciTech Connect

    Pellett, G.L.; Northam, G.B.; Wilson, L.G.; Jarrett, O. Jr.; Antcliff, R.R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF. 42 refs.

  17. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  18. Analytical and experimental studies of leak location and environment characterization for the international space station

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-12-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbm//yr. to about 1 lbm/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  19. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael; Abel, Joshua; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations ("directionality"). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb-mass/yr. to about 1 lb-mass/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  20. Analytical and experimental studies of leak location and environment characterization for the international space station

    SciTech Connect

    Woronowicz, Michael; Blackmon, Rebecca; Brown, Martin; Abel, Joshua; Hawk, Doug; Autrey, David; Glenn, Jodie; Bond, Tim; Buffington, Jesse; Cheng, Edward; Ma, Jonathan; Rossetti, Dino; DeLatte, Danielle; Garcia, Kelvin; Mohammed, Jelila; Montt de Garcia, Kristina; Perry, Radford; Tull, Kimathi; Warren, Eric

    2014-12-09

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to demonstrate the ability to detect NH{sub 3} coolant leaks in the ISS thermal control system. An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (“directionality”). The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lb{sub m/}/yr. to about 1 lb{sub m}/day. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ram/wake flows and structural shadowing within low Earth orbit.

  1. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron.

    PubMed

    Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P

    2016-12-01

    The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K(+) and a small Na(+) component. We previously reported that a Na(+) -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na(+) current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na(+) leak current as compared to the K(+) leak current, suggesting a robust function of Na(+) leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na(+) leak current in intrinsic properties of pacemaker neurons.

  2. Analytical and Experimental Studies of Leak Location and Environment Characterization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Abel, Joshua C.; Autrey, David; Blackmon, Rebecca; Bond, Tim; Brown, Martin; Buffington, Jesse; Cheng, Edward; DeLatte, Danielle; Garcia, Kelvin; Glenn, Jodie; Hawk, Doug; Ma, Jonathan; Mohammed, Jelila; de Garcia, Kristina Montt; Perry, Radford; Rossetti, Dino; Tull, Kimathi; Warren, Eric

    2014-01-01

    The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.

  3. Leaking Underground Storage Tank (LUST) Trust Fund

    EPA Pesticide Factsheets

    In 1986, Congress created the Leaking Underground Storage Tank (LUST) Trust Fund to address releases from federally regulated underground storage tanks (USTs) by amending Subtitle I of the Solid Waste Disposal Act.

  4. Leak Detectives Saving Money, Water in Virginia

    EPA Pesticide Factsheets

    “Circuit riders” from the Virginia Rural Water Association (VRWA) are traveling to small communities across the Commonwealth using special equipment financed by EPA to locate expensive and wasteful leaks in drinking water distribution systems.

  5. mpileaks - an MPI opject leak debugging library

    SciTech Connect

    Leon, E. A.

    2011-11-14

    The mpileaks tool is to be used by MPI application developers to track and report leaked MPI objects, such as requests, groups, and datatypes. This debugging tool is useful as a quality assurance check for MPI applications, or it can be used to identify leaks fatal to long-running MPI applications. It provides an efficient method to report bugs that are otherwise fifficult to identify.

  6. Leak detection in pipelines using cepstrum analysis

    NASA Astrophysics Data System (ADS)

    Taghvaei, M.; Beck, S. B. M.; Staszewski, W. J.

    2006-02-01

    The detection and location of leaks in pipeline networks is a major problem and the reduction of these leaks has become a major priority for pipeline authorities around the world. Although the reasons for these leaks are well known, some of the current methods for locating and identifying them are either complicated or imprecise; most of them are time consuming. The work described here shows that cepstrum analysis is a viable approach to leak detection and location in pipeline networks. The method uses pressure waves caused by quickly opening and closing a solenoid valve. Due to their simplicity and robustness, transient analyses provide a plausible route towards leak detection. For this work, the time domain signals of these pressure transients were obtained using a single pressure transducer. These pressure signals were first filtered using discrete wavelets to remove the dc offset, and the low and high frequencies. They were then analysed using a cepstrum method which identified the time delay between the initial wave and its reflections. There were some features in the processed results which can be ascribed to features in the pipeline network such as junctions and pipe ends. When holes were drilled in the pipe, new peaks occurred which identified the presence of a leak in the pipeline network. When tested with holes of different sizes, the amplitude of the processed peak was seen to increase as the cube root of the leak diameter. Using this method, it is possible to identify leaks that are difficult to find by other methods as they are small in comparison with the flow through the pipe.

  7. Development rates of two Xenopsylla flea species in relation to air temperature and humidity.

    PubMed

    Krasnov, B R; Khokhlova, I S; Fielden, L J; Burdelova, N V

    2001-09-01

    The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.

  8. Modeling Leaking Gas Plume Migration

    SciTech Connect

    Silin, Dmitriy; Patzek, Tad; Benson, Sally M.

    2007-08-20

    In this study, we obtain simple estimates of 1-D plume propagation velocity taking into account the density and viscosity contrast between CO{sub 2} and brine. Application of the Buckley-Leverett model to describe buoyancy-driven countercurrent flow of two immiscible phases leads to a transparent theory predicting the evolution of the plume. We obtain that the plume does not migrate upward like a gas bubble in bulk water. Rather, it stretches upward until it reaches a seal or until the fluids become immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration that does not lend itself to a simple analytical solution (Silin et al., 2006). The range of applicability of the simplified solution is assessed and provided. This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. One of the potential problems associated with the geologic method of sequestration is leakage of CO{sub 2} from the underground storage reservoir into sources of drinking water. Ideally, the injected green-house gases will stay in the injection zone for a geologically long time and eventually will dissolve in the formation brine and remain trapped by mineralization. However, naturally present or inadvertently created conduits in the cap rock may result in a gas leak from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the indigenous formation brine. Therefore, buoyancy will tend to drive the CO{sub 2} upward unless it is trapped beneath a low permeability seal. Theoretical and experimental studies of buoyancy-driven supercritical CO{sub 2} flow, including estimation of time scales associated with plume evolution, are critical for developing technology

  9. Preliminary study of the use of radiotracers for leak detection in industrial applications

    NASA Astrophysics Data System (ADS)

    Wetchagarun, S.; Petchrak, A.; Tippayakul, C.

    2015-05-01

    One of the most widespread uses of radiotracers in the industrial applications is the leak detection of the systems. This technique can be applied, for example, to detect leak in heat exchangers or along buried industrial pipelines. The ability to perform online investigation is one of the most important advantages of the radiotracer technique over other non-radioactive leak detection methods. In this paper, a preliminary study of the leak detection using radiotracer in the laboratory scale was presented. Br-82 was selected for this work due to its chemical property, its suitable half-life and its on-site availability. The NH4Br in the form of aqueous solution was injected into the experimental system as the radiotracer. Three NaI detectors were placed along the pipelines to measure system flow rate and to detect the leakage from the piping system. The results obtained from the radiotracer technique were compared to those measured by other methods. It is found that the flow rate obtained from the radiotracer technique agreed well with the one obtained from the flow meter. The leak rate result, however, showed discrepancy between results obtained from two different measuring methods indicating further study on leak detection was required before applying this technique in the industrial system.

  10. Automated Hydrogen Gas Leak Detection System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Gencorp Aerojet Automated Hydrogen Gas Leak Detection System was developed through the cooperation of industry, academia, and the Government. Although the original purpose of the system was to detect leaks in the main engine of the space shuttle while on the launch pad, it also has significant commercial potential in applications for which there are no existing commercial systems. With high sensitivity, the system can detect hydrogen leaks at low concentrations in inert environments. The sensors are integrated with hardware and software to form a complete system. Several of these systems have already been purchased for use on the Ford Motor Company assembly line for natural gas vehicles. This system to detect trace hydrogen gas leaks from pressurized systems consists of a microprocessor-based control unit that operates a network of sensors. The sensors can be deployed around pipes, connectors, flanges, and tanks of pressurized systems where leaks may occur. The control unit monitors the sensors and provides the operator with a visual representation of the magnitude and locations of the leak as a function of time. The system can be customized to fit the user's needs; for example, it can monitor and display the condition of the flanges and fittings associated with the tank of a natural gas vehicle.

  11. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.

    PubMed

    Reichman, Rivka; Roghani, Mohammadyousef; Willett, Evan J; Shirazi, Elham; Pennell, Kelly G

    2016-11-12

    Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.

  12. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  13. Leak Path Development in CO2 Wells

    NASA Astrophysics Data System (ADS)

    Torsater, M.; Todorovic, J.; Opedal, N.; Lavrov, A.

    2014-12-01

    Wells have in numerous scientific works been denoted the "weak link" of safe and cost-efficient CO2 Capture and Storage (CCS). Whether they are active or abandoned, all wells are man-made intrusions into the storage reservoir with sealing abilities depending on degradable materials like steel and cement. If dense CO2 is allowed to expand (e.g. due to leakage) it will cool down its surroundings and cause strong thermal and mechanical loading on the wellbore. In addition, CO2 reacts chemically with rock, cement and steel. To ensure long-term underground containment, it is therefore necessary to study how, why, where and when leakage occurs along CO2wells. If cement bonding to rock or casing is poor, leak paths can form already during drilling and completion of the well. In the present work, we have mapped the bonding quality of cement-rock and cement-steel interfaces - and measured their resistance towards CO2 flow. This involved a large experimental matrix including different rocks, steels, cement types and well fluids. The bonding qualities were measured on composite cores using micro computed tomography (µ-CT), and CO2 was flooded through the samples to determine leakage rates. These were further compared to numerical simulations of leakage through the digitalized µ-CT core data, and CO2chemical interactions with the materials were mapped using electron microscopy. We also present a new laboratory set-up for measuring how well integrity is affected by downhole temperature variations - and we showcase some initial results. Our work concludes that leak path development in CO2 wells depends critically on the drilling fluids and presflushes/spacers chosen already during drilling and completion of a well. Fluid films residing on rock and casing surfaces strongly degrade the quality of cement bonding. The operation of the well is also important, as even slight thermal cycling (between 10°C and 95°C on casing) leads to significant de-bonding of the annular cement.

  14. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  15. Risk factors for postoperative cerebrospinal fluid leak and meningitis after expanded endoscopic endonasal surgery.

    PubMed

    Ivan, Michael E; Iorgulescu, J Bryan; El-Sayed, Ivan; McDermott, Michael W; Parsa, Andrew T; Pletcher, Steven D; Jahangiri, Arman; Wagner, Jeffrey; Aghi, Manish K

    2015-01-01

    Postoperative cerebrospinal fluid (CSF) leak is a serious complication of transsphenoidal surgery, which can lead to meningitis and often requires reparative surgery. We sought to identify preoperative risk factors for CSF leaks and meningitis. We reviewed 98 consecutive expanded endoscopic endonasal surgeries performed from 2008-2012 and analyzed preoperative comorbidities, intraoperative techniques, and postoperative care. Univariate and multivariate analyses were performed. The most common pathologies addressed included pituitary adenoma, Rathke cyst, chordoma, esthesioneuroblastoma, meningioma, nasopharyngeal carcinoma, and squamous cell carcinoma. There were 11 CSF leaks (11%) and 10 central nervous system (CNS) infections (10%). Univariate and multivariate analysis of preoperative risk factors showed that patients with non-ideal body mass index (BMI) were associated with higher rate of postoperative CSF leak and meningitis (both p<0.01). Also, patients with increasing age were associated with increased CSF leak (p = 0.03) and the length of time a lumbar drain was used postoperatively was associated with infection in a univariate analysis. In addition, three of three endoscopic transsphenoidal surgeries combined with open cranial surgery had a postoperative CSF leak and CNS infection rate which was a considerably higher rate than for transsphenoidal surgeries alone or surgeries staged with open cases (p<0.01 and p=0.04, respectively) In this series of expanded endoscopic transsphenoidal surgeries, preoperative BMI remains the most important preoperative predictor for CSF leak and infection. Other risk factors include age, intraoperative CSF leak, lumbar drain duration, and cranial combined cases. Risks associated with complex surgical resections when combining open and endoscopic approaches could be minimized by staging these procedures.

  16. Effect on air quality and flow rate of fresh water production in humidification and dehumidification system

    NASA Astrophysics Data System (ADS)

    Rajasekar, K.; Pugazhenthi, R.; Selvaraju, A.; Manikandan, T.; Saravanan, R.

    2017-03-01

    Water is the vital need of any living organisms of the world when water fails, functions of nature cease the world. The water scarcity is one of the major problems to be faced by the developing world, which indicates a critical need to develop inexpensive small-scale desalination technologies. The cost of the desalination process takes more, so the world expecting the desalination plants with minimum operating cost, so the utilization of renewable energy source is a preferable one. This research article provides a glimpse of an overview of the humidification-dehumidification (HDH) based desalination method which uses the solar energy. The HDH based desalination method monitored and evaluated the performance parameters, i.e. mass flow rates of water and air.

  17. Integral Aircraft Fuel Tank Leak Classification

    DTIC Science & Technology

    1980-01-01

    effects of the following parameters on the rate of surface dispersion of fuels were examined: fuel type, leakage rate, surface material, fuel and...ranging from 3.34C to 98 C (38OF to 209’F). The vapor pressure of the fuel at the test temperature has a very pronounced effect on the propensity of the...Fuels and the Effect of Flow Rate 8 Effect of Temperature 14 Effect of Air Flow Rate 14 Effect of Panel Angle of Inclination 19 Effect of Panel

  18. CHARACTERIZATION OF LEAK PATHWAYS IN THE BELOW GRADE DUCTS OF THE BROOKHAVEN GRAPHITE RESEARCH REACTOR USING PERFLUOROCARBON TRACERS.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; KALB,P.; MILIAN,L.; WILKE,R.; NEWSON,C.; LILIMPAKIS,M.

    2001-04-01

    The focus of this program was the characterization of the soils beneath the main air ducts connecting the exhaust plenums with the Fan House. The air plenums experienced water intrusion during BGRR operations and after shutdown. The water intrusions were attributed to rainwater leaks into degraded parts of the system and to internal cooling water system leaks. As part of the overall characterization efforts, a state-of-the-art gaseous perfluorocarbon tracer technology was utilized to characterize leak pathways from the ducts. This in turn suggests what soil regions under or adjacent to the ductwork should be emphasized in the characterization process. Knowledge of where gaseous tracers leak from the ducts yields a conservative picture of where water transport, out of or into, the ducts might have occurred.

  19. 46 CFR 56.97-38 - Initial service leak test (reproduces 137.7).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... temporary closures are impractical. Others may be systems for service water, low pressure condensate, plant and instrument air, etc., where checking out of pumps and compressors afford ample opportunity for... PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-38 Initial service leak test (reproduces...

  20. 46 CFR 56.97-38 - Initial service leak test (reproduces 137.7).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... temporary closures are impractical. Others may be systems for service water, low pressure condensate, plant and instrument air, etc., where checking out of pumps and compressors afford ample opportunity for... PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-38 Initial service leak test (reproduces...

  1. 46 CFR 56.97-38 - Initial service leak test (reproduces 137.7).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... temporary closures are impractical. Others may be systems for service water, low pressure condensate, plant and instrument air, etc., where checking out of pumps and compressors afford ample opportunity for... PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-38 Initial service leak test (reproduces...

  2. 46 CFR 56.97-38 - Initial service leak test (reproduces 137.7).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... temporary closures are impractical. Others may be systems for service water, low pressure condensate, plant and instrument air, etc., where checking out of pumps and compressors afford ample opportunity for... PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-38 Initial service leak test (reproduces...

  3. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  4. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  5. Chemical characterization of indoor air of homes from communes in Xuan Wei, China, with high lung cancer mortality rates

    EPA Science Inventory

    In a rural county, Xuan Wei, China, the lung cancer mortality rate is among China's highest, especially in women. This mortality rate is more associated with indoor air burning of smoky coal, as opposed to smokeless coal or wood, for cooking and heating under unvented conditions....

  6. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.

  7. Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates.

    PubMed

    Carvalho-Oliveira, Regiani; Amato-Lourenço, Luís F; Moreira, Tiana C L; Silva, Douglas R Rocha; Vieira, Bruna D; Mauad, Thais; Saiki, Mitiko; Saldiva, Paulo H Nascimento

    2017-02-01

    The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R(2)>0.87) and pollen abortion rates (R(2)>0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data.

  8. Pyrolysis of polymeric materials. I - Effect of chemical structure, temperature, heating rate, and air flow on char yield and toxicity

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.

    1979-01-01

    Various polymeric materials, including synthetic polymers and cellulosic materials, were evaluated at different temperatures, heating rates and air flow rates for thermophysical and toxicological responses. It is shown that char yields appeared to be a function of air access as much as of the chemical structure of the material. It is stated that the sensitivity of the apparent thermal stability of some materials to air access is so marked that thermogravimetric studies in oxygen-free atmospheres may be a consistently misleading approach to comparing synthetic polymers intended to increase fire safety. Toxicity also appeared to be a function of temperature and air access as much as of the chemical structure of the material. Toxicity of the gases evolved seemed to increase with increasing char yield for some polymers.

  9. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  10. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution.

    PubMed

    Finch, Caleb E; Beltrán-Sánchez, Hiram; Crimmins, Eileen M

    2014-01-01

    The past 200 years have enabled remarkable increases in human lifespans through improvements in the living environment that have nearly eliminated infections as a cause of death through improved hygiene, public health, medicine, and nutrition. We argue that the limit to lifespan may be approaching. Since 1997, no one has exceeded Jeanne Calment's record of 122.5 years, despite an exponential increase of centenarians. Moreover, the background mortality may be approaching a lower limit. We calculate from Gompertz coefficients that further increases in longevity to approach a life expectancy of 100 years in 21st century cohorts would require 50% slower mortality rate accelerations, which would be a fundamental change in the rate of human aging. Looking into the 21st century, we see further challenges to health and longevity from the continued burning of fossil fuels that contribute to air pollution as well as global warming. Besides increased heat waves to which elderly are vulnerable, global warming is anticipated to increase ozone levels and facilitate the spread of pathogens. We anticipate continuing socioeconomic disparities in life expectancy.

  11. EPA Chases Leaks in Arkansas during Seventh Annual Fix a Leak Week

    EPA Pesticide Factsheets

    Central Arkansas Water is offering free leak repairs and rain gauges to low-income or elderly customers throughout Little Rock and North Little Rock. They will also giveaway promotional items such as low-flow showerheads, faucet aerators and toilet leak de

  12. High-sensitivity Leak-testing Method with High-Resolution Integration Technique

    NASA Astrophysics Data System (ADS)

    Fujiyoshi, Motohiro; Nonomura, Yutaka; Senda, Hidemi

    A high-resolution leak-testing method named HR (High-Resolution) Integration Technique has been developed for MEMS (Micro Electro Mechanical Systems) sensors such as a vibrating angular-rate sensor housed in a vacuum package. Procedures of the method to obtain high leak-rate resolution were as follows. A package filled with helium gas was kept in a small accumulation chamber to accumulate helium gas leaking from the package. After the accumulation, the accumulated helium gas was introduced into a mass spectrometer in a short period of time, and the flux of the helium gas was measured by the mass spectrometer as a transient phenomenon. The leak-rate of the package was calculated from the detected transient waveform of the mass spectrometer and the accumulation time of the helium gas in the accumulation chamber. Because the density of the helium gas in the vacuum chamber increased and the accumulated helium gas was measured in a very short period of time with the mass spectrometer, the peak strength of the transient waveform became high and the signal to noise ratio was much improved. The detectable leak-rate resolution of the technique reached 1×10-15 (Pa·m3/s). This resolution is 103 times superior to that of the conventional helium vacuum integration method. The accuracy of the measuring system was verified with a standard helium gas leak source. The results were well matched between theoretical calculation based on the leak-rate of the source and the experimental results within only 2% error.

  13. 40 CFR 53.52 - Leak check test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or flow rate measurement components. (2) Internal leakage is the total sample air flow rate that.... (1) External leakage includes the total flow rate of external ambient air which enters the sampler... equipment. (1) Flow rate measurement device, range 70 mL/min to 130 mL/min, 2 percent certified...

  14. 40 CFR 53.52 - Leak check test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or flow rate measurement components. (2) Internal leakage is the total sample air flow rate that.... (1) External leakage includes the total flow rate of external ambient air which enters the sampler... equipment. (1) Flow rate measurement device, range 70 mL/min to 130 mL/min, 2 percent certified...

  15. 40 CFR 53.52 - Leak check test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or flow rate measurement components. (2) Internal leakage is the total sample air flow rate that.... (1) External leakage includes the total flow rate of external ambient air which enters the sampler... equipment. (1) Flow rate measurement device, range 70 mL/min to 130 mL/min, 2 percent certified...

  16. 40 CFR 53.52 - Leak check test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or flow rate measurement components. (2) Internal leakage is the total sample air flow rate that.... (1) External leakage includes the total flow rate of external ambient air which enters the sampler... equipment. (1) Flow rate measurement device, range 70 mL/min to 130 mL/min, 2 percent certified...

  17. Model-based flow rate control for an orfice-type low-volume air sampler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...

  18. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  19. Relationships between strength and endurance parameters and air depletion rates in professional firefighters.

    PubMed

    Windisch, Stephanie; Seiberl, Wolfgang; Schwirtz, Ansgar; Hahn, Daniel

    2017-03-17

    The aim of this study was to quantify the physical demands of a simulated firefighting circuit and to establish the relationship between job performance and endurance and strength fitness measurements. On four separate days 41 professional firefighters (39 ± 9 yr, 179.6 ± 2.3 cm, 84.4 ± 9.2 kg, BMI 26.1 ± 2.8 kg/m(2)) performed treadmill testing, fitness testing (strength, balance and flexibility) and a simulated firefighting exercise. The firefighting exercise included ladder climbing (20 m), treadmill walking (200 m), pulling a wire rope hoist (15 times) and crawling an orientation section (50 m). Firefighting performance during the simulated exercise was evaluated by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Multiple regression analysis based on the TSA-model served for the identification of the physiological determinants most relevant for professional firefighting. Three main factors with great influence on firefighting performance were identified (70.1% of total explained variance): VO2peak, the time firefighter exercised below their individual ventilatory threshold and mean breathing frequency. Based on the identified main factors influencing firefighting performance we recommend a periodic preventive health screening for incumbents to monitor peak VO2 and individual ventilatory threshold.

  20. Relationships between strength and endurance parameters and air depletion rates in professional firefighters

    PubMed Central

    Windisch, Stephanie; Seiberl, Wolfgang; Schwirtz, Ansgar; Hahn, Daniel

    2017-01-01

    The aim of this study was to quantify the physical demands of a simulated firefighting circuit and to establish the relationship between job performance and endurance and strength fitness measurements. On four separate days 41 professional firefighters (39 ± 9 yr, 179.6 ± 2.3 cm, 84.4 ± 9.2 kg, BMI 26.1 ± 2.8 kg/m2) performed treadmill testing, fitness testing (strength, balance and flexibility) and a simulated firefighting exercise. The firefighting exercise included ladder climbing (20 m), treadmill walking (200 m), pulling a wire rope hoist (15 times) and crawling an orientation section (50 m). Firefighting performance during the simulated exercise was evaluated by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Multiple regression analysis based on the TSA-model served for the identification of the physiological determinants most relevant for professional firefighting. Three main factors with great influence on firefighting performance were identified (70.1% of total explained variance): VO2peak, the time firefighter exercised below their individual ventilatory threshold and mean breathing frequency. Based on the identified main factors influencing firefighting performance we recommend a periodic preventive health screening for incumbents to monitor peak VO2 and individual ventilatory threshold. PMID:28303944

  1. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure.

    PubMed

    Park, J H; Spengler, J D; Yoon, D W; Dumyahn, T; Lee, K; Ozkaynak, H

    1998-01-01

    The air exchange rates or air changes per hour (ACH) were measured under 4 conditions in 3 stationary automobiles. The ACH ranged between 1.0 and 3.0 h-1 with windows closed and no mechanical ventilation, between 1.8 and 3.7 h-1 for windows closed with fan set on recirculation, between 13.3 and 26.1 h-1 for window open with no mechanical ventilation, and between 36.2 and 47.5 h-1 for window closed with the fan set on fresh air. ACHs for windows closed with no ventilation were higher for the older automobile than for the newer automobiles. With the windows closed and fan turned off, ACH was not influenced by wind speed (p > 0.05). When the window was open, ACH appeared to be greatly affected by wind speed (R2 = 0.86). These measurements are relevant to understanding exposures inside automobiles to sources such as dry-cleaned clothes, cigarettes and airbags. Therefore, to understand the in-vehicle exposure to these internal sources, perchloroethylene (PCE) emitted from dry-cleaned clothes and environmental tobacco smoke (ETS) inside a vehicle were modeled for simulated driving cycles. Airbag deployment was also modeled for estimating exposure level to alkaline particulate and carbon monoxide (CO). Average exposure to PCE inside a vehicle for 30 minutes period was high (approximately 780 micrograms/m3); however, this is only 6% of the two-week exposure that is influenced by the storage of dry cleaned clothing at home. On the other hand, the exposure levels of respirable suspended particulate (RSP) and formaldehyde due to ETS could reach 2.1 mg/m3 and 0.11 ppm, respectively, when a person smokes inside a driving car even with the window open. In modeling the in-vehicle concentrations following airbag deployment, the average CO level over 20 minutes would not appear to present problem (less than 28 ppm). The peak concentration of respirable particulate would have exceeded 140 mg/m3. Since most of the particle mass is composed of alkaline material, these high levels

  2. Emergency management of heat exchanger leak on cardiopulmonary bypass with hypothermia.

    PubMed

    Gukop, P; Tiezzi, A; Mattam, K; Sarsam, M

    2015-11-01

    Heat exchanger leak on cardiopulmonary bypass is very rare, but serious. The exact incidence is not known. It is an emergency associated with the potential risk of blood contamination, air embolism and haemolysis, difficulty with re-warming, acidosis, subsequent septic shock, multi-organ failure and death. We present a prompt, highly co-ordinated algorithm for the successful management of this important rare complication. There is need for further research to look for safety devices that detect leaks and techniques to reduce bacterial load. It is essential that teams practice oxygenator change-out routines and have a well-established change-out protocol.

  3. Comparison BIPM.RI(I)-K8 of high dose rate 192Ir brachytherapy standards for reference air kerma rate of the NPL and the BIPM

    NASA Astrophysics Data System (ADS)

    Alvarez, J. T.; Sander, T.; de Pooter, J. A.; Allisy-Roberts, P. J.; Kessler, C.

    2014-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate brachytherapy sources of the National Physical Laboratory (NPL), United Kingdom, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the NPL in June 2010. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NPL and the BIPM standards for reference air kerma rate, is 0.9989 with a combined standard uncertainty of 0.0057. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  4. Modelling evolution of air dose rates in river basins in Fukushima Prefecture affected by sediment-sorbed radiocesium redistribution

    NASA Astrophysics Data System (ADS)

    Malins, A.; Sakuma, K.; Nakanishi, T.; Kurikami, H.; Machida, M.; Kitamura, A.; Yamada, S.

    2015-12-01

    The radioactive 134Cs and 137Cs isotopes deposited over Fukushima Prefecture by the Fukushima Daiichi nuclear disaster are the predominant radiological concern for the years following the accident. This is because the energetic gamma radiation they emit on decay constitutes the majority of the elevated air dose rates that now afflict the region. Therefore, we developed a tool for calculating air dose rates from arbitrary radiocesium spatial distributions across the land surface and depth profiles within the ground. As cesium is strongly absorbed by clay soils, its primary redistribution mechanism within Fukushima Prefecture is by soil erosion and water-borne sediment transport. Each year between 0.1~1% of the total radiocesium inventory in the river basins neighboring Fukushima Daiichi is eroded from the land surface and enters into water courses, predominantly during typhoon storms. Although this is a small amount in relative terms, in absolute terms it corresponds to terabecquerels of 134Cs and 137Cs redistribution each year and this can affect the air dose rate at locations of high erosion and sediment deposition. This study inputs the results of sediment redistribution simulations into the dose rate evaluation tool to calculate the locations and magnitude of air dose rate changes due to radiocesium redistribution. The dose rate calculations are supported by handheld survey instrument results taken within the Prefecture.

  5. 40 CFR 63.1184 - What do I need to know about the design specifications, installation, and operation of a bag leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... where appropriate plant personnel will be able to hear it. (e) For a positive-pressure fabric filter, each compartment or cell must have a bag leak detector. For a negative-pressure or induced-air...

  6. 40 CFR 63.1184 - What do I need to know about the design specifications, installation, and operation of a bag leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... where appropriate plant personnel will be able to hear it. (e) For a positive-pressure fabric filter, each compartment or cell must have a bag leak detector. For a negative-pressure or induced-air...

  7. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    SciTech Connect

    DeLorenzo, M; Wu, D; Rutel, I; Yang, K

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancy factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation

  8. Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.

    PubMed

    Mai, Horace K W; Chan, Daniel W T; Burnett, John

    2003-09-01

    In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.

  9. ICPP water inventory study leak test report

    SciTech Connect

    Richards, B.T.

    1993-12-01

    Data from the Idaho Chemical Processing Plant (ICPP) indicate that there are three areas where perched water bodies (groundwater) are suspect to exist beneath the ICPP. Questions have been raised concerning the recharge sources for the northwest (NW) perched water body which is located below the northwest area of the ICPP. In response to these questions, a Water Inventory Study was initiated to determine the extent and the potential impacts of the ICPP water systems as a recharge source. A key part of the Water Inventory Study was the leak test investigation, performed to leak test the ICPP water piping distribution system, or portions thereof, which could potentially contribute to the recharge of the NW perched water body. This report provides an overview and the results of the leak test investigation and will be incorporated into the overall Water Inventory Study Report.

  10. Remote Leak Detection: Indirect Thermal Technique

    NASA Technical Reports Server (NTRS)

    Clements, Sandra

    2002-01-01

    Remote sensing technologies are being considered for efficient, low cost gas leak detection. Eleven specific techniques have been identified for further study and evaluation of several of these is underway. The Indirect Thermal Technique is one of the techniques that is being explored. For this technique, an infrared camera is used to detect the temperature change of a pipe or fitting at the site of a gas leak. This temperature change is caused by the change in temperature of the gas expanding from the leak site. During the 10-week NFFP program, the theory behind the technique was further developed, experiments were performed to determine the conditions for which the technique might be viable, and a proof-of-concept system was developed and tested in the laboratory.

  11. Spontaneous cerebrospinal fluid leak at the clivus

    PubMed Central

    Składzien, Jacek; Betlej, Marek; Chrzan, Robert; Mika, Joanna

    2015-01-01

    We present a case report of a 60-year-old woman with a spontaneous cerebrospinal fluid leak at the clivus, obesity and no history of trauma. Follow-up imaging scans confirmed enlargement of the defect within the posterior clival framework to the size of 16 × 9 × 4 mm with a suspected meningocerebral hernia. The surgeons used the “two nostrils – four hands” endoscopic operating technique. The patient reported a history of cerebrospinal fluid leaks lasting for 3 years, with increasingly shorter leak-free periods and an increasing incidence of inflammatory complications. The patient recovered without complications, and she was discharged 14 days after the surgery. Good local outcome and improved patient condition were achieved postoperatively. PMID:26865899

  12. Dural Defect Repair in Translabyrinthine Acoustic Neuroma Surgery and Its Implications in Cerebrospinal Fluid Leak Occurrence

    PubMed Central

    Netto, Aloysio Augusto Tahan de Campos; Colafêmina, José Fernando; Centeno, Ricardo Silva

    2012-01-01

    Cerebrospinal fluid (CSF) leak is a complication that may occur after translabyrinthine (translab) acoustic neuroma (AN) removal. The aim of this study is to verify the incidence of CSF leak using two techniques for dural defect closure in translab AN surgery and present a new technique for dural repair. A retrospective study was held, reviewing charts of 34 patients in a tertiary neurotologic referral center. Out of these 34 patients that underwent translab AN excision in a 1-year period, 18 had their dural defect repaired using only abdominal fat graft and 16 using synthetic dura substitute (SDS) plus abdominal fat tissue. One patient (5.5%) in the first group had CSF leak and 1 (6.2%) in the second group had CSF leak postoperatively. Our data suggest that there are no significant differences in CSF leak rates using both techniques, although studies in a larger series must be undertaken to conclude it. We believe that the development of some points in the new technique for dural repair can achieve better results and reduce the CSF leak incidence in the translabyrinthine acoustic neuroma surgery in the near future. PMID:24083124

  13. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  14. Apparatus for Leak Testing Pressurized Hoses

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D. (Inventor); Garrison, Steve G. (Inventor); Gant, Bobby D. (Inventor); Palmer, John R. (Inventor)

    2015-01-01

    A hose-attaching apparatus for leak-testing a pressurized hose may include a hose-attaching member. A bore may extend through the hose-attaching member. An internal annular cavity may extend coaxially around the bore. At least one of a detector probe hole and a detector probe may be connected to the internal annular cavity. At least a portion of the bore may have a diameter which is at least one of substantially equal to and less than a diameter of a hose to be leak-tested.

  15. Technique for detecting liquid metal leaks

    DOEpatents

    Bauerle, James E.

    1979-01-01

    In a system employing flowing liquid metal as a heat transfer medium in contact with tubular members containing a working fluid, i.e., steam, liquid metal leaks through the wall of the tubular member are detected by dislodging the liquid metal compounds forming in the tubular member at the leak locations and subsequently transporting the dislodged compound in the form of an aerosol to a detector responsive to the liquid metal compound. In the application to a sodium cooled tubular member, the detector would consist of a sodium responsive device, such as a sodium ion detector.

  16. E-beam treatment of trichloroethylene-air mixtures: Products and rates

    NASA Astrophysics Data System (ADS)

    Mill, Theodore; Su, Minggong; David Yao, C. C.; Matthews, Stephen M.; Wang, Francis T. S.

    1997-09-01

    Electron beam (E-beam) treatment of 3000 ppmv trichloroethylene (TCE) vapor in dry and wet air led to rapid, nearly quantitative, conversion of TCE to dichloroacetyl chloride, plus small amounts of phosgene. Higher E-beam doses, up to 110 kGy, led to oxidation of the initial products to CO, CO 2, HCl and Cl 2. The results parallel results found for photo- and Cl-atom initiated oxidation of TCE vapor, and are accounted for by an efficient Cl-atom chain oxidation. Lack of effect of 28,000 ppmv water vapor (90% RH) on rates or products reflects a very high efficiency for the Cl-atom chain oxidation and the very slow reaction of vapor phase water with acyl halides. Irradiation experiments conducted with TCE dissolved in aerated and deaerated water at 10 and 300 ppm showed marked differences in radiolytic products from those found in the vapor phase. A preliminary cost estimate indicates that E-beam treatment of TCE vapor is very competitive with conventional activated carbon treatment and catalytic oxidation.

  17. Tank 241-A-105 leak assessment

    SciTech Connect

    Not Available

    1991-06-01

    Tank 241-A-105 is one of 149 single shell tanks constructed at Hanford to contain and store highly radioactive wastes originating from the processing of spent nuclear reactor fuel. Radiation detection and temperature monitoring devices installed beneath the tank indicate that several episodes of leakage of waste from the tank have occurred. The aim of this study was to evaluate the previous estimates and reanalyze the data to provide a more accurate estimate of leakage from the tank. The principal conclusions of this study are as follows: Earlier investigators estimated leakage prior to August 1968 at 5,000 to 15,000 gallons. Their estimate appears reasonable. Leakage while the tank was being sluiced (8/68--11/70) probably exceeded 5,000 gallons, but probably did not exceed 30,000 gallons. Insufficient data are available to be more precise. Cooling water added to the tank during the sprinkling phase (11/70 -- 12/78) was approximately 610,000 gallons. Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water. Radionuclides escaping into the soil under the tank cannot be estimated directly because of many uncertainties. Based on a range of leakage from 10,000 to 45,000 gallons, assumed compositions, and decayed to 1/1/91, radioactivity under the tank is expected to be in the range of 85,000--760,000 curies. Measured radiation peaks were nearly all located directly below the perimeter of the tank and, except in rare cases, they showed no tendency to spread horizontally. Moreover, the maximum radiation readings detected are a very small fraction of the radiation reading in the tank. This is the basis for the conclusion that the rate of leakage and, most likely, the quantity leaked, was small. 51 refs., 5 figs., 3 tabs.

  18. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  19. Simulation and evaluation of respirator faceseal leaks using computational fluid dynamics and infrared imaging.

    PubMed

    Lei, Zhipeng; Yang, James; Zhuang, Ziqing; Roberge, Raymond

    2013-05-01

    This paper presents a computational fluid dynamics (CFD) simulation approach for the prediction of leakage between an N95 filtering facepiece respirator (FFR) and a headform and an infrared camera (IRC) method for validating the CFD approach. The CFD method was used to calculate leak location(s) and 'filter-to-faceseal leakage' (FTFL) ratio for 10 headforms and 6 FFRs.The computational geometry and leak gaps were determined from analysis of the contact simulation results between each headform-N95 FFR combination. The volumetric mesh was formed using a mesh generation method developed by the authors. The breathing cycle was described as a time-dependent profile of the air velocity through the nostril. Breathing air passes through both the FFR filter medium and the leak gaps. These leak gaps are the areas failing to achieve a seal around the circumference of the FFR. The CFD approach was validated by comparing facial temperatures and leak sites from IRC measurements with eight human subjects. Most leaks appear at the regions of the nose (40%) and right (26%) and left cheek (26%) sites. The results also showed that, with N95 FFR (no exhalation valves) use, there was an increase in the skin temperature at the region near the lip, which may be related to thermal discomfort. The breathing velocity and the viscous resistance coefficient of the FFR filter medium directly impacted the FTFL ratio, while the freestream flow did not show any impact on the FTFL ratio. The proposed CFD approach is a promising alternative method to study FFR leakage if limitations can be overcome.

  20. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality and health symptoms.

    PubMed

    Maula, Henna; Hongisto, Valtteri; Naatula, Viivi; Haapakangas, Annu; Koskela, Hannu

    2017-04-05

    The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO2 level 2260 ppm). CO2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odour intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. This article is protected by copyright. All rights reserved.

  1. Ablation rate, caries removal, and restoration using Nd:YAG and Er:YAG lasers and air abrasion

    NASA Astrophysics Data System (ADS)

    White, Joel M.

    1998-04-01

    This study evaluated the ablation rate in dentin and enamel of the Nd:YAG laser (1 - 2W, 10Hz) and the Er:YAG laser (1 - 2.5W, 10Hz), compared to the high-speed drill, low-speed drill and air abrasion (fine and extra-fine particle size). Subsequently, the effectiveness of caries removal and restoration in enamel of the Nd:YAG laser at the same powers and pulse repetition rate was compared to the high-speed drill, low-speed drill, and air abrasion. Enamel and dentin of 1mm thick mid-coronal sections from extracted third molars were ablated by Er:YAG laser ((lambda) equals 2.94 micrometer), Nd:YAG laser ((lambda) equals 1.06 micrometer) both with air/water spray, high-speed drill with 300 carbide bur, and low-speed drill with $1/4 round bur and air abrasions at 160 psi, with fine air abrasion at 50 micrometer and extra fine at 27 micrometer particle size. Removal (ablation) rate defined as dentin or enamel thickness divided by time required for perforation of the samples was determined for lasers, drills and air abrasion. Multifactor randomized ANOVA (p less than 0.05) considered removal rate as a function of treatment conditions. Removal Rate (micrometers per second) Enamel Dentin High-speed drill 273 +/- 47.34 493 +/- 1.73 Low-speed drill 0 42 +/- 14.25 Nd:YAG 2W 0 103 +/- 37 Er:YAG 2W 35 +/- 10 348 +/- 101 Air abrasion/fine 220 +/- 27 433 +/- 99 Air abrasion/extra fine 151 +/- 13 203 +/- 30 Er:YAG laser at 2W 10Hz ablated both enamel and dentin faster than the low-speed drill but slower than the high-speed drill, while the Nd:YAG laser at identical power and pulse rate did not ablate healthy enamel but was capable of removing dentin. To determine caries removal rate in enamel, extracted superficial carious molars (n equals 35) that included minimal explorer penetration and radiographic confirmation of caries extent were selected. Samples were randomly distributed into treatment groups: high-speed drill (HS), low-speed drill (LS), Nd:YAG laser (L), Nd:YAG with air

  2. Portable Rapid Test Fuel Tank Leak Detection System

    DTIC Science & Technology

    2010-04-01

    aspects of the bulk tank leak detection method . It is not intended to provide a thorough description of the principles behind the system or how the...no Does the Method detect the presence of water in the bottom of the tank? ( ) yes (X) no B-2 Principle of Operation What technique...rates of 0.10 gal/hr and 0.20 gal/hr with a very high PD and very low PFA. This provides a significant improvement over current methods technologically

  3. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Breen, Michael S.; Burke, Janet M.; Batterman, Stuart A.; Vette, Alan F.; Godwin, Christopher; Croghan, Carry W.; Schultz, Bradley D.; Long, Thomas C.

    2014-01-01

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h−1 with a median of 0.64 h−1. For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010–2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated

  4. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and

  5. Precise Evaluation of Leaked Information with Secure Randomness Extraction in the Presence of Quantum Attacker

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito

    2015-01-01

    We treat secret key extraction when the eavesdropper has correlated quantum states. We propose quantum privacy amplification theorems different from Renner's, which are based on quantum conditional Rényi entropy of order 1 + s. Using those theorems, we derive an exponential rate of decrease for leaked information and the asymptotic equivocation rate, which have not been derived hitherto in the quantum setting.

  6. EFFECT OF VENTILATION SYSTEMS AND AIR FILTERS ON DECAY RATES OF PARTICLES PRODUCED BY INDOOR SOURCES IN AN OCCUPIED TOWNHOUSE

    EPA Science Inventory

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we me...

  7. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  8. CHANGES IN HEART RATE VARIABILITY AND LUNG FUNCTION OBSERVED IN NC PATROL TROOPERS EXPOSED TO PM AND AIR TOXICS

    EPA Science Inventory

    Changes in Heart Rate Variability and Lung Function in NC Patrol Troopers exposed to PM and Air Toxics

    Michael Riediker1, Wayne E Cascio1, Robert B Devlin2, Thomas Griggs1&4, Margaret Herbst1, Ronald W Williams3, Steve P McCorquodale4, Philip A Bromberg1
    1) University o...

  9. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  10. COPPER PITTING AND PINHOLE LEAK RESEARCH STUDY

    EPA Science Inventory

    Localized copper corrosion or pitting is a significant problem at many water utilities across the United States. Copper pinhole leak problems resulting from extensive pitting are widely under reported. Given the sensitive nature of the problem, extent of damage possible, costs o...

  11. Microphone Detects Boiler-Tube Leaks

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1985-01-01

    Unit simple, sensitive, rugged, and reliable. Diaphragmless microphone detects leaks from small boiler tubes. Porous plug retains carbon granules in tube while allowing pressure changes to penetrate to granules. Has greater life expectancy than previous controllers and used in variety of hot corrosive atmospheres.

  12. [Ryanodine receptor, calcium leak and arrhythmias].

    PubMed

    Rueda, Angélica; de Alba-Aguayo, David R; Valdivia, Héctor H

    2014-01-01

    The participation of the ionic Ca(2+) release channel/ryanodine receptor in cardiac excitation-contraction coupling is well known since the late '80s, when various seminal papers communicated its purification for the first time and its identity with the "foot" structures located at the terminal cisternae of the sarcoplasmic reticulum. In addition to its main role as the Ca(2+) channel responsible for the transient Ca(2+) increase that activates the contractile machinery of the cardiomyocytes, the ryanodine receptor releases Ca(2+) during the relaxation phase of the cardiac cycle, giving rise to a diastolic Ca(2+) leak. In normal physiological conditions, diastolic Ca(2+) leak regulates the proper level of luminal Ca(2+), but in pathological conditions it participates in the generation of both, acquired and hereditary arrhythmias. Very recently, several groups have focused their efforts into the development of pharmacological tools to control the altered diastolic Ca(2+) leak via ryanodine receptors. In this review, we focus our interest on describing the participation of cardiac ryanodine receptor in the diastolic Ca(2+) leak under physiological or pathological conditions and also on the therapeutic approaches to control its undesired exacerbated activity during diastole.

  13. The IPEM code of practice for determination of the reference air kerma rate for HDR (192)Ir brachytherapy sources based on the NPL air kerma standard.

    PubMed

    Bidmead, A M; Sander, T; Locks, S M; Lee, C D; Aird, E G A; Nutbrown, R F; Flynn, A

    2010-06-07

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR (192)Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR (192)Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an (192)Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, Κ(R) (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, S(K) (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL (192)Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  14. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called hi-pot'' (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven's Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the double source'' method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  15. Locating of leaks in water-cooled generator stator bars using perfluorocarbon tracers

    SciTech Connect

    Loss, W.M.; Dietz, R.N.

    1991-09-01

    Water cooled stator bars in power plant generators often fail during the maintenance cycle due to water leakage. After the hydrogen pressure in the generator shell has been released water can leak through cracks in the copper and through the insulation. Leaking bars, but not the leaks themselves, are detected with so-called ``hi-pot`` (high potential) tests where direct electrical current is applied to the stator bar windings. A study initiated by ConEd and Brookhaven`s Tracer Technology Center to explore the cause of these leakage problems to determine if the failures originate in the manufacturing process or are created in service by phase related torque stresses. To this purpose bars that had failed the hi-pot test were investigated first with the insulation in place and then stripped to the bare copper. The bars were pressurized with gases containing perfluorocarbon tracers and the magnitude and location of the leaks was detected by using tracers technology principles and instruments such as the ``double source`` method and the Dual Trap Analyzer. In the second part of the project the windings within a generator were tested in-situ for leaks during an outage using tracer principles. Recommendations are given suggesting the shut down of stator bar cooling water before hydrogen bleeding during outages and a revision of the current vent flow rate. The new standard should establish a reasonable leak rate for the stator bar windings proper and exclude leakage of pump seals and connections. Testing during the maintenance cycle in generators should include routine tracer leak detection following the hi-pot test.

  16. Is volcanic air pollution associated with decreased heart-rate variability?

    PubMed Central

    Chow, Dominic C; Grandinetti, Andrew; Fernandez, Ed; Sutton, A J; Elias, Tamar; Brooks, Barbara; Tam, Elizabeth K

    2010-01-01

    Objectives To determine the autonomic cardiovascular control among residents of Hawaii who are exposed to varying levels of volcanic air pollution (vog), which consists largely of sulfur dioxide (SO2) and acid aerosols. Methods In a cross-sectional study between April 2006 and June 2008, the authors measured cardiovagal autonomic function by heart-rate variability (HRV) in 72 healthy individuals who lived in four exposure zones on Hawaii Island: vog-free (n=18); episodic exposure to SO2 >200 ppb and acid aerosol (n=19); chronic exposure to SO2 ≥30 ppb and acid aerosol (n=15); and chronic exposure to acid aerosols (n=20). Individuals with diabetes or heart disease, or who had smoked in the preceding month were excluded. HRV was measured in all subjects during rest, paced breathing and active standing (Ewing manoeuvre). HRV was analysed in time and frequency domains and compared between the four exposure zones. Results There were no significant differences between exposure zones in HRV, in either time or frequency domains, even after adjustment for age, gender, ethnicity and body mass index. There was no significant HRV change in three individuals in whom HRV was measured before and during an exposure to combined SO2 100–250 ppb and concentration of respirable particles of diameter ≤2.5 μ (PM2.5) >500 μg/m3. Age was significantly correlated with time-domain parameters during paced breathing and the Ewing manoeuvre. Conclusions This study of healthy individuals found no appreciable effects of vog on the autonomic nervous system. PMID:21546995

  17. The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012.

    PubMed

    Mikami, Satoshi; Maeyama, Takeshi; Hoshide, Yoshifumi; Sakamoto, Ryuichi; Sato, Shoji; Okuda, Naotoshi; Sato, Tetsuro; Takemiya, Hiroshi; Saito, Kimiaki

    2015-01-01

    Distribution maps of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant were constructed using the results of measurement obtained from approximately 6500 locations (at most) per measurement period. The measurements were conducted 1 m above the ground using survey meters in flat and spatially open locations. Spatial distribution and temporal change of the air dose rate in the area were revealed by examining the resultant distribution maps. The observed reduction rate of the air dose rate over the 18 months between June 2011 and December 2012 was greater than that calculated from radioactive decay of radiocesium by 10% in relative percentage except decontaminated sites. This 10% difference in the reduction of the air dose rate can be explained by the mobility of radiocesium in the depth direction. In the region where the air dose rate was lower than 0.25 μSv h(-1) on June 2011, the reduction of the air dose rate was observed to be smaller than that of the other dose rate regions, and it was in fact smaller than the reduction rate caused by radioactive decay alone. In contrast, the reduction rate was larger in regions with higher air dose rates. In flat and spatially open locations, no significant difference in the reduction tendency of air dose rates was observed among different land use classifications (rice fields, farmland, forests, and building sites).

  18. The leak location package for assessment of the time-frequency correlation method for leak location

    NASA Astrophysics Data System (ADS)

    Faerman, V. A.; Cheremnov, A. G.; Avramchuk, V. S.; Shepetovsky, D. V.

    2017-01-01

    The paper describes the simplest implementation of a software and hardware package for acoustic correlation leak location and results of its performance assessment for location of water leaks from a metallic pipe in laboratory conditions. A distinctive feature of this leak locator is the use of the software based on the time-frequency correlation analysis of signals, which was proposed in our previous papers. Comparative analysis results are given for the information content of classical and time-frequency cross-correlation functions as obtained during processing of experimental data. The results obtained justify comparatively higher efficiency of a time-frequency cross correlation method to solve the leak location task. Improved efficiency is determined by bandpass filtration embedded into the time-frequency cross-correlation function calculation.

  19. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  20. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  1. REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase)   REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

  2. 49 CFR 230.64 - Leaks under lagging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.64 Leaks under lagging. The steam locomotive owner and/or operator shall take out...

  3. 49 CFR 230.64 - Leaks under lagging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.64 Leaks under lagging. The steam locomotive owner and/or operator shall take out...

  4. 49 CFR 230.64 - Leaks under lagging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.64 Leaks under lagging. The steam locomotive owner and/or operator shall take out...

  5. 49 CFR 230.64 - Leaks under lagging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.64 Leaks under lagging. The steam locomotive owner and/or operator shall take out...

  6. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  7. Authentic Assessment in the Geometry Classroom: Calculating the Classroom Air-Exchange Rate.

    ERIC Educational Resources Information Center

    Erich, David J.

    2002-01-01

    Introduces a room air-exchange activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)

  8. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  9. Western Mojave Desert, Rate of Progress Demonstration; Proposed Approval of California Air Plan Revision

    EPA Pesticide Factsheets

    EPA is proposing to approve a state implementation plan revision submitted by the State of California to meet Clean Air Act requirements applicable to the Western Mojave Desert (WMD) ozone nonattainment area.

  10. Analysis of Pressure Data As CO2/Brine Leak Diagnostic in Shallow Aquifers

    NASA Astrophysics Data System (ADS)

    Trainor Guitton, W.; Mansoor, K.; Sun, Y.; Carroll, S.

    2014-12-01

    Pressure is a promising signal for detecting CO2leakage from deep, geologic storage reservoirs to shallow groundwater sources. Pressure signals should faster than other physical indications (i.e. electrical or geochemical changes) thus allowing for a timely leak diagnosis and mitigation. We explore the effectiveness of pressure as a detection tool. A simulation-based approach is used to diagnose a CO2/brine leak using pressure data from monitoring wells and to assess the influence of 3 principal uncertainties: distances between the source leak and the monitoring well, heterogeneity of the aquifer flow properties, and CO2 and brine leakage rates. Specifically, five parameters are sampled: the correlation lengths of the vertical and horizontal permeability for the aquifer (2), the sand proportion for each model (1), and the CO2 and brine leakage flux magnitude (2). Areal model dimensions and grid cell dimensions allow for sampling distances of 25 m to 990 m from the leaking well to the monitoring well. We generate 500 simulations by sampling each parameter within an appropriate range predefined by site-specific values. Pressure transducers in monitoring wells will only be accurate at measuring changes on the order of 0.1 to 0.3 PSI. These pressure thresholds are used to establish which simulations are classified as leaks at the leaking location and which locations away from the leak would constitute a signal. We observe 3 conclusions from the results: vertical flow barriers (heterogeneity) creates complicated pressure signals by forcing convoluted flow paths false positives (Pr( No Leak | Signal)) do not occur with our sample simulations false negatives (Pr( Leak | No signal)) dominate after 200 days even when considering only potential monitoring wells within 100m of the leaking well. We use these posteriors to calculate the value of information (VOI) from above zone pressure data. This work was performed under the auspices of the U.S. Department of Energy by

  11. Volumetric leak detection in large underground storage tanks. Volume 1

    SciTech Connect

    Starr, J.W.; Wise, R.F.; Maresca, J.W.

    1991-08-01

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems when used to test tanks up to 190,000 L (50,000 gal) in capacity. The experiments, conducted on two partially filled 190,000-L (50,000-gal) USTs at Griffiss Air Force Base in upstate New York during late August 1990, showed that a system's performance in large tanks depends primarily on the accuracy of the temperature compensation, which is inversely proportional to the volume of product in the tank. Errors in temperature compensation that were negligible in tests in small tanks were important in large tanks. The experiments further suggest that a multiple-test strategy is also required.

  12. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    SciTech Connect

    OHL, P.C.

    1999-09-23

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  13. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Leak testing of sealed sources. 39.35 Section 39.35 Energy....35 Leak testing of sealed sources. (a) Testing and recordkeeping requirements. Each licensee who uses... Commission for 3 years after the leak test is performed. (b) Method of testing. The wipe of a sealed...

  14. 10 CFR 39.35 - Leak testing of sealed sources.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Leak testing of sealed sources. 39.35 Section 39.35 Energy....35 Leak testing of sealed sources. (a) Testing and recordkeeping requirements. Each licensee who uses... Commission for 3 years after the leak test is performed. (b) Method of testing. The wipe of a sealed...

  15. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    SciTech Connect

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  16. Effect of heat leaks in platinum resistance thermometry.

    PubMed

    Goldratt, E; Yeshurun, Y; Greenfield, A J

    1980-03-01

    The effect of heat leaks in platinum resistance thermometry is analyzed. An experimental method is proposed for estimating the magnitude of this effect. Results are reported for the measurement of the temperature of a hot, solid body under different heat-leak configurations. Design criteria for thermometers are presented which minimize the effect of such heat leaks.

  17. Effect of heat leaks in platinum resistance thermometry

    NASA Astrophysics Data System (ADS)

    Goldratt, E.; Yeshurun, Y.; Greenfield, A. J.

    1980-03-01

    The effect of heat leaks in platinum resistance thermometry is analyzed. An experimental method is proposed for estimating the magnitude of this effect. Results are reported for the measurement of the temperature of a hot, solid body under different heat-leak configurations. Design criteria for thermometers are presented which minimize the effect of such heat leaks.

  18. 49 CFR 195.134 - CPM leak detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false CPM leak detection. 195.134 Section 195.134... PIPELINE Design Requirements § 195.134 CPM leak detection. This section applies to each hazardous liquid... computational pipeline monitoring (CPM) leak detection system and each replaced component of an existing...

  19. 49 CFR 195.134 - CPM leak detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false CPM leak detection. 195.134 Section 195.134... PIPELINE Design Requirements § 195.134 CPM leak detection. This section applies to each hazardous liquid... computational pipeline monitoring (CPM) leak detection system and each replaced component of an existing...

  20. 49 CFR 195.444 - CPM leak detection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false CPM leak detection. 195.444 Section 195.444... PIPELINE Operation and Maintenance § 195.444 CPM leak detection. Each computational pipeline monitoring (CPM) leak detection system installed on a hazardous liquid pipeline transporting liquid in...

  1. 49 CFR 195.444 - CPM leak detection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false CPM leak detection. 195.444 Section 195.444... PIPELINE Operation and Maintenance § 195.444 CPM leak detection. Each computational pipeline monitoring (CPM) leak detection system installed on a hazardous liquid pipeline transporting liquid in...

  2. Leak Detection and Location Technology Assessment for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Coffey, Neil C.; Madaras, Eric I.

    2008-01-01

    Micro Meteoroid and Orbital Debris (MMOD) and other impacts can cause leaks in the International Space Station and other aerospace vehicles. The early detection and location of leaks is paramount to astronaut safety. Therefore this document surveys the state of the art in leak detection and location technology for aerospace vehicles.

  3. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  4. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.

  5. EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS

    SciTech Connect

    Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

    2005-05-01

    This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

  6. Helium bombardment leak testing of the closure disk weld for MC2949, MC3004, and MC3095 pyrotechnic devices

    SciTech Connect

    Dudley, W.A.

    1980-03-31

    A helium bombardment leak test procedure was developed to determine the leak level of the closure disk weld performed on three nearly identical pyrotechnic actuators. The inspection procedure is capable of leak testing any of the three product types at a rate better than 120 units per 8-hr work shift. Testing is performed on a 100% sample plan and employs a go/no-go bombardment leak rate acceptance specification of 3 x 10/sup -9/ atm-cm/sup 3/-sec/sup -1/. In addition to the current test procedure and results, this report includes a description of procedure and results associated with the test as initially performed. Other applications of the current technique are also listed.

  7. [Air quality monitoring on the International Space Station].

    PubMed

    Pakhomova, A A; Mukhamedieva, L N; Mikos, K N

    2006-01-01

    Chemical contamination of air in space cabins occurs mainly due to permanent offgassing of equipment and materials, and leaks. Methods and means of qualitative and quantitative air monitoring on the ISS are powerful enough as for routine so emergency (e.g. local fire, toxic leak) air control. The ISS air quality has suited to the adopted standards and crew safety requirements. Yet, there is a broad field of action toward improvement of the space cabin air monitoring.

  8. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki

    2017-01-01

    Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h(-1)) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation

  9. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.

    PubMed

    Dumont, Éric; Héquet, Valérie

    2017-03-06

    This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges).

  10. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect

    Pang, S.; Dakin, M.

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  11. Gels, monomer solutions fix pinhole casing leaks

    SciTech Connect

    Creel, P.; Crook, R.

    1997-10-13

    Sodium silicate gel and in situ polymerizing monomer (IPM) solutions have had nearly 100% success in repairing pinhole casing leaks. These methods are an alternative to small-particle cement squeeze jobs and can be used in both producing and injection wells. The particles in small-particle or fine-grind cement average 5 microns in diameter compared to the 50 micron particles in Portland cement. Repairs not only help satisfy regulatory requirements but also reduce possible related casing repair costs such as during drillouts, repeated cement squeezes, and workovers. If casing leaks in injection wells are unsuccessfully squeezed and fail regulatory testing, the operator may be fined and the wells may have to be plugged and abandoned. The paper describes the repair of both injection and production well casings.

  12. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment.

  13. Modeling and measurement of the performance of a branched conduit sampling system in a mass spectrometer leak detector

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1994-01-01

    In the leak testing of a large engineering system, one may distinguish three stages, namely leakage measurement by an overall enclosure, leak location, and leakage measurement by a local enclosure. Sniffer probes attached to helium mass spectrometer leak detectors are normally designed for leak location, a qualitative inspection technique intended to pinpoint where a leak is but not to quantify its rate of discharge. The main conclusion of the present effort is that local leakage measurement by a leak detector with a sniffer probe is feasible provided one has: (1) quantitative data on the performance of the mass separator cell (a device interior to the unit where the stream of fluid in the sample line branches); and (2) a means of stabilizing the mass transfer boundary layer that is created near a local leak site when a sniffer probe is placed in its immediate vicinity. Theoretical models of the mass separator cell are provided and measurements of the machine-specific parameters in the formulas are presented. A theoretical model of a porous probe end for stabilizing the mass transfer boundary is also presented.

  14. Scintigraphy for Pulmonary Capillary Protein Leak

    DTIC Science & Technology

    1982-09-01

    adrministration (16). The method is noninvasive and has been used clinically to determine the severity and duration of non- cardiogenic pulmonary edema ...If the leak exceeds the 1.iiiphatic capacity, which can increase flow by a factor of 20, pulmcnary interstitial edema occurs. T•hen the interstitial...of shoee is the accepted !::odel for the scudv of pulmonary permehbility - edema (18). It is, therefore, necessary to comnpare our scintigraphic

  15. Scintigraphy for Pulmonary Capillary Protein Leak

    DTIC Science & Technology

    1983-09-01

    det,,rmine the severity and duration of non- cardiogenic pulmonary edema (17). C. Approach to the Problem The anim-als were anesthetize,, intubated and...pulmonary lymphatics. If the leak exceeds the lymphatic capacity, which can increase flow by a factor of 20, pulmonary interstitial edema occurs. When...therefore, does not appear to cause permeability pulmonary edema in either the sheep or dog. The ARDS seen in patients following sclerotherapy of esophageal

  16. California residential indoor air quality study. Volume 2. Carbon monoxide and air exchange rate: A univariate and multivariate analysis. Topical report

    SciTech Connect

    Colome, S.D.; Wilson, A.L.; Tian, Y.

    1994-07-01

    This second volume provides a systematic evaluation of the data set focusing on the relationships of the recorded parameters with the following four outcome measures: indoor 48-hour average CO; net 48-hour average indoor minus outdoor CO; air exchange rates; and maximum 8-hour average indoor CO. Over 350 variables were measured and/or recorded for each house in the pilot study. These parameters included the concentrations of pollutants of interest (CO, benzene, NO2, toluene, radon, formaldehyde, and methane), housing characteristics (e.g., cooking fuel, burner adjustments, proper venting) and occupant practices (e.g., cigarette smoking, heating with the range/oven).

  17. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature.

    PubMed

    Wang, Kaicun; Zhou, Chunlüe

    2015-07-22

    Global analyses of surface mean air temperature (T(m)) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of T(m). Existing global analyses calculate T(m) from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using T(m) calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  18. Leak Location and Classification in the Space Shuttle Main Engine Nozzle by Infrared Testing

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Lansing, Mathew

    2003-01-01

    The Space Shuttle Main Engine (SSME) is composed of cooling tubes brazed to the inside of a conical structural jacket. Because of the geometry there are regions that can't be inspected for leaks using the bubble solution and low-pressure method. The temperature change due escaping gas is detectable on the surface of the nozzle under the correct conditions. The methods and results presented in this summary address the thermographic identification of leaks in the Space Shuttle Main Engine nozzles. A highly sensitive digital infrared camera is used to record the minute temperature change associated with a leak source, such as a crack or pinhole, hidden within the nozzle wall by observing the inner "hot wall" surface as the nozzle is pressurized. These images are enhanced by digitally subtracting a thermal reference image taken before pressurization, greatly diminishing background noise. The method provides a nonintrusive way of localizing the tube that is leaking and the exact leak source position to within a very small axial distance. Many of the factors that influence the inspectability of the nozzle are addressed; including pressure rate, peak pressure, gas type, ambient temperature and surface preparation.

  19. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  20. Integrated Approaches for the Management of Staple Line Leaks following Sleeve Gastrectomy

    PubMed Central

    D'Ugo, Stefano; Di Benedetto, Luca; Gaspari, Achille L.; Gentileschi, Paolo

    2017-01-01

    Introduction. Aim of the study was trying to draw a final flow chart for the management of gastric leaks after laparoscopic sleeve gastrectomy, based on the review of our cases over 10 years' experience. Material and Methods. We retrospectively reviewed all patients who underwent LSG as a primary operation at the Bariatric Unit of Tor Vergata University Hospital in Rome from 2007 to 2015. Results. Patients included in the study were 418. There were 6 staple line leaks (1.44%). All patients with diagnosis of a leak were initially discharged home in good clinical conditions and then returned to A&E because of the complication. The mean interval between surgery and readmission for leak was 13,4 days (range 6–34 days, SD ± 11.85). We recorded one death (16.67%) due to sepsis. The remaining five cases were successfully treated with a mean healing time of the gastric leak of 55,5 days (range 26–83 days; SD ± 25.44). Conclusion. Choosing the proper treatment depends on clinical stability and on the presence or not of collected abscess. Our treatment protocol showed being associated with low complication rate and minor discomfort to the patients, reducing the need for more invasive procedures. PMID:28261497

  1. Propellant Feed System Leak Detection: Lessons Learned From the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Hass, Neal; Mizukami, Masashi; Neal, Bradford A.; St. John, Clinton; Beil, Robert J.; Griffin, Timothy P.

    1999-01-01

    This paper presents pertinent results and assessment of propellant feed system leak detection as applied to the Linear Aerospike SR-71 Experiment (LASRE) program flown at the NASA Dryden Flight Research Center, Edwards, California. The LASRE was a flight test of an aerospike rocket engine using liquid oxygen and high-pressure gaseous hydrogen as propellants. The flight safety of the crew and the experiment demanded proven technologies and techniques that could detect leaks and assess the integrity of hazardous propellant feed systems. Point source detection and systematic detection were used. Point source detection was adequate for catching gross leakage from components of the propellant feed systems, but insufficient for clearing LASRE to levels of acceptability. Systematic detection, which used high-resolution instrumentation to evaluate the health of the system within a closed volume, provided a better means for assessing leak hazards. Oxygen sensors detected a leak rate of approximately 0.04 cubic inches per second of liquid oxygen. Pressure sensor data revealed speculated cryogenic boiloff through the fittings of the oxygen system, but location of the source(s) was indeterminable. Ultimately, LASRE was cancelled because leak detection techniques were unable to verify that oxygen levels could be maintained below flammability limits.

  2. Remote sensing natural gas leak detector with novel optical filter. Final report, November 1990-August 1993

    SciTech Connect

    Henningsen, T.; Wutzke, S.A.; Garbuny, M.

    1993-12-01

    Each year, more than 100,000 miles of street mains are surveyed for gas leaks with vehicle-mounted gas detection systems. With state of the art (SOA) detection systems, vehicles must travel slowly (2-7 MPH). As a result, the operation in labor-intensive. In initial feasibility studies, a new vehicle-mounted gas leak detection system has demonstrated successful leak detection at vehicle speeds of 20 MPH or more. With these operating conditions, productivity increases of 20-50% or more may be possible. Based on the infrared absorption of methane, the front-mounted detection system performed successfully under a variety of environmental conditions, including rain, and snow, with gas leaks, both simulated and real world. The Concept Evaluation Unit (CEU) was easily able to detect gas concentrations as low as 1 ppm above the universal methane background. In direct performance comparisons with an SOA-equipped vehicle, the CEU performed flawlessly, reporting the presence of gas over a controlled range of gas leak rates and vehicle speeds. Under the same conditions the SOA vehicle incurred both false positives and negatives.

  3. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  4. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  5. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Kroupnov, A. A.; Kovalev, V. L.

    2015-08-01

    Elementary stage rate coefficients of the full system of kinetic equations describing heterogeneous catalytic recombination of the dissociated air on the surfaces of thermal protective ceramic coatings of β-cristobalite and α-Al2O3 are determined using the quantum-mechanical calculations within the framework of cluster models and literature data. Both the impact and associative recombination processes of adsorbed oxygen and nitrogen atoms are taken into account.

  6. Mouth leak with nasal continuous positive airway pressure increases nasal airway resistance.

    PubMed

    Richards, G N; Cistulli, P A; Ungar, R G; Berthon-Jones, M; Sullivan, C E

    1996-07-01

    Nasal congestion, dry nose and throat, and sore throat affect approximately 40% of patients using nasal continuous positive airway pressure (CPAP). The mechanisms causing nasal symptoms are unclear, but mouth leaks causing high unidirectional nasal airflow may be important. We conducted a study to investigate the effects of mouth leak and the influence of humidification on nasal resistance in normal subjects. Nasal resistance was measured with posterior rhinomanometry in six normal subjects who deliberately produced a mouth leak for 10 min while using nasal CPAP. Nasal resistance was measured regularly for 20 min after the challenge. A series of tests were performed using air at differing temperatures and humidities. There was no change in nasal resistance when subjects breathed through their noses while on CPAP, but a mouth leak caused a large increase in resistance (at a flow of 0.5 L/s) from a baseline mean of 2.21 cm H2O/L/s to a maximum mean of 7.52 cm H2O/L/s at 1 min after the challenge. Use of a cold passover humidifier caused little change in the response (maximum mean: 8.27 cm H2O/L/s), but a hot water bath humidifier greatly attenuated the magnitude (maximum mean: 4.02 cm H2O/L/s) and duration of the response. Mouth leak with nasal CPAP leads to high unidirectional nasal airflow, which causes a large increase in nasal resistance. This response can be largely prevented by fully humidifying the inspired air.

  7. CO2-Leaking Well - Analytical Modeling

    NASA Astrophysics Data System (ADS)

    Wertz, F.; Audigane, P.; Bouc, O.

    2009-04-01

    The long-term integrity of CO2 storage in geological system relies highly on local trapping mechanisms but also on the absence/control of any kind of outlets. Indeed numerous pathways (faults, wells, rock heterogeneities…) exist that can lead stored gas back to the surface. Thus, such leakage risks must be assessed and quantified if possible. In France, BRGM is inquired for evaluating safety criteria and developing a methodology for qualifying potential geological storage sites. This implies in particular to study the leakage scenario, here through a water-filled well as a worth scenario case. In order to determine the kinds of impacts leaking CO2 can have; knowing the velocity and flow rate of uprising CO2 is a necessity. That is why a better knowledge of CO2 in storage conditions and its behaviour with the environment is required. The following study aims at characterising the CO2 flowing into the well and then rising up in a water column over the vertical dimension. An analytical model was built that describes: - In a first step, the CO2 flow between the reservoir and the inside of the well, depending on quality and thickness of different seals, which determines the flow rate through the well. - In a second step, the CO2 uprising through an open and water filled well, however in steady state, which excludes a priori the characterisation of periodic or chaotic behaviours such as geyser formation. The objective is to give numerous orders of magnitude concerning CO2 thermodynamic properties while rising up: specific enthalpy, density, viscosity, velocity, flow, gas volume fraction and expansion, pressure and temperature gradient. Dissolution is partially taken into account, however without kinetic. The strength of this model is to compute analytically - easily and instantaneously - the 1-dimensional rising velocity of CO2 in a water column as a function of the CO2 density, interfacial tension and initial volume fraction. Characteristic speeds - the ones given by

  8. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  9. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  10. Gasoline and vapor exposures in service station and leaking underground storage tank scenarios.

    PubMed

    Guldberg, P H

    1992-01-01

    Exposure to gasoline and gasoline vapors from service station operations and leaking underground storage tanks is a major health concern. Six scenarios for human exposure were examined, based primarily on measured air and water concentrations of total hydrocarbons, benzene, xylenes, and toluene. Calculated mean and upper limit lifetime exposures provide a tool for assisting public health officials in assessing and managing gasoline-related health risks.

  11. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  12. 40 CFR 1066.985 - Fuel storage system leak test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in = inlet pressure to orifice, in kPa. p atmos = atmospheric pressure, in kPa. SG N2 = specific... reference conditions, based on the measured leak rate corresponding to atmospheric pressure. The corrected... pressure, temperature, and flow to calculate an equivalent orifice diameter for the system. Use...

  13. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants.

    PubMed

    Shao, Jiahui; Fang, Xuliang; He, Yiliang; Jin, Qiang

    2008-01-01

    Abstract Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditional chlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaks in the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose. Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditions on the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration, liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9% was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically found to be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammonia removal rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plant membrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatment plant, also paved the way towards a larger scale application.

  14. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    PubMed

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  15. Low leak rate poppet-and-seat check valve

    NASA Technical Reports Server (NTRS)

    Whitten, D. E.

    1970-01-01

    Valve leakage due to contaminant entrapment and chattering is effectively minimized by a metallic poppet-and-seat check valve designed for use in extreme environmental and fluid temperature conditions.

  16. Volumetric leak detection in large underground storage tanks. Volume 2. Appendices a through e

    SciTech Connect

    Starr, J.W.; Wise, R.F.; Maresca, J.W.

    1991-08-01

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the larger underground storage tanks for leaks. First, can the EPA regulatory standards be met when volumetric methods are used to test tanks up to 190,000 L (50,000 gal) in capacity. Second, what is the precision required of the temperature and level sensors and what is the minimum duration of the data collection period in order for a volumetric system to accurately test larger tanks, particularly those that are partially filled. Third, what are the important features of a volumetric system that meets or exceeds the regulatory performance standards. The document presents the results of experiments conducted on 190,000-L (50,000-gal) underground storage tanks (USTs) to determine how to test large tanks for leaks with volumetric leak detection systems. The work reported in the document has applications to the UST release detection technical standards in CFR 280 Subpart D.

  17. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2009-03-01

    and plasma signal. The air plasma intensity was measured using a 40 kHz ultrasonic transducer, while the terahertz radiation was measured by a... calibrate the time axis of the streak camera ................................................... 28 8. Processed data used to calibrate the time axis of...field can be measured 5 directly, but is difficult to manipulate and requires bulky waveguides. However, in optics, radiation is viewed as light

  18. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    PubMed

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO2, VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low

  19. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... through a detection cell where ultraviolet light at 253.7 nanometers (nm) is directed...

  20. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... through a detection cell where ultraviolet light at 253.7 nanometers (nm) is directed...