Science.gov

Sample records for air leakage measurements

  1. The measured energy impact of air leakage on frame wall systems. Final report

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var_epsilon}, is introduced as a measure of the effectiveness of a building in ``recovering`` heat otherwise lost (or gained) because of infiltration. Measurements show that {var_epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  2. The measured energy impact of air leakage on frame wall systems

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var epsilon}, is introduced as a measure of the effectiveness of a building in recovering'' heat otherwise lost (or gained) because of infiltration. Measurements show that {var epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  3. Air leakage of newly instaled residential windows

    SciTech Connect

    Weidt, J.; Weidt, J.

    1980-06-01

    The air-leakage characteristics of five major window designs were measured in a field survey conducted in Twin Cities, Minnesota. A total of 192 windows (16 manufacturers) were tested at 58 sites representing a cross-section of single-family homes, townhouses, low- and high-rise apartments, and condominiums. Air-leakage measurements of the installed windows were compared with the current standard used by industry and government of 0.50 ft/sup 3//min/linear ft of crack. Other parameters studied were: effect of sash and frame material, effect of leakage between window frame and wall, differences among the product lines of a single manufacturer and between manufacturers, effect of installation practices, effect of cold weather on performance, change in performance over time for older windows, and performance of fixed glazing. Based on industry and government standards, 40% of all windows tested showed air-leakage characteristics higher than the 0.50 cfm/lfc standard, and 60% exceeded manufacturers' specifications for performance which in some cases were lower than the general industry standard. Analysis of the impact of various parameters on air-leakage performance showed that the operational design of the window was the most critical determinant although the ranking changes if performance is expressed in cfm/unit area or cfm/opening area. Air leakage was measured using a portable pressurization chamber. Smoke pencils, thermographic techniques and extensive photographic documentation provided additional data as to the location and cause of air leakage problems.

  4. Air heater leakage: worse than you think

    SciTech Connect

    Guffre, J.

    2006-04-15

    Every good engineer knows that you cannot control what you cannot measure. In the case of rotary regenerative air heaters, many plants fail to limit the negative impact of heater leakage because they use measurement procedures and/or devices that fail to take into account its indirect effects. For a 500 MW coal-fired plant the heat energy that air heaters capture and recycle amounts to about 60% of that existing in the boiler, equivalent to 1.5 Btu per hour. This article explains the importance of accurately measuring leakage levels and the need to use modern seals to make heaters air-tight. 4 figs.

  5. Air-leakage control manual

    SciTech Connect

    Maloney, J.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the ``how and why`` of controlling air leakage by means of a system called the ``Simple Caulk and Seal`` (SIMPLE{center_dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center_dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  6. Air-Leakage Control Manual.

    SciTech Connect

    Maloney, Jim; Washington State Energy Office; United States. Bonneville Power Administration.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the how and why'' of controlling air leakage by means of a system called the Simple Caulk and Seal'' (SIMPLE{center dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  7. FIELD EVALUATION OF IMPROVED METHODS FOR MEASURING THE AIR LEAKAGE OF DUCT SYSTEMS UNDER NORMAL OPERATING CONDITIONS IN 51 HOMES

    SciTech Connect

    Paul W. Francisco; Larry Palmiter; Erin Kruse; Bob Davis

    2003-10-18

    Duct leakage in forced-air distribution systems has been recognized for years as a major source of energy losses in residential buildings. Unfortunately, the distribution of leakage across homes is far from uniform, and measuring duct leakage under normal operating conditions has proven to be difficult. Recently, two new methods for estimating duct leakage at normal operating conditions have been devised. These are called the nulling test and the Delta-Q test. Small exploratory studies have been done to evaluate these tests, but previously no large-scale study on a broad variety of homes has been performed to determine the accuracy of these new methods in the field against an independent benchmark of leakage. This sort of study is important because it is difficult in a laboratory setting to replicate the range of leakage types found in real homes. This report presents the results of a study on 51 homes to evaluate these new methods relative to an independent benchmark and a method that is currently used. An evaluation of the benchmark procedure found that it worked very well for supply-side leakage measurements, but not as well on the return side. The nulling test was found to perform well, as long as wind effects were minimal. Unfortunately, the time and difficulty of setup can be prohibitive, and it is likely that this method will not be practical for general use by contractors except in homes with no return ducts. The Delta-Q test was found to have a bias resulting in overprediction of the leakage, which qualitatively confirms the results of previous laboratory, simulation, and small-scale field studies. On average the bias was only a few percent of the air handler flow, but in about 20% of the homes the bias was large. A primary flaw with the Delta-Q test is the assumption that the pressure between the ducts and the house remain constant during the test, as this assumption does not hold true. Various modifications to the Delta-Q method were evaluated as

  8. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  9. Air Leakage of U.S. Homes: Model Prediction

    SciTech Connect

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  10. Control of Air Leakage in Buildings.

    ERIC Educational Resources Information Center

    Wilson, A. Grant

    This discussion of air leakage emphasizes cause and provides suggestions for elimination of undesirable effects. Cause parameters described are--(1) pressure differential, (2) building shape, (3) temperature differential, (4) opening sizes, (5) mechanical system pressures, and (6) climatic factors. Effects discussed are--(1) increased mechanical…

  11. The energy impact of air leakage through insulated walls

    SciTech Connect

    Bhattacharyya, S.; Claridge, D.E.

    1995-08-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air--with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on a well-characterized insulated stud-cavity wall specimen. Calorimetric measurements conducted on the specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations verify earlier test cell measurements showing that infiltration heat exchange can lead to a much smaller change in the energy load due to infiltration than is customarily calculated and show the dependence of infiltration heat exchange on flow rate and path length. A analytical model based on fundamental heat and mass transfer principles has been developed and the predicted values of Infiltration Heat Exchange Effectiveness, {var_epsilon}, as a function of air flow rates and effective path length for five study-cavity wall specimen test configurations were consistent with the experimental results. Significant experimental results include: (i) {epsilon} values in the 0.16--0.7 range in the stud-cavity and (ii) {epsilon} values of 0.16 to 0.34 for air exiting the stud-cavity directly across from the entry. These results indicate that significant heat recovery is probable for most leakage occurring through insulated stud cavities.

  12. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  13. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  14. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  15. Measuring Heat-Exchanger Water Leakage

    NASA Technical Reports Server (NTRS)

    Zampiceni, J.

    1986-01-01

    Water leakage in heat exchanger measured directly with help of electroytic hygrometer. In new technique, flow of nitrogen gas set up in one loop of heat exchanger. Other loop filled with water under pressure. Water concentration produced by leakage of water into nitrogen flow measured by hygrometer. New measurement method determines water concentrations up to 2,000 parts per million with accuracy of +/- 5 percent.

  16. Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Kim, Hyunwoo; Park, Dohyun; Ryu, Dong-Woo; Park, Eui-Seob

    2016-02-01

    Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.

  17. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  18. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    SciTech Connect

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  19. Blower-door techniques for measuring interzonal leakage

    SciTech Connect

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  20. Analyzing a database of residential air leakage in the United States

    NASA Astrophysics Data System (ADS)

    Chan, Wanyu R.; Nazaroff, William W.; Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.

    We analyzed more than 70,000 air leakage measurements in houses across the United States to relate leakage area—the effective size of all penetrations of the building shell—to readily available building characteristics such as building size, year built, geographic region, and various construction characteristics. After adjusting for the lack of statistical representativeness of the data, we found that the distribution of leakage area normalized by floor area is approximately lognormal. Based on a classification tree analysis, year built and floor area are the two most significant predictors of leakage area: older and smaller houses tend to have higher normalized leakage areas than newer and larger ones. Multivariate regressions of normalized leakage are presented with respect to these two factors for three house classifications: low-income households, energy program houses, and conventional houses. We demonstrate a method of applying the regression model to housing characteristics from the American Housing Survey to derive a leakage-area distribution for all single-family houses in the US. The air exchange rates implied by these estimates agree reasonably well with published measurements.

  1. Measuring Leakage in a Pressurized-Fluid Loop

    NASA Technical Reports Server (NTRS)

    Clarke, Brian D.

    1987-01-01

    Technique applied to systems with inaccessible parts and connections. Fluid added to system by fluid-injection assembly to make up for leakage. Amount required to restore pressure in system is measure of leakage rate.

  2. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  3. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL... for calculating emissions due to air conditioning leakage. This section describes procedures used to determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units....

  4. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  5. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    SciTech Connect

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  6. Air leakage characteristics and weatherization techniques for low-income housing. Final report

    SciTech Connect

    Grot, R.A.; Clark, R.E.

    1981-01-01

    Data are presented on the air leakage characteristics of approximately 250 dwellings occupied by low-income households in 14 cities, in all major climatic zones of the United States. Two types of measurements were used: a tracer-gas decay technique using air sample bags, which was developed at the National Bureau of Standards to measure natural air infiltration; and a fan depressurization test that measures induced air exchange rates. The data presented here show that for this group of dwellings natural air infiltration rates are distributed approximately lognormally. The induced air exchange rates are a measure of the tightness of building envelopes. There is little correlation between the natural air infiltration rates and the induced air exchange rates in these dwellings, unless the buildings are divided into classes of similar buildings. The use of fan depressurization as a diagnostic tool to assist weatherization crews in tightening buildings is discussed. Preliminary estimates are presented of the reduction in induced air exchange rates that may be achieved by applying building weatherization techniques.

  7. A novel method to determine air leakage in heat pump clothes dryers

    DOE PAGES

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  8. A NOVEL METHOD TO DETERMINE AIR LEAKAGE IN HEAT PUMP CLOTHES DRYERS

    SciTech Connect

    Bansal, Pradeep; Miller, William A

    2016-01-01

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.

  9. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  10. Prolonged Air Leakage Caused by Mesenchymal Cystic Hamartoma of the Lung

    PubMed Central

    Lee, Young Uk; Lee, Jang Hoon; Baek, Jong Hyun

    2016-01-01

    A 16-year-old girl was transferred to the department of thoracic and cardiovascular surgery because of a spontaneous pneumothorax with prolonged air leakage. Chest computed tomography demonstrated a cystic lesion measuring 2×3 cm and involving the left upper lobe. Left upper lobectomy was performed via video-assisted thoracoscopic surgery. A pathologic examination of the specimen revealed a mesenchymal cystic hamartoma. Despite the rarity of pulmonary mesenchymal cystic hamartoma, it should be considered a potential cause of pneumothorax for patients with a large pulmonary cyst. Further, surgical resection must be considered because serious complications such as hemothorax, hemoptysis, and malignant transformation have been reported. PMID:27525242

  11. Measuring Leakage From Large, Complicated Machinery

    NASA Technical Reports Server (NTRS)

    Bottemiller, S.

    1987-01-01

    Test chamber improvised from large bag. Cumulative sizes of leaks in large, complicated machinery measure with relatively simple variation of helium leak-checking technique. When used to check Space Shuttle main engine, new technique gave repeatable and correct results within 0.5 stdin.3/min (1.4 x 10 negative to the seventh power stdm3/s).

  12. Sensitivity of the house pressure test for duct leakage to variations in the distribution of air leakage in the house envelope

    SciTech Connect

    Andrews, J.W.

    1998-12-01

    The house pressure test for air leakage in ducts calculates the signed difference between the supply and return leakage from the response of the air pressure in the house to operation of the system fan. The currently accepted version of this calculation was based on particular assumptions about how the house envelope leakage is distributed between the walls, ceiling, and floor. This report generalizes the equation to account for an arbitrary distribution of envelope leakage. It concludes that the currently accepted equation is usually accurate to within {+-}5%, but in a small proportion of cases the results may diverge by 50% or more.

  13. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.

    PubMed

    Huang, Rong Fung; Chen, Hong Da; Hung, Chien-Hsiung

    2007-12-01

    The effects of the walk-by motion and sash movement on the containment leakage of an air curtain-isolated fume hood were evaluated and compared with the results of a corresponding conventional fume hood. The air curtain was generated by a narrow planar jet issued from the double-layered sash and a suction slot-flow arranged on the floor of the hood just behind the doorsill. The conventional fume hood used for comparison had the major dimensions identical to the air-curtain hood. SF tracer-gas concentrations were released and measured following the prEN 14175-3:2003 protocol to examine the contaminant leakage levels. Experimental results showed that operating the air-curtain hood at the suction velocity above about 6 m/s and jet velocity about 1 m/s could provide drastically high containment performance when compared with the corresponding conventional fume hood operated at the face velocity of 0.5 m/s. The total air flow required for the air-curtain hood operated at 6 m/s suction velocity and 1 m/s jet velocity was about 20% less than that exhausted by the conventional fume hood. If the suction velocity of the air-curtain hood was increased above 8 m/s, the containment leakage during dynamic motions could be reduced to ignorable level (about 10(3) ppm). PMID:18212476

  14. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  15. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  16. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  17. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  18. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  19. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  20. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  1. Air leakage on the postoperative day: powerful factor of postoperative recurrence after thoracoscopic bullectomy

    PubMed Central

    Jeon, Hyun Woo; Kye, Yeo Kon; Kim, Kyung Soo

    2016-01-01

    Background Primary spontaneous pneumothorax (PSP) is a relatively common disorder in young patients. Although various surgical techniques have been introduced, recurrence after video-assisted thoracoscopic surgery (VATS) remains high. The aim of study was to identify the risk factors for postoperative recurrence after thoracoscopic bullectomy in the spontaneous pneumothorax. Methods From January 2011 through March 2013, two hundreds and thirty two patients underwent surgery because of pneumothorax. Patients with a secondary pneumothorax, as well as cases of single port surgery, an open procedure, additional pleural procedure (pleurectomy, pleural abrasion) or lack of medical records were excluded. The records of 147 patients with PSP undergoing 3-port video-assisted thoracoscopic bullectomy with staple line coverage using an absorbable polyglycolic acid (PGA) sheet were retrospectively reviewed. Results The median age was 19 years (range, 11−34 years) with male predominance (87.8%). Median postoperative hospital stay was 3 days (range, 1−10 days) without mortality. Complications were developed in five patients. A total of 24 patients showed postoperative recurrence (16.3%). Younger age less than 17 years old and immediate postoperative air leakage were risk factors for postoperative recurrence after thoracoscopic bullectomy by multivariate analysis. Conclusions Immediate postoperative air leakage was the risk factor for postoperative recurrence. However, further study will be required for the correlation of air leakage with recurrence. PMID:26904217

  2. Measuring Agulhas Current strength and leakage from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Le Bars, Dewi; De Ruijter, Wilhelmus P. M.; Dijkstra, Henk A.

    2013-04-01

    The Agulhas leakage is a flux of relatively warm and salty water from the Indian Ocean to the South Atlantic Ocean. It occurs south of the African continent where the Agulhas Current retroflects and sheds large anticyclonic eddies that quickly break up and mix with the surrounding water. This is one of the most energetic regions of the world ocean and the Agulhas leakage is therefore very difficult to quantify. In recent years two independent studies (Biastoch et al. 2009, Rouault et al. 2009) using different ocean models pointed out the possibility that the strength of the Agulhas leakage could have increased over the last decades. Unfortunately several discrepancies exist between these two studies on the magnitude and the causes of this increase showing the limitations of numerical modelling in this area. In this work we use a combination of along-track and mapped satellite geostrophic velocities to compute the strength of the Agulhas Current and to follow Lagrangian particles released in its core. The results confirm a positive trend of the volume of Agulhas leakage over the last two decades. This allows us to investigate the dependence of the leakage to upstream conditions like the Agulhas Current transport, the pattern and strength of the westerly winds and to test previous theories on the relations between these factors. Biastoch, A., Böning, C. W., Schwarzkopf, F. U. and Lutjeharms, J. R. E.: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies, Nature, 462(7272), 495-498, doi:10.1038/nature08519, 2009. Rouault, M., Penven, P. and Pohl, B.: Warming in the Agulhas Current system since the 1980's, Geophys. Res. Lett, 36(L12602), doi:10.1029/2009GL037987, 2009.

  3. Measured effect of step axial location on labyrinth seal leakage

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Rhode, D. L.

    1992-01-01

    An advanced, finite volume code has been extensively used in a parametric design study of simple stepped seals, in order to ascertain a leakage-minimizing optimal design and test it, in conjunction with the baseline case of the wear-ring seal of a high pressure pump. It is found that a significant leakage effect arises from this shifting of the rotor and stator sealing surfaces; at extremely low rpm, a significant shaft speed effect occurs for the optimized design in some shaft locations.

  4. An Explanation of the Varied Measurements of Gas Field Methane Leakage

    NASA Astrophysics Data System (ADS)

    Evans, W. F.; McHugh, M. J.

    2014-12-01

    In situ engineering measurements of natural gas well sites indicate leakage rates with a mean rate of 1.5% of the gas production rate from individual wells. These have been made at several gas basins using in situ measurements. These in situ engineering measurements are reported as the fugitive emission rates to the UNCCC by the EPA. On the other hand, atmospheric measurements at altitudes above the surface by several atmospheric groups indicate that gas fields are leaking at an average rate of over 9 %. Papers have been published in several highly reputable journals by government and university scientists. Both groups have been criticizing the methodologies of the opposite group. We propose that a more likely explanation is that both groups are correct. Although this appears as a direct conflict with one group on each side, a careful analysis shows that the two groups are measuring different air parcels. This is the only explanation which will explain the apparent conflicting situation. This can be understood if the basins in which the wells are sited are actually leaking from the bed rock formations in which the wells are drilled. If the geology of the natural gas basins is examined in detail, then the situation becomes understandable. Many basins contain gas in fault traps. These faults often leak, particularly if there is a small earthquake. The leaks can follow tilted layers, resulting in vertical transport of gas along the slanted layer cracks. This leakage may emerge into the atmosphere at large distances from the actual gas well under measurement. Fracking can obviously increase the leakage from a valley gas field. The methane leaks could alter the budgets of greenhouse gases reported by various gas producing countries by significant amounts. The potential increases and altered budgets for various countries as reported to the UNCCC are estimated and reported in this presentation. The fraction of these unreported leaks which should be reported will have to

  5. THE CARBON DIOXIDE LEAKAGE FROM CHAMBERS MEASURED USING SULFUR HEXAFLUORIDE

    EPA Science Inventory

    In plant chamber studies, if Co2 leaking from a chamber is not quantified, it can lead to an overestimate of assimilation rates and an underestimate of respiration rates: consequently, it is critical that Co2 leakage be determined. Sulfur Hexafluoride (SF6) was introduced into t...

  6. Seatbelt syndrome with gastric mucosal breaks and intra-gastric wall air leakage.

    PubMed

    Mori, Hirohito; Tsushimi, Takaaki; Kobara, Hideki; Nishiyama, Noriko; Fujihara, Shintaro; Matsunaga, Tae; Ayaki, Maki; Chiyo, Taiga; Masaki, Tsutomu

    2015-01-01

    As numerous reports were published regarding the so-called seatbelt syndrome involved in car crashes, most of them were mentioned about small intestine, duodenum and colon perforations and solid organ bleeding. No reports have been published regarding multiple gastric mucosal tears with intra-gastric wall air leakage with massive bleeding. A 65-year-old woman was admitted after a motor vehicle crash. She vomited massive fresh blood. Gastric mucosal breaks, approximately 5 cm in length, were observed. Computed tomography imaging revealed multiple gastric mucosal breaks. We report a rare case wherein a traffic accident caused a serious condition associated with massive digestive bleeding. PMID:26466695

  7. RF leakage current in electrosurgical units: Influence of the layout in taking measurements

    NASA Astrophysics Data System (ADS)

    Gentile, L.; Palacios, P.

    2007-11-01

    The RF leakage current in electrosurgical units is a critical parameter to measure, because it may cause accidental burns in patients. The particular standard for electrosurgical units IEC 60601-2-2 indicates the maximum RF leakage levels and defines the elements and their layout to do these measurements. On this paper we show the RF leakage current values of 6 electrosurgical units. We did these measurements in two different ways: in the first one we measured in normal conditions of use in the operating rooms and in the second we followed the mentioned Standard. The results shows differences between one group and the other, observing higher RF leakage current values in the measurements that we did without following the standard's layout.

  8. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  9. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  10. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  11. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  12. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1.

    PubMed

    Kim, Si-Wook; Kim, Dohun

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage.

  13. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1

    PubMed Central

    Kim, Si-Wook

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage. PMID:26904244

  14. Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number is used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.

  15. Predicting Envelope Leakage in Attached Dwellings

    SciTech Connect

    Faakye, O.; Arena, L.; Griffiths, D.

    2013-07-01

    The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

  16. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  17. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  18. Measurement of carbon capture efficiency and stored carbon leakage

    SciTech Connect

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  19. Improving stopping construction to minimize leakage

    PubMed Central

    Grau, Roy H.; Mazzella, Andrew L.; Martikainen, Anu L.

    2015-01-01

    The proper sealing of stoppings is an important step in reducing leakage from the intake to the return airways. Leakage and the subsequent loss of ventilation resulting from improperly sealed stoppings can lead to unhealthy and unsafe working conditions. The research presented in this paper investigates the total leakage of a stopping, including air leakage through the stopping, at the stopping perimeter, and through the coalbed. The study also examines sealing considerations for stoppings that are constructed under roof control screen, the effects that wooden wedges had on inhibiting efficient application of polyurethane foam sealant, and airflow leakage through the surrounding coal. The work involved building a stopping in a dead end room of the NIOSH Safety Research Coal Mine and then pressurising the room using compressed air. Stopping leakage was evaluated by measuring air pressure loss in the enclosed room due to the air leakage. Part of the research utilises a diluted soap solution that was applied to the stopping and the surrounding coal to detect air leakage signified by bubble formations. The results show that stopping leakage can be minimised with proper sealing PMID:26379366

  20. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... refrigerant with a lower global warming potential. LeakScore means the annual refrigerant leakage rate... (or 4.1 grams/year for systems using only electric compressors). GWPREF means the global warming... with a lower global warming potential. LeakScore means the annual refrigerant leakage rate...

  1. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lower global warming potential. LeakScore means the annual refrigerant leakage rate determined according....1 grams/year for systems using only electric compressors). GWPREF means the global warming potential... with a lower global warming potential. LeakScore means the annual refrigerant leakage rate...

  2. Whirl measurements on leakage flows in turbomachine models

    NASA Technical Reports Server (NTRS)

    Addlesee, A. J.; Altiparmak, D.; Pan, S.

    1994-01-01

    The beneficial effects claimed for whirl control devices demonstrate that the dynamic behavior of rotors is influenced by the fluid whirl in shaft and balance drum seals. The present paper reports results from two series of experiments, the first on the factors affecting the whirl at the seal inlet, and the second on the variation of whirl velocity along the seal. In both cases the LDA measurement technique required the clearance between the fixed and rotating parts of the models to be substantially greater than occurs in real machines, but the results are indicative nevertheless. Experimental and theoretical results are given for the radial distribution of whirl velocity in the gap between impeller shroud and pump casing. Results of tests with modified stator surfaces are also shown. This work leads naturally into the second series of experiments where some preliminary measurements of velocity distribution in the clearance between a fixed stator and a rotating shaft are reported for a range of inlet whirl conditions.

  3. Calculated in-air leakage spectra and power levels for the ANSI standard minimum accident of concern. Final report

    SciTech Connect

    Lee, B.L. Jr.; Dobelbower, M.C.; Tayloe, R.W. Jr.

    1995-07-01

    This document represents Phase I of a two-phase project. The entire project consists of determining a series of minimum accidents of concern and their associated neutron and photon leakage spectra that may be used to determine Criticality Accident Alarm compliance with ANSI/ANS-8.3. The inadvertent assembly of a critical mass of material presents a multitude of unknown quantities. Depending on the particular process, one can make an educated guess as to fissile material. In a gaseous diffusion cascade, this material is assumed to be uranyl fluoride. However, educated assumptions cannot be readily made for the other variables. Phase I of this project is determining a bounding minimum accident of concern and its associated neutron and photon leakage spectra. To determine the composition of the bounding minimum accident of concern, work was done to determine the effects of geometry, moderation level, and enrichment on the leakage spectra of a critical assembly. The minimum accident of concern is defined as the accident that may be assumed to deliver the equivalent of an absorbed dose in free air of 20 rad at a distance of 2 meters from the reacting material within 60 seconds. To determine this dose, an analyst makes an assumption and choose an appropriate flux to dose response function. The power level required of a critical assembly to constitute a minimum accident of concern depends heavily on the response function chosen. The first step in determining the leakage spectra was to attempt to isolate the effects of geometry, after which all calculations were conducted on critical spheres. The moderation level and enrichment of the spheres were varied and their leakage spectra calculated. These spectra were then multiplied by three different response functions: the Henderson Flux to Dose conversion factors, the ICRU 44 Kerma in Air, and the MCNP Heating Detector. The power level required to produce a minimum accident of concern was then calculated for each combination.

  4. Measured river leakages using conventional streamflow techniques: The case of Souhegan River, New Hampshire, USA

    USGS Publications Warehouse

    Harte, P.T.; Kiah, R.G.

    2009-01-01

    Multiple streamflow measurements were made at coupled discharge measurement stations to quantify rates of aquifer recharge and discharge on two reaches of the Souhegan River, New Hampshire, USA, flowing within a glacial-drift river-valley aquifer. The reaches included a predominantly losing (aquifer recharge) reach and a variable (aquifer recharge and discharge) reach located downstream of the former reach. River leakage, the differential between coupled upstream and downstream streamflow measurements along a reach, varied by almost 30 cubic feet per second (ft3/s) (0.85 m3/s) along the two reaches. The upper reach averaged 3.94 ft3/s (0.11 m3/s) loss whereas the lower reach averaged 4.85 ft3/s (0.14 m3/s) gain. At the upper reach, 13 losses were measured out of 19 coupled measurements. At the lower reach, ten out of 13 coupled measurements indicated gains in flow and suggest that this reach is primarily a gaining river reach. An important factor in river leakage appears to be antecedent trends in river stage. At the upper reach, gains were measured only during periods of declining river stage. Conversely, at the lower reach, streamflow loss was measured primarily during periods of rising river stage. Although some tendencies exist, several factors complicate the analysis of river leakage, most notably the inaccuracies in computed stream discharge. ?? Springer-Verlag 2008.

  5. Radon isotope measurements as a monitoring tool for CO2 leakage in geological storage

    NASA Astrophysics Data System (ADS)

    Grandia, F.; Mazadiego, L. F.; de Elío, J.; Ortega, M.; Bruno, J.

    2011-12-01

    Early detection of the failure of the seal integrity is fundamental in the monitoring plan of a deep geological CO2 storage. A number of methods of leakage control are based on changes in fluid geochemistry (shallow water, soil gases) providing valuable indicators. Among them, the measurement of CO2 fluxes in the soil-atmosphere interface is commonly used since it can be easily done using portable infra-red analyzers (i.e., accumulation chambers). However, initial emission of CO2 from storage horizon could be masked by fluxes from biological activity, limiting its applicability as an early alarm system. The measurement of fluxes of trace gas (Rn, He, VOC) that are virtually absent in the pre-injection baseline turns out a promising complementary method. The measurement of radon isotopes has been long used for the observation of mass transport from deep reservoirs to surface despite the flux of 222Rn and 220Rn is usually very limited in sedimentary basins due to the short half-life of these isotopes. The enhanced transport of radon in CO2 fluxes has been reported from natural systems, resulting in concentration in air up to several thousands of Bq/m3. In the frame of the Compostilla pilot plant project in Spain, a number of methodologies to measure radon emission are being tested in natural systems to select of the most reliable and cost-effective method to be used in leakage control. These methods are (1) Scintillation detector EDA RD-200, (2) Track Etch °, (3) Ionization Chamber and (4) alpha spectroscopy SARAD RTM 200. Some of them are capable of measuring the isotopes separately (SARAD) whereas others just detect the bulk radon concentration. Also, these methods follow distinct procedures and acquisition times. The studied natural sites are located in central and NE Spain (Campo de Calatrava and La Selva basins), and in central Italy (Arezzo basin). Apparently, radon isotopes (up 200000 Bq/m3) are measured far from parent isotopes, and they are coupled to

  6. Analyzing Leakage Through Cracks

    NASA Technical Reports Server (NTRS)

    Romine, William D.

    1993-01-01

    Two related computer programs written for use in analyzing leakage through cracks. Leakage flow laminar or turbulent. One program used to determine dimensions of crack under given flow conditions and given measured rate of leakage. Other used to determine rate of leakage of gas through crack of given dimensions under given flow conditions. Programs, written in BASIC language, accelerate and facilitate iterative calculations and parametric analyses. Solve equations of Fanno flow. Enables rapid solution of leakage problem.

  7. Comparison of calculations and measurements of neutron leakage from the Little Boy replica

    SciTech Connect

    Forehand, H.M.; Whalen, P.P.; Malenfant, R.E.

    1984-01-01

    Measurements of the neutron leakage spectra from 0.6 to 10 MeV are compared with several calculations and earlier measurements of coarse models of Little Boy. Results indicate excellent agreement except at the nose of the device where the neutron exit path is longer, and neutron streaming through geometric discontinuities may present problems. As a result of the agreement, the longstanding difference between calculations and measurements of the Ichiban critical asembly can be resolved: the results reported in 1965 were not correct.

  8. Detecting fluid leakage of a reservoir dam based on streaming self-potential measurements

    NASA Astrophysics Data System (ADS)

    Song, Seo Young; Kim, Bitnarae; Nam, Myung Jin; Lim, Sung Keun

    2015-04-01

    Between many reservoir dams for agriculture in suburban area of South Korea, water leakage has been reported several times. The dam under consideration in this study, which is located in Gyeong-buk, in the south-east of the Korean Peninsula, was reported to have a large leakage at the right foot of downstream side of the reservoir dam. For the detection of the leakage, not only geological survey but also geophysical explorations have been made for precision safety diagnosis, since the leakage can lead to dam failure. Geophysical exploration includes both electrical-resistivity and self-potential surveys, while geological surveys water permeability test, standard penetration test, and sampling for undisturbed sample during the course of the drilling investigation. The geophysical explorations were made not only along the top of dam but also transverse the heel of dam. The leakage of water installations can change the known-heterogeneous structure of the dam body but also cause streaming spontaneous (self) potential (SP) anomaly, which can be detected by electrical resistivity and SP measurements, respectively. For the interpretation of streaming SP, we used trial-and-error method by comparing synthetic SP data with field SP data for model update. For the computation, we first invert the resistivity data to obtain the distorted resistivity structure of the dam levee then make three-dimensional electrical-resistivity modeling for the streaming potential distribution of the dam levee. Our simulation algorithm of streaming SP distribution based on the integrated finite difference scheme computes two-dimensional (2D) SP distribution based on the distribution of calculated flow velocities of fluid for a given permeability structure together with physical properties. This permeability is repeatedly updated based on error between synthetic and field SP data, until the synthetic data match the field data. Through this trial-and-error-based SP interpretation, we locate the

  9. Air pressure measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    The pressure measurement was made by a Model 830J Rosemont sensor which utilized the principle of a changing pressure to change correspondingly the capacitance of the pressure sensitive element. The sensor's range was stated to be from zero to 100 Torr (14 km); however, the sensor was not activated until an altitude of 20 km (41 Torr) was reached during the balloon ascent. The resolution of the sensor was specified by the manufacturer as infinitesimal; however, associated electronic and pressure readout systems limit the resolution to .044 Torr. Thus in the vicinity of an altitude of 30 km the pressure resolution corresponded to an altitude resolution of approximately 33 meters.

  10. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  11. Neonatal resuscitation 1: a model to measure inspired and expired tidal volumes and assess leakage at the face mask

    PubMed Central

    O'Donnell, C; Kamlin, C; Davis, P; Morley, C

    2005-01-01

    Background: Neonatal resuscitation is a common and important intervention, and adequate ventilation is the key to success. In the delivery room, positive pressure ventilation is given with manual ventilation devices using face masks. Mannequins are widely used to teach and practise this technique. During both simulated and real neonatal resuscitation, chest excursion is used to assess tidal volume delivery, and leakage from the mask is not measured. Objective: To describe a system that allows measurement of mask leakage and estimation of tidal volume delivery. Methods: Respiratory function monitors, a modified resuscitation mannequin, and a computer were used to measure leakage from the mask and to assess tidal volume delivery in a model of neonatal resuscitation. Results: The volume of gas passing through a flow sensor was measured at the face mask. This was a good estimate of the tidal volume entering and leaving the lung in this model. Gas leakage between the mask and mannequin was also measured. This occurred principally during inflation, although gas leakage during deflation was seen when the total leakage was large. A volume of gas that distended the mask but did not enter the lung was also measured. Conclusion: This system can be used to assess the effectiveness of positive pressure ventilation given using a face mask during simulated neonatal resuscitation. It could be useful for teaching neonatal resuscitation and assessing ventilation through a face mask. PMID:15871990

  12. Leakage current measurement of protective equipment insulating materials used in electrical installations

    NASA Astrophysics Data System (ADS)

    Buică, G.; Dobra, R.; Păsculescu, D.; Tătar, A.

    2016-06-01

    This research describes the behaviour of equipment and safety devices during use in extreme environmental conditions, in order to establish the technical conditions and additional health and safety requirements during operation, to ensure the health and safety of users, regardless of conditions and working environment in which they are use. The studies have been conducted both on new equipment and means of protection used in electrical installations. There has been evaluated protective equipment made of insulating rubber, reinforced fiberglass or PVC. They have been followed the technical characteristics and protection against electric shock by measuring the leakage current of different insulating materials.

  13. Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica

    SciTech Connect

    Muckenthaler, F.J.

    1984-03-01

    This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data for testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.

  14. Flux Leakage Measurements for Defect Characterization Using a High Precision 3-AXIAL Gmr Magnetic Sensor

    NASA Astrophysics Data System (ADS)

    Pelkner, M.; Blome, M.; Reimund, V.; Thomas, H.-M.; Kreutzbruck, M.

    2011-06-01

    High-precision magnetic field sensors are of increasing interest in non destructive testing (NDT). In particular GMR-sensors (giant magneto resistance) are qualified because of their high sensitivity, high signal-to-noise ratio and high spatial resolution. With a GMR-gradiometer and a 3D-GMR-magnetometer we performed magnetic flux leakage measurements of artificial cracks and cracks of a depth of ≤50 μm still could be dissolved with a sufficient high signal-to-noise ratio. A semi-analytic magnetic dipole model that allows realistic GMR sensor characteristics to be incorporated is used for swiftly predicting magnetic stray fields. The reliable reconstruction based on measurements of artificial rectangular-shaped defects is demonstrated.

  15. Technology Solutions Case Study: Predicting Envelope Leakage in Attached Dwellings

    SciTech Connect

    2013-11-01

    The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this “solo” test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. In an attempt to create a simplified tool for predicting leakage to the outside, Building America team Consortium for Advanced Residential Buildings (CARB) performed a preliminary statistical analysis on blower door test results from 112 attached dwelling units in four apartment complexes. Although the subject data set is limited in size and variety, the preliminary analyses suggest significant predictors are present and support the development of a predictive model. Further data collection is underway to create a more robust prediction tool for use across different construction types, climate zones, and unit configurations.

  16. Quantifying Molecular Hydrogen Emissions and an Industrial Leakage Rate for the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Irish, M. C.; Schroeder, J.; Beyersdorf, A. J.; Blake, D. R.

    2015-12-01

    The poorly understood atmospheric budget and distribution of molecular hydrogen (H2) have invited further research since the discovery that emissions from a hydrogen-based economy could have negative impacts on the global climate system and stratospheric ozone. The burgeoning fuel cell electric vehicle industry in the South Coast Air Basin of California (SoCAB) presents an opportunity to observe and constrain urban anthropogenic H2 emissions. This work presents the first H2 emissions estimate for the SoCAB and calculates an upper limit for the current rate of leakage from production and distribution infrastructure within the region. A top-down method utilized whole air samples collected during the Student Airborne Research Program (SARP) onboard the NASA DC-8 research aircraft from 23-25 June 2015 to estimate H2 emissions from combustion and non-combustion sources. H2:carbon monoxide (CO) and H2:carbon dioxide ratios from airborne observations were compared with experimentally established ratios from pure combustion source ratios and scaled with the well-constrained CO emissions inventory to yield H2 emissions of 24.9 ± 3.6 Gg a-1 (1σ) from combustion engines and 8.2 ± 4.7 Gg a-1 from non-combustion sources. Total daily production of H2 in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate (5%) where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from H2 infrastructure. For bottom-up validation, the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model was run iteratively with all known stationary sources in attempt to constrain emissions. While this investigation determined that H2 emissions from non-combustion sources in the SoCAB are likely significant, more in-depth analysis is required to better predict the atmospheric implications of a hydrogen economy.

  17. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  18. Simultaneous measurement of torsion, strain and temperature using a side-leakage photonic crystal fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lou, Shuqin; Sheng, Xinzhi; Liang, Sheng

    2016-05-01

    A fiber optic sensor for simultaneous measurement of multi-parameter is proposed. The fiber sensor is realized by a fiber loop mirror based on a piece of homemade side-leakage photonic crystal fiber. Affected by the group birefringence of the side-leakage photonic crystal fiber, which induced by the elliptical germanium-doped core and the linear side-leakage defect, the fiber loop mirror has different wavelength responses to torsion, strain and temperature at different interference fringe valleys. By monitoring the wavelength shifts of three selected valleys in the transmission spectrum, simultaneous measurement of torsion, strain and temperature is achieved. The maximal sensitivities to torsion, strain and temperature are 151.14 pm/°, 1 pm/με and 71 pm/°C, respectively.

  19. Measurement and calculation of neutron leakage from a medical electron accelerator

    SciTech Connect

    Uwamino, Y.; Nakamura, T.; Ohkubo, T.; Hara, A.

    1986-05-01

    The leakage neutron spectra and dose equivalent were systematically measured in the irradiation field, treatment room, maze, and outside the shielding door at the microtron medical electron accelerator facility of the National Cancer Center, Tokyo. For these measurements, we used two types of multimoderator neutron spectrometers (Bonner spheres containing indium activation detectors and /sup 3/He detector), an aluminum activation detector, and a commercially available neutron rem counter. The measured results were compared with the combined calculation of the one-dimensional ANISN and two-dimensional DOT3.5 discrete ordinates transport codes. The calculation was performed by using a measured source spectrum in the irradiation field and by computer modeling of the maze entrance. The calculation indicated good agreement in spectral shape and agreement with experiment within a factor of 2 in absolute dose-equivalent values. This transport calculation was systematically repeated for different geometrical and material parameters, and simple analytical formulas and their parameters applicable for shielding design of a medical electron accelerator facility were obtained in general form.

  20. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    SciTech Connect

    Feng, W; Chu, A; Chi, Y; Hu, J

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  1. Total inward leakage measurement of particulates for N95 filtering facepiece respirators--a comparison study.

    PubMed

    Rengasamy, Samy; Walbert, Gary F; Newcomb, William E; Faulkner, Kimberly; Rengasamy, Mathi M; Brannen, Jeremy J; Szalajda, Jonathan V

    2014-03-01

    National Institute for Occupational Safety and Health (NIOSH) certified particulate respirators need to be properly fit tested before use to ensure workers' respiratory protection. However, the effectiveness of American National Standards Institute-/Occupational Safety and Health Administration (ANSI-/OSHA)-accepted fit tests for particulate respirators in predicting actual workplace protection provided to workers is lacking. NIOSH addressed this issue by evaluating the fit of half-mask particulate filtering respirators as a component of a program designed to add total inward leakage (TIL) requirements for all respirators to Title 42 Code of Federal Regulations Part 84. Specifically, NIOSH undertook a validation study to evaluate the reproducibility of the TIL test procedure between two laboratories. A PortaCount® was used to measure the TIL of five N95 model filtering facepiece respirators (FFRs) on test subjects in two different laboratories. Concurrently, filter efficiency for four of the five N95 FFR models was measured using laboratory aerosol as well as polydisperse NaCl aerosol employed for NIOSH particulate respirator certification. Results showed that two N95 models passed the TIL tests at a rate of ~80-85% and ~86-94% in the two laboratories, respectively. However, the TIL passing rate for the other three N95 models was 0-5.7% in both laboratories combined. Good agreement (≥83%) of the TIL data between the two laboratories was obtained. The three models that had relatively lower filter efficiency for laboratory aerosol as well as for NaCl aerosol showed relatively low TIL passing rates in both laboratories. Of the four models tested for penetration, one model with relatively higher efficiency showed a higher passing rate for TIL tests in both laboratories indicating that filter efficiency might influence TIL. Further studies are needed to better understand the implications of the data in the workplace. PMID:24107745

  2. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells.

    PubMed

    Burton, Matthew G; Huang, Qi M; Hossain, Mohammed A; Wade, John D; Palombo, Enzo A; Gee, Michelle L; Clayton, Andrew H A

    2016-06-28

    Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes. PMID:27281288

  3. Measuring Air-Ionizer Output

    NASA Technical Reports Server (NTRS)

    Lonborg, J. O.

    1985-01-01

    Test apparatus checks ion content of airstream from commercial air ionizer. Apparatus ensures ion output is sufficient to neutralize static charges in electronic assembly areas and concentrations of positive and negative ions are balanced.

  4. Inward leakage in tight-fitting PAPRs.

    PubMed

    Koh, Frank C; Johnson, Arthur T; Rehak, Timothy E

    2011-01-01

    A combination of local flow measurement techniques and fog flow visualization was used to determine the inward leakage for two tight-fitting powered air-purifying respirators (PAPRs), the 3M Breathe-Easy PAPR and the SE 400 breathing demand PAPR. The PAPRs were mounted on a breathing machine head form, and flows were measured from the blower and into the breathing machine. Both respirators leaked a little at the beginning of inhalation, probably through their exhalation valves. In both cases, the leakage was not enough for fog to appear at the mouth of the head form.

  5. Inward Leakage in Tight-Fitting PAPRs

    PubMed Central

    Koh, Frank C.; Johnson, Arthur T.; Rehak, Timothy E.

    2011-01-01

    A combination of local flow measurement techniques and fog flow visualization was used to determine the inward leakage for two tight-fitting powered air-purifying respirators (PAPRs), the 3M Breathe-Easy PAPR and the SE 400 breathing demand PAPR. The PAPRs were mounted on a breathing machine head form, and flows were measured from the blower and into the breathing machine. Both respirators leaked a little at the beginning of inhalation, probably through their exhalation valves. In both cases, the leakage was not enough for fog to appear at the mouth of the head form. PMID:21647352

  6. Measurement of the leakage radiation from linear accelerators in the backward direction for 4, 6, 10, 15, and 18 MV x-ray energies.

    PubMed

    Jaradat, Adnan K; Biggs, Peter J

    2007-04-01

    The x-ray leakage from the housing of a therapy x-ray source is regulated to be <0.1% of the useful beam exposure at 1 m from the source. It is to be expected that the machine leakage in the backward direction would be less because the gantry and stand contain significant amounts of additional metal to attenuate the x rays. A reduction in head leakage in this direction will have a direct effect on the thickness of the shielding wall behind the linear accelerator. However, no reports have been published to date on measurements in this area. The x-ray leakage in the backward direction has been measured from linacs having energies of 4, 6, 10, 15, and 18 MV using a 100 cm ionization chamber and Al2O3 dosimeters. The leakage was measured at nine different positions over the rear wall using a 3 x 3 matrix with a 1-m separation between adjacent horizontal and vertical points with either the leftmost or rightmost column aligned with the target and isocenter. In general, the leakage is less than the canonical value, but the exact value depends on energy, gantry angle, and measurement position. There is significantly greater attenuation directly behind the gantry stand for all energies. Leakage at 10 MV for some positions exceeded 0.1%. Additionally, neutron leakage measurements were made for 10, 15, and 18 MV x-ray beams using track-etch detectors. The average neutron leakage was less than 0.1% except for 18 MV, where neutron leakage was more than 0.1% of the useful beam at some positions. PMID:17351504

  7. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  8. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  9. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen dioxide, carbon…

  10. Measuring Air Density in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Calzà, G.; Gratton, L. M.; López-Arias, T.; Oss, S.

    2010-03-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion—buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the measurement, and the reason for the choice of the procedure, among others. One of the most widespread approaches makes use of rubber balloons. Such an approach can be misleading if attention is not paid to the effect of the buoyant force on the balloon, exerted by the surrounding air. Air is weightless in an environment full of it. While this fact can usually be neglected in daily, nontechnical weight measurements, it is not the case when we are interested in the weight of air itself. A sketch such as the one depicted in Fig. 1 is often presented in elementary science textbooks, as a demonstration that air has weight. A search of the Internet will reveal that this misleading approach is often presented as the simplest one for this kind of measurement at an elementary level and represents one among other common misconceptions that can be found in K-6 science textbooks as discussed, for instance, in Ref. 2. For a more detailed description of the flaws inherent to the measurement of air's weight with a rubber balloon, see Ref. 3. In this paper we will describe two procedures to measure the density of air: weighing a PET bottle and a vacuum rigid container. There are other interesting ways to estimate the weight of air; see, for instance, the experiment of Zhu and Se-yuen using carbon dioxide and Archimedes' principle.4 We emphasize the experimental implications and the physical reasons for the accuracy and conceptual correctness of each method. It is important not to undervalue the importance of both simplicity and reliability for any experimental measurement made in a didactic context.

  11. Measuring radon exhalation rate in two cycles avoiding the effects of back-diffusion and chamber leakage.

    PubMed

    Tan, Yanliang; Xiao, Detao

    2013-10-01

    This paper will present a simple method for measuring the radon exhalation rate from the medium surface in two cycles and also avoiding the effects of back-diffusion and chamber leakage. The method is based on a combination of the "accumulation chamber" technique and a radon monitor. The radon monitor performs the measurement of the radon concentration inside the accumulation chamber, and then the radon exhalation rate can be obtained by simple calculation. For reducing the systematic error and the statistical uncertainty, too short of total measurement time is not appropriate, and the first cycle time should be about 70 % of the total measurement. The radon exhalation rate from the medium surface obtained through this method is in good agreement with the reference value. This simple method can be applied to develop and improve the instruments for measuring radon exhalation rate.

  12. Seasonal variation in effective leakage area

    SciTech Connect

    Dickinson, J.B.; Feustel, H.E.

    1986-01-01

    Previous research on the seasonal changes in airtightness has been conducted by other researchers on one or two houses in one location. This paper describes air leakage rate measurements using the fan pressurization technique performed monthly over a period of one year in ten occupied houses in three different climates. The purpose of this study is to determine the seasonal variation in effective leakage area in houses in different climates. The three sets of houses included in this study are located in Reno, Nevada (semi-arid, high desert), Truckee, California (alpine, mountainous), and the San Francisco Bay Area (temperate, coastal). The houses are all wood-frame construction and range from one year to seventy years in age. Indoor and outdoor air temperatures, wind speed, and the moisture content of wood framing and other building components were measured at the time of each fan pressurization test. Indoor moisture levels were monitored by measuring the moisture content of a reference block of wood that was located indoors at each site. The results indicate a seasonal variation in effective leakage area in some but not all of the houses; the largest variations are seen in the Truckee houses with effective leakage areas up to 45% higher in the summer as compared to those measured in midwinter.

  13. Measurement of toxic and related air pollutants

    SciTech Connect

    Jayanty, R.K.M.; Gay, B.W. Jr.

    1990-12-01

    A joint conference for the fifth straight year cosponsored by the Air and Waste Management Association's EM-3, EM-4, and ITF-2 technical committees, and the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the US Environmental Protection Agency, was held in Raleigh, North Carolina, May 1-4, 1990. The technical program consisted of 187 presentations, held in 20 technical sessions, on recent advances in the measurement and monitoring of toxic and related pollutants found in ambient and source atmospheres. Covering a wide range of measurement topics and supported by 66 exhibitors of instrumentation and consulting services, the symposium was attended by more than 850 professionals from the US and other countries. This overview highlights a selection of the technical presentations. A synopsis of the keynote address to the symposium is also included. Presentations include: (1) radon, (2) atmospheric chemistry and fate of toxic pollutants, (3) supercritical fluid extraction, (4) acidic deposition, (5) determination of polar and volatile organic pollutants in ambient air, (6) Delaware Superfund innovative technology evaluation (SITE) study, (7) mobile sources emissions characterization, (8) Superfund site air monitoring, (9) exposure assessment, (10) chemometrics and environmental data analysis, (11) nicotine in environmental tobacco smoke, (12) source monitoring, (13) effects of air toxics on plants, (14) measurement of volatile organic pollutants, (15) general, (16) air pollution dispersion modeling, (17) measurement of hazardous waste emissions, (18) measurement of indoor toxic air contaminants, and (19) environmental quality assurance.

  14. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown. PMID:15047764

  15. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  16. Initial DAB Argon Storage Dewar Leakage

    SciTech Connect

    Dixon, K.; /Fermilab

    1990-05-30

    Any detectable leakage emanating from the argon storage dewar is undesirable; not only from a safety standpoint (eg, cryogenic burns, asphyxiation, etc.), but also small amounts of air back diffusing through leaks can render the argon unsuitable for the future physics experiments to take place within the cryostats. Whereas leakage through some of the control and manually operated valves on the dewar does not necessarily infroduce any of the above hazards directly, it could be high enough to be an economical, and perhaps an operational nuisance. Contained in the following is a compilation of the final leakage rates associated with the dewar during the period of January through May of 1990 and the raw data from which they were derived from. Also contained is a calculation of the total maximum allowable leakage rate int%ut of the dewar. The general strategy employed while leak checking the dewar was to eliminate all leaks found which could be relatively easily stopped and to reduce the more difficult ones to an acceptable level. Leakage past the seats/plugs of control and main relief valves in addition to leakage past the ball seals in the diverter valve fell into the latter category. Helium mass spectrometer leak detector (HMSLD), rate of rise (ROR) method, and throughput calculations based on effective pumping speeds were the means used to determine leakage rates. Usually the HMSLD method was used to detect the numerous smaller leaks (1 OE-S to 1 OE-1 0 std eels) which were eventually stopped by thread tightening, gasket replacement. redesign, etc. The ROR method helped measure the leakage past valve plugs and establish outgassing rates for volumes deemed as being tight; ie, no detectable leakage using the HMSLD. The throughput calculation was used only to determine the relatively large leak past the plug/seat of the vaporizer valve. A sample calculation of each leakage rate determining method is attached to this note. All leakage rates are given for helium gas at

  17. Dosimetry of a thyroid uptake detected in seed migration survey following a patient's iodine-125 prostate implant and in vitro measurements of intentional seed leakages

    SciTech Connect

    Chen Qinsheng; Russell, John L. Jr.; Macklis, Roger R.; Weinhous, Martin S.; Blair, Henry F.

    2006-07-15

    As a quality control procedure, a post-implant seed migration survey has been accomplished on 340 prostate cancer patients since November 2001. Pulmonary seed embolization and intracardiac seed embolization have been detected. A case of thyroid uptake due to leaking iodine-125 (I-125) sources was also seized. In order to determine the dose to the thyroid, a dosimetry method was developed to link in vivo measurements and the cumulated dose to the thyroid. The calculated source leakage half-life in the case was approximately 15 days based on the measurements and the estimated cumulated dose to thyroid was 204 cGy. It is concluded that one seed was leaking. In order to verify the in vivo measurements, intentional in vitro seed leakage tests were performed. A seed was cut open and placed in a sealed glass container filled with a given volume of saline. The I-125 concentration in the saline was subsequently measured over a period of six months. Consistent in vivo and in vitro results were obtained. Recent incidents of seed leaks reported from other centers have drawn practitioners' attention to this problem. In order to make the measurements more useful, the seed leakage tests were expanded to include I-125 seeds from six other vendors. The results show that the leakage half-lives of those seeds varied from nine days to a half-year. Two seed models demonstrated least leakage. Since the measurements lasted for six months, the escape of iodine resulted from oxidation of iodide in the saline was a concern for the measurement accuracy. As a reference, another set of leakage tests were performed by adding sodium thiosulfate salt (Na{sub 2}S{sub 2}O{sub 3}{center_dot}5H{sub 2}O) to the saline. Sodium thiosulfate is a reducing agent that prevents the conversion of iodide to iodate so as to minimize I-125 evaporation. As a result, significantly shortened leakage half-lives were observed in this group. Seed agitation was also performed and no significant deviations of the

  18. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  19. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Leakage. 229.59 Section 229.59 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.59 Leakage. (a) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per...

  20. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Leakage. 229.59 Section 229.59 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.59 Leakage. (a) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per...

  1. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Leakage. 229.59 Section 229.59 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.59 Leakage. (a) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per...

  2. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Leakage. 229.59 Section 229.59 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.59 Leakage. (a) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per...

  3. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Leakage. 229.59 Section 229.59 Transportation... TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Brake System § 229.59 Leakage. (a) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per...

  4. Noninvasive measurement of microvascular leakage in patients with dengue hemorrhagic fever.

    PubMed

    Bethell, D B; Gamble, J; Pham, P L; Nguyen, M D; Tran, T H; Ha, T H; Tran, T N; Dong, T H; Gartside, I B; White, N J; Day, N P

    2001-01-15

    Dengue shock syndrome (DSS) is a potentially lethal complication of dengue virus infection associated with hypotension and leakage of plasma water into the extravascular space. To determine whether the underlying pathophysiology of DSS is distinct from that in milder forms of the disease, we assessed microvascular permeability, by use of strain gauge plethysmography, in Vietnamese children with DSS (n=19), or dengue hemorrhagic fever (DHF) without shock (n=16), and in healthy control children (n=15). At admission and after fluid resuscitation, the mean coefficient of microvascular permeability (K(f)) for the patients with dengue was approximately 50% higher than that for the control patients (P=.02). There was no significant difference in K(f) between the 2 groups of patients with dengue; this suggests the same underlying pathophysiology. We hypothesize that in patients with DSS, the fluctuations in K(f) are larger than those in patients with DHF, which leads to short-lived peaks of markedly increased microvascular permeability and consequent hemodynamic shock.

  5. Measuring Air Density in the Introductory Lab

    ERIC Educational Resources Information Center

    Calza, G.; Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2010-01-01

    The measurement of the mass, or the density, of air can easily be done with very simple materials and offers many interesting phenomena for discussion--buoyancy and its effects being the most obvious but not the only one. Many interesting considerations can be done regarding the behavior of gases, the effect of the external conditions in the…

  6. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, J.

    2014-09-01

    The Guide to Attic Air Sealing was completed in 2010 and although not in the standard Measure Guideline format, is intended to be a Measure Guideline on Attic Air Sealing. The guide was reviewed during two industry stakeholders meetings held on December 18th, 2009 and January 15th, 2010, and modified based on the comments received. Please do not make comments on the Building America format of this document. The purpose of the Guide to Attic Air Sealing is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy - health, safety and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  7. Measure Guideline: Guide to Attic Air Sealing

    SciTech Connect

    Lstiburek, Joseph

    2014-09-01

    The purpose of this measure guideline is to provide information and recommendations for the preparation work necessary prior to adding attic insulation. Even though the purpose of this guide is to save energy, health, safety, and durability should not be compromised by energy efficiency. Accordingly, combustion safety and ventilation for indoor air quality are addressed first. Durability and attic ventilation then follow. Finally, to maximize energy savings, air sealing is completed prior to insulating. The guide is intended for home remodelers, builders, insulation contractors, mechanical contractors, general contractors who have previously done remodeling and homeowners as a guide to the work that needs to be done.

  8. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with intake air other than the ambient air in the test cell (i.e., air which has been pumbed directly to the engine air intake system). For engines which use ambient test cell air for the engine intake... the humidity conditioning has taken place. (b) Unconditioned air supply. Humidity measurements...

  9. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines which are supplied with intake air other than the ambient air in the test cell (i.e., air which has been pumped directly to the engine air intake system). For engines which use ambient test cell air for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  10. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with intake air other than the ambient air in the test cell (i.e., air which has been pumbed directly to the engine air intake system). For engines which use ambient test cell air for the engine intake... the humidity conditioning has taken place. (b) Unconditioned air supply. Humidity measurements...

  11. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines which are supplied with intake air other than the ambient air in the test cell (i.e., air which has been pumped directly to the engine air intake system). For engines which use ambient test cell air for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  12. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face. PMID:24195536

  13. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face.

  14. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  17. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  18. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  19. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  20. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  1. Simple leakage flow model for brush seals

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Dowler, Constance A.; Holle, Glenn F.

    1991-06-01

    Brush seals are potential replacements for some or most of the air-to-air labyrinth seals in gas turbine engines. A simple flow model is presented to generalize brush seal leakage performance throughout the range of test and application environments. The model uses a single parameter, effective brush thickness, to correlate flow through the seal. This effective brush thickness is a measure of the compactness of the bristle bed. Initial model results have been obtained using leakage flow data from two investigators. The results indicate that this simple single parameter model gives insight into the active nature of a brush seal and approximately accounts for the effect of fluid temperature, especially at the higher pressure ratios, where brush seals are commonly applied.

  2. Amine Measurements in Boreal Forest Air

    NASA Astrophysics Data System (ADS)

    Hemmilä, Marja; Hellén, Heidi; Makkonen, Ulla; Hakola, Hannele

    2015-04-01

    Amines are reactive, volatile bases in the air with a general formula of RNH2, R2NH or R3N. Especially small amines can stabilize sulphuric acid clusters and hence affect nucleation. Amines react rapidly with hydroxyl radical (OH˙) thus affecting oxidative capacity of the atmosphere. The amine concentrations are higher in forest air than in urban air (Hellén et al., 2014), but the sources are not known. In order to get more information concerning amine sources, we conducted a measurement campaign in a boreal forest. At SMEAR II station at Hyytiälä, Southern Finland (61°510'N, 24°170'E, 180 m a.s.l.) The measurements cover seven months, from June to December 2014. For sampling and measuring we used MARGA (The instrument for Measuring AeRosols and Gases in Ambient air) which is an on-line ion chromatograph (IC) connected to a sampling system. The IC component of the MARGA system was coupled to an electrospray ionization quadrupole mass spectrometer (MS) to improve sensitivity of amine measurements. This new set-up enabled amine concentration measurements in ambient air both in aerosol and gas phases with a time resolution of only 1 hour. With MARGA-MS we analysed 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). In preliminary data-analysis we found out, that in June and July most of the measured amines were in gas phase, and particle phase amine concentrations were mostly under detection limits (<1.7 pptv). In June the gaseous amine concentrations were higher than in July. The measured concentrations of gaseous amines followed temperature variation, which could indicate that amines are produced and emitted from the environment or re-emitted from the surfaces as temperature rises after deposition during night-time. All measured amines had similar diurnal variation with maxima during afternoon and minima during night. Results from other months will also

  3. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  4. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  5. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  6. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  7. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  8. 40 CFR 91.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Provisions § 91.309 Engine intake air temperature measurement. (a) Engine intake air temperature measurement... the supply system or in the air stream entering the engine. (b) The temperature measurements must...

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  10. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  11. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  12. 40 CFR 91.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Provisions § 91.310 Engine intake air humidity measurement. This section refers to engines which are supplied... air, the ambient testcell humidity measurement may be used. (a) Humidity conditioned air supply....

  13. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  14. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  15. Roadside air quality and implications for control measures: A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Ai, Z. T.; Mak, C. M.; Lee, H. C.

    2016-07-01

    Traffic related air pollution is one of major environmental issues in densely populated urban areas including Hong Kong. A series of control measures has been implemented by Hong Kong government to cut traffic related air pollutants, including retrofitting the Euro II and Euro III buses with selective catalytic reduction (SCR) devices to lower nitrogen dioxide (NO2) emissions. In order to reveal the real-life roadside air quality and evaluate the effectiveness of the control measures, this study first analyzed the recent six-year data regarding concentrations of pollutants typically associated with traffic recorded in two governmental roadside monitoring stations and second conducted on-site measurements of concentration of pollutants at pedestrian level near five selected roads. Given that there is a possibility of ammonia leakage as a secondary pollutant from SCR devices, a special attention was paid to the measurements of ammonia level in bus stations and along roadsides. Important influencing factors, such as traffic intensity, street configuration and season, were analyzed. Control measures implemented by the government are effective to decrease the traffic emissions. In 2014, only NO2 cannot achieve the annual air quality objective of Hong Kong. However, it is important to find that particulate matters, rather than NO2, post potentially a short-term exposure risk to passengers and pedestrians. Based on the findings of this study, specific control measures are suggested, which are intended to further improve the roadside air quality.

  16. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.

    PubMed

    Luo, F; Han, R; Chen, Z; Nie, Y; Shi, F; Zhang, S; Lin, W; Ren, P; Tian, G; Sun, Q; Gou, B; Ruan, X; Ren, J; Ye, M

    2016-10-01

    A benchmark experiment for validation of graphite data evaluated from nuclear data libraries was conducted for 14MeV neutrons irradiated on graphite cylinder samples. The experiments were performed using the benchmark experimental facility at the China Institute of Atomic Energy (CIAE). The leakage neutron spectra from the surface of graphite (Φ13cm×20cm) at 60° and 120° and graphite (Φ13cm×2cm) at 60° were measured by the time-of-flight (TOF) method. The obtained results were compared with the measurements made by the Monte Carlo neutron transport code MCNP-4C with the ENDF/B-VII.1, CENDL-3.1 and JENDL-4.0 libraries. The results obtained from a 20cm-thick sample revealed that the calculation results with CENDL-3.1 and JENDL-4.0 libraries showed good agreements with the experiments conducted in the whole energy region. However, a large discrepancy of approximately 40% was observed below the 3MeV energy region with the ENDF/B-VII.1 library. For the 2cm-thick sample, the calculated results obtained from the abovementioned three libraries could not reproduce the experimental data in the energy range of 5-7MeV. The graphite data in CENDL-3.1 were verified for the first time and were proved to be reliable. PMID:27620063

  17. Measurement of leakage neutron spectra from graphite cylinders irradiated with D-T neutrons for validation of evaluated nuclear data.

    PubMed

    Luo, F; Han, R; Chen, Z; Nie, Y; Shi, F; Zhang, S; Lin, W; Ren, P; Tian, G; Sun, Q; Gou, B; Ruan, X; Ren, J; Ye, M

    2016-10-01

    A benchmark experiment for validation of graphite data evaluated from nuclear data libraries was conducted for 14MeV neutrons irradiated on graphite cylinder samples. The experiments were performed using the benchmark experimental facility at the China Institute of Atomic Energy (CIAE). The leakage neutron spectra from the surface of graphite (Φ13cm×20cm) at 60° and 120° and graphite (Φ13cm×2cm) at 60° were measured by the time-of-flight (TOF) method. The obtained results were compared with the measurements made by the Monte Carlo neutron transport code MCNP-4C with the ENDF/B-VII.1, CENDL-3.1 and JENDL-4.0 libraries. The results obtained from a 20cm-thick sample revealed that the calculation results with CENDL-3.1 and JENDL-4.0 libraries showed good agreements with the experiments conducted in the whole energy region. However, a large discrepancy of approximately 40% was observed below the 3MeV energy region with the ENDF/B-VII.1 library. For the 2cm-thick sample, the calculated results obtained from the abovementioned three libraries could not reproduce the experimental data in the energy range of 5-7MeV. The graphite data in CENDL-3.1 were verified for the first time and were proved to be reliable.

  18. Design of an insulator leakage current measurement system based on PLC

    NASA Astrophysics Data System (ADS)

    Sun, Changhai; Wu, Yan; Han, Wenqi

    2013-03-01

    It is usually difficult to detect a small current signal in a high-pressure environment with strong electromagnetic interference. The paper introduces a high-voltage electrical equipment that is used to measure the small current. The system consists of three parts including the DC high voltage generator, data acquisition modules and PC data display section. The experimental results show that the device can acquire weak current signal effectively. Data acquisition module can communicate with the PC software with Ethernet, and the users can store, query the data through a database easily.

  19. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  20. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air supply...

  1. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  2. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recommended practice J244 (incorporated by reference at § 92.5) are allowed. (b) Humidity and temperature measurements. (1) Air that has had its absolute humidity altered is considered humidity-conditioned air. For this type of intake air supply, the humidity measurements must be made within the intake air...

  3. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  4. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  5. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  6. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  7. Comparison of Measured Leakage Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.

    2006-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  8. Air pollution measurements in traffic tunnels.

    PubMed

    De Fré, R; Bruynseraede, P; Kretzschmar, J G

    1994-10-01

    Air pollution measurements during April 1991 are reported from the Craeybeckx highway tunnel in Antwerp, Belgium. The tunnel was used daily by an average of 45,000 vehicles, of which 60% were gasoline fueled passenger cars, 20% diesel cars, and 20% trucks. Of the gasoline cars, only 3% had three-way catalysts. Tunnel air concentrations of nitrogen oxides, sulphur dioxide, carbon dioxide, carbon monoxide, nonmethane hydrocarbons, volatile organic compounds, polycyclic aromatic hydrocarbons, and lead are presented. The traffic emissions in the tunnel are calculated by the carbon balance method, which uses the increase of the total carbon concentration in the tunnel air as the reference quantity. Division of the concentration of any pollutant by the total carbon concentration gives emission factors per kilogram of carbon. These emission factors can be converted directly to emissions relative to fuel consumption or per kilometer. The fraction of diesel used in the tunnel was derived from sulphur to carbon ratios in tunnel air. A calculation procedure with breakdown of emission factors according to vehicle categories was used to estimate countrywide emissions. The estimated emissions were compared to results from the Flanders Emissions Inventory [Emissie Inventaris Vlaamse Regio (EIVR)] and calculated emissions according to the emission factors proposed by the European Commissions CORINAIR Working Group. For NOx there is excellent agreement. For carbon monoxide and hydrocarbons, the tunnel data produced higher emissions than the CORINAIR model would predict but lower than the official EIVR statistics. The estimated lead emissions from traffic are found to be 22 to 29% of the lead in gasoline.

  9. Evidence of neutron leakage at the Fukushima nuclear plant from measurements of radioactive 35S in California

    PubMed Central

    Priyadarshi, Antra; Dominguez, Gerardo; Thiemens, Mark H.

    2011-01-01

    A recent earthquake and the subsequent tsunami have extensively damaged the Fukushima nuclear power plant, releasing harmful radiation into the environment. Despite the obvious implication for human health and the surrounding ecology, there are no quantitative estimates of the neutron flux leakage during the weeks following the earthquake. Here, using measurements of radioactive 35S contained in sulfate aerosols and SO2 gas at a coastal site in La Jolla, California, we show that nearly 4 × 1011 neutrons per m2 leaked at the Fukushima nuclear power plant before March 20, 2011. A significantly higher activity as measured on March 28 is in accord with neutrons escaping the reactor core and being absorbed by the coolant seawater 35Cl to produce 35S by a (n, p) reaction. Once produced, 35S oxidizes to and and was then transported to Southern California due to the presence of strong prevailing westerly winds at this time. Based on a moving box model, we show that the observed activity enhancement in is compatible with long-range transport of the radiation plume from Fukushima. Our model predicts that , the concentration in the marine boundary layer at Fukushima, was approximately 2 × 105 atoms per m3, which is approximately 365 times above expected natural concentrations. These measurements and model calculations imply that approximately 0.7% of the total radioactive sulfate present at the marine boundary layer at Fukushima reached Southern California as a result of the trans-Pacific transport. PMID:21844372

  10. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  11. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  13. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  14. 40 CFR 89.325 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air temperature measurement must be made within 122 cm of the engine. The measurement location must be made...

  15. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  16. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  17. 40 CFR 90.310 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a)...

  18. Leakage effects in car underhood aerothermal management: temperature and heat flux analysis

    NASA Astrophysics Data System (ADS)

    Khaled, Mahmoud; Habchi, Charbel; Harambat, Fabien; Elmarakbi, Ahmed; Peerhossaini, Hassan

    2014-10-01

    Air leakage from the engine compartment of a vehicle comes mainly from the junctions of the vehicle hood and the front end grill, the vehicle wings, the optical and the windshield. The present paper studies the thermal impact of these air leakage zones on the components of the vehicle engine compartment through temperature and heat-flux measurements. The front wheels of the test vehicle are positioned on a dynamometer and driven by the vehicle engine. The engine compartment is instrumented with almost 100 surface and air thermocouples and 20 fluxmeters of normal gradients. Measurements were made for three different thermal operating points. Five leak-sealing configurations are studied.

  19. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    SciTech Connect

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  20. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  1. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  2. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  3. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  4. 40 CFR 89.326 - Engine intake air humidity measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air humidity measurement. 89.326 Section 89.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned...

  5. Air density measurement with a falling A4 sheet

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Ivan V.; Oladyshkina, Anastasia A.

    2016-09-01

    We propose a simple experiment on the air density measurement which does not require any special equipment: just an A4 sheet of paper, a stopwatch and a ruler. The discussed method uses the most basic air resistance model.

  6. System identification of an enclosure with leakages using a probabilistic approach

    NASA Astrophysics Data System (ADS)

    Lam, H. F.; Ng, C. T.; Lee, Y. Y.; Sun, H. Y.

    2009-05-01

    This paper presents a model-based method for the system identification of a rectangular enclosure with an unknown number of air leakages subjected to uniform external noise, according to the probabilistic approach. The method aims to identify the number and corresponding locations and sizes of air leakages utilizing a set of measured, interior, sound pressure data in the frequency domain. System identification of an enclosure with an unknown number of air leakages is not trivial. Different classes of acoustic models are required to simulate an enclosure with different numbers of leakages. By following the traditional system of identification techniques, the "optimal" class of models is selected by minimizing the discrepancy between the measured and modeled interior sound pressure. By doing this, the most complicated model class (that is, the one with the highest number of uncertain parameters) will always be selected. Therefore, the traditional system identification techniques found in the literature to date cannot be employed to solve this problem. Our proposed system identification methodology relies on the Bayesian information criterion (BIC) to identify accurately the number of leakages in an enclosure. Unlike all deterministic system identification approaches, the proposed methodology aims to calculate the posterior (updated) probability density function (PDF) of leakage locations and sizes. Therefore, the uncertainties introduced by measurement noise and modeling error can be explicitly addressed. The coefficient of variable (COV) of uncertain parameters, which can be easily calculated from the PDF, provides valuable information about the reliability of the identification results.

  7. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 91.416 Section 91.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.416 Intake air flow...

  8. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.414 Air...

  9. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  10. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  11. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  12. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  13. 40 CFR 90.309 - Engine intake air temperature measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Engine intake air temperature... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...) The temperature measurements must be accurate to within ±2 °C....

  14. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  15. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  16. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  17. 21 CFR 870.2640 - Portable leakage current alarm.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Portable leakage current alarm. 870.2640 Section... leakage current alarm. (a) Identification. A portable leakage current alarm is a device used to measure the electrical leakage current between any two points of an electrical system and to sound an alarm...

  18. Nonlinear Acoustics Used To Reduce Leakage Flow

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.

  19. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    PubMed

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  20. Perfluorocarbon tracer method for air-infiltration measurements

    DOEpatents

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  1. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  2. Measuring Air Resistance in a Computerized Laboratory.

    ERIC Educational Resources Information Center

    Takahashi, Ken; Thompson, D.

    1999-01-01

    Presents an activity that involves dropping spherical party balloons onto a sonic motion sensor to show that the force associated with the air resistance is proportional to both the square of the velocity and the cross-sectional area of the balloon. (Author/WRM)

  3. Next-generation air measurement technologies

    EPA Science Inventory

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the st...

  4. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  5. Proton dose calculation based on in-air fluence measurements.

    PubMed

    Schaffner, Barbara

    2008-03-21

    Proton dose calculation algorithms--as well as photon and electron algorithms--are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and-to a lesser extent-design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques. PMID:18367787

  6. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 90.416 Section 90.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures §...

  7. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    NASA Astrophysics Data System (ADS)

    Krevor, S.; Perrin, J.; Esposito, A.; Rella, C.; Benson, S. M.

    2009-12-01

    A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to detect and characterize an intentional leakage of CO2 from an underground pipeline at the ZERT experimental facility in Bozeman, Montana. Rapid (~1 hour) walking surveys of the entire 100m x 100m site were collected using this mobile, real-time instrument. The resulting concentration and 13C isotopic abundance maps were processed using simple yet powerful analysis techniques, permitting not only the identification of specific leakage locations, but providing the ability to distinguish petrogenic sources of CO2 from biogenic sources. At the site an approximately 100-meter horizontal well has been drilled below an alfalfa field at a depth between 1-3 meters below the surface. The well has perforations along the central 70 meters of the well. The overlying strata are highly permeable sand, silt, and topsoil. The flora consists generally of long grasses and was cut to a height of less than 6 inches before the start of the experiment. For 30 days starting July 15, 2009, CO2 was injected at a rate of 0.2 tonnes per day. The injection rate is designed to simulate leakage from a mature storage reservoir at an annual rate of between .001 and .01%. The isotopic composition of the gas from the tank is at δ13C signature of approximately -52‰, far more negative than either atmospheric (approx. -8‰) or CO2 from soil respiration (approx. -26‰) at the site. The CO2 isotopic and concentration measurements were taken with a Picarro WS-CRDS analyzer with 1/8” tubing connected to a sampling inlet. Simultaneous with CO2 concentrations (including 13C), position data was logged using a GPS receiver. Datapoints are taken around every second. The analyzer was powered using batteries and housed in a conventional garden cart. The surveys consisted of traverses of the site along the length of the pipeline and extending out 100 meters on either

  8. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  9. IMPACT OF HEATING AND AIR CONDITIONING SYSTEM OPERATION AND LEAKAGE ON VENTILATION AND INTERCOMPARTMENT TRANSPORT: STUDIES IN UNOCCUPIED AND OCCUPIED TENNESSEE VALLEY HOMES

    EPA Science Inventory

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...

  10. AIR INFILTRATION MEASUREMENTS USING TRACER GASES: A LITERATURE REVIEW

    EPA Science Inventory

    The report gives results of a literature review of air filtration measurements using tracer gases, including sulfur hexafluoride, hydrogen, carbon monoxide, carbon dioxide, nitrous oxide, and radioactive argon and krypton. Sulfur hexafluoride is the commonest tracer gas of choice...

  11. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  12. Measuring In-Air and Underwater Hearing in Seabirds.

    PubMed

    Crowell, Sara C

    2016-01-01

    Electrophysiological methods were used to measure the in-air hearing of 10 species of seabirds. There are currently no measures of the underwater hearing abilities of diving birds. In preparation for constructing a behavioral audiogram both in-air and underwater hearing, several species of diving ducks were raised. Because there is a considerable amount of literature on bird hearing in air, the technical setup and training methods were modeled on similar studies, with modifications to address the nature of the underwater sound field and the difficulty of the task for the birds. PMID:26611081

  13. Measuring In-Air and Underwater Hearing in Seabirds.

    PubMed

    Crowell, Sara C

    2016-01-01

    Electrophysiological methods were used to measure the in-air hearing of 10 species of seabirds. There are currently no measures of the underwater hearing abilities of diving birds. In preparation for constructing a behavioral audiogram both in-air and underwater hearing, several species of diving ducks were raised. Because there is a considerable amount of literature on bird hearing in air, the technical setup and training methods were modeled on similar studies, with modifications to address the nature of the underwater sound field and the difficulty of the task for the birds.

  14. 40 CFR 92.108 - Intake and cooling air measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... device for all modes except idle. For idle, the measurement accuracy shall be ±5 percent or less of the...) Corrections to the measured air mass flowrate shall be made when an engine system incorporates devices that... from these devices shall be approved by the Administrator. (3) Measurements made in accordance with...

  15. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  16. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  17. Utilization of lasers for air data measurements

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    1991-05-01

    The operating principles of the ALEV3 three axis laser Doppler anemometer, which was designed for flight tests with the A-320 and A-340 aircraft, are depicted. If mounted on the aircraft center of gravity, the ALEV-3 allows true flight velocity in three directions and angles of attack and sideslip to be directly measured with a very good accuracy, in particular flight areas such as limit buffeting, stall, high Mach numbers, or sideslip flights. Aircraft parameter estimation, calculation, and calibration results are presented. The accuracies of velocity, static pressure and aerodynamic angle measurements were compared with classical anemometers precisions. Flight tests results of the ALEV-1 one axis laser anemometer for A-320 are given as a reference.

  18. Radiofrequency radiation leakage from microwave ovens.

    PubMed

    Lahham, Adnan; Sharabati, Afifeh

    2013-12-01

    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm(-2) with an average value equalling 3.64 μW cm(-2). Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm(-2). The highest radiation leakage from any tested oven was ∼16.4 μW cm(-2), and found in two cases only. In no case did the leakage exceed the limit of 1 mW cm(-2) recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age.

  19. Identification and influence of spatial outliers in air quality measurements

    NASA Astrophysics Data System (ADS)

    O'Leary, B. F.; Lemke, L. D.

    2015-12-01

    The heterogeneous nature of urban air complicates the analysis of spatial and temporal variability in air quality measurements. Evaluation of potentially inaccurate measurements (i.e., outliers) poses particularly difficult challenges in extensive air quality datasets with multiple measurements distributed in time and space. This study investigated the identification and impact of outliers in measurements of NO­2, BTEX, PM2.5, and PM10 in the contiguous Detroit, Michigan, USA and Windsor, Ontario, Canada international airshed. Measurements were taken at 100 locations during September 2008 and June 2009 and modeled at a 300m by 300m scale resolution. The objective was to determine if outliers were present and, if so, to quantify the magnitude of their impact on modeled spatial pollution distributions. The study built upon previous investigations by the Geospatial Determinants of Health Outcomes Consortium that examined relationships between air pollutant distributions and asthma exacerbations in the Detroit and Windsor airshed. Four independent approaches were initially employed to identify potential outliers: boxplots, variogram clouds, difference maps, and the Local Moran's I statistic. Potential outliers were subsequently reevaluated for consistency among methods and individually assessed to select a final set of outliers. The impact of excluding individual outliers was subsequently determined by revising the spatially variable air pollution models and recalculating associations between air contaminant concentrations and asthma exacerbations in Detroit and Windsor in 2008. For the pollutants examined, revised associations revealed weaker correlations with spatial outliers removed. Nevertheless, the approach employed improves the model integrity by increasing our understanding of the spatial variability of air pollution in the built environment and providing additional insights into the association between acute asthma exacerbations and air pollution.

  20. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  1. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  2. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  3. MEASUREMENT OF LOW LEVEL AIR TOXICS WITH MODIFIED UV DOAS

    EPA Science Inventory

    To further understand near source impacts, EPA is working to develop open-path optical techniques for spatiotemporal-resolved measurement of air pollutants. Of particular interest is near real time quantification of mobile-source generated CO, Nox and hydrocarbons measured in cl...

  4. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    PubMed Central

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  5. The Aeroflex: a bicycle for mobile air quality measurements.

    PubMed

    Elen, Bart; Peters, Jan; Poppel, Martine Van; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. 

  6. Apparatus for detecting leakage of liquid sodium

    DOEpatents

    Himeno, Yoshiaki

    1978-01-01

    An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.

  7. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  8. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  9. Low-frequency sound absorption measurements in air

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Meredith, R. W.

    1984-01-01

    Thirty sets of sound absorption measurements in air at a pressure of 1 atmosphere are presented at temperatures from 10 C to 50 C, relative humidities from 0 to 100 percent, and frequencies from 10 to 2500 Hz. The measurements were conducted by the method of free decay in a resonant tube having a length of 18.261 m and bore diameter of 0.152 m. Background measurements in a gas consisting of 89.5 percent N2 and 10.5 percent Ar, a mixture which has the same sound velocity as air, permitted the wall and structural losses of the tube to be separated from the constituent absorption, consisting of classical rotational and vibrational absorption, in the air samples. The data were used to evaluate the vibrational relaxation frequencies of N2 and/or O2 for each of the 30 sets of meteorological parameters. Over the full range of humidity, the measured relaxation frequencies of N2 in air lie between those specified by ANSI Standard S1.26-1978 and those measured earlier in binary N2H2O mixtures. The measured relaxation frequencies could be determined only at very low values of humidity, reveal a significant trend away from the ANSI standard, in agreement with a prior investigation.

  10. Measurement of oxygen transfer from air into organic solvents

    PubMed Central

    Ramesh, Hemalata; Hobisch, Mathias; Borisov, Sergey; Klimant, Ingo; Krühne, Ulrich; Woodley, John M

    2015-01-01

    Abstract BACKGROUND The use of non‐aqueous organic media is becoming increasingly important in many biotechnological applications in order to achieve process intensification. Such media can be used, for example, to directly extract poorly water‐soluble toxic products from fermentations. Likewise many biological reactions require the supply of oxygen, most normally from air. However, reliable online measurements of oxygen concentration in organic solvents (and hence oxygen transfer rates from air to the solvent) has to date proven impossible due to limitations in the current analytical methods. RESULTS For the first time, online oxygen measurements in non‐aqueous media using a novel optical sensor are demonstrated. The sensor was used to measure oxygen concentration in various organic solvents including toluene, THF, isooctane, DMF, heptane and hexane (which have all been shown suitable for several biological applications). Subsequently, the oxygen transfer rates from air into these organic solvents were measured. CONCLUSION The measurement of oxygen transfer rates from air into organic solvents using the dynamic method was established using the solvent resistant optical sensor. The feasibility of online oxygen measurements in organic solvents has also been demonstrated, paving the way for new opportunities in process control. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Indoor air quality. [Health hazards due to energy conservation measures

    SciTech Connect

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed.

  12. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max leakage of turbine oil with subsequent contamination of the cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02).

  13. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max leakage of turbine oil with subsequent contamination of the cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02). PMID:21399836

  14. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  15. Shroud leakage flow discouragers

    DOEpatents

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  16. FMPS measurement of nanoparticle pollutant in office air

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqin; Lin, Jianzhong; Yu, Mingzhou

    2010-08-01

    Fast Mobility Particle Sizer (FMPS) is an electrical mobility instrument used to measure the nanoparticle number concentration and size distribution in an office environment. Actual measurements indicate the distributions of ultrafine particle number and size in office air are inhomogeneous in space. The nonaparticle size is bimodal and log-normally distribution in an office environment when only people activities are considered. The traffic pollutant in the outdoor including the automobile tail gas and the dust will change the particles size distribution and enhance the particle number concentration those of indoor air. It can also be seen from the results that the laser printer releases a large number of nanoparticles, especially around 80nm in diameter in the printing process. The laser printer may be the mainly ultrafine particle source in the office air.

  17. Measurement of air toxics using extractive FTIR spectroscopy

    SciTech Connect

    Lacoss, J.P.; Ogle, L.D.; Shareef, G.S.

    1995-12-31

    In response to the 1990 Clean Air Act Amendments, the Gas Research Institute (GRI) is investigating air toxics emissions from natural gas industry sources. Included in this effort are measurements from internal combustion engines, one of the source categories targeted by U.S. Environmental Protection Agency (EPA) for development of maximum achievable control technology (MACT) based regulations by the year 2000. Formaldehyde and other aldehydes are the air toxics potentially present in engine exhaust. Since there are no EPA approved methods available for quantifying aldehydes in engine exhaust, GRI initiated a field test to validate an extractive Fourier transform infrared spectroscopy (FTIR) based method according to U.S. EPA Method 301 {open_quotes}Field Validation of Pollutant Measurement Methods for Various Media{close_quotes}. The extended paper presents the results of this validation testing for formaldehyde, acetaldehyde, and acrolein conducted to support this validation testing.

  18. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  19. Monte Carlo study of TLD measurements in air cavities.

    PubMed

    Haraldsson, Pia; Knöös, Tommy; Nyström, Håkan; Engström, Per

    2003-09-21

    Thermoluminescent dosimeters (TLDs) are used for verification of the delivered dose during IMRT treatment of head and neck carcinomas. The TLDs are put into a plastic tube, which is placed in the nasal cavities through the treated volume. In this study, the dose distribution to a phantom having a cylindrical air cavity containing a tube was calculated by Monte Carlo methods and the results were compared with data from a treatment planning system (TPS) to evaluate the accuracy of the TLD measurements. The phantom was defined in the DOSXYZnrc Monte Carlo code and calculations were performed with 6 MV fields, with the TLD tube placed at different positions within the cylindrical air cavity. A similar phantom was defined in the pencil beam based TPS. Differences between the Monte Carlo and the TPS calculations of the absorbed dose to the TLD tube were found to be small for an open symmetrical field. For a half-beam field through the air cavity, there was a larger discrepancy. Furthermore, dose profiles through the cylindrical air cavity show, as expected, that the treatment planning system overestimates the absorbed dose in the air cavity. This study shows that when using an open symmetrical field, Monte Carlo calculations of absorbed doses to a TLD tube in a cylindrical air cavity give results comparable to a pencil beam based treatment planning system.

  20. Disruptive Innovation in Air Measurement Technology: Reality or Hype?

    EPA Science Inventory

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  1. Measuring radon concentration in air using a diffusion cloud chamber

    NASA Astrophysics Data System (ADS)

    Cases, R.; Ros, E.; Zúñiga, J.

    2011-09-01

    Radon concentration in air is a major concern in lung cancer studies. A traditional technique used to measure radon abundance is the charcoal canister method. We propose a novel technique using a diffusion cloud chamber. This technique is simpler and can easily be used for physics demonstrations for high school and university students.

  2. Continuous Quantitative Measurements on a Linear Air Track

    ERIC Educational Resources Information Center

    Vogel, Eric

    1973-01-01

    Describes the construction and operational procedures of a spark-timing apparatus which is designed to record the back and forth motion of one or two carts on linear air tracks. Applications to measurements of velocity, acceleration, simple harmonic motion, and collision problems are illustrated. (CC)

  3. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  4. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  5. Temperature Measurement in Microhollow Cathode Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Block, Rolf; Toedter, Olaf; Schoenbach, Karl H.

    1998-10-01

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of one hundred micrometers we were able to operate the discharges in a direct current mode at atmospheric pressure in air. The possibility to operate microhollow cathode discharges (MHCD) in parallel [1] in atmospheric air opens a wide range of applications. At atmospheric pressures, the electric power of a single discharge was measured as 8W. The power density in the microhollow exceeds 1MW/cm^3. This leads to strong thermal loading of the electrodes. In order to study the thermal properties of the discharge we have used a method based on emission spectroscopy. The rotational structure of the emitted lines corresponding to the second positive system of nitrogen contains information on the neutral gas temperature. Taking the apparatus profile into account the temperature of the rotational excited molecules can be estimated by a comparison of simulated and measured data. Measurements on MHCD up to atmospheric pressure show an increase in the neutral gas temperature to values exceeding 1000K. In addition to the gas temperature the electrode temperatures were measured and the thermodynamic behavior of the electrode configuration was calculated. [1] W. Shi, K.H. Schoenbach Parallel Operation of Microhollow Cathode Discharges, ICOPS98, Raleigh, NC, USA, 1998 This work was funded by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI program, and by the Department of Energy, Advanced Energy Division.

  6. Universal leakage elimination

    SciTech Connect

    Byrd, Mark S.; Lidar, Daniel A.; Wu, L.-A.; Zanardi, Paolo

    2005-05-15

    'Leakage' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace, thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating a large class of leakage errors, under some circumstances, we can create the conditions for a decoherence-free evolution. In other cases we identify a combined decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions.

  7. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  8. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  9. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  10. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is equipped with vapor recovery equipment may be leakage tested in accordance with 40 CFR 63.425(e). To satisfy the leakage test requirements of this paragraph, the test specified in 40 CFR 63.425(e)(1) must be conducted using air. The hydrostatic test alternative permitted under Appendix A to 40 CFR...

  11. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is equipped with vapor recovery equipment may be leakage tested in accordance with 40 CFR 63.425(e). To satisfy the leakage test requirements of this paragraph, the test specified in 40 CFR 63.425(e)(1) must be conducted using air. The hydrostatic test alternative permitted under Appendix A to 40 CFR...

  12. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is equipped with vapor recovery equipment may be leakage tested in accordance with 40 CFR 63.425(e). To satisfy the leakage test requirements of this paragraph, the test specified in 40 CFR 63.425(e)(1) must be conducted using air. The hydrostatic test alternative permitted under Appendix A to 40 CFR...

  13. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is equipped with vapor recovery equipment may be leakage tested in accordance with 40 CFR 63.425(e). To satisfy the leakage test requirements of this paragraph, the test specified in 40 CFR 63.425(e)(1) must be conducted using air. The hydrostatic test alternative permitted under Appendix A to 40 CFR...

  14. Influence of temperature changes on ambient air NOx chemiluminescence measurements.

    PubMed

    Miñarro, Marta Doval; Ferradás, Enrique González; Martínez, Francisco J Marzal

    2012-09-01

    Users of automatic air pollution monitors are largely unaware of how certain parameters, like temperature, can affect readings. The present work examines the influence of temperature changes on chemiluminescence NO(x) measurements made with a Thermo Scientific 42i analyzer, a model widely used in air monitoring networks and air pollution studies. These changes are grouped into two categories according to European Standard EN 14211: (1) changes in the air surrounding the analyzers and (2) changes in the sampled air. First, the sensitivity tests described in Standard EN 14211 were performed to determine whether the analyzer performance was adapted to the requirements of the standard. The analyzer met the performance criteria of both tests; however, some differences were detected in readings with temperature changes even though the temperature compensator was on. Sample temperature changes were studied more deeply as they were the most critical (they cannot be controlled and differences of several tens of degrees can be present in a single day). Significant differences in readings were obtained when changing sample temperature; however, maximum deviations were around 3% for temperature ranges of 15°C. If other possible uncertainty contributions are controlled and temperature variations with respect to the calibration temperature are not higher than 15°C, the effect of temperature changes could be acceptable and no data correction should have to be applied. PMID:21964932

  15. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  16. Measuring Density Of Air By Ultraviolet Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1992-01-01

    Report presents theoretical and experimental studies directed toward development of optoelectronic instrument to measure density of air at altitudes from 50 to 90 km and possibly beyond. Instrument mounted in Space Shuttle orbiter and operated during reentry into atmosphere. Data gathered by instrument needed because density of upper atmosphere highly variable in space and time and this variability affects aerodynamic behavior and trajectory of reentering Shuttle. Variations in density also meteorologically significant.

  17. Air infiltration and building tightness measurements in passive solar residences

    SciTech Connect

    Persily, A.K.; Grot, R.A.

    1984-05-01

    The airtightness of about fifty passive solar homes located throughout the United States was studied using low-cost measurement techniques. These homes are part of the DOE-sponsored Class B monitoring program conducted at the Solar Energy Research Institute (SERI) to evaluate the thermal performance of passive solar residential buildings. These tests provide the first set of building tightness measurements on a large group of passive solar buildings. The measurements include pressurization tests to measure airtightness and tracer gas measurements to determine air infiltration rates. The pressure tests show a variation in the airtightness of these homes from 3 to 30 exchanges/hr at 50 Pascal, with a median of 9.5 exchanges/hr. The air infiltration measurements cover a wider range from 0.05 to 3.0 exchanges/hr, with a median of 0.5 exchanges/hr. In comparing the tightness of these homes to other U.S. homes, one finds that these passive solar homes are not significantly tighter than homes built with less of an emphasis on energy use.

  18. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  19. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-01

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air.

  20. PAH Measurements in Air in the Athabasca Oil Sands Region.

    PubMed

    Hsu, Yu-Mei; Harner, Tom; Li, Henrik; Fellin, Phil

    2015-05-01

    Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air. PMID:25844542

  1. Temperature effects on soybean imbibition and leakage.

    PubMed

    Leopold, A C

    1980-06-01

    As a part of an analysis of the nature of chilling injury to seeds, measurements were made of the initial linear rates of water entry into and solute leakage out of cotyledons of soybean at various temperatures. Arrhenius plots were approximately linear for water entry into both living and dead cotyledons, with the slope (and activation energy) for entry into living cells being insignificantly higher than for dead cells, suggesting little effect of membrane barriers on water entry. The plots for solute leakage showed 10-fold lower leakage rates from living than from dead tissues; a reversal of slope in the Arrhenius plot at temperatures below 15 C reflected increasing leakage rates, interpreted as a quantitative disruption of membrane reorganization at the temperatures associated with chilling injury.

  2. Leakage Suppression in the Toric Code

    NASA Astrophysics Data System (ADS)

    Suchara, Martin; Cross, Andrew; Gambetta, Jay

    2015-03-01

    Quantum codes excel at correcting local noise but fail to correct leakage faults that excite qubits to states outside the computational space. Aliferis and Terhal have shown that an accuracy threshold exists for leakage faults using gadgets called leakage reduction units (LRUs). However, these gadgets reduce the threshold and increase experimental complexity, and the costs have not been thoroughly understood. We explore a variety of techniques for leakage resilience in topological codes. Our contributions are threefold. First, we develop a leakage model that differs in critical details from earlier models. Second, we use Monte-Carlo simulations to survey several syndrome extraction circuits. Third, given the capability to perform 3-outcome measurements, we present a dramatically improved syndrome processing algorithm. Our simulations show that simple circuits with one extra CNOT per qubit reduce the accuracy threshold by less than a factor of 4 when leakage and depolarizing noise rates are comparable. This becomes a factor of 2 when the decoder uses 3-outcome measurements. Finally, when the physical error rate is less than 2 ×10-4 , placing LRUs after every gate may achieve the lowest logical error rate. We expect that the ideas may generalize to other topological codes.

  3. Workplace protection factor measurements on powered air-purifying respirators at a secondary lead smelter - test protocol

    SciTech Connect

    Myers, W.R.; Peach, M.J. III; Alldender, J.

    1984-04-01

    A study was conducted at a secondary smelter to evaluate the workplace performance of the 3M Model W-344 and Racal Model AH3 powered air-purifying respirators (PAPR) equipped with helmets and high efficiency filters. The research protocol developed for obtaining leakage measurements in the field provides for proper respirator fitting, use, wear, maintenance and worker supervision, all of which are problems commonly associated with data acquisition when field testing respirators. The protocol proved to be very workable, even though it required extensive worker and equipment monitoring. Based upon the successful implementation of this protocol, the performance of these PAPRs should be indicative of their best performance under the workplace conditions experienced in this study. This research protocol is proposed as a model for conducting field studies on other types of respirators as well as the basis on which to develop new and improved field test procedures. The results of one such study are presented in a comparison paper.

  4. Bias in air sampling techniques used to measure inhalation exposure.

    PubMed

    Cohen, B S; Harley, N H; Lippmann, M

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and "mini hi-volume" samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. We conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  5. Bias in air sampling techniques used to measure inhalation exposure

    SciTech Connect

    Cohen, B.S.; Harley, N.H.; Lippmann, M.

    1984-03-01

    Factors have been evaluated which contribute to the lack of agreement between inhalation exposure estimates obtained by time-weighted averaging of samples taken with mini hi-volume samplers, and those measured by time integrating, low-volume, lapel mounted, personal monitors. Measurements made with real-time aerosol monitors on workers at a Be-Cu production furnace show that part of the discrepancy results from variability of the aerosol concentration within the breathing zone. Field studies of sampler inlet bias, the influences of the electrostatic fields around polystyrene filter holders, and resuspension of dust from work clothing, were done in three areas of a Be plant. No significant differences were found in Be air concentrations measured simultaneously by open and closed face cassettes, and mini hi-volume samplers mounted on a test stand. No significant influence on Be collection was detected between either positively or negatively charged monitors and charge neutralized control monitors. The effect of contaminated work clothing on dust collection by lapel mounted monitors is most important. Beryllium release from the fabrics affected air concentrations measured by fabric mounted monitors more than it affected concentrations measured by monitors positioned above the fabrics. The latter were placed 16 cm from the vertically mounted fabrics, to simulate the position of the nose or mouth. The authors conclude that dust resuspended from work clothing is the major source of the observed discrepancy between exposures estimated from lapel mounted samplers and time-weighted averages.

  6. Comparison of the measured and calculated time profiles of the leakage current in the magnetically insulated transmission line of the angara-5-1 facility

    SciTech Connect

    Grabovski, E. V.; Gribov, A. N.; Samokhin, A. A.; Shishlov, A. O.

    2013-10-15

    One of the factors limiting the transmission of the electromagnetic pulse to the load in high-power electrophysical facilities is the current leakage in magnetically insulated transmission lines (MITLs). In this paper, the Angara-5-1 eight-module facility with an output power up to 6 TW is considered. The experimental and calculated time profiles of the leakage current for eight-module shots with a dynamic load (cylindrical arrays made of 40 tungsten wires) and single-module shots with a solid cylindrical metal load are compared. When interpreting the results, the contribution of vacuum electrons to the leakage current at the transition from the cylindrical to the conical section of the MITL is taken into account.

  7. The understanding on the evolution of stress-induced gate leakage in high-k dielectric metal-oxide-field-effect transistor by random-telegraph-noise measurement

    NASA Astrophysics Data System (ADS)

    Hsieh, E. R.; Chung, Steve S.

    2015-12-01

    The evolution of gate-current leakage path has been observed and depicted by RTN signals on metal-oxide-silicon field effect transistor with high-k gate dielectric. An experimental method based on gate-current random telegraph noise (Ig-RTN) technique was developed to observe the formation of gate-leakage path for the device under certain electrical stress, such as Bias Temperature Instability. The results show that the evolution of gate-current path consists of three stages. In the beginning, only direct-tunnelling gate current and discrete traps inducing Ig-RTN are observed; in the middle stage, interaction between traps and the percolation paths presents a multi-level gate-current variation, and finally two different patterns of the hard or soft breakdown path can be identified. These observations provide us a better understanding of the gate-leakage and its impact on the device reliability.

  8. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  9. Advances in Air-Sea Flux Measurement by Eddy Correlation

    NASA Astrophysics Data System (ADS)

    Blomquist, Byron W.; Huebert, Barry J.; Fairall, Christopher W.; Bariteau, Ludovic; Edson, James B.; Hare, Jeffrey E.; McGillis, Wade R.

    2014-09-01

    Eddy-correlation measurements of the oceanic flux are useful for the development and validation of air-sea gas exchange models and for analysis of the marine carbon cycle. Results from more than a decade of published work and from two recent field programs illustrate the principal interferences from water vapour and motion, demonstrating experimental approaches for improving measurement precision and accuracy. Water vapour cross-sensitivity is the greatest source of error for flux measurements using infrared gas analyzers, often leading to a ten-fold bias in the measured flux. Much of this error is not related to optical contamination, as previously supposed. While various correction schemes have been demonstrated, the use of an air dryer and closed-path analyzer is the most effective way to eliminate this interference. This approach also obviates density corrections described by Webb et al. (Q J R Meteorol 106:85-100, 1980). Signal lag and frequency response are a concern with closed-path systems, but periodic gas pulses at the inlet tip provide for precise determination of lag time and frequency attenuation. Flux attenuation corrections are shown to be 5 % for a cavity ring-down analyzer (CRDS) and dryer with a 60-m inlet line. The estimated flux detection limit for the CRDS analyzer and dryer is a factor of ten better than for IRGAs sampling moist air. While ship-motion interference is apparent with all analyzers tested in this study, decorrelation or regression methods are effective in removing most of this bias from IRGA measurements and may also be applicable to the CRDS.

  10. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  11. Low-Cost Sensor Units for Measuring Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.

    2010-12-01

    Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.

  12. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  13. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  14. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    SciTech Connect

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT; JEFFCOATE, C.S.

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the current as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  17. Size measurement of plutonium particles from internal sputtering into air

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Sung; Holmes, Thomas D.; George, Timothy G.; Marlow, William H.

    2005-06-01

    During the past century, the results of spontaneous translocation of radioactivity in air, biological media and groundwater have been reported. Here, we report the first measurements of the size characteristics in air of the particles participating in this translocation phenomenon. For the plutonium material powering radioisotope thermal generators, we find two narrow, well-separated fractions, one corresponding to particles below a nanometer and one at or below 10 nm. These results are interpreted as a gas-phase nucleation phenomenon arising from internal sputtering. They suggest fruitful directions for further research with immediate implications for accounting for the effects of radiological terrorism, for identifying new signatures for nuclear materials of possible use in antiterrorism and other covert nuclear materials operations, for radioactive and mixed materials storage handling, for reactor safety and source term modeling and for other materials processes.

  18. 42 CFR 84.182 - Exhalation valve leakage test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Exhalation valve leakage test; minimum requirements...-Powered Air-Purifying Particulate Respirators § 84.182 Exhalation valve leakage test; minimum requirements... height while in a normal operating position. (b) Leakage between the valve and valve seat shall...

  19. 42 CFR 84.182 - Exhalation valve leakage test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Exhalation valve leakage test; minimum requirements...-Powered Air-Purifying Particulate Respirators § 84.182 Exhalation valve leakage test; minimum requirements... height while in a normal operating position. (b) Leakage between the valve and valve seat shall...

  20. 42 CFR 84.182 - Exhalation valve leakage test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Exhalation valve leakage test; minimum requirements...-Powered Air-Purifying Particulate Respirators § 84.182 Exhalation valve leakage test; minimum requirements... height while in a normal operating position. (b) Leakage between the valve and valve seat shall...

  1. 42 CFR 84.182 - Exhalation valve leakage test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Exhalation valve leakage test; minimum requirements...-Powered Air-Purifying Particulate Respirators § 84.182 Exhalation valve leakage test; minimum requirements... height while in a normal operating position. (b) Leakage between the valve and valve seat shall...

  2. 42 CFR 84.182 - Exhalation valve leakage test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Exhalation valve leakage test; minimum requirements...-Powered Air-Purifying Particulate Respirators § 84.182 Exhalation valve leakage test; minimum requirements... height while in a normal operating position. (b) Leakage between the valve and valve seat shall...

  3. Pressure Gauges Monitor Leakage Past Seals

    NASA Technical Reports Server (NTRS)

    Smith, Steven A.

    1990-01-01

    Method devised to measure leakage of gas past each of two sets of primary and secondary seals into common volume from which aggregate flow measured. Although method applicable only to specific combination of flow configuration and thermal conditions, it serves as example of more general approach involving use of statistical analysis to extract additional information from measurements.

  4. Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: Self-potential 'abacus' diagram for hydraulic permeability estimation and uncertainty computation

    NASA Astrophysics Data System (ADS)

    Bolève, A.; Vandemeulebrouck, J.; Grangeon, J.

    2012-11-01

    In the present study, we propose the combination of two geophysical techniques, which we have applied to a dyke located in southeastern France that has a visible downstream flood area: the self-potential (SP) and hydro-acoustic methods. These methods are sensitive to two different types of signals: electric signals and water-soil pressure disturbances, respectively. The advantages of the SP technique lie in the high rate of data acquisition, which allows assessment of long dykes, and direct diagnosis in terms of leakage area delimitation and quantification. Coupled with punctual hydro-acoustic cartography, a leakage position can be precisely located, therefore allowing specific remediation decisions with regard to the results of the geophysical investigation. Here, the precise localization of leakage from an earth dyke has been identified using SP and hydro-acoustic signals, with the permeability of the preferential fluid flow area estimated by forward SP modeling. Moreover, we propose a general 'abacus' diagram for the estimation of hydraulic permeability of dyke leakage according to the magnitude of over water SP anomalies and the associated uncertainty.

  5. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  6. Air-Sea Interaction Measurements from R/P FLIP

    NASA Astrophysics Data System (ADS)

    Friehe, C. A.

    2002-12-01

    Soon after its inception, R/P FLIP was used to study the interaction of the atmosphere and ocean due to its unique stability and low flow distortion. A number of campaigns have been conducted to measure the surface fluxes of heat, water vapor and horizontal momentum of the wind with instrumentation as used over land, supported by the Office of Naval Research and the National Science Foundation. The size of FLIP allows for simultaneous ocean wave and mixed-layer measurements as well. Air-sea interaction was a prime component of BOMEX in 1968, where FLIP transited the Panama Canal. The methods used were similar to the over-land "Kansas" experiment of AFCRL in 1968. BOMEX was followed by many experiments in the north Pacific off San Diego, northern California, and Hawaii. Diverse results from FLIP include identification of the mechanism that causes erroneous fluctuating temperature measurements in the salt-aerosol-laden marine atmosphere, the role of humidity on optical refractive index fluctuations, and identification of Miles' critical layer in the air flow over waves.

  7. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  8. Empowering smartphone users with sensor node for air quality measurement

    NASA Astrophysics Data System (ADS)

    Oletic, Dinko; Bilas, Vedran

    2013-06-01

    We present an architecture of a sensor node developed for use with smartphones for participatory sensing of air quality in urban environments. Our solution features inexpensive metal-oxide semiconductor gas sensors (MOX) for measurement of CO, O3, NO2 and VOC, along with sensors for ambient temperature and humidity. We focus on our design of sensor interface consisting of power-regulated heater temperature control, and the design of resistance sensing circuit. Accuracy of the sensor interface is characterized. Power consumption of the sensor node is analysed. Preliminary data obtained from the CO gas sensors in laboratory conditions and during the outdoor field-test is shown.

  9. Leakage and performance characteristics of large stoppings for room-and-pillar mining. Report of Investigations/1988

    SciTech Connect

    Thimons, E.D.; Brechtel, C.E.; Adam, M.E.; Agapito, J.F.T.

    1988-01-01

    The construction costs, leakage measurements, and predicted performance of different types of large stoppings built and tested in a room-and-pillar oil-shale mine were compared. The six full-sized structures (30 ft high by 55 ft wide) included both permanent and temporary stoppings and were fabricated using materials ranging from structural steel to coated brattice cloth. Leakage across each stopping was measured at differential pressures ranging up to 1.0 in w.g., using both the brattice-window method and sulfur hexafluoride tracer gas. Blast air pressures resulting from full-scale face blast of approximately 1,800 lb of ammonium nitrate-fuel oil (ANFO) explosives were measured across two of the stoppings, and the pre- and post-leakage rates were compared for all the stoppings.

  10. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  11. THERMAL REGAIN FROM DISPLACEMENT OF DUCT LEAKAGE WITHIN INSULATION.

    SciTech Connect

    ANDREWS,J.W.

    2002-05-01

    In one type of duct efficiency retrofit, additional insulation is added to a duct system that is already insulated. For example, a layer of R-4 insulation might be: added to a duct system that already has R-4 installed. It is possible that--either by chance or by design--the add-on layer, while not stopping duct leaks, might cause the leakage air to flow longitudinally for a distance, parallel to the duct, before it finds a way out of the newly added outer layer. This could happen by chance if the outer and inner layers of insulation have seams at different locations. Perhaps more usefully, if such longitudinal displacement of the leakage air turned out to be useful, it might be designed into the makeup of the outer insulation layer intended to be used in the retrofit. It is plausible that this leakage air might serve a useful function in keeping the insulation layer warmer (or, in the air-conditioning mode, cooler) than it would be in the absence of the leakage. By being held close to the ducts for a while, it might establish an artificially warmer (or cooler, in air conditioning) zone around the ducts. To the extent that this effect would reduce the heat losses from the ducts, the leakage should be credited with a ''thermal regain'' in the same way that leakage into buffer zones is credited with thermal regain when the leakage air warms (or cools) the buffer zone relative to the temperature it would have in the absence of such duct leakage. The purpose of this report is to investigate whether and to what extent such thermal regain exists. The model developed below applies to a situation where there are two distinct layers of insulation around the duct, with leakage air moving between them in a longitudinal direction for a distance before it finds its way out from the outer insulation layer. It may also apply approximately where there is a single insulation layer with an air barrier on the outside. Leakage air may pass into the insulation itself and thence

  12. Air toxics being measured more accurately, controlled more effectively

    SciTech Connect

    1995-04-01

    In response to the directives of the Clean Air Act Amendments, Argonne National Laboratory is developing new or improved pollutant control technologies for industries that burn fossil fuels. This research continues Argonne`s traditional support for the US DOE Flue Gas Cleanup Program. Research is underway to measure process emissions and identify new and improved control measures. Argonne`s emission control research has ranged from experiments in the basic chemistry of pollution-control systems, through laboratory-scale process development and testing to pilot-scale field tests of several technologies. Whenever appropriate, the work has emphasized integrated or combined control systems as the best approach to technologies that offer low cost and good operating characteristics.

  13. Projection Moire Interferometry Measurements of Micro Air Vehicle Wings

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-01-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat s wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  14. A ground test measurement system for the shuttle entry air data system

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.

    1983-01-01

    The Ground Test Measurement System (GTMS) for determining vacuum decay leak rate within the orifice tubing assembly of SEADS is described. The system can also monitor the absolute pressure in the tubing assembly under certain conditions. The GTMS determines leak rate by measuring vacuum-pressure decay which can be converted into leakage flow rate. Results of performance testing and operation of the GTMS are given.

  15. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  16. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    ERIC Educational Resources Information Center

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  17. Quantitative method for determining surface erosion of silicon rubber for outdoor insulator by the measurement of leakage current under artificial salt fog condition

    SciTech Connect

    Huh, C.S.

    1996-12-31

    This paper describes the performance of widely used polymeric insulating materials for outdoor insulation. Various methods to describe the surface aging of polymer materials such as peak and average of leakage current, the cumulative charge, the weight loss have been investigated, the relationship between surface current, time are plotted and discussed. Result of laboratory evaluation of the contamination performance of silicone rubber has been shown that due to significant material differences, polymer cannot be evaluated using experimental conditions standardized for porcelain and glass. The result of this paper show that weight loss, average current, cumulative charge are better parameter to characterize aging of insulator than the surface transition time, the peak of leakage current, first flashover time.

  18. Measurement of indoor air quality in two new test houses

    SciTech Connect

    Hodgson, A.T.

    1996-01-01

    This study assessed indoor air quality in two similar, new houses being evaluated for energy performance. One house (A) was built conventionally. The other (B) was an energy-efficient structure. Air samples for individual volatile organic compounds (VOCs), total VOCs (TVOC) and formaldehyde were collected following completion of the interiors of the houses and on several occasions during the following year. Ventilation rates were also determined so that source strengths of airborne contaminants could be estimated with a mass- balance model. There were no substantial differences in indoor air quality between the houses. The TVOC concentrations in House A ranged from 1,700 - 4,400 {mu}p m{sup -3}, with the highest value coinciding with the lowest ventilation rate. The TVOC concentrations in House B were 2,400 - 2,800 {mu}g m{sup -3}. These values are elevated compared to a median value of 700 {mu}g m{sup -3} measured for a large residential study. Formaldehyde concentrations ranged up to 74 {mu}g m{sup -3}. The dominant VOC in both houses was hexanal, an odorous chemical irritant. The concentrations of acetone, pentanal, toluene, alpha-pinene and other aldehydes were also relatively high in both houses. The source strengths of many of the analytes did not decline substantially over the course of the study. The OSB was estimated to contribute substantially to concentrations of formaldehyde and acetone in the houses. The results also suggested that OSB was not the dominant source of pentanal, hexanal and alpha-pinene, all of which had elevated emissions in the houses, possibly from a single source.

  19. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-05-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lens elements. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far commercial measurement systems were not available for testing of IR objectives since many materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The fiber-optic set-up is based on a Michelson-Interferometer in which the light from a broadband super-luminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a photo detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative lens' surface distances are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. The set-up allows the contactless determination of thicknesses and air gaps inside of assembled infrared objective lenses with accuracy in the micron range. It therefore is a tool for the precise manufacturing or quality control.

  20. Thickness and air gap measurement of assembled IR objectives

    NASA Astrophysics Data System (ADS)

    Lueerss, B.; Langehanenberg, P.

    2015-10-01

    A growing number of applications like surveillance, thermography, or automotive demand for infrared imaging systems. Their imaging performance is significantly influenced by the alignment of the individual lenses. Besides the lateral orientation of lenses, the air spacing between the lenses is a crucial parameter. Because of restricted mechanical accessibility within an assembled objective, a non-contact technique is required for the testing of these parameters. So far, commercial measurement systems were not available for testing of IR objectives since most materials used for infrared imaging are non-transparent at wavelengths below 2 μm. We herewith present a time-domain low coherent interferometer capable of measuring any kind of infrared material (e.g., Ge, Si, etc.) as well as VIS materials. The set-up is based on a Michelson interferometer in which the light from a broadband superluminescent diode is split into a reference arm with a variable optical delay and a measurement arm where the sample is placed. On a detector, the reflected signals from both arms are superimposed and recorded as a function of the variable optical path. Whenever the group delay difference is zero, a coherence peak occurs and the relative distances of the lens surfaces are derived from the optical delay. In order to penetrate IR materials, the instrument operates at 2.2 μm. Together with an LWIR autocollimator, this technique allows for the determination of centering errors, lens thicknesses and air spacings of assembled IR objective lenses with a micron accuracy. It is therefore a tool for precision manufacturing and quality control.

  1. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  2. Indoor air quality measurements in 38 Pacific Northwest commercial buildings

    SciTech Connect

    Turk, B.H.; Brown, J.T.; Geisling-Sobotka, K.; Froehlich, D.A.; Grimsrud, D.T.; Harrison, J.; Revzan, K.L.

    1986-06-01

    A Bonneville Power Administration-funded study monitored ventilation rates and a variety of indoor air pollutants in 38 Pacific Northwest commercial buildings. The buildings ranged in age from 6 months to 90 years, in size from 864 to 34,280 m/sup 2/, and occupancy from 25 to 2500 people. Building average formaldehyde (HCHO) concentrations were below the 20 ppB detection limit in 48% of the buildings. Nitrogen dioxide (NO/sub 2/) concentration averages ranged from 5 ppB to 43 ppB and were lower than outdoor concentrations in 8 of 13 buildings. At only one site, an elementary school classroom, did carbon dioxide (CO/sub 2/) exceed 1000 ppM. Radon (Rn) levels were elevated in one building with an average concentration of 7.4 pCiL/sup -1/. Respirable particles (RSP) concentrations in smoking areas in 32 buildings had a geometric mean of 44 ..mu..g m/sup -3/ and ranged up to 308 ..mu..g m/sup -3/ at one site. In non-smoking areas the geometric mean RSP was 15 ..mu..g m/sup -3/. Outside air ventilation rates did not appear to be the single dominant parameter in determining indoor pollutant concentrations. Measured pollutant concentrations in 2 ''complaint'' buildings were below accepted guidelines. The cause of the complaints was not identified.

  3. Species measurements in a hypersonic, hydrogen-air, combustion wake

    SciTech Connect

    Skinner, K.A.; Stalker, R.J.

    1996-09-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  4. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  5. Measurement of total reduced sulfur compounds in ambient air

    SciTech Connect

    McQuaker, N.R.; Rajala, G.E.; Pengilly, D.

    1986-05-01

    Methods for the determination of total reduced sulfur (TRS) compounds in the ambient air based on coulometric detection (Philips Model PW 9700 analyzer) and thermal oxidation followed by detection using pulsed fluorescence (Teco Model 43 analyzer) have been evaluated. Analytical response factors, relative to H/sub 2/S, were determined for both the individual TRS compounds and compounds such as terpenes and carbonyl sulfide that may be a potential source of interference. The results for COS and terpenes indicate that in a typical monitoring situation normally encountered concentrations of these compounds are not expected to cause significant measurement bias. The results for the individual TRS compounds indicate that while variations in TRS composition are not a factor in assessing measurement bias for the thermal oxidation/pulsed fluorescence method, they are a factor for the Philips coulometric method; i.e., increasing positive measurement bias maybe introduced as the TRS composition shifts toward relatively less H/sub 2/S. Philips-Teco comparison data collected at a single site in the vicinity of three operating kraft pupil mills are compatible with these expectations. 8 references, 1 figure, 3 tables.

  6. Wash-out of ambient air contaminations for breath measurements.

    PubMed

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value < 0.05). A complete wash-out of VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  7. Electrical leakage detection circuit

    DOEpatents

    Wild, Arthur

    2006-09-05

    A method is provided for detecting electrical leakage between a power supply and a frame of a vehicle or machine. The disclosed method includes coupling a first capacitor between a frame and a first terminal of a power supply for a predetermined period of time. The current flowing between the frame and the first capacitor is limited to a predetermined current limit. It is determined whether the voltage across the first capacitor exceeds a threshold voltage. A first output signal is provided when the voltage across the capacitor exceeds the threshold voltage.

  8. Air-Sea Interaction Measurements from the Controlled Towed Vehicle

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Bluth, R. T.; Jonsson, H.; Barge, J.

    2014-12-01

    The Controlled Towed Vehicle (CTV) uses improved towed drone technology to actively maintain via a radar altimeter and controllable wing a user-set height that can be as low as the canonical reference height of 10 m above the sea surface. After take-off, the drone is released from the tow aircraft on a ~700-m stainless steel cable. We have instrumented the 0.23 m diameter and 2.13 m long drone with high fidelity instruments to measure the means and turbulent fluctuations of 3-D wind vector, temperature, humidity, pressure, CO2 and IR sea surface temperature. Data are recorded internally at 40 Hz and simultaneously transmitted to the tow aircraft via dedicated wireless Ethernet link. The CTV accommodates 40 kg of instrument payload and provides it with 250 W of continuous power through a ram air propeller-driven generator. Therefore its endurance is only limited by that of the tow aircraft.We will discuss the CTV development, the engineering challenges and solutions that have been successfully implemented to overcome them. We present results from recent flights as low as 9 m over the coastal ocean and comparisons of profiles and turbulent fluxes from the CTV and the tow aircraft. Manned aircraft operation at low-level boundary-layer flights is very limited. Dropsondes and UAS (Unmanned Aerial Systems) and UAS are alternates for measurements near the ocean surface. However, dropsondes have limited sensor capability and do not measure fluxes, and most present UAS vehicles do not have the payload and power capacity nor the low-flying ability in high winds over the oceans. The CTV therefore, fills a needed gap between the dropsondes, in situ aircraft, and UAS. The payload, capacity and power of the CTV makes it suitable for a variety of atmospheric research measurements. Other sensors to measure aerosol, chemistry, radiation, etc., could be readily accommodated in the CTV.

  9. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-01-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC's existing electromagnetic (e-m) CABLELESS''{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  10. Measurement-while-drilling (MWD) development for air drilling

    SciTech Connect

    Rubin, L.A.; Harrison, W.H.

    1992-06-01

    The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

  11. Calculated and Measured Air and Soil Freeze-Thaw Frequencies.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.

    1995-10-01

    Freeze-thaw frequencies calculated by eight different counting methods were compared using daily maximum and minimum temperatures from eight north-central United States National Weather Service (NWS) stations. These frequencies were also compared to those obtained using hourly air temperature data from six of the same NWS stations. In addition, the calculated frequencies were compared to measured freeze-thaw frequencies at several depths in a bare soil and a sod-covered soil at the University of Minnesota St. Paul campus climatological observatory.The necessary acceptance of the idealized daily heating cycle when using daily maximum and minimum air temperature data resulted in a higher occurrence of calculated freeze-thaw events than those obtained with hourly data; one method gave 23% more freeze-thaw events with the daily maximum and minimum temperatures.With the freeze-thaw phenomenon centered upon those months in which the mean temperature hovers near O°C, a bimodal frequency occurs at the northern stations (October and April, as at International Falls, Minnesota, and November and March at Fargo, North Dakota), while in warmer climates the bimodal characteristic is replaced by a single-peak frequency in January as at Sedalia and West Plains, Missouri.In the comparison between the calculated freeze-thaw frequencies based on daily maximum and minimum values and the hourly temperature measurements at several heights between the surface and the temperature shelter at the climatological observatory, it was found that the annual total frequencies increased as the height above the surface decreased. For the shallowest height above the surface there was an approximate 13% increase over those measured in the shelter with hourly temperature data.The annual total frequencies of the calculated freeze-thaw events obtained with the daily maximum and minimum temperature measurements in the shelter approximated those actually occurring at the 1-cm depth in a bare soil at the

  12. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  13. Next Generation Air Measurements for Fugitive, Area Source, and Fence Line Applications

    EPA Science Inventory

    Next generation air measurements (NGAM) is an EPA term for the advancing field of air pollutant sensor technologies, data integration concepts, and geospatial modeling strategies. Ranging from personal sensors to satellite remote sensing, NGAM systems may provide revolutionary n...

  14. Unrestricted release measurements with ambient air ionization monitors

    SciTech Connect

    MacArthur, D.; Gunn, R.; Dockray, T.; Luff, C.

    1999-03-01

    Radiation monitoring systems based on the long-range alpha detection (LRAD) technique, such as the BNFL Instruments IonSens{trademark}, provide a single contamination measurement for an entire object rather than the more familiar individual readings for smaller surface areas. The LRAD technique relies on the ionization of ambient air molecules by alpha particles, and the subsequent detection of these ions, rather than direct detection of the alpha particles themselves. A single monitor can detect all of the ions produced over a large object and report a total contamination level for the entire surface of that object. However, both the unrestricted release limits specified in USDOE Order 5400.5 (and similar documents in other countries), and the definitions of radioactive waste categories, are stated in terms of contamination per area. Thus, conversion is required between the total effective contamination as measured by the LRAD-based detector and the allowable release limits. In addition, since the release limits were not written assuming an averaging detector system, the method chosen to average the assumed contamination over the object can have a significant impact on the effective sensitivity of the detector.

  15. Air shower arrival directions measured at Buckland Park

    NASA Technical Reports Server (NTRS)

    Gerhardy, P. R.; Clay, R. W.; Patterson, J. R.; Prescott, J. R.; Gregory, A. G.; Protheroe, R. J.

    1985-01-01

    The Buckland Park air shower array was operated for 3 years from 1979 to 1981 particularly for the study of anisotropies in the region of the knee of the size spectrum. The array which has been described in detail elsewhere was situated at a latitude of 35 S and had an effective size threshold of approx 3 x 10 to the 5th power particles (approx 3 x 10 to the 15th power Ev for vertical showers). A number of results from this experiment have already been published including anisotropy analyses (Gerhardy and Clay, 1983) and searches for very high energy gamma ray sources. The final distribution of measured shower arrival directions are presented here. These 1.3 x 10 to the 5th power events were selected as indicated in detail in Gerhardy and Clay (1983) and were essentially those events with well measured arrival directions. They are the same data set used in the above reference but no complete sky map has previously been presented.

  16. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    SciTech Connect

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  17. 1991 EPA/AWMA international symposium on measurement of toxic and related air pollutants

    SciTech Connect

    Gay, B.W. Jr.

    1991-01-01

    The purpose of this symposium was to provide a forum for exchange of information on the measurement of toxic and related air pollutants. The conference included presentations on the following: ozone precursors; atmospheric chemistry and fate of toxic pollutants; measurement of particulates and acidic aerosols; cloud water chemistry; asbestos exposure assessment; Staten Island/NJ Urban Air Toxics Assessment Project; personal exposure monitors; mobile sources emissions characterization; VOC monitoring for Clean Air Act Amendment requirement; product emission measurement in test chambers; USA/USSR joint air pollution study; VOC monitoring techniques; measurement of VOCs; measurement of polar volatile organics; exposure assessment; remote sensing for emissions monitoring; measurement methods development; measurement of hazardous waste emissions; chemometrics and environmental data analysis; source monitoring; air pollution dispersion modeling; measurement and data analysis of indoor toxic air contaminants; and environmental quality assurance. Two hundred seventeen papers have been processed separately for inclusion in the appropriate data bases.

  18. MEASUREMENT OF HYDROPEROXIDES DURING THE TEXAS 2000 AIR QUALITY STUDY.

    SciTech Connect

    ZHENG,J.; ALAOUIE,A.; WEINSTEIN-LLOYD,J.B.; SPRINGSTON,S.R.; NUNNERMACKER,L.J.; LEE,Y.N.; BRECHTEL,F.; KLEINMAN,L.; DAUM,P.

    2002-01-17

    Hydroperoxides are important atmospheric oxidants. They are responsible for most of the oxidation of aqueous-phase SO{sub 2} to sulfate in the northeastern United States, resulting in the formation of acid precipitation and visibility-reducing sulfate aerosol (Penkett et al., 1979; Lind et al., 1987; Madronich and Calvert, 1990; Tanner and Schorran, 1995). Atmospheric hydrogen peroxide (H{sub 2}O{sub 2} or HP) is produced by the self-reaction of hydroperoxyl radicals (HO{sub 2}); higher organic peroxides are produced by reaction of HO{sub 2} with alkylperoxyl radicals (RO{sub 2}). Peroxyl radicals, along with OH, are chain carriers in the complex photochemical process that produces tropospheric ozone. Thus, concentrations of peroxides and their free radical precursors depend on solar intensity and ambient concentrations of water vapor, ozone, NO{sub x} (NO + NO{sub 2}), and VOCs (volatile organic compounds). Several investigators have demonstrated that HP and hydroxymethyl hydroperoxide (HOCH2 OOH or HMHP) also may be formed when ozone reacts with alkenes in moist air (Becker et al., 1990; Hewitt and Kok, 1991; Gaeb et al., 1995). Peroxides are the expected sink for peroxyl radicals when concentrations of NO are low. Otherwise, these radicals react with NO to form NO{sub 2}. Under high NO{sub x} conditions, NO{sub z} (oxidation products of NO and NO{sub 2}) becomes the principal radical sink. Therefore, formation rates of peroxides relative to NO{sub z} provide information about the history of an air mass and the expected sensitivity of ozone production to reduced emissions (Kleinman et al., 1997; Sillman, 1995; 1997). Through photolysis and reaction with OH, peroxides also act as a radical source; thus, reliable peroxide measurements are necessary for calculating ozone production rates. In this paper, we will summarize peroxide observations at the Williams Tower, and aboard the U.S. Department of Energy G-1 research aircraft in Houston, TX, during August and

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  20. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  1. Demonstrations of Magnetic Phenomena: Measuring the Air Permeability Using Tablets

    ERIC Educational Resources Information Center

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-01-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B?z[superscript -3]. We obtain the value of air permeability µ[subscript air] with good…

  2. Demonstrations of magnetic phenomena: measuring the air permeability using tablets

    NASA Astrophysics Data System (ADS)

    Lara, V. O. M.; Amaral, D. F.; Faria, D.; Vieira, L. P.

    2014-11-01

    We use a tablet to experimentally determine the dependencies of the magnetic field (B) on the electrical current and the axial distance from a coil (z). Our data shows good precision on the inverse cubic dependence of the magnetic field on the axial distance, B ∝ z-3. We obtain the value of air permeability μair with good accuracy. We also observe the same dependence of B on z when considering a magnet instead of a coil. Although our estimates are obtained through simple data fits, we also perform a more sophisticated error analysis, confirming the result for μair.

  3. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  4. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  5. A Conductivity Device for Measuring Sulfur Dioxide in the Air

    ERIC Educational Resources Information Center

    Craig, James C.

    1972-01-01

    Described is a general electroconductivity device enabling students to determine sulfur dioxide concentration in a particular location, hopefully leading to a deeper understanding of the problem of air pollution. (DF)

  6. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  7. Effect of air on energy and rise-time spectra measured by proportional gas counter

    SciTech Connect

    Kawano, T.; Tanaka, M.; Isozumi, S.; Isozumi, Y.; Tosaki, M.; Sugiyama, T.

    2015-03-15

    Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection. For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)

  8. The measured performance of an air thermosyphon system

    NASA Astrophysics Data System (ADS)

    Marshall, L. S.; Burns, P. J.; Winn, C. B.

    Results of performance tests of a solar thermosyphon test cell are reported. The test cell comprised a structure on a concrete slab with fiberglass insulated walls. The north wall consisted of a styrofoam-insulated gravel-filled box, while the south wall featured double glazing over metal solar collectors. The ceiling was ducted to provide air flow from the south collector to the rock storage, and an air channel was built into the floor. A numerical model was developed of the expected performance of the cell, using an Euler technique to solve the transient energy and momentum equations. The temperature was monitored at various points of the structure and flow visualization studies were made with titanium tetrachloride. Heat was found to be stored in the upper portion of the rock box, which because of its size also inhibited circulation. Thermal comfort was determined to be available due to warm surfaces, rather than warm air.

  9. Air-bearing spin facility for measuring energy dissipation

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.

    1976-01-01

    The air-bearing spin facility was developed to determine experimentally the effect of energy dissipation upon the motion of spinning spacecraft. The facility consists of an air-bearing spin table, a telemetry system, a command system, and a ground control station. The air-bearing spin table was designed to operate in a vacuum chamber. Tests were run on spacecraft components such as fuel tanks, nutation dampers, reaction wheels, and active nutation damper systems. Each of these items affected the attitude of a spinning spacecraft. An experimental approach to determine these effects was required because the dissipation of these components could not be adequately analyzed. The results of these experiments have been used, with excellent results, to predict spacecraft motion.

  10. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    PubMed Central

    Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  11. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.

    PubMed

    Mayser, Matthias J; Bohn, Holger F; Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m(2) depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  12. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person...

  13. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  14. Radiation induced leakage current and stress induced leakage current in ultra-thin gate oxides

    SciTech Connect

    Ceschia, M.; Paccagnella, A. |; Cester, A.; Scarpa, A.; Ghidini, G.

    1998-12-01

    Low-field leakage current has been measured in thin oxides after exposure to ionizing radiation. This Radiation Induced Leakage Current (RILC) can be described as an inelastic tunneling process mediated by neutral traps in the oxide, with an energy loss of about 1 eV. The neutral trap distribution is influenced by the oxide field applied during irradiation, thus indicating that the precursors of the neutral defects are charged, likely being defects associated to trapped holes. The maximum leakage current is found under zero-field condition during irradiation, and it rapidly decreases as the field is enhanced, due to a displacement of the defect distribution across the oxide towards the cathodic interface. The RILC kinetics are linear with the cumulative dose, in contrast with the power law found on electrically stressed devices.

  15. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  16. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  17. Leakage and performance characteristics of large stoppings for room-and-pillar mining

    SciTech Connect

    Thimons, E.D.; Brechtel, C.E.; Adam, M.E.; Agrapito, J.F.T.

    1988-01-01

    This report presents a Bureau of Mines study comparing the construction costs, leakage measurements, and predicted performance of different types of large stoppings built and tested in a room-and-pillar oil share mine. The six full-sized structures (30 ft high by 55 ft wide) included both permanent and temporary stoppings and were fabricated using materials ranging from structural steel to coated brattice cloth. Leakage across each stopping was measured at differential pressures ranging up to 1.0 in w.g., using both the brattice window method and sulfur hexafluoride (SF/sub 6/) tracer gas. Blast air pressures resulting from a full-scale face blast of approximately 1,800 lab of ammonium nitrate-fuel oil (ANFO) explosives were measured across two of the stoppings, and the pre- and post-leakage rates were compared for all the stoppings. Overall performance of the stoppings for production applications was evaluated using an operational model of a two-panel oil shale mine.

  18. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  19. High-precision diode-laser-based temperature measurement for air refractive index compensation

    SciTech Connect

    Hieta, Tuomas; Merimaa, Mikko; Vainio, Markku; Seppae, Jeremias; Lassila, Antti

    2011-11-01

    We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlen equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.

  20. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude Medical® regent™ mechanical heart valve.

    PubMed

    Jun, Brian H; Saikrishnan, Neelakantan; Yoganathan, Ajit P

    2014-03-01

    A number of clinical, in vitro and computational studies have shown the potential for thromboembolic complications in bileaflet mechanical heart valves (BMHV), primarily due to the complex and unsteady flows in the valve hinges. These studies have focused on quantitative and qualitative parameters such as velocity magnitude, turbulent shear stresses, vortex formation, and platelet activation to identify potential for blood damage. However, experimental characterization of the whole flow fields within the valve hinges has not yet been conducted. This information can be utilized to investigate instantaneous damage to blood elements and also to validate numerical studies focusing on the hinge's complex fluid dynamics. The objective of this study was therefore to develop a high-resolution imaging system to characterize the flow fields and global velocity maps in a BMHV hinge. In this study, the steady leakage hinge flow fields representing the diastolic phase during the cardiac cycle in a 23 mm St. Jude Medical regent BMHV in the aortic position were characterized using a two-dimensional micro particle image velocimetry system. Diastolic flow was simulated by imposing a static pressure head on the aortic side. Under these conditions, a reverse flow jet from the aortic to the ventricular side was observed with velocities in the range of 1.47-3.24 m/s, whereas low flow regions were observed on the ventricular side of the hinge with viscous shear stress magnitude up to 60 N/m². High velocities and viscous shearing may be associated with platelet activation and hemolysis, while low flow zones can cause thrombosis due to increased residence time in the hinge. Overall, this study provides a high spatial resolution experimental technique to map the fluid velocity in the BMHV hinge, which can be extended to investigate micron-scale flow domains in various prosthetic devices under different hemodynamic conditions.

  1. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 63.425(e). To satisfy the leakage test requirements of this paragraph, the test specified in 40 CFR 63.425(e)(1) must be conducted using air. The hydrostatic test alternative permitted under Appendix A to 40 CFR Part 60 (“Method 27—Determination of Vapor Tightness of Gasoline Delivery Tank...

  2. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  3. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  4. Theory and Application of Magnetic Flux Leakage Pipeline Detection.

    PubMed

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-12-10

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.

  5. Theory and Application of Magnetic Flux Leakage Pipeline Detection

    PubMed Central

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-01-01

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted. PMID:26690435

  6. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  8. Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Drese, John H.; Sager, John C.

    1991-01-01

    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.

  9. Twenty years of measurement of polycyclic aromatic hydrocarbons (PAHs) in UK ambient air by nationwide air quality networks.

    PubMed

    Brown, Andrew S; Brown, Richard J C; Coleman, Peter J; Conolly, Christopher; Sweetman, Andrew J; Jones, Kevin C; Butterfield, David M; Sarantaridis, Dimitris; Donovan, Brian J; Roberts, Ian

    2013-06-01

    The impact of human activities on the health of the population and of the wider environment has prompted action to monitor the presence of toxic compounds in the atmosphere. Toxic organic micropollutants (TOMPs) are some of the most insidious and persistent of these pollutants. Since 1991 the United Kingdom has operated nationwide air quality networks to assess the presence of TOMPs, including polycyclic aromatic hydrocarbons (PAHs), in ambient air. The data produced in 2010 marked 20 years of nationwide PAH monitoring. This paper marks this milestone by providing a novel and critical review of the data produced since nationwide monitoring began up to the end of 2011 (the latest year for which published data is available), discussing how the networks performing this monitoring has evolved, and elucidating trends in the concentrations of the PAHs measured. The current challenges in the area and a forward look to the future of air quality monitoring for PAHs are also discussed briefly. PMID:23636622

  10. Measure Guideline: Air Sealing Mechanical Closets in Slab-On-Grade Homes

    SciTech Connect

    Dickson, B.

    2012-02-01

    This measure guideline describes covers two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  11. Measure Guideline. Air Sealing Mechanical Closets in Slab-on-Grade Homes

    SciTech Connect

    Dickson, Bruce

    2012-02-01

    This measure guideline describes two fundamental retrofit strategies for air sealing around air handling systems that are located within the living space in an enclosed closet: one in which all of the equipment is removed and being replaced, and a closet where the equipment is to remain and existing conditions are sealed. It includes the design and installation details necessary to effectively seal the air handler closet and central return system to maximize the efficiency and safety of the space conditioning system.

  12. Measurement of creepage distance and air clearance: differences between different professionals

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, Aline; Takachi Moriya, Henrique; Cortez, Tiago; Moraes, José Carlos T. B.

    2016-07-01

    The standard IEC/ISO 60601-1:2005 specifies general requirements for measuring creepage distance and air clearance for medical electrical equipment. Four experienced professionals were asked to measure creepage distances and air clearance in three different segments of an acrylic body of proof. The results were compared and the found differences were discussed in order to discover the misinterpretations of the standard requirements. After a final consensus between the professionals, the distances were measured again to obtain the final results.

  13. 49 CFR 230.78 - Leakage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Leakage. 230.78 Section 230.78 Transportation... Signal Equipment § 230.78 Leakage. (a) Main reservoirs and related piping. Leakage from main reservoir... to 60 percent of the maximum operating pressure. (b) Brake cylinders. Leakage from brake...

  14. 49 CFR 230.78 - Leakage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Leakage. 230.78 Section 230.78 Transportation... Signal Equipment § 230.78 Leakage. (a) Main reservoirs and related piping. Leakage from main reservoir... to 60 percent of the maximum operating pressure. (b) Brake cylinders. Leakage from brake...

  15. 49 CFR 230.78 - Leakage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Leakage. 230.78 Section 230.78 Transportation... Signal Equipment § 230.78 Leakage. (a) Main reservoirs and related piping. Leakage from main reservoir... to 60 percent of the maximum operating pressure. (b) Brake cylinders. Leakage from brake...

  16. 49 CFR 230.78 - Leakage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Leakage. 230.78 Section 230.78 Transportation... Signal Equipment § 230.78 Leakage. (a) Main reservoirs and related piping. Leakage from main reservoir... to 60 percent of the maximum operating pressure. (b) Brake cylinders. Leakage from brake...

  17. 49 CFR 230.78 - Leakage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Leakage. 230.78 Section 230.78 Transportation... Signal Equipment § 230.78 Leakage. (a) Main reservoirs and related piping. Leakage from main reservoir... to 60 percent of the maximum operating pressure. (b) Brake cylinders. Leakage from brake...

  18. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  19. Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    SciTech Connect

    Belz, J.W.; Burt, G.W.; Cao, Z.; Chang, F.Y.; Chen, C.C.; Chen, C.W.; Chen, P.; Field, C.; Findlay, J.; Huntemeyer, Petra; Huang, M.A.; Hwang, W.-Y.P.; Iverson, R.; Jones, B.F.; Jui, C.C.H.; Kirn, M.; Lin, G.-L.; Loh, E.C.; Maestas, M.M.; Manago, N.; Martens, K.; /Montana U. /Utah U. /Taiwan, Natl. Taiwan U. /SLAC /Rutgers U., Piscataway

    2005-07-06

    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 C are Y(760 Torr){sup air} = 4.42 {+-} 0.73 and Y(760 Torr){sup N{sub 2}} = 29.2 {+-} 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.

  20. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  1. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  2. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  3. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  4. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  5. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  6. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  7. DESIGN NOTE: Measuring the residual air pressure in triple-point-of-water cells

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2004-01-01

    Residual gas pressure is one of the factors influencing the temperature realized by triple-point-of-water cells. This note describes a simple procedure for measuring and correcting for the residual air pressure in sealed cells. The procedure is applicable to any cell with a McLeod-gauge extension or sufficient remnant 'seal-off' tube to trap an air bubble.

  8. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  9. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  10. Detection of gas leakage

    DOEpatents

    Thornberg, Steven; Brown, Jason

    2012-06-19

    A method of detecting leaks and measuring volumes as well as an apparatus, the Power-free Pump Module (PPM), that is a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement, where the invention is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr), perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  11. Detection of gas leakage

    SciTech Connect

    Thornberg, Steven M; Brown, Jason

    2015-02-17

    A method of detecting leaks and measuring volumes as well as a device, the Power-free Pump Module (PPM), provides a self-contained leak test and volume measurement apparatus that requires no external sources of electrical power during leak testing or volume measurement. The PPM is a portable, pneumatically-controlled instrument capable of generating a vacuum, calibrating volumes, and performing quantitative leak tests on a closed test system or device, all without the use of alternating current (AC) power. Capabilities include the ability is to provide a modest vacuum (less than 10 Torr) using a venturi pump, perform a pressure rise leak test, measure the gas's absolute pressure, and perform volume measurements. All operations are performed through a simple rotary control valve which controls pneumatically-operated manifold valves.

  12. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  13. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  14. Measures of Salary Inequality. AIR 1986 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Noe, Nicholas N.

    Measures of income and salary inequality used by economists were examined and applied against 1984-1985 faculty salary data. Attention was directed to salary inequality at each academic rank, as well as female-male inequality. The following measures were used: Lorenz Curve-Gini Coefficient, coefficient of variation, Theil's Index, and Atkinson's…

  15. Robust characterization of leakage errors

    NASA Astrophysics Data System (ADS)

    Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph

    2016-04-01

    Leakage errors arise when the quantum state leaks out of some subspace of interest, for example, the two-level subspace of a multi-level system defining a computational ‘qubit’, the logical code space of a quantum error-correcting code, or a decoherence-free subspace. Leakage errors pose a distinct challenge to quantum control relative to the more well-studied decoherence errors and can be a limiting factor to achieving fault-tolerant quantum computation. Here we present a scalable and robust randomized benchmarking protocol for quickly estimating the leakage rate due to an arbitrary Markovian noise process on a larger system. We illustrate the reliability of the protocol through numerical simulations.

  16. Air pollution caused by opencast mining and its abatement measures in India.

    PubMed

    Ghose, M K; Majee, S R

    2001-10-01

    Opencast mining dominates coal production in India. A survey was conducted to evaluate its local atmospheric impact. Emissions data were utilised to compute dust generation due to different mining activities. Work zone air quality, ambient air quality and seasonal variations are described revealing high pollution potential due to suspended particulate matter (SPM) and consequent impact on human health. Air pollution control measures involve planning and implementing a series of preventive and suppressive measures in addition to dust extraction systems. Different abatement measures are enumerated. Pollution control by trees, the tolerance of trees to different air pollutants and plant species useful for controlling pollution are also discussed. There is a need for wider application of dust control chemicals on haul roads. Sustainable management of pollution can be achieved by the proper implementation of suggested abatement measures.

  17. Air pollution caused by opencast mining and its abatement measures in India.

    PubMed

    Ghose, M K; Majee, S R

    2001-10-01

    Opencast mining dominates coal production in India. A survey was conducted to evaluate its local atmospheric impact. Emissions data were utilised to compute dust generation due to different mining activities. Work zone air quality, ambient air quality and seasonal variations are described revealing high pollution potential due to suspended particulate matter (SPM) and consequent impact on human health. Air pollution control measures involve planning and implementing a series of preventive and suppressive measures in addition to dust extraction systems. Different abatement measures are enumerated. Pollution control by trees, the tolerance of trees to different air pollutants and plant species useful for controlling pollution are also discussed. There is a need for wider application of dust control chemicals on haul roads. Sustainable management of pollution can be achieved by the proper implementation of suggested abatement measures. PMID:11721598

  18. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  19. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  20. Measurements of the proton-air cross section with high energy cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Abbasi, Rasha

    2016-07-01

    Detecting Ultra High Energy Cosmic Rays (UHECRs) enables us to measure the proton-air inelastic cross section σinel p-air at energies that we are unable to access with particle accelerators. The proton-proton cross section σp-p is subsequently inferred from the proton-air cross section at these energies. UHECR experiments have been reportingon the proton-air inelastic cross section starting with the Fly's Eye in 1984 at √s =30 TeV and ending with the most recent result of the Telescope Array experiment at √s = 95 TeV in 2015. In this proceeding, I will summarize the most recent experimental results on the σinel p-air measurements from the UHECR experiments.

  1. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  2. Time-of-Flight Measurement of Sound Speed in Air

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    This paper describes a set of simple experiments with a very low cost using a notebook as a measuring instrument without external hardware. The major purpose is to provide demonstration experiments for schools with very low budgets. (Contains 6 figures.)

  3. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  4. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  5. Field size dependent mapping of medical linear accelerator radiation leakage.

    PubMed

    Bezin, Jérémi Vũ; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  6. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  7. Expedient methods of respiratory protection. II. Leakage tests. Final report

    SciTech Connect

    Cooper, D.W.; Hinds, W.C.; Price, J.M.; Weker, R.; Yee, H.S.

    1983-07-01

    The following readily-available materials were tested on a manikin connected to a breathing simulator to determine the fraction of an approximately 2-..mu..m-diameter aerosol that would leak around the seal of the materials to the manikin's face: cotton/polyester shirt material, cotton handkerchief material, toweling (a wash cloth), a surgical mask (Johnson and Johnson Co., model HRI 8137), and a NIOSH-approved disposable face mask (3M, model number 8710). The leakage tests were performed to supplement the measurements of penetration through the materials, conducted as the first phase of this investigation. The leakage tests were performed with the materials held on to the face by three methods, leakage fractions being determined from comparisons with the penetration of the same aerosol for the materials fully taped to the face. At a breathing rate of 37 liters per minute, mean leakages ranged from 0.0 percent to 63 percent. Mean penetrations exclusive of leakage ranged from 0.6 percent to 39 percent. Use of nylon hosiery material (panty hose) to hold the handkerchief material or the disposable face mask to the face was found to be very effective in preventing leakage. Such a combination could be expected to reduce leakage around the handkerchief to about ten percent or less in practice, and around the mask to less than one percent, offering substantial protection from accidentally generated aerosols. The reduction in leakage around the mask provided by the hosiery material suggests the adaptation and use of such an approach in regular industrial hygiene practice. The third and final phase of this investigation is underway, in which the penetration of the materials by particles with diameters between 0.05 and 0.5 ..mu..m is being measured and the effectiveness of the methods for dose reduction in the presence of radioactive aerosols is being modeled.

  8. Using a choice experiment to measure the environmental costs of air pollution impacts in Seoul.

    PubMed

    Yoo, Seung-Hoon; Kwak, Seung-Jun; Lee, Joo-Suk

    2008-01-01

    Air pollution, a by-product of economic growth, has been incurring extensive environmental costs in Seoul, Korea. Unfortunately, air pollution impacts are not treated as a commercial item, and thus it is difficult to measure the environmental costs arising from air pollution. There is an imminent need to find a way to measure air pollution impacts so that appropriate actions can be taken to control air pollution. Therefore, this study attempts to apply a choice experiment to quantifying the environmental costs of four air pollution impacts (mortality, morbidity, soiling damage, and poor visibility), using a specific case study of Seoul. We consider the trade-offs between price and attributes of air pollution impacts for selecting a preferred alternative and derive the marginal willingness to pay (WTP) estimate for each attribute. According to the results, the households' monthly WTP for a 10% reduction in the concentrations of major pollutants in Seoul was found to be approximately 5494 Korean won (USD 4.6) and the total annual WTP for the entire population of Seoul was about 203.4 billion Korean won (USD 169.5 million). This study is expected to provide policy-makers with useful information for evaluating and planning environmental policies relating specifically to air pollution.

  9. Measurement of air-fluorescence-light yield induced by an electromagnetic shower

    NASA Astrophysics Data System (ADS)

    MACFLY Collaboration; Colin, P.; Chukanov, A.; Grebenyuk, V.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Onofre, A.; Porokhovoi, S.; Sabirov, B.; Tkatchev, L.

    2009-01-01

    For most of the ultra-high-energy cosmic ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS, …), the detection technique of extensive air showers is based, at least, on the measurement of the air-fluorescence-induced signal. The knowledge of the fluorescence-light yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform absolute measurements of the air FLY and to study its properties. Here, we report the result of measurement of dry-air FLY induced by 50 GeV electromagnetic showers as a function of the shower age and as a function of the pressure. The experiment was performed at CERN using a SPS-electron-test-beam line. The result shows the air FLY is proportional to the energy deposited in air (Ed). The ratio FLY/Ed and its pressure dependence remain constant independently of shower age, and more generally, independently of the excitation source used (single-electron track or air shower).

  10. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  11. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  12. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1981-01-01

    Resonantly enhanced scattering from the iodine molecule is studied experimentally for the purpose of developing a scheme for the measurement of density in a gas dynamic flow. A study of the spectrum of iodine, the collection of saturation data in iodine, and the development of a mathematical model for correlating saturation effects were pursued for a mixture of 0.3 torr iodine in nitrogen and for mixture pressures up to one atmosphere. For the desired pressure range, saturation effects in iodine were found to be too small to be useful in allowing density measurements to be made. The effects of quenching can be reduced by detuning the exciting laser wavelength from the absorption line center of the iodine line used (resonant Raman scattering). The signal was found to be nearly independent of pressure, for pressures up to one atmosphere, when the excitation beam was detuned 6 GHz from line center for an isolated line in iodine. The signal amplitude was found to be nearly equal to the amplitude for fluorescence at atmospheric pressure, which indicates a density measurement scheme is possible.

  13. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, O.; Griffiths, D.

    2015-05-01

    The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

  14. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  15. Leakage current monitoring of insulators exposed to marine and industrial pollution

    SciTech Connect

    Kanashiro, A.G.; Burani, G.F.

    1996-12-31

    This paper presents the results of a research project considering 13.8 kV distribution lines and 88 kV transmission lines, exposed to marine and industrial pollution, respectively. Leakage current measurements were performed in the field. Tests were performed at the laboratory and registration instruments were developed to enable measurements of the leakage current values in the field and at the laboratory. Various correlations were performed with the measurements of: leakage current, climatic conditions and the amount of the pollutants on the insulators surface. Suitable insulators were selected for distribution lines and permissible levels of the leakage current were analyzed for transmission lines.

  16. Mid-stratospheric measurements of CO2, CH4, and CO using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Newberger, T.; Sweeney, C.; Andrews, A. E.; Tans, P. P.

    2011-12-01

    AirCore, a long tube descending from a high altitude with one end open and the other closed, has been demonstrated to be a reliable, cost-effective sampling system for CO2 and CH4 measurements. Previous studies show that vertical profiles from the ground level up to ~ 20 km (~ 40 mbar) can be achieved during a balloon flight. The ceiling of the profile is restricted mainly by the diffusion of air in the AirCore and the resolution of the analyzer used for the analysis. Here air with an extremely high CO mixing ratio (~ 10 ppm) has been employed as the initial fill air in the AirCore. This high CO fill gas is used as a label to track the mixing between sampled air and fill air at the top of the profile thus providing the ability to retrieve full profiles for CO2 and CH4 up to the balloon's ceiling height of ~ 30 km (~ 11 mbar). Stratospheric measurements of CO lack agreement among previous studies, (i.e. cryogenic sampling, in-situ measurements, and remote sensing) due to difficulties that are inherent to the various techniques and possibly due to latitudinal and seasonal variations that could not be represented by the available sparse observations. Efforts to collect an accurate profile of stratospheric CO using the AirCore, are complicated by the reaction of CO and O3 in the coil, which is particular important for stratospheric air with high O3. To remove the influence of O3 on the CO measurements from AirCore, we have investigated three O3 scrubbers: 1) Manganese dioxide (MnO2); 2) Sodium Sulfite (Na2SO3); 3) Sodium thiosulfate (Na2S2O3). Laboratory tests reveal that Sodium thiosulfate is the best choice as it has sufficient capacity to absorb O3 and does not impact measurements of CO2 and CH4. We will show experimental results from both aircraft and balloon flights. Regular ongoing stratospheric profiles of CO2, CH4, and CO are necessary to improve and validate total column measurements by remote sensing techniques, such as FTS and satellite. Such measurements

  17. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  18. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  19. Characterization of AIRS temperature and water vapor measurement capability using correlative observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung

    2005-01-01

    In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.

  20. Platelet function alterations in dengue are associated with plasma leakage.

    PubMed

    Michels, M; Alisjahbana, B; De Groot, P G; Indrati, A R; Fijnheer, R; Puspita, M; Dewi, I M W; van de Wijer, L; de Boer, E M S; Roest, M; van der Ven, A J A M; de Mast, Q

    2014-08-01

    Severe dengue is characterised by thrombocytopenia, plasma leakage and bleeding. Platelets are important for preservation of endothelial integrity. We hypothesised that platelet activation with secondary platelet dysfunction contribute to plasma leakage. In adult Indonesian patients with acute dengue, we measured platelet activation status and the response to the platelet agonist TRAP using flow cytometer-based assays. Patients were monitored daily for plasma leakage by ultrasonography. Acute dengue was associated with platelet activation with an increased expression of the activated fibrinogen receptor (αIIbβ3), the lysosomal marker CD63 and the alpha-granule marker CD62P (P-selectin). Upon maximal platelet activation by TRAP, platelet function defects were observed with a significantly reduced maximal activated αIIbβ3 and CD63 expression and reduced platelet-monocyte and platelet-neutrophil complexes. Patients in the lowest tertile of activated αIIbβ3 and CD63 expression had an odds ratio for plasma leakage of 5.2 (95% confidence interval [CI] 1.3-22.7) and 3.9 (95% CI 1.1-13.7), respectively, compared to the highest tertile. Platelet-derived serotonin has previously been related to plasma leakage and we found increased intra-platelet serotonin concentrations in our patients. In conclusion, platelet activation with platelet function alterations can be found in patients with acute dengue and this may contribute to dengue-associated plasma leakage.

  1. Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    NASA Astrophysics Data System (ADS)

    Colin, P.; Chukanov, A.; Grebenyuk, V.; Naumov, D.; Nédélec, P.; Nefedov, Y.; Onofre, A.; Porokhovoi, S.; Sabirov, B.; Tkatchev, L.; Macfly Collaboration

    2007-06-01

    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS, etc.) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY—Measurement of Air Cherenkov and Fluorescence Light Yield—experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS e - beam for high energy. We find that the FLY is proportional to the deposited energy ( Ed) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23 °C, the ratio FLY/ Ed = 17.6 photon/MeV with a systematic error of 13.2%.

  2. Impact of energy-conserving retrofits on indoor air quality in residental housing

    SciTech Connect

    Berk, J.V.; Young, R.A.; Brown, S.R.; Hollowell, C.D.

    1981-01-01

    The impact of energy-conservation retrofits on the indoor air quality of residential buildings is being assessed through a field-monitoring project in which air leakage, air exchange rates, and indoor air pollutants are measured before and after retrofit measures are implemented. A mobile laboratory was used to make detailed on-site measurements of air exchange rate and concentrations of radon, formaldehyde, total aldehydes, particulates, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, and sulfur dioxide in two houses and effective leakage area measurements were made in seven others. Results from the nine houses studied here show that the impact of energy-conserving retrofits depends on (1) the type and extent of the retrofit, (2) the operating characteristics of the heating/cooling system, and (3) the activities of the occupants.

  3. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  4. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  5. Development of an Ultrasonic Airflow Measurement Device for Ducted Air

    PubMed Central

    Raine, Andrew B.; Aslam, Nauman; Underwood, Christopher P.; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a “V” shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  6. Measurements of air pollution emission factors for marine transportation

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Balzani Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Pintér Csordás, A.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2012-12-01

    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The intercept of the regression line, 0.5 × 1016 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  7. Development of an ultrasonic airflow measurement device for ducted air.

    PubMed

    Raine, Andrew B; Aslam, Nauman; Underwood, Christopher P; Danaher, Sean

    2015-01-01

    In this study, an in-duct ultrasonic airflow measurement device has been designed, developed and tested. The airflow measurement results for a small range of airflow velocities and temperatures show that the accuracy was better than 3.5% root mean square (RMS) when it was tested within a round or square duct compared to the in-line Venturi tube airflow meter used for reference. This proof of concept device has provided evidence that with further development it could be a low-cost alternative to pressure differential devices such as the orifice plate airflow meter for monitoring energy efficiency performance and reliability of ventilation systems. The design uses a number of techniques and design choices to provide solutions to lower the implementation cost of the device compared to traditional airflow meters. The design choices that were found to work well are the single sided transducer arrangement for a "V" shaped reflective path and the use of square wave transmitter pulses ending with the necessary 180° phase changed pulse train to suppress transducer ringing. The device is also designed so that it does not have to rely on high-speed analogue to digital converters (ADC) and intensive digital signal processing, so could be implemented using voltage comparators and low-cost microcontrollers. PMID:25954952

  8. Duct Leakage Modeling in EnergyPlus and Analysis of Energy Savings from Implementing SAV with InCITeTM

    SciTech Connect

    Wray, Craig; Sherman, Max

    2010-03-01

    This project addressed two significant deficiencies in air-handling systems for large commercial building: duct leakage and duct static pressure reset. Both constitute significant energy reduction opportunities for these buildings. The overall project goal is to bridge the gaps in current duct performance modeling capabilities, and to expand our understanding of air-handling system performance in California large commercial buildings. The purpose of this project is to provide technical support for the implementation of a duct leakage modeling capability in EnergyPlus, to demonstrate the capabilities of the new model, and to carry out analyses of field measurements intended to demonstrate the energy saving potential of the SAV with InCITeTM duct static pressure reset (SPR) technology. A new duct leakage model has been successfully implemented in EnergyPlus, which will enable simulation users to assess the impacts of leakage on whole-building energy use and operation in a coupled manner. This feature also provides a foundation to support code change proposals and compliance analyses related to Title 24 where duct leakage is an issue. Our example simulations continue to show that leaky ducts substantially increase fan power: 10percent upstream and 10percent downstream leakage increases supply fan power 30percent on average compared to a tight duct system (2.5percent upstream and 2.5percent downstream leakage). Much of this increase is related to the upstream leakage rather than to the downstream leakage. This does not mean, however, that downstream leakage is unimportant. Our simulations also demonstrate that ceiling heat transfer is a significant effect that needs to be included when assessing the impacts of duct leakage in large commercial buildings. This is not particularly surprising, given that ?ceiling regain? issues have already been included in residential analyses as long as a decade ago (e.g., ASHRAE Standard 152); mainstream simulation programs that are

  9. Comparison of Lidar Methods for Remote Measurement of Air Pollutants

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Liston, E. M.

    1973-01-01

    This paper presents quantitative comparisons of several single-ended lidar techniques for the remote measurement of gaseous pollutants. These techniques are divided into two groups. The first group is based on the measurement of energy scattered directly by the gas of interest. The gaseous scattering processes considered are ordinary fluorescence, resonance fluorescence (also called resonance scattering), Raman scattering, and resonant (or nearly resonant) Raman scattering. The second group is based on the measurement of a characteristic differential absorption produced by the gas of interest at two discrete wavelengths, using energy scattered back toward the receiver by a remote reflector other than the gas of interest. The remote reflector may be intermixed with the gas of interest, as is the case with aerosols and atmospheric gases (principally nitrogen), or they may be fixed reflectors such as terrestrial objects or retroflectors. The detectability of a given material will depend on the magnitude and characteristics of the optical interaction with that material. The main characteristics of interest are the cross section, the response time, and the spectral response of the material relative to both the transmit and receive functions of the lidar. These characteristics and their implications for remote sensing will be reviewed for the four direct scatter processes and for the differential absorption technique. The characteristic behavior of the direct backscatter technique is different from the differential absorption technique with respect to sensitivity, concentration of material, and the effect of range. For these reasons, the direct backscatter processes cannot be compared directly to the differential absorption technique. The two techniques can be compared for specific material and system configurations, however. This paper describes specific lidar system configurations and gives the calculated performance level for these systems in both the direct

  10. Density measurement in air with a saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    A method for making density measurements in a compressible flow by using off resonance laser induced fluorescence is studied. The seed molecule chosen for study is the iodine molecule which is excited with the 514.5 nm line of the argon ion laser whose output is frequency tuned, by as much as 3 GHz, relative to a strong iodine transition using an intracavity etalon. The theory which was developed to analyze the effect will be used in conjunction with two experiments being conducted to further study the method an acoustic resonance tube in which controlled perturbations about a uniform state are produced, and a small supersonic jet in which the conditions of the flow vary widely from point to point.

  11. Climate change and air quality - measures with co-benefits in China

    SciTech Connect

    Kristin Aunan; Jinghua Fang; Tao Hu; Hans Martin Seip; Haakon Vennemo

    2006-08-15

    Several studies carried out in China over the past 5-10 years, including the authors own work, have found that many measures aimed primarily at reducing local air pollution decrease GHG emissions as a co-benefit. Conversely, a range of CO{sub 2} mitigation policies entail reductions in air pollution as a co-benefit. This implies that the real costs of climate policies in China may be lower than anticipated by the government. This article describes the links between climate change and air quality issues as well as the health and environmental benefits accruing from alterative measures and policies for CO{sub 2} mitigation in China where coal is expected to remain a main energy source for many years to come. The tremendous potential to cut GHG emissions while simultaneously reducing air pollution should make cooperation on climate control strategies more attractive to China and other countries in a similar position. 43 refs., 3 figs., 1 tab.

  12. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  13. LIF measurements of oxygen concentration gradients along flat and wavy air-water interfaces

    NASA Astrophysics Data System (ADS)

    Woodrow, Philip T., Jr.; Duke, Steve R.

    Instantaneous spatially-varying measurements of concentration gradients occurring during aeration for flat, stagnant air-water interfaces and for interfaces with mechanically-generated waves are presented. Measurements were obtained in a laboratory wave tank using a laser-induced fluorescence (LIF) technique that images planar oxygen concentration fields near air-water interfaces. Pulsed nitrogen laser light focused to a thin sheet induces the fluorescence of pyrene butyric acid (in micromolar concentration) in deoxygenated water. The PBA fluorescence is quenched by dissolved oxygen. A high-resolution CCD camera images in two dimensions the intensities of the fluorescence field, providing spatial measurements of oxygen concentration with magnification of 7 μm per pixel. The concentration fields, gradients, and boundary layer thicknesses along the flat and wavy air-water interfaces are quantified and compared to previous measurements associated with sheared gas-liquid interfaces and with wind-generated waves.

  14. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  15. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  16. Quantifying the effect of air quality control measures during the 2010 Commonwealth Games at Delhi, India

    NASA Astrophysics Data System (ADS)

    Beig, Gufran; Chate, Dilip M.; Ghude, Sachin. D.; Mahajan, A. S.; Srinivas, R.; Ali, K.; Sahu, S. K.; Parkhi, N.; Surendran, D.; Trimbake, H. R.

    2013-12-01

    In 2010, the XIX Commonwealth Games (CWG-2010) were held in India for the first time at Delhi and involved 71 commonwealth nations and dependencies with more than 6000 athletes participating in 272 events. This was the largest international multi-sport event to be staged in India and strict emission controls were imposed during the games in order to ensure improved air quality for the participating athletes as a significant portion of the population in Delhi is regularly exposed to elevated levels of pollution. The air quality control measures ranged from vehicular and traffic controls to relocation of factories and reduction of power plant emissions. In order to understand the effects of these policy induced control measures, a network of air quality and weather monitoring stations was set-up across different areas in Delhi under the Government of India's System of Air quality Forecasting And Research (SAFAR) project. Simultaneous measurements of aerosols, reactive trace gases (e.g. NOx, O3, CO) and meteorological parameters were made before, during and after CWG-2010. Contrary to expectations, the emission controls implemented were not sufficient to reduce the pollutants, instead in some cases, causing an increase. The measured pollutants regularly exceeded the National Ambient Air Quality limits over the games period. The reasons for this increase are attributed to an underestimation of the required control measures, which resulted in inadequate planning. The results indicate that any future air quality control measures need to be well planned and strictly imposed in order to improve the air quality in Delhi, which affects a large population and is deteriorating rapidly. Thus, the presence of systematic high resolution data and realistic emission inventories through networks such as SAFAR will be directly useful for the future.

  17. A technique for the local measurement of air kerma rate from small Caesium-137 sources.

    PubMed

    Aukett, R J

    1991-10-01

    A method is described in which a Farmer ionization chamber is used for the direct measurement of the air kerma rate in air from small spherical Caesium-137 sources at distances of 35 to 70 mm. The calibration factor and corrections for source and ion chamber geometry are examined. For quality assurance purposes, the results obtained are in sufficient agreement with other methods of calibration.

  18. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  19. MEASUREMENT OF EFFECTIVE AIR DIFFUSION COEFFICIENTS FOR TRICHLOROETHENE IN UNDISTURBED SOIL CORES. (R826162)

    EPA Science Inventory

    Abstract

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air...

  20. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  1. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements.

  2. Global Ammonia Distributions and Recent Trends from AIRS 13-years Measurements

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Nowak, J. B.; Dickerson, R. R.

    2015-12-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years. Validation examples using in situ measurements for AIRS NH3 will also be presented.

  3. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5... FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be sealed in a manner that prevents leakage of the pyrotechnic composition during shipping, handling,...

  4. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5... FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be sealed in a manner that prevents leakage of the pyrotechnic composition during shipping, handling,...

  5. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5... FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be sealed in a manner that prevents leakage of the pyrotechnic composition during shipping, handling,...

  6. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5... FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be sealed in a manner that prevents leakage of the pyrotechnic composition during shipping, handling,...

  7. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5... FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be sealed in a manner that prevents leakage of the pyrotechnic composition during shipping, handling,...

  8. An index to measure depreciation in air quality in some coal mining areas of Korba industrial belt of Chhattisgarh, India.

    PubMed

    Singh, Gurdeep

    2006-11-01

    The comparison with National Ambient Air Quality Standards does not always depict a true picture of the Air Quality Status of a study area. As an alternative an index that measures depreciation in Air Quality on more realistic terms has been proposed and applied to the ambient air monitoring data collected from some areas of Korba Coalfields in India. Results have been discussed in detail to illustrate the application of the proposed index and utility in bringing out more realistic air quality assessment.

  9. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOEpatents

    White, Curt; Wells, Arthur; Diehl, J. Rodney; Strazisar, Brian

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  10. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    NASA Astrophysics Data System (ADS)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2016-08-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  11. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-11-22

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken.

  12. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-01-01

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken. PMID:24548789

  13. Heat exchanger leakage problem location

    NASA Astrophysics Data System (ADS)

    Hejčík, Jiří; Jícha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  14. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    PubMed

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility. PMID:27341376

  15. Continuous measurements of ammonia, nitrous oxide and methane from air scrubbers at pig housing facilities.

    PubMed

    Van der Heyden, C; Brusselman, E; Volcke, E I P; Demeyer, P

    2016-10-01

    Ammonia, largely emitted by agriculture, involves a great risk for eutrophication and acidification leading to biodiversity loss. Air scrubbers are widely applied to reduce ammonia emission from pig and poultry housing facilities, but it is not always clear whether their performance meets the requirements. Besides, there is a growing international concern for the livestock related greenhouse gases methane and nitrous oxide but hardly any data concerning their fate in air scrubbers are available. This contribution presents the results from measurement campaigns conducted at a chemical, a biological and a two-stage biological air scrubber installed at pig housing facilities in Flanders. Ammonia, nitrous oxide and methane at the inlet and outlet of the air scrubbers were monitored on-line during one week using a photoacoustic gas monitor, which allowed to investigate diurnal fluctuations in the removal performance of air scrubbers. Additionally, the homogeneity of the air scrubbers, normally checked by gas detection tubes, was investigated in more detail using the continuous data. The biological air scrubber with extra nitrification tank performed well in terms of ammonia removal (86 ± 6%), while the two-stage air scrubber suffered from nitrifying bacteria inhibition. In the chemical air scrubber the pH was not kept constant, lowering the ammonia removal efficiency. A lower ammonia removal efficiency was found during the day, when the ventilation rate was the highest. Nitrous oxide was produced inside the biological and two-stage scrubber, resulting in an increased outlet concentration of more than 200%. Methane could not be removed in the different air scrubbers because of its low water solubility.

  16. Improvement of air quality according to Mobile reduction measures to establish Korean Auto-oil program

    NASA Astrophysics Data System (ADS)

    Sunwoo, Y.; Jo, H.; Ma, Y.; Kim, S.; Hong, K.; Lim, Y.; Javascript:Setnextpage('sponsor')

    2011-12-01

    The mobile of NOx and PM10 emission of Korea in 2007 accounted for 42%, 23%, respectively (excluded fugitive dust). Seoul highly affected mobile emission which accounted for 46%, 49%, respectively. Korean government ,therefore, established "Special Act for improvement of air quality in Seoul metropolitan area" including mobile emission reduction measures and organized research forum including reformation of fuel and cars, risk assessment, control of greenhouse gas and assessment of air quality to establish Korean Auto-oil program This study quantitatively analyses improvement of air quality in Seoul according to the reformation of fuel and supply of DPF in Korean Auto-oil program. WRF-SMOKE-CMAQ were emploied for this study. SO2, CO, NOx, PM10 and VOCs emission are based on the INTEX-B emission inventory, NH3 were from the REAS emission inventory. Korea emission is derived by CAPSS (Clean Air Policy Support System) data. The reduction through reformation of fuel and supply of DPF is calculated by reduction ratio of air pollutants with strengthen fuel quality standard and number of car supplied DPF, refer to Metropolitan Air Quality Management Office Republic of Korea (2011) in detail. The effect of air quality is quantifiably comparing modeling results which are applied/not applied on the measures. This study will be provided basic data to establish Korean Auto-oil program through quantifying and predicting to improvement of air quality according to the mobile measures. Acknowledgement This research was supported in part by the "Assessment of risk and health benefits considering exposure characteristics of fuel" project sponsored by the Korea Automobile Environmental Association.

  17. A Tale of Two Cities - HSI-DOAS Measurements of Air Quality

    NASA Astrophysics Data System (ADS)

    Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul

    2013-04-01

    Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple City

  18. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Larin, K. V.; Li, Jiasong; Vantipalli, S.; Manapuram, R. K.; Aglyamov, S.; Emelianov, S.; Twa, M. D.

    2013-07-01

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo.

  19. Microvascular leakage of plasma proteins after PUVA and UVA

    SciTech Connect

    Staberg, B.; Worm, A.M.; Rossing, N.; Brodthagen, H.

    1982-04-01

    The transcapillary escape rate of albumin (TERalb), is a parameter of the leakage of macromolecules from the total microvasculature. In patients with psoriasis short-term PUVA treatment induces an increase in TERalb. In this study TERalb was measured in 3 groups of normal humans treated with PUVA, UVA and 8-methoxypsoralen. Treatment with PUVA and UVA caused a statistically significant increase in TERalb, whereas treatment with 8-methoxypsoralen did not induce any measurable changes. It is concluded that the UVA irradiation causes the abnormal leakage of macromolecules, whereas psoralen is not the responsible component. Furthermore the phenomenon can be elicited in normals and is not based on a preexisting psoriasis.

  20. Measurement of electrical conductor drag coefficients in a free-air wind tunnel

    SciTech Connect

    Shan, L.

    1992-11-01

    Significant differences between conductor drag coefficients generated in wind tunnel tests and conductor drag coefficients derived from full-scale field load measurements have been reported. Most of these full-scale wind loading experiments measure swing angles and insulator forces on long conductor spans in the open air while wind tunnel tests measure drag force directly on short conductor segments under laboratory conditions. Difficulties arise when attempting to identify the causes of discrepancies in drag coefficients derived from these two different types of testing. The first phase of this research was to build a ``free-air wind tunnel`` to measure conductor drag coefficients in the open air with a wind-tunnel like test setup. This experiment was conducted to see if the same drag coefficients could be obtained by measuring conductor loads in open air as were measured in wind tunnels for similar conductor models. The tests were performed on one smooth cylinder and three conductor models with similar surface roughness. A test frame with necessary instrumentation attached was installed on a platform 20 meters above the ground. The existing wind tunnel drag coefficient data were compared with the drag coefficient data recorded at the TLMRC EPRI`s Transmission Line Mechanical Research Center (TLMRC). The results of this study show that the drag coefficients from the ``free-air wind tunnel`` are comparable to those obtained from quality wind tunnel tests in the wind velocity range that the field data were recorded. This implies that wind tunnel drag data are sufficient to determine the drag forces on a short segment of conductor in open air. Other experiments, are still necessary to resolve the discrepancies between the wind tunnel data and existing field data. This report summarizes the results from the first phase of research.

  1. Measurement of electrical conductor drag coefficients in a free-air wind tunnel

    SciTech Connect

    Shan, L. )

    1992-11-01

    Significant differences between conductor drag coefficients generated in wind tunnel tests and conductor drag coefficients derived from full-scale field load measurements have been reported. Most of these full-scale wind loading experiments measure swing angles and insulator forces on long conductor spans in the open air while wind tunnel tests measure drag force directly on short conductor segments under laboratory conditions. Difficulties arise when attempting to identify the causes of discrepancies in drag coefficients derived from these two different types of testing. The first phase of this research was to build a free-air wind tunnel'' to measure conductor drag coefficients in the open air with a wind-tunnel like test setup. This experiment was conducted to see if the same drag coefficients could be obtained by measuring conductor loads in open air as were measured in wind tunnels for similar conductor models. The tests were performed on one smooth cylinder and three conductor models with similar surface roughness. A test frame with necessary instrumentation attached was installed on a platform 20 meters above the ground. The existing wind tunnel drag coefficient data were compared with the drag coefficient data recorded at the TLMRC EPRI's Transmission Line Mechanical Research Center (TLMRC). The results of this study show that the drag coefficients from the free-air wind tunnel'' are comparable to those obtained from quality wind tunnel tests in the wind velocity range that the field data were recorded. This implies that wind tunnel drag data are sufficient to determine the drag forces on a short segment of conductor in open air. Other experiments, are still necessary to resolve the discrepancies between the wind tunnel data and existing field data. This report summarizes the results from the first phase of research.

  2. Verification of CORINAIR 90 emission inventory by comparison with ambient air measurements

    SciTech Connect

    Pulles, T.; Esser, P.; Mareckova, K.; Kozakovic, L.

    1996-12-31

    This study aims at a validation of the CORINAIR 90 emission inventory by a comparison with measured air quality in the Netherlands and in the Slovak Republic. A regional scale atmospheric transport model (Lows) has been used to calculate air quality on a {+-} 60 {times} 60 km{sup 2} grid over Europe, using the CORINAIR 90 emissions database. The calculations have been performed for the 1990 meteorological situation. Application of the model results in calculated yearly averaged wind direction dependent concentrations of NO{sub x}, SO{sub 2} and CO. These results are statistically compared with measurements of national air quality monitoring networks in both countries. Due to characteristics of the monitoring networks in the Netherlands and in the Slovak Republic, the results of this comparison are more conclusive for the Netherlands as compared to the Slovak Republic. Slovak measuring sites seem to be influenced by local effects to such an extent that comparison with the relatively course spatial resolution of the model does not yield clear results. Within the Netherlands a fair agreement between calculated and measured air pollutant concentrations is observed for SO{sub 2} no clear pattern is recognized in the comparison. Differences between measurements and calculations are mainly attributed to local influences. NO{sub x} and CO concentrations appear to be underestimated at south-easterly wind directions. At many grid cells calculated concentrations are lower than the measured ones. The difference seems to be larger for NO{sub x} than for CO.

  3. Evaluation of the 2014 EC measurement comparison on (137)Cs in air filters.

    PubMed

    Máté, B; Sobiech-Matura, K; Altzitzoglou, T

    2016-03-01

    In 2014, the Joint Research Centre organised an interlaboratory comparison of (137)Cs measurement in air filters. This paper describes the context of the European measurement comparisons, as well as the technical implementation. Furthermore, sample treatment and measurements performed by participating laboratories are discussed and finally the evaluation of comparison results is presented. The intercomparison results are such that 71 out of the 76 laboratories (i.e. 93.4%) reported values within ±33% range of the reference value.

  4. Application Of The Climafor Baseline To Determine Leakage: TheCase Of Scolel Te.

    SciTech Connect

    De Jong, B.H.J.; Bazan, E. Esquivel; Quechulpa Montalvo, S.

    2007-06-01

    The acceptance of forestry-based project activities tomitigate greenhouse gases emissions has been subjected to a number ofmethodological questions to be answered, of which the most challengingare baseline establishment and identification of and measuring leakage.Here we pose hypotheses for and quantify leakage of the Scolel Te projectin Chiapas, Mexico. In this project small-scale farmers are implementingforestry, agroforestry, and forest conservation activities, with carbonsequestration as one of the goals. The main leakage monitoring domain isdefined as the area owned by the participating farmers or communitiesoutside the area where the specific project activities take place. Thenull-hypothesis (no leakage) is that non-project land owned by the farmeror community will experience the same carbon stock changes as predictedby the regional baseline, specifically developed for the project. Firstwe assessed the most likely causes and sources of leakage that may occurin the project. From this analysis, one type of leakage seems to beimportant, i.e., activity shifting. Second we estimated the leakage of asample of participating farmers and communities. Actual land use was thencompared with expected land use derived from the baseline. The Plan Vivoof each participant, complemented with readily available tools toidentify the main sources and drivers of leakage are used to developsimple leakage assessment procedures, as demonstrated in this paper.Negative leakage was estimated to be negligible in this study.Incorporating these procedures already in the project planning stage willreduce the uncertainties related to the actual carbon mitigationpotential of any forestry project.

  5. Indoor air-quality measurements in energy-efficient residential buildings

    SciTech Connect

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  6. Radio frequency leakage current from unipolar laparoscopic electrocoagulators.

    PubMed

    DiNovo, J A

    1983-09-01

    Radio frequency (RF) leakage current has been suspected of causing accidental tissue burns associated with laparoscopic electrocoagulation used for tubal sterilization. A study was done to determine the levels of capacitively coupled RF leakage current from six unipolar laparoscopes manufactured by five companies. Leakage current values ranging from less than 100 mA to over 550 mA were measured at electrosurgical unit power settings of up to 150 w into 1,000 ohms. These levels represent 24-62% of the total electrosurgical current generated by the electrosurgical units. Using a criterion for tissue injury of 100 mA/sq cm applied for ten seconds, leakage current levels exceeding 400 mA are capable of producing burns either at the abdominal wall or to internal organs that accidentally come into contact with the body of the laparoscope. One of the six devices tested had leakage current levels higher than 400 mA at power settings lower than 100 w. Capacitance measurements between the unipolar laparoscope body and the forceps ranged from 53 to 140 picofarads.

  7. Radio frequency leakage current from unipolar laparoscopic electrocoagulators.

    PubMed

    DiNovo, J A

    1983-09-01

    Radio frequency (RF) leakage current has been suspected of causing accidental tissue burns associated with laparoscopic electrocoagulation used for tubal sterilization. A study was done to determine the levels of capacitively coupled RF leakage current from six unipolar laparoscopes manufactured by five companies. Leakage current values ranging from less than 100 mA to over 550 mA were measured at electrosurgical unit power settings of up to 150 w into 1,000 ohms. These levels represent 24-62% of the total electrosurgical current generated by the electrosurgical units. Using a criterion for tissue injury of 100 mA/sq cm applied for ten seconds, leakage current levels exceeding 400 mA are capable of producing burns either at the abdominal wall or to internal organs that accidentally come into contact with the body of the laparoscope. One of the six devices tested had leakage current levels higher than 400 mA at power settings lower than 100 w. Capacitance measurements between the unipolar laparoscope body and the forceps ranged from 53 to 140 picofarads. PMID:6226780

  8. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of {plus_minus}14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  9. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  10. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  11. The shape of the radio wavefront of extensive air showers as measured with LOFAR

    NASA Astrophysics Data System (ADS)

    Corstanje, A.; Schellart, P.; Nelles, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Krause, M.; Rachen, J. P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; van den Akker, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Fallows, R. A.; Ferrari, C.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; Mevius, M.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D.; Smirnov, O.; Stewart, A.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2015-02-01

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth's atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.

  12. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  13. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  14. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  15. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  16. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  17. Leakage detection and location in gas pipelines through an LPV identification approach

    NASA Astrophysics Data System (ADS)

    Lopes dos Santos, P.; Azevedo-Perdicoúlis, T.-P.; Jank, G.; Ramos, J. A.; Martins de Carvalho, J. L.

    2011-12-01

    A new approach to gas leakage detection in high pressure distribution networks is proposed, where two leakage detectors are modelled as a linear parameter varying (LPV) system whose scheduling signals are, respectively, intake and offtake pressures. Running the two detectors simultaneously allows for leakage location. First, the pipeline is identified from operational data, supplied by REN-Gasodutos and using an LPV systems identification algorithm proposed in [1]. Each leakage detector uses two Kalman filters where the fault is viewed as an augmented state. The first filter estimates the flow using a calculated scheduling signal, assuming that there is no leakage. Therefore it works as a reference. The second one uses a measured scheduling signal and the augmented state is compared with the reference value. Whenever there is a significant difference, a leakage is detected. The effectiveness of this method is illustrated with an example where a mixture of real and simulated data is used.

  18. Quantification of Pathologic Air Trapping in Lung Transplant Patients Using CT Density Mapping: Comparison with Other CT Air Trapping Measures.

    PubMed

    Solyanik, Olga; Hollmann, Patrick; Dettmer, Sabine; Kaireit, Till; Schaefer-Prokop, Cornelia; Wacker, Frank; Vogel-Claussen, Jens; Shin, Hoen-oh

    2015-01-01

    To determine whether density mapping (DM) is more accurate for detection and quantification of pathologic air trapping (pAT) in patients after lung transplantation compared to other CT air trapping measures. One-hundred forty-seven lung and heart-lung transplant recipients underwent CT-examinations at functional residual capacity (FRC) and total lung capacity (TLC) and PFT six months after lung transplantation. Quantification of air trapping was performed with the threshold-based method in expiration (EXP), density mapping (DM) and the expiratory to inspiratory ratio of the mean lung density (E/I-ratio MLD). A non-rigid registration of inspiration-expiration CT-data with a following voxel-to-voxel mapping was carried out for DM. Systematic variation of attenuation ranges was performed for EXP and DM and correlated with the ratio of residual volume to total lung capacity (RV/TLC) by Spearman rank correlation test. AT was considered pathologic if RV/TLC was above the 95th percentile of the predicted upper limit of normal values. Receiver operating characteristic (ROC) analysis was performed. The optimal attenuation range for the EXP method was from -790 HU to -950 HU (EXP(-790 to -950HU)) (r = 0.524, p<0.001) to detect air trapping. Within the segmented lung parenchyma, AT was best defined as voxel difference less than 80 HU between expiration and registered inspiration using the DM method. DM correlated best with RV/TLC (r = 0.663, p<0.001). DM and E/I-ratio MLD showed a larger AUC (0.78; 95% CI 0.69-0.86; 0.76, 95% CI 0.67-0.85) than EXP(-790 HU to -950 HU) (0.71, 95% CI 0.63-0.78). DM and E/I-ratio MLD showed better correlation with RV/TLC and are more suited quantitative CT-methods to detect pAT in lung transplant patients than the EXP(-790HU to -950HU).

  19. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  20. The Reproducibility of Indoor Air Pollution (IAP) Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    PubMed Central

    Kim, Bo-Won; Ahn, Jeong-Hyeon; Bae, Min-Suk; Brown, Richard J. C.

    2014-01-01

    To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC): 1400 μg m−3, resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11). PMID:25054167

  1. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  2. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  3. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  4. Exposure measurement error in time-series studies of air pollution: concepts and consequences.

    PubMed Central

    Zeger, S L; Thomas, D; Dominici, F; Samet, J M; Schwartz, J; Dockery, D; Cohen, A

    2000-01-01

    Misclassification of exposure is a well-recognized inherent limitation of epidemiologic studies of disease and the environment. For many agents of interest, exposures take place over time and in multiple locations; accurately estimating the relevant exposures for an individual participant in epidemiologic studies is often daunting, particularly within the limits set by feasibility, participant burden, and cost. Researchers have taken steps to deal with the consequences of measurement error by limiting the degree of error through a study's design, estimating the degree of error using a nested validation study, and by adjusting for measurement error in statistical analyses. In this paper, we address measurement error in observational studies of air pollution and health. Because measurement error may have substantial implications for interpreting epidemiologic studies on air pollution, particularly the time-series analyses, we developed a systematic conceptual formulation of the problem of measurement error in epidemiologic studies of air pollution and then considered the consequences within this formulation. When possible, we used available relevant data to make simple estimates of measurement error effects. This paper provides an overview of measurement errors in linear regression, distinguishing two extremes of a continuum-Berkson from classical type errors, and the univariate from the multivariate predictor case. We then propose one conceptual framework for the evaluation of measurement errors in the log-linear regression used for time-series studies of particulate air pollution and mortality and identify three main components of error. We present new simple analyses of data on exposures of particulate matter < 10 microm in aerodynamic diameter from the Particle Total Exposure Assessment Methodology Study. Finally, we summarize open questions regarding measurement error and suggest the kind of additional data necessary to address them. Images Figure 1 Figure 2

  5. Calculating the GONG Leakage Matrix

    NASA Astrophysics Data System (ADS)

    Hill, F.; Howe, R.

    Since spherical harmonics do not form a complete orthonormal basis set over a portion of a sphere, helioseismic spectra computed for a specific target mode with degree ellt and azimuthal degree mt also contain modes with nearby ell'' and m''. These spatial leaks greatly increase the complexity of the observed spectrum, complicating the spectral fitting and degrading the resulting mode parameter estimates. This is particularly true where the target mode and the leaks have similar frequencies. Some strategies for fitting helioseismic spectra explicitly include the leakage matrix which estimates the relative strength of a mode (ell'' and m'') in the spectrum at (ellt,mt). Since the fitting methods assume that the matrix is correct and apply it as a constraint, an inaccurate matrix introduces systematic errors in the estimated mode parameters. It is thus important to have as accurate a matrix as possible. Here we report on the calculation of the leakage matrix for the GONG observations. The matrix elements are essentially the integrals (over the observed portion of the solar surface) of the crossproducts of the two spherical harmonics. However, several effects have been included to increase the accuracy of the matrix. These include the projection factor of the observable (velocity, intensity, modulation), the spatial apodization applied to the data, the finite rectangular pixel dimensions of the observations, and possible errors in the estimated image geometry. Other factors to be incorporated are the observed MTF, the merging of the GONG images, and the horizontal components of the oscillatory velocity field. We will compare the latest calculation with the observed spectrum and assess the relative importance of the input factors. We will also compare the leakage matrices for velocity and intensity to estimate their contribution to the large apparent differences in the helioseismic spectra obtained from these observables.

  6. CORRELATIONS OF PERSONAL EXPOSURE TO PARTICLES WITH OUTDOOR AIR MEASUREMENT: A REVIEW OF RECENT STUDIES

    EPA Science Inventory

    Epidemiological studies have found a correlation between daily mortality and particle concentrations in outdoor air as measured at a central monitoring station. These studies have been the central reason for the U.S. EPA to propose new tighter particle standards. However, perso...

  7. Effect measure modification of blood lead-air lead slope factors.

    PubMed

    Richmond-Bryant, Jennifer; Meng, Qingyu; Cohen, Jonathan; Davis, J Allen; Svendsgaard, David; Brown, James S; Tuttle, Lauren; Hubbard, Heidi; Rice, Joann; Kirrane, Ellen; Vinikoor-Imler, Lisa; Kotchmar, Dennis; Hines, Erin; Ross, Mary

    2015-01-01

    There is abundant literature finding that susceptibility factors, including race and ethnicity, age, and housing, directly influence blood lead levels. No study has explored how susceptibility factors influence the blood lead-air lead relationship nationally. The objective is to evaluate whether susceptibility factors act as effect measure modifiers on the blood lead-air lead relationship. Participant level blood lead data from the 1999 to 2008 National Health and Nutrition Examination Survey were merged with air lead data from the US Environmental Protection Agency. Linear mixed effects models were run with and without an air lead interaction term for age group, sex, housing age, or race/ethnicity to determine whether these factors are effect measure modifiers for all ages combined and for five age brackets. Age group and race/ethnicity were determined to be effect measure modifiers in the all-age model and for some age groups. Being a child (1-5, 6-11, and 12-19 years) or of Mexican-American ethnicity increased the effect estimate. Living in older housing (built before 1950) decreased the effect estimate for all models except for the 1-5-year group, where older housing was an effect measure modifier. These results are consistent with the peer-reviewed literature of time-activity patterns, ventilation, and toxicokinetics. PMID:24961837

  8. Laser induced fluorescence measurements of dissolved oxygen concentration fields near air bubble surfaces

    NASA Astrophysics Data System (ADS)

    Roy, Sabita; Duke, Steve R.

    2000-09-01

    This article describes a laser-induced fluorescence (LIF) technique for measuring dissolved oxygen concentration gradients in water near the surface of an air bubble. Air bubbles are created at the tip of a needle in a rectangular bubble column filled with water that contains pyrenebutyric acid (PBA). The fluorescence of the PBA is induced by a planar pulse of nitrogen laser light. Oxygen transferring from the air bubble to the deoxygenated water quenches the fluorescence of the PBA. Images of the instantaneous and two-dimensional fluorescence field are obtained by a UV-intensified charge-coupled device (CCD) camera. Quenching of fluorescence intensity is determined at each pixel in the CCD image to measure dissolved oxygen concentration. Two-dimensional concentration fields are presented for a series of measurements of oxygen transfer from 1.6 mm bubbles suspended on the tip of a needle in a quiescent fluid. The images show the spatially varying concentration profiles, gradients, and boundary layer thicknesses at positions around the bubble surfaces. These direct and local measurements of concentration behavior within the mass transfer boundary layer show the potential of this LIF technique for the development of general and mechanistic models for oxygen transport across the air-water interface.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air

    SciTech Connect

    Brand, L.

    2014-04-01

    This measure guideline covers how to assess and carry out the combustion safety procedures for appliances and heating equipment that uses indoor air for combustion in low-rise residential buildings. Only appliances installed in the living space, or in an area freely communicating with the living space, vented alone or in tandem with another appliance are considered here. A separate measure guideline addresses combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage that use outdoor air for combustion. This document is for inspectors, auditors, and technicians working in homes where energy upgrades are being conducted whether or not air infiltration control is included in the package of measures being applied. In the indoor combustion air case, guidelines summarized here are based on language provided in several of the codes to establish minimum requirements for the space using simplified prescriptive measures. In addition, building performance testing procedures are provided by testing agencies. The codes in combination with the test procedures offer comprehensive combustion safety coverage to address safety concerns, allowing inexperienced residential energy retrofit inspectors to effectively address combustion safety issues and allow energy retrofits to proceed.

  11. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  12. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  13. Effect of scintillometer height on structure parameter of the refractive index of air measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn**2). Cn**2 represents the turbulent strength of the atmosphere and describes the ability of the atmos...

  14. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  15. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  16. Air Density Measurements in a Mach 10 Wake Using Iodine Cordes Bands

    NASA Technical Reports Server (NTRS)

    Balla, Robert J.; Everhart, Joel L.

    2012-01-01

    An exploratory study designed to examine the viability of making air density measurements in a Mach 10 flow using laser-induced fluorescence of the iodine Cordes bands is presented. Experiments are performed in the NASA Langley Research Center 31 in. Mach 10 air wind tunnel in the hypersonic near wake of a multipurpose crew vehicle model. To introduce iodine into the wake, a 0.5% iodine/nitrogen mixture is seeded using a pressure tap at the rear of the model. Air density was measured at 56 points along a 7 mm line and three stagnation pressures of 6.21, 8.62, and 10.0 MPa (900, 1250, and 1450 psi). Average results over time and space show rho(sub wake)/rho(sub freestream) of 0.145 plus or minus 0.010, independent of freestream air density. Average off-body results over time and space agree to better than 7.5% with computed densities from onbody pressure measurements. Densities measured during a single 60 s run at 10.0 MPa are time-dependent and steadily decrease by 15%. This decrease is attributed to model forebody heating by the flow.

  17. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  18. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  19. Evaluation of Length-of-Stain Gas Indicator Tubes for Measuring Carbon Monoxide in Air.

    ERIC Educational Resources Information Center

    Klaubert, Earl C.; And Others

    Techniques for detection and measurement of carbon monoxide (CO) in air are of interest and utility in many aspects of automotive safety. CO concentrations may range from less than 100 parts per million (ppm), or 0.01 percent, to about 10 percent by volume. Gas indicator tubes have been used for many years primarily as detectors of hazardous gases…

  20. Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter

    NASA Astrophysics Data System (ADS)

    Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur

    2010-01-01

    Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).

  1. The use of ultrasound measurements in environmental epidemiological studies of air pollution and fetal growth

    PubMed Central

    Smarr, Melissa M.; Vadillo-Ortega, Felipe; Castillo-Castrejon, Marisol; O’Neill, Marie S.

    2015-01-01

    Purpose of review Recently, several international research groups have suggested that studies about environmental contaminants and adverse pregnancy outcomes should be designed to elucidate potential underlying biological mechanisms. The purpose of this review is to examine the epidemiological studies addressing maternal exposure to air pollutants and fetal growth during gestation as assessed by ultrasound measurements. Recent findings The six studies published to date found that exposure to certain ambient air pollutants during pregnancy is negatively associated with the growth rates and average attained size of fetal parameters belonging to the growth profile. Fetal parameters may respond to maternal air pollution exposures uniquely, and this response may vary by pollutant and timing of gestational exposure. Current literature suggests that mean changes in head circumference, abdominal circumference, femur length, and biparietal diameter are negatively associated with early-pregnancy exposures to ambient and vehicle-related air pollution. Summary The use of more longitudinal studies, employing ultrasound measures to assess fetal outcomes, may assist with the better understanding of mechanisms responsible for air pollution-related pregnancy outcomes. PMID:23399571

  2. Air Quality in Megacities: Lessons Learned from Mexico City Field Measurements

    NASA Astrophysics Data System (ADS)

    Molina, L. T.

    2014-12-01

    More than half of the world's population now lives in urban areas because of the opportunities for better jobs, access to city services, cultural and educational activities, and a desire for more stimulating human interaction. At the same time, many of these urban centers are expanding rapidly, giving rise to the phenomenon of megacities. In recent decades air pollution has become not only one of the most important environmental problems of megacities, but also presents serious consequences to human health and ecosystems and economic costs to society. Although the progress to date in combating air pollution problems in developed and some developing world megacities has been impressive, many challenges remain including the need to improve air quality while simultaneously mitigating climate change. This talk will present the results and the lessons learned from field measurements conducted in Mexico City Metropolitan Area - one of the world's largest megacities - over the past decade. While each city has its own unique circumstances, the need for an integrated assessment approach in addressing complex environmental problems is the same. There is no single strategy in solving air pollution problems in megacities; a mix of policy measures based on sound scientific findings will be necessary to improve air quality, protect public health, and mitigate climate change.

  3. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  4. A method to optimize sampling locations for measuring indoor air distributions

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Shen, Xiong; Li, Jianmin; Li, Bingye; Duan, Ran; Lin, Chao-Hsin; Liu, Junjie; Chen, Qingyan

    2015-02-01

    Indoor air distributions, such as the distributions of air temperature, air velocity, and contaminant concentrations, are very important to occupants' health and comfort in enclosed spaces. When point data is collected for interpolation to form field distributions, the sampling locations (the locations of the point sensors) have a significant effect on time invested, labor costs and measuring accuracy on field interpolation. This investigation compared two different sampling methods: the grid method and the gradient-based method, for determining sampling locations. The two methods were applied to obtain point air parameter data in an office room and in a section of an economy-class aircraft cabin. The point data obtained was then interpolated to form field distributions by the ordinary Kriging method. Our error analysis shows that the gradient-based sampling method has 32.6% smaller error of interpolation than the grid sampling method. We acquired the function between the interpolation errors and the sampling size (the number of sampling points). According to the function, the sampling size has an optimal value and the maximum sampling size can be determined by the sensor and system errors. This study recommends the gradient-based sampling method for measuring indoor air distributions.

  5. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  6. The measurement of carbon monoxide and methane in the National Capital Air Quality Control Region. I - Measurement systems

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Lamontagne, R. A.; Goldstein, H. W.

    1976-01-01

    The Carbon Monoxide Pollution Experiment (COPE) and the National Capital Air Quality Control Region (NCAQCR) undertook a series of measurements of atmospheric CO and CH4 to determine the accuracy of the airborne COPE Correlation Interfer4meter. The device, a modified Michelson interferometer, measures the atmospheric column density of CO and CH4 at 2.3 microns with tropospheric measurement sensitivities of 70 and 10 PPB, respectively. Data for evaluating the remote measurements included atmospheric column density measurements at a ground truth site using a van-mounted infrared Fourier spectrometer; continuous ground level gas chromatographic measurements; and chromatographic data from atmospheric grab samples collected by aircraft and at ground locations. The instruments and sampling techniques used in the experiment are described in detail.

  7. 10 CFR 431.96 - Uniform test method for the measurement of energy efficiency of commercial air conditioners and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF...

  8. Aerothermodynamic measurement and prediction for a modified orbiter at Mach 6 and 10 in air

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1991-01-01

    Detailed heat-transfer rate distributions measured laterally over the windward surface of an orbiter-like configuration using thin-film resistance heat-transfer gages and globally using the newly developed relative intensity, two-color thermographic phosphor technique are presented for Mach 6 and 10 in air. The primary objective of this study was to provide detailed benchmark heat-transfer data for the calibration of CFD codes. Predicted laminar heat-transfer rates are in good agreement with measurements.

  9. Air Shower Events of High-Energy Cosmic Rays Measured at Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Cho, Wooram; Shin, Jae-Ik; Kim, Hongki; Lee, Seulgi; Lim, Sunin; Nam, Sinwoo; Yang, Jongmann; Cheon, Byunggu; Bang, Hyungchan; Kwon, Youngjoon

    2011-09-01

    The COsmic ray Research and Education Array (COREA) collaboration has installed an array of six detector stations at two high schools in and near Seoul, Korea for measurement of air-shower events from high-energy cosmic rays. Three stations are installed at each site, where each station consists of four plastic scintillation detectors covering an area of 2m2. In this presentation, we report the currenst status of the COREA project, describing the experimental equipment and measurement of coincident events.

  10. Air fluorescence efficiency measurements for AIRWATCH based mission: Experimental set-up

    SciTech Connect

    Biondo, B.; Catalano, O.; Celi, F.; Fazio, G.; Giarrusso, S.; La Rosa, G.; Mangano, A.; Bonanno, G.; Cosentino, R.; Di Benedetto, R.; Scuderi, S.; Richiusa, G.; Gregorio, A.

    1998-06-15

    In the framework of the AIRWATCH project we present an experimental set-up to measure the efficiency of the UV fluorescence production of the air using hard X-ray stimulus. The measures will be carried out at different pressure and temperature to emulate the same condition of the upper layers of the atmosphere where X-ray and gamma ray photons of Gamma Ray Bursts are absorbed.

  11. Leakage neutron radiation in a medical electron accelerator

    NASA Astrophysics Data System (ADS)

    Paredes, Lydia; Balcazar, Miguel; Genis, Roberto; Ortiz, Raúl

    2001-10-01

    A simple method was used for the calculation of neutron yield produced by main components of medical electron accelerator head, using a simplified geometric model with spherical-shell for the head shielding made of different materials. The leakage neutron radiation on the patient plane and outside the patient plane at one meter from the x-ray target for a Varian accelerator model Clinac 2100C was evaluated experimentally, using Panasonic UD-802 and UD-809 thermoluminescent dosimeters and CR-39 nuclear track dosimeters. The measured values of leakage neutron radiation were lower than the limits specified in the NCRP-102 and IEC 60601-2-1-Ed.2.0 reports.

  12. Leakage radiation microscope for observation of non-transparent samples.

    PubMed

    Merlo, Juan M; Ye, Fan; Burns, Michael J; Naughton, Michael J

    2014-09-22

    We describe a leakage radiation microscope technique that can be used to extend the leakage radiation microscopy to optically non-transparent samples. In particular, two experiments are presented, first to demonstrate that acquired images with our configuration correspond to the leakage radiation phenomenon and second, to show possible applications by directly imaging a plasmonic structure that previously could only be imaged with a near-field scanning optical microscope. It is shown that the measured surface plasmon wavelength and propagation length agree with theoretically-calculated values. This configuration opens the possibility to study important effects where samples are optically non-transparent, as in plasmonic cavities and single hole plasmonic excitation, without the use of time-consuming near-field scanning optical microscopy.

  13. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  14. Mexico City air quality research initiative. Volume IV. Characterization and measurement

    SciTech Connect

    Mauzy, A.

    1994-04-01

    This volume describes the methods and the data gathered in an attempt to measure and characterize the meteorological factors and the concentration of different pollutants in the Mexico City Metropolitan Area. The main objective of this document was to provide input for the simulation models and to obtain information that could be used to test and improve the models` performance. Four field campaigns were conducted, as well as routine monitoring, in order to obtain a database of atmospheric dynamics and air pollution characteristics. Sections include Airborne measurements, Remote sensing measurements, and Traditional (in situ) measurements.

  15. Direct measurement of air kerma rate in air from CDCS J-type caesium-137 therapy sources using a Farmer ionization chamber.

    PubMed

    Poynter, A J

    2000-04-01

    A simple method for directly measuring the reference air kerma rate from J-type 137Cs sources using a Farmer 2571 chamber has been evaluated. The method is useful as an independent means of verifying manufacturers' test data.

  16. Summary of stationary and personal air sampling measurements made during a plutonium glovebox decommissioning project.

    SciTech Connect

    Munyon, W. J.; Lee, M. B.

    2002-02-01

    Workplace air sampling was performed during the decommissioning of a previously active plutonium glovebox facility located at Argonne National Laboratory. Personal air samplers (PAS) were used to measure breathing zone activity concentrations of workers engaged in size-reducing contaminated gloveboxes. Stationary air samplers (SAS) were used to measure the work area activity concentrations and test their application in providing representative sampling of breathing zone activity concentrations. The relative response of these samplers (PAS:SAS) was tracked during the course of the decommissioning work, with results yielding favorable agreement to within a factor of {+-}5. A cascade impactor was used to determine the particle size distribution of workplace aerosols. The average activity median aerodynamic diameter (AMAD) was estimated to be 3.0 {mu}m, with a corresponding geometric standard deviation of 2.4. A gas-flow proportional counter was utilized to measure the gross alpha activity collected on both the SAS glass fiber and the PAS cellulose fiber filters. A subset of this filter group was subsequently analyzed using an alpha spectrometer post radiochemical processing and isotopic separation. The quantity of alpha activity measured on the SAS filters was generally within {+-}30% of the alpha spectrometry measurements. However, measurements made of the activity present on the PAS cellulose fiber filters were consistently underestimated using a gas-flow proportional counter, suggesting a small correction factor of 15-20% to account for the absorption of alpha particle emissions.

  17. Summary of stationary and personal air sampling measurements made during a plutonium glovebox decommissioning project.

    PubMed

    Munyon, W J; Lee, M B

    2002-02-01

    Workplace air sampling was performed during the decommissioning of a previously active plutonium glovebox facility located at Argonne National Laboratory. Personal air samplers (PAS) were used to measure breathing zone activity concentrations of workers engaged in size-reducing contaminated gloveboxes. Stationary air samplers (SAS) were used to measure the work area activity concentrations and test their application in providing representative sampling of breathing zone activity concentrations. The relative response of these samplers (PAS:SAS) was tracked during the course of the decommissioning work, with results yielding favorable agreement to within a factor of +/-5. A cascade impactor was used to determine the particle size distribution of workplace aerosols. The average activity median aerodynamic diameter (AMAD) was estimated to be 3.0 microm, with a corresponding geometric standard deviation of 2.4. A gas-flow proportional counter was utilized to measure the gross alpha activity collected on both the SAS glass fiber and the PAS cellulose fiber filters. A subset of this filter group was subsequently analyzed using an alpha spectrometer post radiochemical processing and isotopic separation. The quantity of alpha activity measured on the SAS filters was generally within +/-30% of the alpha spectrometry measurements. However, measurements made of the activity present on the PAS cellulose fiber filters were consistently underestimated using a gas-flow proportional counter, suggesting a small correction factor of 15-20% to account for the absorption of alpha particle emissions.

  18. Sampling and measurement issues in establishing a climate reference upper air network

    NASA Astrophysics Data System (ADS)

    Gardiner, T.; Madonna, F.; Wang, J.; Whiteman, D. N.; Dykema, J.; Fassò, A.; Thorne, P. W.; Bodeker, G.

    2013-09-01

    The GCOS Reference Upper Air Network (GRUAN) is an international reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. Upper air observations within the GRUAN network will provide long-term high-quality climate records, will be used to constrain and validate data from space based remote sensors, and will provide accurate data for the study of atmospheric processes. The network covers measurements of a range of key climate variables including temperature. Implementation of the network has started, and as part of this process a number of scientific questions need to be addressed in order to establish a viable climate reference upper air network, in addition to meeting the other objectives for the network measurements. These include quantifying collocation issues for different measurement techniques including the impact on the overall uncertainty of combined measurements; change management requirements when switching between sensors; assessing the benefit of complementary measurements of the same variable using different measurement techniques; and establishing the appropriate sampling strategy to determine long-term trends. This paper reviews the work that is currently underway to address these issues.

  19. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  20. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  1. Development of an air displacement method for whole body volume measurement of infants.

    PubMed

    Taylor, A; Aksoy, Y; Scopes, J W; du Mont, G; Taylor, B A

    1985-01-01

    An infant enclosed in a rigid-walled chamber displaces a volume of air equal to its own volume. The volume of air displaced can be estimated by the change in pressure produced by a standard reduction in the chamber's volume according to Boyle's law. An instrument embodying this principle has been developed in which the differential pressure between two identical chambers is measured during equal sinusoidally imposed volume changes in the two. Problems arising from variable departure of conditions of pressure cycling, from isothermal towards adiabatic, have been dealt with by empirically derived corrections. Data are presented on the use of the method for low birth-weight infants. PMID:3982015

  2. The nature of air pollution and the methods available for measuring it

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    At present the principal sources of energy in Europe are coal and oil and fuels derived from them, and in European towns air pollution consists mainly of their combustion products. These combustion products naturally divide into two categories, gaseous and particulate, which are very different chemically and which behave very differently when they are near collecting surfaces; they therefore require very different techniques both for collecting and for estimating samples. Some methods of measurement, suitable for everyday routine use in Europe, are described; these offer a compromise between completeness and economy, and can help to give a general outline of the air pollution situation without undue complexity or prohibitive cost. PMID:14315712

  3. First principles calculations of air fluorescence efficiencies with comparisons to measurements

    SciTech Connect

    Colman, J. J.

    2004-01-01

    The fluorescence efficiencies used in calculating the optical emissions produced by energetic particles and penetrating radiation in air are derived for the most part from the measurements, of Davidson and O'neil, Mitchell and Hartman. These efficiencies were obtained from experiments conducted at various air pressures and in the absence of an applied electric field. In this paper we describe detailed 4.5 dimensional (two spatial dimensions and 2.5 phase space dimensions) kinetic calculations for the electron distribution function resulting from the injection of energetic electrons into air at various pressures. We choose beam parameters and dimensions that are directly relevant to the original Davidson and O'Neil experiments. From the electron distribution function and measured excitation cross-sections we then compute the optical efficiencies for a large number of nitrogen and oxygen lines across the electromagnetic spectrum from 320.0 nm to 800.0 nm. A comparison with various measurements is presented. We also present results from simulations with an applied electric field. The computed fluorescence efficiencies can be used to determine the optical emissions associated with high-altitude discharges driven by runaway air breakdown and results are discussed in a separate poster. We have also recalculated optical emission rates that are applicable to discharges dominated by. conventional breakdown for comparison with Taranenko et al. These rates are also used in our self-consistent sprite simulations.

  4. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs. PMID:25605444

  5. Measuring air gap width of permanent magnet linear generators using search coil sensor

    SciTech Connect

    Waters, R.; Danielsson, O.; Leijon, M.

    2007-01-15

    A concept for a wave power plant is being developed at the Centre for Renewable Electric Energy Conversion at the Angstroem Laboratory at Uppsala University. The concept is based on a permanent magnet linear generator placed on the seabed, directly driven by a surface following buoy. Critical for the survival of the generator is that the air gap between the moving and static parts of the generator is constantly fixed at the designed width to prevent the moving and static parts from connecting during operation. This paper shows the design and evaluation of an inductive sensor for measuring the air gap width during generator operation. In order to survive during years on the seafloor inside the wave power plants, the sensor has deliberately been chosen to be a passive component, as well as robust and compact. A coil etched on a printed circuit board, i.e., a search coil, was the chosen basis for the sensor. The sensor has been tested on an existing test rig of a wave power plant and the results have been compared with finite element simulations.The results show that a search coil magnetic sensor etched on a printed circuit board is a suitable concept for measuring the air gap width. Experimentally measured and theoretically calculated sensor signals show very good agreement. The setup has a sensitivity of {+-}0.4 mm in the range of 4-9.5 mm air gap. The potential for future improvements of the sensitivity is considerable.

  6. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.

  7. AirDyn: an instrumented model-scale helicopter for measuring unsteady aerodynamic loading in airwakes

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Curran, J.; Padfield, G. D.; Owen, I.

    2011-04-01

    This paper describes the design, calibration and application of an instrument that measures the effects of unsteady air flow (airwake) on a helicopter in flight. The instrument is a 1/54th-scale model helicopter that is mounted on a six-component dynamic force balance to measure the forces and moments that an airwake imposes onto the helicopter; it is therefore an 'Airwake Dynamometer' to which we have given the name AirDyn. The AirDyn has been designed, in particular, to measure the effect of a ship airwake on a helicopter translating over the ship's landing deck. The AirDyn, which has been implemented in a water tunnel, in preference to a wind tunnel, senses the integrated effect of a turbulent airwake on the helicopter, and the resulting unsteady forces and moments are an indication of the workload the pilot would need to exert to counteract these effects in a real helicopter. Binocular sensing elements and semiconductor strain gauges have been adopted to achieve high sensitivity and relatively high stiffness. The compact strain gauge balance is fitted into the helicopter fuselage, and protective coatings and a flexible bellows are used to seal the balance and protect it from the water. The coefficient matrix of the AirDyn has been obtained by static calibrations, while impulse excitation tests have confirmed that its frequency response is suitable for the measurements of unsteady loads. The application of the instrument is illustrated by using it to quantify the effect that a bulky ship mast has on the airwake and thus on a helicopter as it lands onto a simplified ship in a scaled 50 knot headwind.

  8. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  9. Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ.

    PubMed

    Olson, M S; Tillman, F D; Choi, J W; Smith, J A

    2001-12-01

    The purpose of this study is to compare three techniques to measure the air permeability of the unsaturated zone at Picatinny Arsenal, NJ and to examine the effects of moisture content and soil heterogeneity on air permeability. Air permeability was measured in three ways: laboratory experiments on intact soil cores, field-scale air pump tests and calibration of air permeability to air pressures measured in the field under natural air pressure conditions using a numerical airflow model. The results obtained from these three methods were compared and found to be similar. Laboratory experiments performed on intact cores measured air permeability values on the order of 10(-14) to 10(-9) m2. Low-permeability cores were found between land surface and a depth of 0.6 m. The soil core data were divided into two layers with composite vertical permeability values of 1.3 x 10(-13) m2 from land surface to a 0.6-m depth and 3.8 x 10(-10) m2 for the lower layer. Analyses of the field-scale pump tests were performed for two scenarios: one in which the entire unsaturated zone was open to the atmosphere and one assuming a cap of low permeability extending 0.6 m below land surface. The vertical air permeability values obtained for the open scenario ranged from 1.2 x 10(-9) to 1.5 x 10(-9) m2, and ranged from 3.6 x 10(-9) to 6.8 x 10(-9) m2 in the lower layer, assuming an upper cap permeability of 6.0 x 10(-14) m2. The results from the open scenario are much higher than expected and the possible reasons for this ambiguity are discussed. The results from the capped scenario matched closely with those from the other methods and indicated that it is important to have background information on the study site to correctly analyze the pump test data. The optimized fit of the natural subsurface air pressure was achieved with an intrinsic permeability value of 3.3 x 10(-14) m2. When the data were refitted to the model assuming two distinct layers of the unsaturated zone, the optimized fit

  10. Volatile organic compounds in indoor air: A review ofconcentrations measured in North America since 1990

    SciTech Connect

    ATHodgson@lbl.gov

    2003-04-01

    Central tendency and upper limit concentrations of volatile organic compounds (VOCs) measured in indoor air are summarized and reviewed. Data were obtained from published cross-sectional studies of residential and office buildings conducted in North America from 1990through the present. VOC concentrations in existing residences reported in 12 studies comprise the majority of the data set. Central tendency and maximum concentrations are compared between new and existing residences and between existing residences and office buildings. Historical changes in indoor VOC concentrations since the Clean Air Act Amendments of 1990 are explored by comparing the current data set with two published reviews of previous data obtained primarily in the 1980s. These historical comparisons suggest average indoor concentrations of some toxic air contaminants, such as 1,1,1-trichloroethane have decreased.

  11. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  12. SIRS: An Experiment to Measure the Free Air Temperature from a Satellite.

    PubMed

    Wark, D Q

    1970-08-01

    The Satellite Infrared Spectrometer (SIRS) on the Nimbus III satellite was designed to measure the earth's spectral radiances in the 15-microm band of carbon dioxide. From simultaneous measurements of spectral radiances it is possible to obtain the vertical temperature profile of the atmosphere. The measurements are approximated by the integral equation of radiative transfer, modified by one or two layers of clouds. A solution requires that the surface radiative temperature and the surface air temperature be known. By iteration, a solution based upon the statistical behavior of the atmosphere is obtained for the free air temperature and the cloud heights and amounts. Examples are presented, comparing the SIRS soundings with coincident radiosonde soundings. The results from this experiment indicate that the technique can be applied as a routine observing tool for meteorological use.

  13. The First Air-Temperature Measurements for the Purposes of Battlefield Operations?.

    NASA Astrophysics Data System (ADS)

    Lindgré, S.; Neumann, J.

    1986-03-01

    Close to the end of the severe winter 1808/09, a Russian force crossed the ice-bound Gulf of Bothnia from Finland to Sweden with the purpose of forcing Sweden to desist from taking sides with Great Britain against Napoléon. General major von Berg, one of the commanders of the force, took meteorological observations, including air-temperature measurements, during the crossing, a record of which he left behind in a journal. These air-temperature measurements appear to be the first of their kind in the history of land-based military forces.In the discussion of the meteorological conditions of the above-mentioned harsh winter, use is made of unpublished meteorological measurements at Umcaå, Sweden, and at Ylitomio (Över-Torneå), Finland. The latter were conducted by Johan Portin, a pioneer of meteorological observations near the Arctic Circle.

  14. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  15. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  16. Novel methods for measuring air-water interfacial area in unsaturated porous media.

    PubMed

    Brusseau, Mark L; El Ouni, Asma; Araujo, Juliana B; Zhong, Hua

    2015-05-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented. PMID:25732632

  17. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    NASA Astrophysics Data System (ADS)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  18. Novel methods for measuring air-water interfacial area in unsaturated porous media.

    PubMed

    Brusseau, Mark L; El Ouni, Asma; Araujo, Juliana B; Zhong, Hua

    2015-05-01

    Interfacial partitioning tracer tests (IPTT) are used to measure air-water interfacial area for unsaturated porous media. The standard IPTT method involves conducting tests wherein an aqueous surfactant solution is introduced into a packed column under unsaturated flow conditions. Surfactant-induced drainage has been observed to occur for this method in some cases, which can complicate data analysis and impart uncertainty to the measured values. Two novel alternative approaches for conducting IPTTs are presented herein that are designed in part to prevent surfactant-induced drainage. The two methods are termed the dual-surfactant IPTT (IPTT-DS) and the residual-air IPTT (IPTT-RA). The two methods were used to measure air-water interfacial areas for two natural porous media. System monitoring during the tests revealed no measurable surfactant-induced drainage. The measured interfacial areas compared well to those obtained with the standard IPTT method conducted in such a manner that surfactant-induced drainage was prevented.

  19. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  20. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    , and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.