Science.gov

Sample records for air leakage rate

  1. Air Leakage Rates in Typical Air Barrier Assemblies

    SciTech Connect

    Hun, Diana E.; Atchley, Jerald Allen; Childs, Phillip W.

    2016-11-01

    Estimates for 2010 indicate that infiltration in residential buildings was responsible for 2.85 quads of energy (DOE 2014), which is about 3% of the total energy consumed in the US. One of the mechanisms being implemented to reduce this energy penalty is the use of air barriers as part of the building envelope. These technologies decrease airflow through major leakage sites such as oriented strand board (OSB) joints, and gaps around penetrations (e.g., windows, doors, pipes, electrical outlets) as indicated by Hun et al. (2014). However, most air barrier materials do not properly address leakage spots such as wall-to-roof joints and wall-to-foundation joints because these are difficult to seal, and because air barrier manufacturers usually do not provide adequate instructions for these locations. The present study focuses on characterizing typical air leakage sites in wall assemblies with air barrier materials.

  2. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  3. Space Station Freedom seal leakage rate analysis and testing summary: Air leaks in ambient versus vacuum exit conditions

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.; Markovitch, R.

    1992-01-01

    This report is intended to reveal the apparent relationship of air seal leakage rates between 2 atmospheres (atm) to 1 atm and 1 atm to vacuum conditions. Gas dynamics analysis is provided as well as data summarizing the MSFC test report, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study With Delta Pressure Leak Rate Comparison Test Report'.

  4. Air-leakage control manual

    SciTech Connect

    Maloney, J.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the ``how and why`` of controlling air leakage by means of a system called the ``Simple Caulk and Seal`` (SIMPLE{center_dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center_dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  5. Air-Leakage Control Manual.

    SciTech Connect

    Maloney, Jim; Washington State Energy Office; United States. Bonneville Power Administration.

    1991-05-01

    This manual is for builders and designers who are interested in building energy-efficient homes. The purpose of the manual is to provide the how and why'' of controlling air leakage by means of a system called the Simple Caulk and Seal'' (SIMPLE{center dot}CS) system. This manual provides an overview of the purpose and contents of the manual; It discusses the forces that affect air leakage in homes and the benefits of controlling air leakage. Also discussed are two earlier approaches for controlling air leakage and the problems with these approaches. It describes the SIMPLE-{center dot}CS system. It outlines the standard components of the building envelope that require sealing and provides guidelines for sealing them. It outlines a step-by-step procedure for analyzing and planning the sealing effort. The procedure includes (1) identifying areas to be sealed, (2) determining the most effective and convenient stage of construction in which to do the sealing, and (3) designating the appropriate crew member or trade to be responsible for the sealing.

  6. Quantifying Molecular Hydrogen Emissions and an Industrial Leakage Rate for the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Irish, M. C.; Schroeder, J.; Beyersdorf, A. J.; Blake, D. R.

    2015-12-01

    The poorly understood atmospheric budget and distribution of molecular hydrogen (H2) have invited further research since the discovery that emissions from a hydrogen-based economy could have negative impacts on the global climate system and stratospheric ozone. The burgeoning fuel cell electric vehicle industry in the South Coast Air Basin of California (SoCAB) presents an opportunity to observe and constrain urban anthropogenic H2 emissions. This work presents the first H2 emissions estimate for the SoCAB and calculates an upper limit for the current rate of leakage from production and distribution infrastructure within the region. A top-down method utilized whole air samples collected during the Student Airborne Research Program (SARP) onboard the NASA DC-8 research aircraft from 23-25 June 2015 to estimate H2 emissions from combustion and non-combustion sources. H2:carbon monoxide (CO) and H2:carbon dioxide ratios from airborne observations were compared with experimentally established ratios from pure combustion source ratios and scaled with the well-constrained CO emissions inventory to yield H2 emissions of 24.9 ± 3.6 Gg a-1 (1σ) from combustion engines and 8.2 ± 4.7 Gg a-1 from non-combustion sources. Total daily production of H2 in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate (5%) where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from H2 infrastructure. For bottom-up validation, the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model was run iteratively with all known stationary sources in attempt to constrain emissions. While this investigation determined that H2 emissions from non-combustion sources in the SoCAB are likely significant, more in-depth analysis is required to better predict the atmospheric implications of a hydrogen economy.

  7. Analysis of U.S. residential air leakage database

    SciTech Connect

    Chan, Wanyu R.; Price, Phillip N.; Sohn, Michael D.; Gadgil, Ashok J.

    2003-07-01

    The air leakage of a building envelope can be determined from fan pressurization measurements with a blower door. More than 70,000 air leakage measurements have been compiled into a database. In addition to air leakage, the database includes other important characteristics of the dwellings tested, such as floor area, year built, and location. There are also data for some houses on the presence of heating ducts, and floor/basement construction type. The purpose of this work is to identify house characteristics that can be used to predict air leakage. We found that the distribution of leakage normalized with floor area of the house is roughly lognormal. Year built and floor area are the two most significant factors to consider when predicting air leakage: older and smaller houses tend to have higher normalized leakage areas compared to newer and larger ones. Results from multiple linear regression of normalized leakage with respect to these two factors are presented for three types of houses: low-income, energy-efficient, and conventional. We demonstrate a method of using the regression model in conjunction with housing characteristics published by the US Census Bureau to derive a distribution that describes the air leakage of the single-family detached housing stock. Comparison of our estimates with published datasets of air exchange rates suggests that the regression model generates accurate estimates of air leakage distribution.

  8. Air heater leakage: worse than you think

    SciTech Connect

    Guffre, J.

    2006-04-15

    Every good engineer knows that you cannot control what you cannot measure. In the case of rotary regenerative air heaters, many plants fail to limit the negative impact of heater leakage because they use measurement procedures and/or devices that fail to take into account its indirect effects. For a 500 MW coal-fired plant the heat energy that air heaters capture and recycle amounts to about 60% of that existing in the boiler, equivalent to 1.5 Btu per hour. This article explains the importance of accurately measuring leakage levels and the need to use modern seals to make heaters air-tight. 4 figs.

  9. Control of Air Leakage in Buildings.

    ERIC Educational Resources Information Center

    Wilson, A. Grant

    This discussion of air leakage emphasizes cause and provides suggestions for elimination of undesirable effects. Cause parameters described are--(1) pressure differential, (2) building shape, (3) temperature differential, (4) opening sizes, (5) mechanical system pressures, and (6) climatic factors. Effects discussed are--(1) increased mechanical…

  10. Vacuum test fixture improves leakage rate measurements

    NASA Technical Reports Server (NTRS)

    Maier, H.; Marx, H.

    1966-01-01

    Cylindrical chamber, consisting of two matching halves, forms a vacuum test fixture for measuring leakage rates of individual connections, brazed joints, and entrance ports used in closed fluid flow line systems. Once the chamber has been sufficiently evacuated, atmospheric pressure holds the two halves together.

  11. Measurement Methods to Determine Air Leakage Between Adjacent Zones

    SciTech Connect

    Hult, Erin L.; Dickerhoff, Darryl J.; Price, Phillip N.

    2012-09-01

    Air leakage between adjacent zones of a building can lead to indoor air quality and energy efficiency concerns, however there is no existing standard for measuring inter-zonal leakage. In this study, synthesized data and field measurements are analyzed in order to explore the uncertainty associated with different methods for collecting and analyzing fan pressurization measurements to calculate interzone leakage.

  12. Measurements of the atmospheric neutron leakage rate

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; Ifedili, S. O.; Jenkins, R. W.

    1973-01-01

    The atmospheric neutron leakage rate in the energy range from 0.01 to 10,000,000 eV has been measured as a function of latitude, altitude, and time with a neutron detector on board the Ogo 6 satellite. The latitude dependence of the neutron leakage is in reasonable agreement with that predicted by Lingenfelter (1963) and Light et al. (1973) if the neutron energy spectrum has the shape calculated by Newkirk (1963). The change in the neutron latitude dependence with the cosmic ray modulation agrees with the predictions of Lingenfelter and Light et al. For several solar proton events enhancements were observed in the neutron counting rates at lambda greater than or equal to 70 deg. Such events, however, provide an insignificant injection of protons at E less than or equal to 20 MeV into the radiation belts. An isotropic angular distribution of the neutron leakage in the energy range from 0.1 keV to 10 MeV best fits the observed altitude dependence of the neutron leakage flux.

  13. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  14. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  15. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  16. 40 CFR 264.302 - Action leakage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... landfill units subject to § 264.301(c) or (d). The action leakage rate is the maximum design flow rate that... action leakage rate has been exceeded, the owner or operator must convert the weekly or monthly flow rate from the monitoring data obtained under § 264.303(c) to an average daily flow rate (gallons per...

  17. 40 CFR 265.222 - Action leakage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to § 265.221(a). The action leakage rate is the maximum design flow rate that the leak detection... proposed response actions (e.g., the action leakage rate must consider decreases in the flow capacity of... exceeded, the owner or operator must convert the weekly or monthly flow rate from the monitoring...

  18. Air-leakage effects on stone cladding panels

    NASA Astrophysics Data System (ADS)

    Colantonio, Antonio

    1995-03-01

    This paper looks at the effects of air leakage on insulated stone clad precast panels used in present day construction of large commercial buildings. The building investigated was a newly built twenty story office building in a high density urban setting. Air leakage was suspected as a possible cause for thermal comfort complaints at isolated locations within the perimeter zones of the building. During the warrantee period the building owner asked for a quality control inspection of the air barrier assembly of the building envelope. Infrared thermography was used to locate areas of suspected air leakage within the building envelope. In order to differentiate thermal patterns produced by air leakage, conduction and convection as well as radiation from external sources, the building was inspected from the exterior; (1) after being pressurized for three hours, (2) one hour after the building was depressurized and (3) two and a half hours after total building depressurization was maintained by the building mechanical systems. Thermal images from similar locations were correlated for each time and pressure setting to verify air leakage locations within the building envelope. Areas exhibiting air leakage were identified and contractors were requested to carry out the necessary repairs. The pressure differential across the building envelope needs to be known in order to properly carry out an inspection to identify all locations of air leakage within a building envelope. As well the direction of the air movement and the density of the cladding material need to be accounted for in the proper inspection of these types of wall assemblies.

  19. Air Leakage of U.S. Homes: Model Prediction

    SciTech Connect

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  20. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality

    SciTech Connect

    Blake, D.R.; Rowland, F.S.

    1995-08-18

    Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

  1. 40 CFR 265.255 - Action leakage rates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... the action leakage rate has been exceeded, the owner or operator must convert the weekly flow rate from the monitoring data obtained under § 265.260, to an average daily flow rate (gallons per acre...

  2. 40 CFR 264.252 - Action leakage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom liner... action leakage rate has been exceeded, the owner or operator must convert the weekly flow rate from the monitoring data obtained under § 264.254(c) to an average daily flow rate (gallons per acre per day) for...

  3. 40 CFR 264.222 - Action leakage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... design flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom... action leakage rate has been exceeded, the owner or operator must convert the weekly or monthly flow rate from the monitoring data obtained under § 264.226(d) to an average daily flow rate (gallons per...

  4. 40 CFR 264.302 - Action leakage rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... landfill units subject to § 264.301(c) or (d). The action leakage rate is the maximum design flow rate that...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills... design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction,...

  5. 40 CFR 265.302 - Action leakage rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FACILITIES Landfills § 265.302 Action leakage rate. (a) The owner or operator of landfill units subject to... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage...

  6. 40 CFR 264.302 - Action leakage rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... landfill units subject to § 264.301(c) or (d). The action leakage rate is the maximum design flow rate that...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills... design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction,...

  7. 40 CFR 264.302 - Action leakage rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... landfill units subject to § 264.301(c) or (d). The action leakage rate is the maximum design flow rate that...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills... design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction,...

  8. 40 CFR 265.302 - Action leakage rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FACILITIES Landfills § 265.302 Action leakage rate. (a) The owner or operator of landfill units subject to... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage...

  9. 40 CFR 265.302 - Action leakage rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FACILITIES Landfills § 265.302 Action leakage rate. (a) The owner or operator of landfill units subject to... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage...

  10. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY... for calculating emissions due to air conditioning leakage. This section describes procedures used...

  11. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  12. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  13. A novel method to determine air leakage in heat pump clothes dryers

    SciTech Connect

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.

  14. A novel method to determine air leakage in heat pump clothes dryers

    DOE PAGES

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  15. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    SciTech Connect

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  16. The measured energy impact of air leakage on frame wall systems. Final report

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var_epsilon}, is introduced as a measure of the effectiveness of a building in ``recovering`` heat otherwise lost (or gained) because of infiltration. Measurements show that {var_epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  17. The measured energy impact of air leakage on frame wall systems

    SciTech Connect

    Bhattacharyya, S.

    1991-06-01

    Infiltration is customarily assumed to increase the heating and cooling load of a building by an amount equal to the mass flow rate of the infiltration times the enthalpy difference between the inside and outside air -- with the latent portion of the enthalpy difference sometimes neglected. An experimental and analytical investigation has been conducted on the actual energy impact of air leakage on frame wall systems. Calorimetric measurements conducted on a small test cell and on a well characterized stud-cavity wall specimen with measured amounts of air leakage introduced under a variety of controlled conditions and configurations show convincingly that infiltration can lead to a much smaller change in the energy load than is customarily calculated. The data also suggest that the phenomenon occurs in full-sized houses as well. Infiltration Heat Exchange Effectiveness (IHEE),{var epsilon}, is introduced as a measure of the effectiveness of a building in recovering'' heat otherwise lost (or gained) because of infiltration. Measurements show that {var epsilon} increases as: (a) flow rate decreases; (b) flow path length increases; and, (c) hole/crack size decreases.

  18. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  19. Air Leakage of US Homes: Regression Analysis and Improvements from Retrofit

    SciTech Connect

    Chan, Wanyu R.; Joh, Jeffrey; Sherman, Max H.

    2012-08-01

    LBNL Residential Diagnostics Database (ResDB) contains blower door measurements and other diagnostic test results of homes in United States. Of these, approximately 134,000 single-family detached homes have sufficient information for the analysis of air leakage in relation to a number of housing characteristics. We performed regression analysis to consider the correlation between normalized leakage and a number of explanatory variables: IECC climate zone, floor area, height, year built, foundation type, duct location, and other characteristics. The regression model explains 68% of the observed variability in normalized leakage. ResDB also contains the before and after retrofit air leakage measurements of approximately 23,000 homes that participated in weatherization assistant programs (WAPs) or residential energy efficiency programs. The two types of programs achieve rather similar reductions in normalized leakage: 30% for WAPs and 20% for other energy programs.

  20. Air Leakage Measurements in Navy Family Housing Units at Norfolk, Virginia.

    DTIC Science & Technology

    1983-04-01

    80-4233), Prepared for Naval Construction Battalion Center (1980). 17. Lagus, P.L., "Air Leakage Measurements in Support of the Johns Manville Corporation...in the Advanced Energy Utilization Test Bed, Pt. Hueneme, California," Systems, Science and Software Report (SSS-R-78-3533), Prepared for Johns ... Manville Corporation (1978). 18. Weidt, J.L., J. Weidt, S. Selkowitz, "Field Air Leakage of Newly Installed Residential Windows," Proceedings of ASHRAE

  1. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lower global warming potential. LeakScore means the annual refrigerant leakage rate determined according....1 grams/year for systems using only electric compressors). GWPREF means the global warming potential... with a lower global warming potential. LeakScore means the annual refrigerant leakage rate...

  2. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... refrigerant with a lower global warming potential. LeakScore means the annual refrigerant leakage rate... (or 4.1 grams/year for systems using only electric compressors). GWPREF means the global warming... with a lower global warming potential. LeakScore means the annual refrigerant leakage rate...

  3. 40 CFR 265.222 - Action leakage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system (LDS) can remove without the fluid head on the bottom liner exceeding 1 foot. The action leakage..., hydraulic conductivity, thickness of drainage material), construction, operation, and location of the LDS... the system over time resulting from siltation and clogging, rib layover and creep of...

  4. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  5. A comparison of air leakage prediction techniques for auxiliary ventilation ducting systems

    SciTech Connect

    Gillies, A.D.S.; Wu, H.W.

    1999-07-01

    This paper briefly reviews prediction techniques for determination of leakage and friction along auxiliary ventilation ducting systems. In order to compare various prediction techniques that have been developed over the past, a macroscopic investigation of air leakage and friction resistance of auxiliary ventilation ducting systems has been undertaken. Measurements were conducted on 450 and 915 mm diameter fabric ducting over 100 m duct length to determine frictional resistances and the extent of leakage. Due to the high degree of accuracy required and the large volume of data that needed to be collected, electronic auxiliary ventilation ducting systems were developed based on this information. It was found that these models provided good correlation with most the existing prediction techniques. The experimental methodology relying on computer data acquisition has allowed the accuracy of measured values to be treated with a high degree of confidence. The reliability of the developed models allows prediction of leakage, frictional impedance and airflow with enhanced confidence.

  6. 40 CFR 265.302 - Action leakage rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... flow rate from the monitoring data obtained under § 265.304 to an average daily flow rate (gallons per... average daily flow rate for each sump must be calculated weekly during the active life and closure...

  7. 40 CFR 265.255 - Action leakage rates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material... consider decreases in the flow capacity of the system over time resulting from siltation and clogging,...

  8. 40 CFR 265.302 - Action leakage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maximum design flow rate that the leak detection system (LDS) can remove without the fluid head on the... for uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material... consider decreases in the flow capacity of the system over time resulting from siltation and clogging,...

  9. 40 CFR 264.252 - Action leakage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom liner... in the design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction... decreases in the flow capacity of the system over time resulting from siltation and clogging, rib...

  10. 40 CFR 264.222 - Action leakage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... design flow rate that the leak detection system (LDS) can remove without the fluid head on the bottom... uncertainties in the design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction... decreases in the flow capacity of the system over time resulting from siltation and clogging, rib...

  11. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    SciTech Connect

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  12. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  13. Air leakage on the postoperative day: powerful factor of postoperative recurrence after thoracoscopic bullectomy

    PubMed Central

    Jeon, Hyun Woo; Kye, Yeo Kon; Kim, Kyung Soo

    2016-01-01

    Background Primary spontaneous pneumothorax (PSP) is a relatively common disorder in young patients. Although various surgical techniques have been introduced, recurrence after video-assisted thoracoscopic surgery (VATS) remains high. The aim of study was to identify the risk factors for postoperative recurrence after thoracoscopic bullectomy in the spontaneous pneumothorax. Methods From January 2011 through March 2013, two hundreds and thirty two patients underwent surgery because of pneumothorax. Patients with a secondary pneumothorax, as well as cases of single port surgery, an open procedure, additional pleural procedure (pleurectomy, pleural abrasion) or lack of medical records were excluded. The records of 147 patients with PSP undergoing 3-port video-assisted thoracoscopic bullectomy with staple line coverage using an absorbable polyglycolic acid (PGA) sheet were retrospectively reviewed. Results The median age was 19 years (range, 11−34 years) with male predominance (87.8%). Median postoperative hospital stay was 3 days (range, 1−10 days) without mortality. Complications were developed in five patients. A total of 24 patients showed postoperative recurrence (16.3%). Younger age less than 17 years old and immediate postoperative air leakage were risk factors for postoperative recurrence after thoracoscopic bullectomy by multivariate analysis. Conclusions Immediate postoperative air leakage was the risk factor for postoperative recurrence. However, further study will be required for the correlation of air leakage with recurrence. PMID:26904217

  14. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    SciTech Connect

    Celik, B. Rowe, R.K. Unlue, K.

    2009-01-15

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  15. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems.

    PubMed

    Celik, B; Rowe, R K; Unlü, K

    2009-01-01

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10m and a fine textured vadose zone thickness of about 5m. Therefore, the fine and coarse textured vadose zones thicker than about 5m and 10m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  16. Management of traumatic pneumothorax with massive air leakage: role of a bronchial blocker: a case report

    PubMed Central

    Lee, Dong Kyu; Lim, Sang Ho; Lim, Byung Gun; Kang, Sung Wook

    2014-01-01

    Massive air leakage through a lacerated lung produces inadequate ventilation and hypoxemia. Tube exchange from a single to double lumen endotracheal tube (DLT), and lung separation to maintain oxygenation, are challenging for seriously injured patients. In this case report, we aim to describe how a bronchial blocker (BB) makes it easier to perform a lung separation in this situation; it also increases the overall safety of the procedure. A 35-year-old female (163 cm, 47 kg) suffered from blunt chest trauma due to a traffic accident; the accident caused right-sided lung laceration with massive air leakage. Paradoxically, positive ventilation worsened SaO2 and leakage increased through a chest tube. We introduced BB while the patient was still awake: Left-side one-lung ventilation (OLV) was established and anesthesia was induced. After PaO2 was maximized with OLV, we changed the endotracheal tube to DLT without a hypoxic event. By BB placement, we maintained PaO2 at a secure level, conducted mechanical ventilation and exchanged the tube without deterioration. PMID:25473467

  17. Applying large datasets to developing a better understanding of air leakage measurement in homes

    SciTech Connect

    Walker, I. S.; Sherman, M. H.; Joh, J.; Chan, W. R.

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions need to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.

  18. Applying large datasets to developing a better understanding of air leakage measurement in homes

    DOE PAGES

    Walker, I. S.; Sherman, M. H.; Joh, J.; ...

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions needmore » to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.« less

  19. Space Station Freedom delta pressure leakage rate comparison test data analysis report

    NASA Technical Reports Server (NTRS)

    Sorensen, E. B.

    1992-01-01

    Results are provided of a series of tests performed to identify the relationship between gas leakage rates across a seal at various internal to external pressure ratios. The results complement and provide insight into the analysis technique used to obtain the results presented in MSFC SSF/DEV/EL91-008, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study with Delta Pressure Leak Rate Comparison Test Report.'

  20. Thermal-hydraulic analysis for changing feedwater check valve leakage rate testing methodology

    SciTech Connect

    Fuller, R.; Harrell, J.

    1996-12-01

    The current design and testing requirements for the feedwater check valves (FWCVs) at the Grand Gulf Nuclear Station are established from original licensing requirements that necessitate extremely restrictive air testing with tight allowable leakage limits. As a direct result of these requirements, the original high endurance hard seats in the FWCVs were modified with elastomeric seals to provide a sealing surface capable of meeting the stringent air leakage limits. However, due to the relatively short functional life of the elastomeric seals compared to the hard seats, the overall reliability of the sealing function actually decreased. This degraded performance was exhibited by frequent seal failures and subsequent valve repairs. The original requirements were based on limited analysis and the belief that all of the high energy feedwater vaporized during the LOCA blowdown. These phenomena would have resulted in completely voided feedwater lines and thus a steam environment within the feedwater leak pathway. To challenge these criteria, a comprehensive design basis accident analysis was developed using the RELAP5/MOD3.1 thermal-hydraulic code. Realistic assumptions were used to more accurately model the post-accident fluid conditions within the feedwater system. The results of this analysis demonstrated that no leak path exists through the feedwater lines during the reactor blowdown phase and that sufficient subcooled water remains in various portions of the feedwater piping to form liquid water loop seals that effectively isolate this leak path. These results provided the bases for changing the leak testing requirements of the FWCVs from air to water. The analysis results also established more accurate allowable leakage limits, determined the real effective margins associated with the FWCV safety functions, and led to design changes that improved the overall functional performance of the valves.

  1. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  2. Impact of heating and air conditioning system operation and leakage on ventilation and intercompartment transport: studies in unoccupied and occupied Tennessee Valley homes.

    PubMed

    Matthews, T G; Wilson, D L; Thompson, C V; Monar, K P; Dudney, C S

    1990-02-01

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay in 39 occupied houses. An average increase in air infiltration rate of 0.33 +/- 0.37 h-1 corresponded to an incremental air leak of 240 m3/h, based on approximate house volume. More detailed tracer gas decay studies were performed in basement, kitchen and bedroom locations of six homes with low air infiltration rates (i.e., less than 0.25 h-1). The HAC mixed the indoor air efficiently between measurement sites. HAC operation also caused 1.1- to 3.6-fold increases in air infiltration rates, corresponding to absolute increases of 0.02 to 0.1 h-1. In an unoccupied research house, three-fold increases in average air infiltration rate with HAC operation (i.e., from 0.13 to 0.36 h-1) were reduced to two-fold (i.e., from 0.10 to 0.18 h-1) by sealing the external HAC unit and crawlspace ductwork system. This sealing also resulted in a 30 percent reduction in crawlspace-to-indoor transport rates with the HAC turned on. Blower door tests indicated a less than 20 percent reduction in house leakage area.

  3. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  4. Methane leakage from evolving petroleum systems: Masses, rates and inferences for climate feedback

    NASA Astrophysics Data System (ADS)

    Berbesi, L. A.; di Primio, R.; Anka, Z.; Horsfield, B.; Wilkes, H.

    2014-02-01

    The immense mass of organic carbon contained in sedimentary systems, currently estimated at 1.56×1010 Tg (Des Marais et al., 1992), bears the potential of affecting global climate through the release of thermally or biologically generated methane to the atmosphere. Here we investigate the potential of naturally-occurring gas leakage, controlled by petroleum generation and degradation as a forcing mechanism for climate at geologic time scales. We addressed the potential methane contributions to the atmosphere during the evolution of petroleum systems in two different, petroliferous geological settings: the Western Canada Sedimentary Basin (WCSB) and the Central Graben area of the North Sea. Besides 3D numerical simulation, different types of mass balance and theoretical approaches were applied depending on the data available and the processes taking place in each basin. In the case of the WCSB, we estimate maximum thermogenic methane leakage rates in the order of 10-2-10-3 Tg/yr, and maximum biogenic methane generation rates of 10-2 Tg/yr. In the case of the Central Graben, maximum estimates for thermogenic methane leakage are in the order in 10-3 Tg/yr. Extrapolation of our results to a global scale suggests that, at least as a single process, thermal gas generation in hydrocarbon kitchen areas would not be able to influence climate, although it may contribute to a positive feedback. Conversely, only the sudden release of subsurface methane accumulations, formed over geologic timescales, can possibly allow for petroleum systems to exert an effect on climate.

  5. Leakage rates and thermal requirements for the diffusion bonding of microchannel arrays via internal convective heating

    SciTech Connect

    Bose, Sumantra; Palo, Daniel R.; Paul, Brian

    2007-07-24

    Diffusion bonding cycle times can be a large cost factor in the production of metal microchannel devices. The challenge is to significantly minimize this cost by reducing the bonding cycle time through rapid and uniform heating and cooling within the bonding process. Heating rates in diffusion bonding processes are typically limited by the need to minimize thermal gradients during bonding. A novel method is described which takes advantage of the internal flow passages within microchannel devices for convective heat transfer during the bonding process. The internal convective heating (ICH) technique makes use of heated inert gas to provide the microchannel assembly with rapid and uniform heat input. This paper will demonstrate the ability to effectively diffusion bond microchannel laminae using the ICH method by investigating the leakage rates.

  6. FIELD EVALUATION OF IMPROVED METHODS FOR MEASURING THE AIR LEAKAGE OF DUCT SYSTEMS UNDER NORMAL OPERATING CONDITIONS IN 51 HOMES

    SciTech Connect

    Paul W. Francisco; Larry Palmiter; Erin Kruse; Bob Davis

    2003-10-18

    Duct leakage in forced-air distribution systems has been recognized for years as a major source of energy losses in residential buildings. Unfortunately, the distribution of leakage across homes is far from uniform, and measuring duct leakage under normal operating conditions has proven to be difficult. Recently, two new methods for estimating duct leakage at normal operating conditions have been devised. These are called the nulling test and the Delta-Q test. Small exploratory studies have been done to evaluate these tests, but previously no large-scale study on a broad variety of homes has been performed to determine the accuracy of these new methods in the field against an independent benchmark of leakage. This sort of study is important because it is difficult in a laboratory setting to replicate the range of leakage types found in real homes. This report presents the results of a study on 51 homes to evaluate these new methods relative to an independent benchmark and a method that is currently used. An evaluation of the benchmark procedure found that it worked very well for supply-side leakage measurements, but not as well on the return side. The nulling test was found to perform well, as long as wind effects were minimal. Unfortunately, the time and difficulty of setup can be prohibitive, and it is likely that this method will not be practical for general use by contractors except in homes with no return ducts. The Delta-Q test was found to have a bias resulting in overprediction of the leakage, which qualitatively confirms the results of previous laboratory, simulation, and small-scale field studies. On average the bias was only a few percent of the air handler flow, but in about 20% of the homes the bias was large. A primary flaw with the Delta-Q test is the assumption that the pressure between the ducts and the house remain constant during the test, as this assumption does not hold true. Various modifications to the Delta-Q method were evaluated as

  7. Cold-air performance of a tip turbine designed to drive a lift fan. 3: Effect of simulated fan leakage on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1978-01-01

    Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency.

  8. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    SciTech Connect

    Feng, W; Chu, A; Chi, Y; Hu, J

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  9. Development of a Mathematical Air-Leakage Model from MeasuredData

    SciTech Connect

    McWilliams, Jennifer; Jung, Melanie

    2006-05-01

    A statistical model was developed to relate residential building shell leakage to building characteristics such as building height, floor area, floor leakage, duct leakage, and year built or the age of the house. Statistical regression techniques were used to determine which of the potential building characteristics best described the data. Seven preliminary regressions were performed to investigate the influence of each variable. The results of the eighth and last multivariable linear regression form the predictive model. The major factors that influence the tightness of a residential building are participation in an energy efficiency program (40% tighter than ordinary homes), having low-income occupants (145% leakier than ordinary) and the age of a house (1% increase in Normalized Leakage per year). This predictive model may be applied to data within the range of the data that was used to develop the model.

  10. Air exchange rates in new energy-efficient manufactured housing

    SciTech Connect

    Hadley, D.; Bailey, S.

    1990-10-01

    During the 1989--1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the whole-house system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem. 6 refs., 6 figs., 5 tabs.

  11. Numerical simulation of leakage rates of labyrinth seal in reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Tang, H. N.; Yao, H.; Wang, S. J.; Meng, X. S.; Qiao, H. T.; Qiao, J. H.

    2017-01-01

    The influence of labyrinth seal structure on leakage behaviour in a reciprocating compressor was addressed in this paper. The effects of the main labyrinth seal parameters, such as tooth angle, sealing clearance, and cavity depth, were compared using FLUENT software and iterative calculation results. Simulations of the sealing process with the influence of internal structure size of labyrinth seal performance in different structures were conducted to explore the characteristics of fluid flow. By comparing the simulations of leakage of fluid- structure interaction and experience formula calculations, the results revealed the validity of the fluid-structure interaction analysis method. The CFD analysis method for fluid-structure coupling was adopted to verify the theory of labyrinth seals and for the design of a labyrinth structure.

  12. Transanal drainage tube reduces rate and severity of anastomotic leakage in patients with colorectal anastomosis: A case controlled study

    PubMed Central

    Brandl, A.; Czipin, S.; Mittermair, R.; Weiss, S.; Pratschke, J.; Kafka-Ritsch, R.

    2016-01-01

    Background and aims The aim of this study was to investigate the clinical usefulness of the placement of a transanal drainage tube to prevent anastomotic leakage in colorectal anastomoses. Material and methods This single-center retrospective trial included all patients treated with surgery for benign or malign colorectal disease between January 2009 and December 2012. The transanal drainage tube was immediately placed after colorectal anastomosis until day five and was routinely used since 2010. Patients treated with a transanal drainage tube were compared with the control group. Statistical analysis was performed using Fisher's exact or Chi-square tests for group comparison and a linear regression model for multivariate analysis. Results This study included 242 patients (46% female; median age 63 years; range 18–93); 34% of the patients underwent a laparoscopic procedure, and 57% of the patients received a placement of a transanal drainage tube. Anastomotic leakage occurred in 19 patients (7.9%). Univariate analysis showed a higher rate of anastomotic leakage in patients with an ASA score 4 (p = 0.02) and a lower rate in patients with transanal drainage placement (3.6% vs. 13.6%; p = 0.007). The grading of the complication of anastomotic leakage was reduced with transanal drainage (e.g., Dindo ≧ 3b: 20.0% vs. 92.9%; p = 0.006), and the hospital stay was shortened (17.6 ± 12.5 vs. 22.1 ± 17.6 days; p = 0.02). Multivariate analysis revealed that transanal drainage was the only significant factor (HR = −2.90; −0.168 to −0.032; p = 0.007) affecting anastomotic leakage. Conclusions Placement of a transanal drainage tube in patients with colorectal anastomoses is a safe and simple technique to perform and reduces anastomotic leakage, the severity of the complication and hospital stay. PMID:27158483

  13. The asymptotic structure of nonpremixed methane-air flames with oxidizer leakage of order unity

    SciTech Connect

    Seshadri, K.; Ilincic, N.

    1995-04-01

    The asymptotic structure of nonpremixed methane-air flames is analyzed using a reduced three-step mechanism. The three global steps of this reduced mechanism are similar to those used in a previous analysis. The rates of the three steps are related to the rates of the elementary reactions appearing in the C{sub 1}-mechanism for oxidation of methane. The present asymptotic analysis differs from the previous analysis in that oxygen is presumed to leak from the reaction zone to the leading order. Chemical reactions are presumed to occur in three asymptotically thin layers: the fuel-consumption layer, the nonequilibrium layer for the water-gas shift reaction and the oxidation layer. The structure of the fuel-consumption layer is presumed to be identical to that analyzed previously and in this layer the fuel reacts with the radicals to form primarily CO and H{sub 2} and some CO{sub 2} and H{sub 2}O In the oxidation layer the CO and H{sub 2} formed in the fuel-consumption layer are oxidized to CO{sub 2} and H{sub 2}O. The present analysis of the oxidation layer is simpler than the previous analysis because the variation in the values of the concentration of oxygen can be neglected to the leading order and this is a better representation of the flame structure in the vicinity of the critical conditions of extinction. The predictions of the critical conditions of extinction of the present model are compared with the predictions of previous models. It is anticipated that the present simple model can be easily extended to more complex problems such as pollutant formation in flames or chemical inhibition of flames.

  14. Microbial contamination of indoor air due to leakages from crawl space: a field study.

    PubMed

    Airaksinen, M; Pasanen, P; Kurnitski, J; Seppänen, O

    2004-02-01

    Mechanical exhaust ventilation system is typical in apartment buildings in Finland. In most buildings the base floor between the first floor apartments and crawl space is not air tight. As the apartments have lower pressure than the crawl space due to ventilation, contaminated air may flow from the crawl space to the apartments. The object of this study was to find out whether a potential air flow from crawl space has an influence on the indoor air quality. The results show that in most cases the concentration of fungal spores was clearly higher in the crawl space than inside the building. The size distribution of fungal spores depended on the fungal species. Correlation between the fungal spores in the crawl space and indoors varied with microbial species. Some species have sources inside the building, which confounds the possible relation between crawl pace and indoor concentrations. Some species, such as Acremonium, do not normally have a source indoors, but its concentration in the crawl space was elevated; our measurements showed also elevated concentrations of Acremonium in the air of the apartments. This consistent finding shows a clear linkage between fungal spores in the indoor air and crawl space. We conclude that a building with a crawl space and pressure difference over the base floor could be a potential risk for indoor air quality in the first floor apartments.

  15. Measuring radon exhalation rate in two cycles avoiding the effects of back-diffusion and chamber leakage.

    PubMed

    Tan, Yanliang; Xiao, Detao

    2013-10-01

    This paper will present a simple method for measuring the radon exhalation rate from the medium surface in two cycles and also avoiding the effects of back-diffusion and chamber leakage. The method is based on a combination of the "accumulation chamber" technique and a radon monitor. The radon monitor performs the measurement of the radon concentration inside the accumulation chamber, and then the radon exhalation rate can be obtained by simple calculation. For reducing the systematic error and the statistical uncertainty, too short of total measurement time is not appropriate, and the first cycle time should be about 70 % of the total measurement. The radon exhalation rate from the medium surface obtained through this method is in good agreement with the reference value. This simple method can be applied to develop and improve the instruments for measuring radon exhalation rate.

  16. Systematic Review of Anastomotic Leakage Rate According to an International Grading System Following Anterior Resection for Rectal Cancer

    PubMed Central

    Ye, Guang-Yao; Yu, Min-Hao; Gao, Yun-He; Li, Zhao-Shen; Yu, En-Da; Zhong, Ming

    2013-01-01

    Background A generally acceptable definition and a severity grading system for anastomotic leakages (ALs) following rectal resection were not available until 2010, when the International Study Group of Rectal Cancer (ISGRC) proposed a definition and a grading system for AL. Methods A search for published data was performed using the MEDLINE database (2000 to December 5, 2012) to perform a systematic review of the studies that described AL, grade AL according to the grading system, pool data, and determine the average rate of AL for each grade after anterior resection (AR) for rectal cancer. Results A total of 930 abstracts were retrieved; 40 articles on AR, 25 articles on low AR (LAR), and 5 articles on ultralow AR (ULAR) were included in the review and analysis. The pooled overall AL rate of AR was 8.58% (2,085/24,288); the rate of the asymptomatic leakage (Grade A) was 2.57%, that of AL that required active intervention without relaparotomy (Grade B) was 2.37%, and that of AL that required relaparotomy (Grade C) was 5.40%. The pooled rate of AL that required relaparotomy was higher in AR (5.40%) than in LAR (4.70%) and in ULAR (1.81%), which could be attributed to the higher rate of protective defunctioning stoma in LAR (40.72%) and ULAR (63.44%) compared with that in AR (30.11%). Conclusions The new grading system is simple that the ALs of each grade can be easily extracted from past publications, therefore likely to be accepted and applied in future studies. PMID:24086552

  17. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Leakage from the main air reservoir and related piping may not exceed an average of 3 pounds per square... shall remain applied at least 5 minutes. (d) Leakage from control air reservoir, related piping,...

  18. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  19. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) All rubber hose means a Type A or Type B hose as defined by SAE J2064 with a permeation rate not greater than 15 kg/m2/year when tested according to SAE J2064. SAE J2064 is incorporated by reference; see § 86.1. (2) Standard barrier or veneer hose means a Type C, D, E, or F hose as defined by SAE...

  20. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) All rubber hose means a Type A or Type B hose as defined by SAE J2064 with a permeation rate not greater than 15 kg/m2/year when tested according to SAE J2064. SAE J2064 is incorporated by reference; see § 86.1. (2) Standard barrier or veneer hose means a Type C, D, E, or F hose as defined by SAE...

  1. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  2. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  3. IMPACT OF HEATING AND AIR CONDITIONING SYSTEM OPERATION AND LEAKAGE ON VENTILATION AND INTERCOMPARTMENT TRANSPORT: STUDIES IN UNOCCUPIED AND OCCUPIED TENNESSEE VALLEY HOMES

    EPA Science Inventory

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...

  4. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    USGS Publications Warehouse

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring

  5. 40 CFR 89.316 - Analyzer leakage and response time.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....316 Section 89.316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being checked. The analyzer flows and bypass flows may be used to estimate the...

  6. 40 CFR 89.316 - Analyzer leakage and response time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....316 Section 89.316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being checked. The analyzer flows and bypass flows may be used to estimate the...

  7. 40 CFR 89.316 - Analyzer leakage and response time.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....316 Section 89.316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being checked. The analyzer flows and bypass flows may be used to estimate the...

  8. 40 CFR 89.316 - Analyzer leakage and response time.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....316 Section 89.316 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being checked. The analyzer flows and bypass flows may be used to estimate the...

  9. SENSMG: First-Order Sensitivities of Neutron Reaction Rates, Reaction-Rate Ratios, Leakage, keff, and α Using PARTISN

    SciTech Connect

    Favorite, Jeffrey A.

    2016-11-21

    SENSMG is a tool for computing first-order sensitivities of neutron reaction rates, reaction-rate ratios, leakage, keff, and α using the PARTISN multigroup discrete-ordinates code. SENSMG computes sensitivities to all of the transport cross sections and data (total, fission, nu, chi, and all scattering moments), two edit cross sections (absorption and capture), and the density for every isotope and energy group. It also computes sensitivities to the mass density for every material and derivatives with respect to all interface locations. The tool can be used for one-dimensional spherical (r) and two-dimensional cylindrical (r-z) geometries. The tool can be used for fixed-source and eigenvalue problems. The tool implements Generalized Perturbation Theory (GPT) as discussed by Williams and Stacey. Section II of this report describes the theory behind adjoint-based sensitivities, gives the equations that SENSMG solves, and defines the sensitivities that are output. Section III describes the user interface, including the input file and command line options. Section IV describes the output. Section V gives some notes about the coding that may be of interest. Section VI discusses verification, which is ongoing. Section VII lists needs and ideas for future work. Appendix A lists all of the input files whose results are presented in Sec. VI.

  10. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  11. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    DTIC Science & Technology

    2015-03-26

    Department of Systems Engineering and Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...this thesis: the Federal Reserve Foreign Exchange Rate – H.10, the Global Insight forecasts, the Chicago Mercantile Exchange (CME) as taken through...foreign currency units per U.S. dollar for each day of the previous week (Board of Governors of the Federal Reserve System , 2015). Table 3 is a

  12. Predicting Residential Air Exchange Rates from Questionnaires and Meteorology: Model Evaluation in Central North Carolina

    PubMed Central

    2010-01-01

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h−1) and 40% (0.17 h−1) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h−1). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies. PMID:21069949

  13. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  14. Flow and leakage characteristics of a sashless inclined air-curtain (sIAC) fume hood containing tall pollutant-generation tanks.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hung, Wei-Lun

    2013-01-01

    In many fume hood applications, pollutant-generation devices are tall. Human operators of a fume hood must stand close to the front of the hood and lift up their hands to reach the top opening of the tall tank. In this situation, it is inconvenient to access the conventional hood because the sash acts as a barrier. Also, the bluff-body wake in front of the operator's chest causes a problem. By using laser-assisted smoke flow visualization and tracer-gas test methods, the present study examines a sashless inclined air-curtain (sIAC) fume hood for tall pollutant-generation tanks, with a mannequin standing in front of the hood face. The configuration of the sIAC fume hood, which had the important element of a backward-inclined push-pull air curtain, was different from conventional configurations. Depending on suction velocity, the backward-inclined air curtain had three characteristic modes: straight, concave, and attachment. A large recirculation bubble covering the area--from the hood ceiling to the work surface--was formed behind the inclined air curtain in the straight and concave modes. In the attachment mode, the inclined air curtain was attached to the rear wall of the hood, about 50 cm from the hood ceiling, and bifurcated into up and down streams. Releasing the pollutants at an altitude above where the inclined air curtain was attached caused the suction slot to directly draw up the pollutants. Releasing pollutants in the rear recirculation bubble created a risk of pollutants' leaking from the hood face. The tracer-gas (SF6) test results showed that operating the sIAC hood in the attachment mode, with the pollutants being released high above the critical altitude, could guarantee almost no leakage, even though a mannequin was standing in front of the sashless hood face.

  15. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  16. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  17. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  18. Predicting Envelope Leakage in Attached Dwellings

    SciTech Connect

    Faakye, O.; Arena, L.; Griffiths, D.

    2013-07-01

    The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

  19. Augmented PMMA distribution: improvement of mechanical property and reduction of leakage rate of a fenestrated pedicle screw with diameter-tapered perforations.

    PubMed

    Tan, Quan-Chang; Wu, Jian-Wei; Peng, Fei; Zang, Yuan; Li, Yang; Zhao, Xiong; Lei, Wei; Wu, Zi-Xiang

    2016-06-01

    OBJECTIVE This study investigated the optimum injection volume of polymethylmethacrylate (PMMA) to augment a novel fenestrated pedicle screw (FPS) with diameter-tapered perforations in the osteoporotic vertebral body, and how the distribution characteristics of PMMA affect the biomechanical performance of this screw. METHODS Two types of FPSs were designed (FPS-A, composed of 6 perforations with an equal diameter of 1.2 mm; and FPS-B, composed of 6 perforations each with a tapered diameter of 1.5 mm, 1.2 mm, and 0.9 mm from tip to head. Each of 28 human cadaveric osteoporotic vertebrae were randomly assigned to 1 of 7 groups: FPS-A1.0: FPS-A+1.0 ml PMMA; FPS-A1.5: FPS-A+1.5 ml PMMA; FPS-A2.0: FPS-A+2.0 ml PMMA; FPS-B1.0: FPS-B+1.0 ml PMMA; FPS-B1.5: FPS-B+1.5 ml PMMA; FPS-B2.0: FPS-B+2.0 ml PMMA; and conventional pedicle screws (CPSs) without PMMA. After the augmentation, 3D CT was performed to assess the cement distribution characteristics and the cement leakage rate. Axial pullout tests were performed to compare the maximum pullout force thereafter. RESULTS The CT construction images showed that PMMA bone cement formed a conical mass around FPS-A and a cylindrical mass around FPS-B. When the injection volume was increased from 1.0 ml to 2.0 ml, the distribution region of the PMMA cement was enlarged, the PMMA was distributed more posteriorly, and the risk of leakage was increased. When the injection volume reached 2.0 ml, the risk of cement leakage was lower for screws having diameter-tapered perforations. The pullout strengths of the augmented FPS-A groups and FPS-B groups were higher than that of the CPS group (p < 0.0001). All FPS-B groups had a higher pullout strength than the FPS-A groups. CONCLUSIONS The diameter of the perforations affects the distribution of PMMA cement. The diameter-tapered design enabled PMMA to form larger bone-PMMA interfaces and achieve a relatively higher pullout strength, although statistical significance was not reached. Study

  20. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  1. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  2. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  3. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  4. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Breen, Michael S.; Burke, Janet M.; Batterman, Stuart A.; Vette, Alan F.; Godwin, Christopher; Croghan, Carry W.; Schultz, Bradley D.; Long, Thomas C.

    2014-01-01

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h−1 with a median of 0.64 h−1. For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010–2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated

  5. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and

  6. 49 CFR 229.59 - Leakage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inch per minute for 3 minutes after the pressure has been reduced to 60 percent of the maximum pressure. (b) Brake pipe leakage may not exceed 5 pounds per square inch per minute. (c) With a full service... shall remain applied at least 5 minutes. (d) Leakage from control air reservoir, related piping,...

  7. Failed Mask Ventilation due to Air Leakage around the Orbit in a Patient with a History of Radical Maxillofacial Surgery with Orbital Exenteration

    PubMed Central

    Horishita, Reiko; Kayashima, Kenji

    2016-01-01

    A 72-year-old male (height: 160 cm, weight: 53 kg) was scheduled to undergo left renal and male with ans uterine tract resection. The patient had previously undergone right radical maxillofacial surgery with orbital exenteration 14 years before the present operation to treat squamous cell carcinoma of the right maxillary sinus, with tumour invasion to the orbital floor. An anaesthesiologist encountered difficulty in performing mask ventilation during the induction of anaesthesia in the patient, despite a good mask fit on the face, because the adhesive tape around the orbit had moved. Urgent endotracheal intubation was successful without desaturation. A postoperative examination revealed that a communication between the nasal cavity and the orbit was visible on computed tomograms obtained nine years before the surgery. The patient felt the air leakage around the adhesive tape. The anaesthesiologist should have removed the adhesive tape to directly observe the lesion and should have realised that the communication might cause difficulty in mask ventilation. Careful examination of the airways using computed tomography and precise interviews may improve the understanding of patients’ airways and may help avoid similar events. PMID:28058144

  8. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  9. Versatile radar measurement of the electron loss rate in air

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-01

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 108 s-1 attachment rate is in very good agreement with predictions based on literature data.

  10. Versatile radar measurement of the electron loss rate in air

    SciTech Connect

    Dogariu, Arthur; Shneider, Mikhail N.; Miles, Richard B.

    2013-11-25

    We present an experimental method that makes possible in-situ measurements of the electron loss rate in arbitrary gas mixtures. A weakly ionized plasma is induced via resonant multiphoton ionization of trace amounts of nitric oxide seeded into the gas, and homodyne microwave scattering detection is used to study the dynamics of the electron loss mechanisms. Using this approach, the attachment rate for electrons to molecular oxygen in room temperature, atmospheric pressure air is determined. The measured 0.76 × 10{sup 8} s{sup −1} attachment rate is in very good agreement with predictions based on literature data.

  11. Air traffic control surveillance accuracy and update rate study

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Morrison, D. D.; Zipper, I.

    1973-01-01

    The results of an air traffic control surveillance accuracy and update rate study are presented. The objective of the study was to establish quantitative relationships between the surveillance accuracies, update rates, and the communication load associated with the tactical control of aircraft for conflict resolution. The relationships are established for typical types of aircraft, phases of flight, and types of airspace. Specific cases are analyzed to determine the surveillance accuracies and update rates required to prevent two aircraft from approaching each other too closely.

  12. Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached housing, the single blower door test measures leakage to the outside. In attached housing, however, this "solo" test method measures both air leakage to the outside and air leakage between adjacent units through common surfaces. Although minimizing leakage to neighboring units is highly recommended to avoid indoor air quality issues between units, reduce pressure differentials between units, and control stack effect, the energy benefits of air sealing can be significantly overpredicted if the solo air leakage number is used in the energy analysis. Guarded blower door testing is more appropriate for isolating and measuring leakage to the outside in attached housing. This method uses multiple blower doors to depressurize adjacent spaces to the same level as the unit being tested. Maintaining a neutral pressure across common walls, ceilings, and floors acts as a "guard" against air leakage between units. The resulting measured air leakage in the test unit is only air leakage to the outside. Although preferred for assessing energy impacts, the challenges of performing guarded testing can be daunting.

  13. Air Controlman 3 and 2: Naval Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The Rate Training Manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement in the Air Controlman (AC) rating to Air Controlman Third and Second Class. Chapter 1 discusses air controlman qualifications, the enlisted rating structure, the Air Controlman rating, references…

  14. Zero-Spring-Rate Mechanism/Air Suspension Cart

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Cooley, Victor M.

    1991-01-01

    Compact mechanism suspends articulating flexible structures with minimal constraints. Zero-spring-rate mechanism (ZSRM) air suspension cart used to suspend flexible, "mass-critical" articles like lightweight spacecraft undergoing such large motions as slewing, translation, and telescoping/retraction. Suspends flexible article undergoing large rigid-body motion concurrent with vibratory motion, with minimal interaction between suspended article and suspending hardware. Adaptive to active control, which reduces undesirable effects caused by friction, nonlinearity, and mass coupling. Practical for most suspension applications.

  15. Nonlinear Acoustics Used To Reduce Leakage Flow

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    attached to one end of the resonator while the other end remained open to ambient pressure. Measurements were taken at several values of applied pressure with the assembly stationary, oscillated at an off-resonance frequency, and then oscillated on-resonance. The three cases show that the flow through the conical resonator can be reduced by oscillating the resonator at the resonance frequency of the air contained within the cavity. The results are currently being compared with results obtained from a commercial computational fluid dynamics code. The objective is to improve the design through numerical simulation before fabricating a next-generation prototype sealing device. Future work is aimed at implementing acoustic seal design improvements to further reduce the leakage flow rate through the device and at reducing the device's overall size.

  16. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  17. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  18. Air exchange rates from atmospheric CO2 daily cycle.

    PubMed

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-04-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained.

  19. Air quality assessment and control of emission rates.

    PubMed

    Skiba, Yuri N; Parra-Guevara, David; Belitskaya, Davydova Valentina

    2005-12-01

    Mathematical methods based on the adjoint model approach are given for the air-pollution estimation and control in an urban region. A simple advection-diffusion-reaction model and its adjoint are used to illustrate the application of the methods. Dual pollution concentration estimates in ecologically important zones are derived and used to develop two non-optimal strategies and one optimal strategy for controlling the emission rates of enterprises. A linear convex combination of these strategies represents a new sufficient strategy. A method for detecting the enterprises, which violate the emission rates prescribed by a control, is given. A method for determining an optimal position for a new enterprise in the region is also described.

  20. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  1. Robust characterization of leakage errors

    NASA Astrophysics Data System (ADS)

    Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph

    2016-04-01

    Leakage errors arise when the quantum state leaks out of some subspace of interest, for example, the two-level subspace of a multi-level system defining a computational ‘qubit’, the logical code space of a quantum error-correcting code, or a decoherence-free subspace. Leakage errors pose a distinct challenge to quantum control relative to the more well-studied decoherence errors and can be a limiting factor to achieving fault-tolerant quantum computation. Here we present a scalable and robust randomized benchmarking protocol for quickly estimating the leakage rate due to an arbitrary Markovian noise process on a larger system. We illustrate the reliability of the protocol through numerical simulations.

  2. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the...

  3. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the...

  4. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the...

  5. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the...

  6. 40 CFR 91.324 - Analyzer leakage check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the...

  7. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  8. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  9. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1993-12-01

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.

  10. Heart rate, heart rate variability and behaviour of horses during air transport.

    PubMed

    Munsters, C C B M; de Gooijer, J-W; van den Broek, J; van Oldruitenborgh-Oosterbaan, M M Sloet

    2013-01-05

    Heart rate (HR), HR variability (HRV) and behaviour score (BS) of nine horses were evaluated during an eight-hour air transport between The Netherlands and New York. HR and HRV parameters were calculated every five minutes during the air transport. Compared with transit (40±3), mean HRs were higher during loading into the jet stall (67±21, P<0.001), loading into the aircraft (47±6, P=0.011), taxiing (50±8, P=0.001), and during periods of in-flight turbulence (46±7, P=0.017). During the flight, individual horses showed differences in mean HR (P=0.005) and peak HR (P<0.001). By contrast with HR data, HRV data did not differ between stages or horses. BS was highest during turbulence (3.2±0.4). However, behaviour did not always correspond with HR measurements: the least responsive horse had the highest HR. Loading into the jet stall caused the highest increase in HR and was considered the most stressful event. During transit, HR was generally comparable with resting rates. Previous studies have shown that loading and transporting by road caused more elevation in HR than during loading and transporting by air. HRV data were not found to be useful, and caution is needed when interpreting HRV data. Not every horse exhibited stress through visible (evasive) behaviour, and HR measurements may provide an additional tool to assess stress in horses.

  11. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  12. Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions

    NASA Technical Reports Server (NTRS)

    Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.

    1992-01-01

    The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.

  13. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  14. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  15. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  16. Multifamily Envelope Leakage Model

    SciTech Connect

    Faakye, Omari; Griffiths, Dianne

    2015-05-08

    “The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deter program participants, and dissuade them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.” This statement found in a 2012 report by Heschong Mahone Group for several California interests emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing—the more appropriate test for assessing energy savings opportunities—could easily be six times that, and that’s only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. This research seeks to provide an algorithm for predicting the guarded blower door test result based upon a single, total blower door test.

  17. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  18. Apparatus for detecting leakage of liquid sodium

    DOEpatents

    Himeno, Yoshiaki

    1978-01-01

    An apparatus for detecting the leakage of liquid sodium includes a cable-like sensor adapted to be secured to a wall of piping or other equipment having sodium on the opposite side of the wall, and the sensor includes a core wire electrically connected to the wall through a leak current detector and a power source. An accidental leakage of the liquid sodium causes the corrosion of a metallic layer and an insulative layer of the sensor by products resulted from a reaction of sodium with water or oxygen in the atmospheric air so as to decrease the resistance between the core wire and the wall. Thus, the leakage is detected as an increase in the leaking electrical current. The apparatus is especially adapted for use in detecting the leakage of liquid sodium from sodium-conveying pipes or equipment in a fast breeder reactor.

  19. Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Delgado, Irebert R.

    2004-01-01

    Advanced brush and finger seal technologies offer reduced leakage rates over conventional labyrinth seals used in gas turbine engines. To address engine manufacturers concerns about the heat generation and power loss from these contacting seals, brush, finger, and labyrinth seals were tested in the NASA High Speed, High Temperature Turbine Seal Test Rig. Leakage and power loss test results are compared for these competing seals for operating conditions up to 922 K (1200 F) inlet air temperature, 517 KPa (75 psid) across the seal, and surface velocities up to 366 m/s (1200 ft/s).

  20. Shroud leakage flow discouragers

    DOEpatents

    Bailey, Jeremy Clyde; Bunker, Ronald Scott

    2002-01-01

    A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

  1. Peer Ratings: Scoring Strategy Development and Reliability Demonstration on Air Force Basic Trainees. Final Report.

    ERIC Educational Resources Information Center

    Borman, Walter C.; Rosse, Rodney L.

    As an alternative for or adjunct to paper-and-pencil tests for predicting personnel performance, the United States Air Force studied the use of peer ratings as an evaluative tool. Purpose of this study was to evaluate the psychometric characteristics of peer ratings among Air Force basic trainees. Peer ratings were obtained from more than 27,000…

  2. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  3. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  4. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  5. Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Chen, Zijun; Kelly, Julian; Quintana, Chris; Barends, R.; Campbell, B.; Chen, Yu; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Lucero, E.; Jeffrey, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Korotkov, A. N.; Martinis, John M.

    2016-01-01

    Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. We characterize single qubit gates in a superconducting qubit, and by refining our use of derivative reduction by adiabatic gate pulse shaping along with detuning of the pulses, we obtain gate errors consistently below 1 0-3 and leakage rates at the 1 0-5 level. With the control optimized, we find that a significant portion of the remaining leakage is due to incoherent heating of the qubit.

  6. Leakage Suppression in the Toric Code

    NASA Astrophysics Data System (ADS)

    Suchara, Martin; Cross, Andrew; Gambetta, Jay

    2015-03-01

    Quantum codes excel at correcting local noise but fail to correct leakage faults that excite qubits to states outside the computational space. Aliferis and Terhal have shown that an accuracy threshold exists for leakage faults using gadgets called leakage reduction units (LRUs). However, these gadgets reduce the threshold and increase experimental complexity, and the costs have not been thoroughly understood. We explore a variety of techniques for leakage resilience in topological codes. Our contributions are threefold. First, we develop a leakage model that differs in critical details from earlier models. Second, we use Monte-Carlo simulations to survey several syndrome extraction circuits. Third, given the capability to perform 3-outcome measurements, we present a dramatically improved syndrome processing algorithm. Our simulations show that simple circuits with one extra CNOT per qubit reduce the accuracy threshold by less than a factor of 4 when leakage and depolarizing noise rates are comparable. This becomes a factor of 2 when the decoder uses 3-outcome measurements. Finally, when the physical error rate is less than 2 ×10-4 , placing LRUs after every gate may achieve the lowest logical error rate. We expect that the ideas may generalize to other topological codes.

  7. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  8. Spatiotemporally‐Resolved Air Exchange Rate as a Modifier of Acute Air Pollution‐Related Morbidity in AtlantaMorbidity in Atlanta

    EPA Science Inventory

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site c...

  9. Effects of energy-efficient ventilation rates on indoor air quality at an Ohio elementary school

    NASA Astrophysics Data System (ADS)

    Berk, J. V.; Young, R.; Hollowell, C. D.; Turiel, I.; Pepper, J.

    1980-04-01

    A mobile laboratory was used to monitor air outdoors and at three indoor sites (two classrooms and a large multipurpose room); tests were made at three different ventilation rates. The parameters measured were outside air flow rates, odor perception, microbial burden, particulate mass, total aldehydes, carbon dioxide, ozone, and nitrogen oxides. The results of these measurements are given and compared with the existing outdoor air quality standards. Carbon dioxide concentrations increased as the ventilation rate decreased, but still did not exceed current standards. Odor perceptibility increased slightly at the lowest ventilation rate. Other pollutants showed very low concentrations, which did not change with reductions in ventilation rate.

  10. Duct leakage measurement and analysis

    SciTech Connect

    Swim, W.B.; Griggs, E.I.

    1995-08-01

    Leakage measurements were made on 6-in. (150-mm) and 10-in. (250-mm) round and 14-in. by 6-in. (350-mm by 150-mm) and 22-in. by 8-in. (560-mm by 200-mm) rectangular ducts for both positive and negative internal pressures. The data were found to fit a power law model, with the leakage rate (Q) increasing with a power, n, of static pressure difference ({Delta}p), i.e., Q {proportional_to} ({Delta}p){sup n}. A convenient leakage prediction equation, Q = C ({Delta}p*){sup n}, uses a normalized pressure difference, {Delta}p* = {Delta}p/{Delta}p{sub ref}, with {Delta}p in in. wg (Pa) and a reference pressure difference, {Delta}p{sub ref}, of 1 in. wg (250 Pa). C{sub D}, the recommended design values of C for a repetitive element of a duct system--one duct section and one joint, ranged from 0.01 cfm (0.005 L/s) for a Vanstone flanged joint to 18.5 cfm (8.7 L/s) for an unsealed 22-in. by 8-in (560-mm by 200-mm) duct with a slip-and-drive joint. Most test ducts had C{sub D} values of 6 to 8 cfm (3 to 4 L/s) and had values of n close to 0.58. Joints were found to account for most of the leakage, and thus most of the value of C{sub D}, in unsealed ducts, with seams contributing only 10% to 38% of the total.

  11. Solute Leakage Resulting from Leaf Desiccation

    PubMed Central

    Leopold, A. Carl; Musgrave, Mary E.; Williams, Kathleen M.

    1981-01-01

    The leakage of solutes from foliar tissue is utilized as a dynamic measure of apparent changes in membrane integrity in response to desiccation. It is found that rehydrating leaf discs of cowpea (Vigna sinensis [L.] Endl.) show increasing leakiness in proportion to the extent of prior desiccation, whereas Selaginella lepidophylla Spring., a resurrection plant, does not. The elevated leakage rate of cowpea after desiccation recovers with time, and the passage of time in the stressed condition results in reduced subsequent leakiness. These characteristics are interpreted as suggesting that the leakage of solute reflects the condition of cellular membranes, and that desiccation stress leads to lesions in the membranes. The kinetics of solute leakage is suggested as a simple means of following changes in membrane lesions and associated features of membrane repair and hardening. PMID:16662082

  12. Oil Leakage from the Seal Ring of a Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Fukui, Atsushi; Horiguchi, Hironori; Tsujimoto, Yoshinobu; Toyama, Toshiyuki

    In scroll compressors for air conditioners, there is a compressor with back-pressure chamber spaced by seal ring behind orbiting scroll. High pressure in the backpressure chamber presses the orbiting scroll to fixed scroll. In the case that lubrication oil and refrigerant gas with high pressure and temperature in the backpressure chamber leak to low pressure chamber through the seal ring, the efficiency of compressor decreases and the oil circulation rate can increase. In the present study the leakage characteristics of lubrication oil from the backpressure chamber to the low pressure chamber were investigated. In experiment, it was found that the oil leakage is larger for higher rotational speed of rotating disk, higher viscosity of oil and smaller pressure difference between the backpressure and low-pressure chambers. This could be explained by the calculation in which the seal ring was assumed to have a tilt angle. It was also found in the calculation that oil leakage is larger due to the thicker oil film between the seal ring and the rotating disk in the case of higher rotational speed of the disk, higher viscosity of oil and smaller pressure difference between the backpressure and low-pressure chambers.

  13. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1).

  14. 40 CFR 90.324 - Analyzer leakage check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Provisions § 90.324 Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being...

  15. 40 CFR 90.324 - Analyzer leakage check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Provisions § 90.324 Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being...

  16. 40 CFR 90.324 - Analyzer leakage check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Provisions § 90.324 Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being...

  17. 40 CFR 90.324 - Analyzer leakage check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Provisions § 90.324 Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being...

  18. 40 CFR 89.316 - Analyzer leakage and response time.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Equipment Provisions § 89.316 Analyzer leakage and response time. (a) Vacuum side leak check. (1) Any location within the analysis system where a vacuum leak could affect the test results must be checked. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for...

  19. 40 CFR 90.324 - Analyzer leakage check.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Provisions § 90.324 Analyzer leakage check. (a) Vacuum side leak check. (1) Check any location within the analysis system where a vacuum leak could affect the test results. (2) The maximum allowable leakage rate on the vacuum side is 0.5 percent of the in-use flow rate for the portion of the system being...

  20. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  1. Determination of leakage areas in nuclear piping

    SciTech Connect

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  2. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  3. Modeling exposure close to air pollution sources in naturally ventilated residences: association of turbulent diffusion coefficient with air change rate.

    PubMed

    Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Jiang, Ruo-Ting; Klepeis, Neil E; Ott, Wayne R; Fringer, Oliver B; Hildemann, Lynn M

    2011-05-01

    For modeling exposure close to an indoor air pollution source, an isotropic turbulent diffusion coefficient is used to represent the average spread of emissions. However, its magnitude indoors has been difficult to assess experimentally due to limitations in the number of monitors available. We used 30-37 real-time monitors to simultaneously measure CO at different angles and distances from a continuous indoor point source. For 11 experiments involving two houses, with natural ventilation conditions ranging from <0.2 to >5 air changes per h, an eddy diffusion model was used to estimate the turbulent diffusion coefficients, which ranged from 0.001 to 0.013 m² s⁻¹. The model reproduced observed concentrations with reasonable accuracy over radial distances of 0.25-5.0 m. The air change rate, as measured using a SF₆ tracer gas release, showed a significant positive linear correlation with the air mixing rate, defined as the turbulent diffusion coefficient divided by a squared length scale representing the room size. The ability to estimate the indoor turbulent diffusion coefficient using two readily measurable parameters (air change rate and room dimensions) is useful for accurately modeling exposures in close proximity to an indoor pollution source.

  4. Temporal Variations of Air Dose Rates in East Fukushima During Japanese Fiscal Years 2012 and 2013.

    PubMed

    Akimoto, Kazuhiro

    2017-01-01

    Temporal variations of ambient air dose rates in eastern Fukushima prefecture during Japanese fiscal years 2012 and 2013 are analyzed. The average overall variation rate of air dose rates in east Fukushima during the examined period is found to be 0.49 (51% down) compared to the theoretically predicted value 0.65 (35% down) based on physical decay of radioactive cesium nuclides. On average, local dose rates declined almost linearly for the relatively short period. Temporal characteristics of air dose rates may be classified into variation rates, peaks, spikes, and oscillations. During the examined period, a typical dose-rate curve formed a long-term peak in summer that lasted one through a few months as well as a long-term spike in winter that lasted likewise. Otherwise, occasional short-term peaks and short-term spikes, in addition to long-term oscillations, were observed. Air dose rates may be effectively modulated at short timescales mainly by precipitation. Moreover, it is likely that winds may oscillate air dose rates due to resuspension of radio-dusts.

  5. Correlation of mutagenic assessment of Houston air particulate extracts in relation to lung cancer mortality rates

    SciTech Connect

    Walker, R.D.; Connor, T.H.; MacDonald, E.J.; Trieff, N.M.; Legator, M.S.; MacKenzie, K.W. Jr.; Dobbins, J.G.

    1982-08-01

    Air particulate extracts from a series of solvents were tested in the Ames mutagen detection system and were found to be mutagenic in varying degrees as a function of the particulate collection site in Houston, Texas. The mutagenicity level at seven sites was compared with age-adjusted mortality rates in the same areas. Significant correlation was found with the lung cancer mortality rates but not with mortality rates for other causes. These findings support the hypothesis of a contribution of urban air particulate to the lung cancer rates. Furthermore, these findings suggest that an index of the mutagenicity of air particulate is a more powerful measure of the human health hazard of air pollution than the traditional indices of particulate concentration.

  6. Refinement of the Air Force Systems Command Production Rate Model

    DTIC Science & Technology

    1989-09-01

    the recommended modified formulations. The relationship between production rate and production ratio has a definite influence on the model’s ability to...1984 7 36 21.954 370.00 1985 8 48 21.017 412.00 A- 3 Table A.2.8 F-15E Cost/Quantity Data Fiscal Year Lot Quntit Recurring Unit Cost LPP 1986 1 60

  7. The design and fabrication of a single leakage-channel grating coupler

    NASA Technical Reports Server (NTRS)

    Roncone, Ronald L.; Li, Lifeng; Bates, Keith A.; Burke, James J.; Weisenbach, Lori; Zelinski, Brian J. J.

    1992-01-01

    The modeling and fabrication is described of waveguide grating couplers with out-coupling efficiencies into a single diffracted order nearing 100 pct. Termed Single Leakage Channel Grating Couplers (SLCGCs), these devices use a high reflectivity dielectric stack to reflect the out-coupled beam diffracted toward the substrate, back up into the air region where it constructively adds with the beam diffracted into the air region. Computer modeling shows that the branching ratio and the leakage rate can be independently controlled, and that the branching ratio is independent of grating depth and grating period. A SLCGC with a branching ratio of 97.1 pct. was fabricated using a combination of vacuum evaporation and wet chemical techniques.

  8. Spatiotemporally-Resolved Air Exchange Rate as a Modifier of Acute Air Pollution-Related Morbidity

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  9. THERMAL REGAIN FROM DISPLACEMENT OF DUCT LEAKAGE WITHIN INSULATION.

    SciTech Connect

    ANDREWS,J.W.

    2002-05-01

    In one type of duct efficiency retrofit, additional insulation is added to a duct system that is already insulated. For example, a layer of R-4 insulation might be: added to a duct system that already has R-4 installed. It is possible that--either by chance or by design--the add-on layer, while not stopping duct leaks, might cause the leakage air to flow longitudinally for a distance, parallel to the duct, before it finds a way out of the newly added outer layer. This could happen by chance if the outer and inner layers of insulation have seams at different locations. Perhaps more usefully, if such longitudinal displacement of the leakage air turned out to be useful, it might be designed into the makeup of the outer insulation layer intended to be used in the retrofit. It is plausible that this leakage air might serve a useful function in keeping the insulation layer warmer (or, in the air-conditioning mode, cooler) than it would be in the absence of the leakage. By being held close to the ducts for a while, it might establish an artificially warmer (or cooler, in air conditioning) zone around the ducts. To the extent that this effect would reduce the heat losses from the ducts, the leakage should be credited with a ''thermal regain'' in the same way that leakage into buffer zones is credited with thermal regain when the leakage air warms (or cools) the buffer zone relative to the temperature it would have in the absence of such duct leakage. The purpose of this report is to investigate whether and to what extent such thermal regain exists. The model developed below applies to a situation where there are two distinct layers of insulation around the duct, with leakage air moving between them in a longitudinal direction for a distance before it finds its way out from the outer insulation layer. It may also apply approximately where there is a single insulation layer with an air barrier on the outside. Leakage air may pass into the insulation itself and thence

  10. Sustainable management of leakage from wastewater pipelines.

    PubMed

    DeSilva, D; Burn, S; Tjandraatmadja, G; Moglia, M; Davis, P; Wolf, L; Held, I; Vollertsen, J; Williams, W; Hafskjold, L

    2005-01-01

    Wastewater pipeline leakage is an emerging concern in Europe, especially with regards to the potential effect of leaking effluent on groundwater contamination and the effects infiltration has on the management of sewer reticulation systems. This paper describes efforts by Australia, in association with several European partners, towards the development of decision support tools to prioritize proactive rehabilitation of wastewater pipe networks to account for leakage. In the fundamental models for the decision support system, leakage is viewed as a function of pipeline system deterioration. The models rely on soil type identification across the service area to determine the aggressiveness of the pipe environment and for division of the area into zones based on pipe properties and operational conditions. By understanding the interaction between pipe materials, operating conditions, and the pipe environment in the mechanisms leading to pipe deterioration, the models allow the prediction of leakage rates in different zones across a network. The decision support system utilizes these models to predict the condition of pipes in individual zones, and to optimize the utilization of rehabilitation resources by targeting the areas with the highest leakage rates.

  11. A review of leakage flow in centrifugal blood pumps.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah

    2006-05-01

    This article presents a new approach in determining the functional relationship between the leakage flow in a centrifugal blood pump and various parameters that affect it. While high leakage flow in a blood pump is essential for good washout and can help prevent thrombus formation, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Dimensional analysis is employed to provide a functional relationship between leakage flow rate and other important parameters governing the operation of a centrifugal blood pump. Results showed that pump performance with a smaller gap clearance is clearly superior compared to those of two other similar pumps with larger gap clearances. It was also observed that the nondimensional leakage flow rate varies almost linearly with dimensionless pump head. It also decreases with increasing volume flow rate. A smaller gap clearance will also increase the flow resistance and hence, decrease the nondimensional leakage flow rate. Increasing surface roughness, length of the gap clearance passage, or loss coefficient of the gap geometry will increase losses and hence, decrease the leakage flow rate. It is also interesting to note that for a given pump and gap clearance geometry, the nondimensional leakage flow rate is almost independent of the Reynolds number when specific speed is constant.

  12. Variations of the ambient dose equivalent rate in the ground level air.

    PubMed

    Lebedyte, M; Butkus, D; Morkŭnas, G

    2003-01-01

    The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.

  13. Geologic Carbon Sequestration: Leakage Potential and Policy Implications

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Peters, C. A.; Fitts, J. P.; Wilson, E. J.

    2014-12-01

    The geologic reservoirs that could be used for long-term sequestration of carbon dioxide (CO2) may have natural or manmade pathways that allow injected CO2, or the brine it displaces, to leak into overlying formations. Using a basin-scale leakage estimation model, we investigated the geophysical parameters that govern this leakage, and the resulting accumulations of leaked fluids in overlying formations. The results are discussed in the context of two polices aimed at governing long-term sequestration and protecting groundwater: the U.S. DOE guideline for storage permanence and the U.S. EPA UIC Program Class VI Rule. For a case study of CO2 injection into the Mt. Simon sandstone in the Michigan sedimentary basin, we showed that (1) the U.S. DOE guideline would allow for more leakage from larger injection projects than for smaller ones; (2) leakage amounts are determined mostly by well leakage permeability rather than by variation in formation permeabilities; (3) numerous leaking wells with anomalously high leakage permeabilities are necessary in order to achieve substantial leakage rates; (4) leakage can reach potable groundwater but intervening stratigraphic traps reduce the amount to be multiple orders of magnitude less than the leakage out of the reservoir, and (5) this leakage can reduce the Area of Review that is defined by the U.S. EPA as the area within which leakage can threaten groundwater. In summary, leakage that exceeds the U.S. DOE storage permanence goal would occur only under extreme conditions, the amount that reaches shallow potable groundwater may be inconsequential from a pollution standpoint, and leakage may be beneficial. Future federal policies should be harmonized to achieve the dual goals of protecting groundwater while allowing for adaptive management that incorporates uncertainties and imperfections inherent in geologic reservoirs.

  14. USAF bioenvironmental noise data handbook. Volume 168: MB-3 tester, pressurized cabin leakage, aircraft

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-06-01

    The MB-3 Tester is an electric motor-driven cabin leakage tester designed to furnish pressurized air to the aircraft at controlled pressures and temperatures during ground pressurization of aircraft cockpits and pressurized compartments. This report provides measured data defining the bioacoustic environments produced by this unit operating at a normal rated/load condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  15. Non-Rated Air Force Line Officer Attrition Rates Using Survival Analysis

    DTIC Science & Technology

    2015-03-26

    required and expected . Additionally, the experience they gather throughout their careers is invaluable to the success of the Air Force and cannot be...The service commitments and career paths tend to be relatively equal within this group, so the attrition behavior was expected to be approximately the... females , given that they are in the same yeargroup, career field, etc. Although the actual reason cannot be determined based on this data, one can attribute

  16. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  17. Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Drese, John H.; Sager, John C.

    1991-01-01

    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber.

  18. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  19. K{sub Air} and H*(10) Rate Constants for Gamma Emitters

    SciTech Connect

    Vega-Carrillo, H. R.; Juarez, R. Rodriguez; Manzanares-Acuna, E.; Davila, V. M. Hernandez; Mercado, G. A.

    2008-08-11

    Monte Carlo calculations have been carried out to estimate the Air Kerma rate constant and the Ambient dose equivalent rate constant for 139 monoenergetic photon sources. The factor that relates activity to air kerma rate or to ambient dose equivalent is useful to estimate the dose from a photon emitter source. Here 139 point-like and monoenergetic gamma-ray sources, ranging from 0.01 to 10 MeV were utilized in Monte Carlo calculations to estimate both gamma factors. These factors were utilized to calculate the air kerma-and-ambient dose equivalent rate constants for {sup 137}Cs-{sup 137m}Ba, {sup 198}Au, {sup 60}Co, and {sup 131}I, whose values were compared with those published in the literature.

  20. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  1. Cooling Rates of Humans in Air and in Water: An Experiment

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2012-12-01

    In a previous article I analyzed in detail the physical factors resulting in greater cooling rates of objects in still water than in still air, emphasizing cooling of the human body. By cooling rate I mean the rate of decrease of core temperature uncompensated by metabolism. I concluded that the "correct ratio for humans is closer to 2 than to 10." To support this assertion I subsequently did experiments, which I report following a digression on hypothermia.

  2. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-02

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  3. Air pollutant emission rates for sources at the Deaf Smith County repository site

    SciTech Connect

    Not Available

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs.

  4. EFFECT OF AIR-POLLUTION CONTROL ON DEATH RATES IN DUBLIN, IRELAND: AN INTERVENTION STUDY. (R827353C006)

    EPA Science Inventory

    Background Particulate air pollution episodes have been associated with increased daily death. However, there is little direct evidence that diminished particulate air pollution concentrations would lead to reductions in death rates. We assessed the effect of ...

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. Contribution of climate and air pollution to variation in coronary heart disease mortality rates in England.

    PubMed

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999-2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment--temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England.

  7. Contribution of Climate and Air Pollution to Variation in Coronary Heart Disease Mortality Rates in England

    PubMed Central

    Scarborough, Peter; Allender, Steven; Rayner, Mike; Goldacre, Michael

    2012-01-01

    There are substantial geographic variations in coronary heart disease (CHD) mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999–2004) was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment - temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05), suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England. PMID:22427884

  8. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  9. THE EFFECT OF OPENING WINDOWS ON AIR CHANGE RATES IN TWO HOMES

    EPA Science Inventory

    Over 300 air change rate experiments were completed in two occupied residences: a two-story detached house in Redwood City, CA and a three-story townhouse in Reston, VA. A continuous monitor was used to measure the decay of sulfur hexafluoride tracer gas over periods of 1 to 1...

  10. Endoscopic Treatment of Stump Leakage Related to the Ileal Conduit

    PubMed Central

    Odemis, Bulent; Oztas, Erkin; Akpinar, Muhammet Yener; Olcucuoglu, Erkan; Kayacetin, Ertugrul

    2016-01-01

    Abstract Background: Ileal conduit with leakage from either the anastomotic site or the stump is associated with high morbidity and mortality rates. The standard treatment of stump leakage is surgery. Case Presentation: A 60-year-old male patient was admitted to our hospital with complaint of hematuria and bladder carcinoma was diagnosed. After performing radical cystectomy and ileal conduit, he developed fever with abdominal pain within the first week of surgery. Stump leakage was diagnosed by endoscopic examination performed through a gastroscope. After two over-the-scope clips (OTSCs) were applied to the stump, vinyl mesh was inserted into the space between the OTSCs. Later, cyanoacrylat and lipiodol were repelled on the OTSCs and vinyl mesh. Subsequently, stump leakage was resolved. Conclusion: This is the first case of stump leakage related to ileal conduit that has been treated endoscopically, according to the current literature. PMID:27579432

  11. The effects of air pollutants on the mortality rate of lung cancer and leukemia.

    PubMed

    Dehghani, Mansooreh; Keshtgar, Laila; Javaheri, Mohammad Reza; Derakhshan, Zahra; Oliveri Conti, Gea; Zuccarello, Pietro; Ferrante, Margherita

    2017-03-24

    World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (P<0.05). Therefore, special attention should be paid to sources of these pollutants and we need better management to decrease air pollutant concentrations through, e.g., using clean energy respect to fossil fuels, better management of urban traffic planning, and the improvement of public transport service and car sharing.

  12. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    PubMed

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies.

  13. [Calculating method for the necessary lamps and sterile rate in a tube-shaped ultraviolet air washer].

    PubMed

    Xu, Z; Chen, C; Shen, J

    1998-05-01

    It has much more advantage to use the cylindric ultraviolet air washer than to use the ordinary ultraviolet lamps. There was a calculation method for determining necessary lamps in a rectangled ultraviolet air washer, but it had a limiting condition. This paper developed two calculating methods for determining necessary lamps and its sterile rate in a tube-shaped ultraviolet air washer. The sterile rate can be extracted with any parameter. Necessary lamps can also be extracted with its sterile rate.

  14. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    SciTech Connect

    Giovanis, Eleftherios

    2015-06-15

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM{sub 2.5}) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  15. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  16. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    SciTech Connect

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; Veinot, Kenneth G.; Leggett, Richard Wayne; Eckerman, Keith F.; Easterly, Clay E.; Hertel, Nolan E.

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.

  17. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  18. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  19. Duct Leakage Repeatability Testing

    SciTech Connect

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  20. Association Between Air Temperature and Cancer Death Rates in Florida: An Ecological Study.

    PubMed

    Hart, John

    2015-01-01

    Proponents of global warming predict adverse events due to a slight warming of the planet in the last 100 years. This ecological study tests one of the possible arguments that might support the global warming theory - that it may increase cancer death rates. Thus, average daily air temperature is compared to cancer death rates at the county level in a U.S. state, while controlling for variables of smoking, race, and land elevation. The study revealed that lower cancer death rates were associated with warmer temperatures. Further study is indicated to verify these findings.

  1. Measurement of HOx• production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (•OH and HO2 •) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOx• production rate in indoor air caused by radon decay. Average HOx• production rate was found to be (4.31±0.07) x 105 HOx• per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx•)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx•] formed from the radiolysis procedure. This G value implies that HOx• produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOx• production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for •OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial •OH produced from the photolysis of O3/H2O.

  2. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  3. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    NASA Astrophysics Data System (ADS)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2017-01-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature (T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  4. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials.

    PubMed

    Moriske, H J; Ebert, G; Konieczny, L; Menk, G; Schöndube, M

    1998-08-01

    The decay of ozone in indoor air was measured in a closed chamber after contact with different building materials and residential surfaces. The tested materials were: vinyl wall paper, woodchip paper, plywood, latex paint, fitted carpet, and plaster. In the summer of 1996, the entry of ozone from ambient air into indoor air during ventilation and the ozone decay in indoor air, after windows had been closed again, were studied. Measurements were done in a residential house on the outskirts of Berlin. The following results were gained: the chamber measurements showed a decay of ozone after contact with most of the materials put inside the chamber. Higher decay rates have been obtained for wall papers, plywood, fitted carpet and plaster. As described in the literature, ozone is able to react with olefines inside the materials and is able to form formaldehyde and other components. This formation of formaldehyde could also be confirmed in our investigations. Thus, in most cases, the formaldehyde concentrations were lower than the German guideline value of 0.1 ppm. The formation of formaldehyde could be prevented when a special wall paper that was coated with activated carbon was used. In the house, a complete ozone diffusion into indoor air took place during ventilation within 30 min. After closing the windows, the ozone concentrations decreased to the basic level before ventilation within 60-90 min.

  5. US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites.

    PubMed

    Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G

    2017-02-22

    Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.

  6. Smoking, air pollution, and the high rates of lung cancer in Shenyang, China

    SciTech Connect

    Xu, Z.Y.; Blot, W.J.; Xiao, H.P.; Wu, A.; Feng, Y.P.; Stone, B.J.; Sun, J.; Ershow, A.G.; Henderson, B.E.; Fraumeni, J.F. Jr. )

    1989-12-06

    A case-control study involving interviews with 1,249 patients with lung cancer and 1,345 population-based controls was conducted in Shenyang, an industrial city in northeastern China, where mortality rates are high among men and women. Cigarette smoking was found to be the principal cause of lung cancer in this population, accounting for 55% of the lung cancers in males and 37% in females. The attributable risk percentage among females is high compared to elsewhere in China, largely because of a higher prevalence of smoking among women. After adjustment for smoking, there were also significant increases in lung cancer risk associated with several measures of exposure to air pollutants. Risks were twice as high among those who reported smoky outdoor environments, and increased in proportion to years of sleeping on beds heated by coal-burning stoves (kang), and to an overall index of indoor air pollution. Threefold increases in lung cancer risk were found among men who worked in the nonferrous smelting industry, where heavy exposures to inorganic arsenic have been reported. The associations with both smoking and indoor air pollution were stronger for squamous cell and small cell carcinomas than for adenocarcinoma of the lung. Risks due to smoking or air pollution were not greatly altered by adjustment for consumption of fresh vegetables or sources of beta carotene or retinol, prior chronic lung diseases, or education level. The findings suggest that smoking and environmental pollution combine to account for the elevated rates of lung cancer mortality in Shenyang.

  7. Effect of laminar air flow and clean-room dress on contamination rates of intravenous admixtures.

    PubMed

    Brier, K L; Latiolais, C J; Schneider, P J; Moore, T D; Buesching, W J; Wentworth, B C

    1981-08-01

    The effect of laminar air flow conditions and clean-room dress on the microbial contamination rates of intravenous admixtures was investigated. Intravenous admixtures were prepared by one investigator using aseptic technique under four environmental conditions: laminar air flow conditions with clean-room dress; laminar air flow without clean-room dress; clean table top with clean-room dress; and clean table top without clean-room dress. In each environmental condition, 350 admixtures were compounded. Negative-control samples (n = 150) were also tested, as were 10 positive-control samples. Samples were tested in each of two growth media and incubated at 35 degrees C for 14 days or until growth occurred. The incidence of contamination of admixtures compounded in laminar air flow conditions was significantly less than the contamination of those compounded on a clean table top (p less than 0.05) regardless of the operator's dress. The incidence of contamination of admixtures compounded while wearing clean-room dress was not significantly different from those prepared while not wearing clean-room dress regardless of the environment in which the admixture was prepared. The overall low level of contamination [0.79% (11/1400)] was inconclusive regarding the effect of dress on the incidence of contamination when admixtures were prepared under LAF conditions. It is concluded that, when one adheres to aseptic technique, the environment in which admixtures are compounded is the most important variable affecting the microbial contamination rate.

  8. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts.

    PubMed

    Giovanis, Eleftherios

    2015-06-01

    This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009-2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM2.5) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000-$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  9. Effective Dose Rate Coefficients for Immersions in Radioactive Air and Water.

    PubMed

    Bellamy, M B; Veinot, K G; Hiller, M M; Dewji, S A; Eckerman, K F; Easterly, C E; Hertel, N E; Leggett, R W

    2016-05-05

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge (CRPK) has undertaken a number of calculations in support of a revision to the United States Environmental Protection Agency (US EPA) Federal Guidance Report on external exposure to radionuclides in air, water and soil (FGR 12). Age-specific mathematical phantom calculations were performed for the conditions of submersion in radioactive air and immersion in water. Dose rate coefficients were calculated for discrete photon and electron energies and folded with emissions from 1252 radionuclides using ICRP Publication 107 decay data to determine equivalent and effective dose rate coefficients. The coefficients calculated in this work compare favorably to those reported in FGR12 as well as by other authors that employed voxel phantoms for similar exposure scenarios.

  10. Mathematical Modeling of Radiocesium Migration and Air Dose Rate Changes in Eastern Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Kitamura, A.; Sakuma, K.; Kurikami, H.; Malins, A.; Okumura, M.; Itakura, M.; Yamada, S.; Machida, M.

    2015-12-01

    Radioactive cesium that was deposited over Fukushima Prefecture after the accident at the Fukushima Daiichi nuclear power plant station is one of the major concerns regarding health physics today. Its migration is primarily by soil erosion and sediment transport within surface water during times of heavy rainfall and flooding. In order to predict the future distribution of radioactive cesium and resulting air dose rate at any location in Fukushima, we have integrated a number of mathematical models covering different time and spatial scales. In this presentation we report our overall scheme of prediction starting from sediment and radioactive cesium movement and resulting long term air dose rate changes. Specifically, we present simulation results of sediment movement and radioactive cesium migration using semi-empirical and physics based watershed models, and that of sediment and radioactive cesium behavior in a dam reservoir using one and two dimensional river simulation models. The model's results are compared with ongoing field monitoring.

  11. Effects of aluminum-copper alloy filtration on photon spectra, air kerma rate and image contrast.

    PubMed

    Gonçalves, Andréa; Rollo, João Manuel Domingos de Almeida; Gonçalves, Marcelo; Haiter Neto, Francisco; Bóscolo, Frab Norberto

    2004-01-01

    This study evaluated the performance of aluminum-copper alloy filtration, without the original aluminum filter, for dental radiography in terms of x-ray energy spectrum, air kerma rate and image quality. Comparisons of various thicknesses of aluminum-copper alloy in three different percentages were made with aluminum filtration. Tests were conducted on an intra-oral dental x-ray machine and were made on mandible phantom and on step-wedge. Depending on the thickness of aluminum-copper alloy filtration, the beam could be hardened and filtrated. The use of the aluminum-copper alloy filter resulted in reductions in air kerma rate from 8.40% to 47.33%, and indicated the same image contrast when compared to aluminum filtration. Aluminum-copper alloy filtration may be considered a good alternative to aluminum filtration.

  12. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  13. TWO NEW DUCT LEAKAGE TESTS

    SciTech Connect

    ANDREWS,J.W.

    1998-12-01

    Two variations on the tests for duct leakage currently embodied in ASHRAE Standard 152P (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) are presented. Procedures are derived for calculating supply and return duct leakage to/from outside using these new variations. Results of these tests are compared with the original ones in Standard 152P on the basis of data collected in three New York State homes.

  14. Determination of collisional quenching rate coefficients of metastable nitrogen molecules by air pollutants

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Itoh, Haruo

    2009-10-01

    It has already been investigated on the determination of the collisional quenching rate coefficients of the metastable nitrogen molecules N2(A^3σu^+ ) by some air pollutants [1] in our laboratory. In this report, we present the result on the collisional quenching rate coefficient of N2(A^3σu^+ ) by formaldehyde (CH2O) using a theoretical procedure that takes into account the reflection of metastables at the boundary. As far as we know, this report is the first result of the collisional quenching rate coefficients of N2(A^3σu^+ ) by CH2O. Formaldehyde is a colorless gas with the foul odor, and elements of the adhesive, paints, and preservative, etc. It is widely used for construction materials such as houses, because it is low cost. It is released from paint of construction materials in air, and, in that case, it is known as one of the causative agents of so-called ``Sick building syndrome'' to influence the human body harmfully even if it is a low concentration. The obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by CH2O is (4.7±0.4) x 10-12 cm^3/s. Because the collisional quenching rate coefficient by CH2O is large, it is understood that CH2O receives energy easily from N2(A^3σu^+ ). In addition, we reports on the obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by some air pollutants. [1] S. Suzuki, T.Suzuki and H.Itoh: Proc. of XXVIII ICPIG (Prague, Czech Republic), (2007) 1P01-40.

  15. Chemical response of methane/air diffusion flames to unsteady strain rate

    SciTech Connect

    Im, H.G.; Chen, J.H.; Chen, J.Y.

    1998-03-01

    Effects of unsteady strain rate on the response of methane/air diffusion flames are studied. The authors use the finite-domain opposed flow configuration in which the nozzle exit velocity is imposed as a function of time. The GRI mechanism v2.11 is used for the detailed methane/air chemistry. The response of individual species to monochromatic oscillation in strain rate with various frequencies reveals that the fluctuation of slow species, such as CO and NO{sub x}, is more rapidly suppressed as the flow time scale decreases. It is also observed that the maximum CO concentration is very insensitive to the variation in the scalar dissipation rate. An extinction event due to an abrupt imposition of high strain rates is also simulated by an impulsive velocity with various frequencies. For a fast impulse, a substantial overshoot in NO{sub 2} concentration is observed after extinction. Finally, the overall fuel burning rate shows a nonmonotonic response to the variation in characteristic unsteady time scale, while the emission indices for NO{sub x} shows monotonic decay in response as frequency is increased.

  16. Prediction of leakage flow in a shrouded centrifugal blood pump.

    PubMed

    Teo, Ji-Bin; Chan, Weng-Kong; Wong, Yew-Wah

    2010-09-01

    This article proposes a phenomenological model to predict the leakage flow in the clearance gap of shrouded centrifugal blood pumps. A good washout in the gap clearance between the rotating impeller surfaces and volute casing is essential to avoid thrombosis. However, excessive leakage flow will result in higher fluid shear stress that may lead to hemolysis. Computational fluid dynamics (CFD) analysis was performed to investigate the leakage flow in a miniaturized shrouded centrifugal blood pump operating at a speed of 2000 rpm. Based on an analytical model derived earlier, a phenomenological model is proposed to predict the leakage flow. The leakage flow rate is found to be proportional to h(α) , where h is the gap size and the exponent α ranges from 2.955 to 3.15 for corresponding gap sizes of 0.2-0.5 mm. In addition, it is observed that α is a linear function of the gap size h. The exponent α compensates for the variation of pressure difference along the circumferential direction as well as inertia effects that are dominant for larger gap clearances. The proposed model displays good agreement with computational results. The CFD analysis also showed that for larger gap sizes, the total leakage flow rate is of the same order of magnitude as the operating flow rate, thus suggesting low volumetric efficiency.

  17. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  18. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  19. Modified perfluorocarbon tracer method for measuring effective multizone air exchange rates.

    PubMed

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-09-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.

  20. Effect of outside air ventilation rate on volatile organic compound concentrations in a call center

    NASA Astrophysics Data System (ADS)

    Hodgson, A. T.; Faulkner, D.; Sullivan, D. P.; DiBartolomeo, D. L.; Russell, M. L.; Fisk, W. J.

    A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m 2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO 2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO 2 generation rates were 0.0068-0.0092 l s -1. The per occupant isoprene generation rates of 0.2-0.3 mg h -1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source

  1. Relationship of air sampling rates of semipermeable membrane devices with the properties of organochlorine pesticides.

    PubMed

    Zhu, Xiuhua; Ding, Guanghui; Levy, Walkiria; Jakobi, Gert; Schramm, Karl-Werner

    2011-06-01

    The organochlorine pesticides (OCP) in Eastern-Barvaria at Haidel 1160 m a.s.l. were monitored with a low volume active air sampler and semi-permeable membrane devices (SPMD). The air sampling rates (Rair) of SPMD for OCP were calculated. Quantitative structure-property relationship (QSPR) models of Rair of SPMD were developed for OCP with partial least square (PLS) regression. Quantum chemical descriptors computed by semi-empirical PM6 method were used as predictor variables. The cumulative variance of the dependent variable explained by the PLS components and determined by cross-validation (Q(2)cum), for the optimal models, is 0.637, indicating that the model has good predictive ability and robustness, and could be used to estimate Rair values of OCP. The main factors governing Rair of OCP are intermolecular interactions and the energy required for cave-forming in dissolution of OCP into triolein of SPMD.

  2. Results of microwave oven radiation leakage surveys at Fermilab

    SciTech Connect

    Miller, T.M.

    1987-01-01

    This report describes the results of routine microwave oven leakage surveys which were conducted at Fermi National Accelerator Laboratory (Fermilab) between 1974 and 1985. A total of 80 ovens representing 250 oven-years of operation were examined. The mean maximum leakage at any point 5 cm from the surface was 0.20 x/ 3.1 mW/cm/sup 2/. Although there was a great deal of scatter in sequential measurements for individual ovens, it appears that leakage tends to increase with oven age. The mean logarithmic rate of increase for the 55 ovens with usable data was 0.21 per year. Case histories of ovens leaking in excess of the standard were examined, and improvements in leakage monitoring programs are suggested.

  3. Cement Leakage into Adjacent Vertebral Body Following Percutaneous Vertebroplasty.

    PubMed

    Park, Jae Hoo; Kim, Hyeun Sung; Kim, Seok Won

    2016-06-01

    Percutaneous vertebroplasty (PV) is a minimally invasive procedure for osteoporotic vertebral compression fractures that fail to respond to conventional conservative treatment. It significantly improves intolerable back pain within hours, and has a low complication rate. Although rare, PV is not free of complications, most of which are directly related to cement leakage. Because of its association with new adjacent fracture, the importance of cement leakage into the adjacent disc space is paramount. Here, we report an interesting case of cement leakage into the adjacent upper vertebral body as well as disc space following PV. To the best of our knowledge, there has been no report of cement leakage into the adjacent vertebral body following PV. This rare case is presented along with a review of the literature.

  4. Prevention of biliary leakage after partial liver resection using topical hemostatic agents.

    PubMed

    Erdogan, Deha; Busch, Olivier R C; Gouma, Dirk J; van Gulik, Thomas M

    2007-01-01

    Liver resection is widely accepted as the only potentially curative treatment in malignant or benign hepatobiliary lesions. Although not frequent, biliary leakage is a postoperative complication which may have considerable consequences. The field of topical hemostatic agents is rapidly developing, with various products currently available. This article reviews the risk factors associated with biliary leakage and the methods used for testing or prevention of biliary leakage. A literature search was performed using key words related to experimental and clinical studies dealing with biliary leakage. Experimental studies assessed the potential bilio-static effect of different topical hemostatic agents after bile duct reconstruction. Clinical series show biliary leakage rates up to 12%. There is no evidence that flushing of the bile duct system after resection reduces the incidence of biliary leakage. Further controlled studies are needed to clarify the preventive effect of topical hemostatic agents on biliary leakage after liver resection.

  5. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  6. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  7. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  8. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  9. Temperature lapse rates at restricted thermodynamic equilibrium. Part II: Saturated air and further discussions

    NASA Astrophysics Data System (ADS)

    Björnbom, Pehr

    2016-03-01

    In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.

  10. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    PubMed

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  11. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.

  12. Effect of air pollutants on the photosynthetic and dark respiration rates of Phaseolus vulgaris

    SciTech Connect

    Borgman, L.M.

    1982-01-01

    The effects of continuous fumigations with pollutant gases on net and gross photosynthesis, dark respiration, respiration/gross photosynthesis ratios, root/shoot ratios, and chloroplast ultrastructure were examined. Plants of Phaseolus vulgaris L. Blue Lakes, were grown in paired plexi-glass chambers. Photosynthetic and respiration rates of 12-19 day-old plants were measured by infrared gas analysis. The plants were dried and root/shoot ratios calculated. A significant increase (28.9%) in gross photosynthesis of plants exposed to 10 ppm. CO was evident compared to the controls. Although net photosynthesis was not significantly affected by 0.035-0.04 ppm NO/sub 2/, gross photosynthesis, dark respiration, and R/G were significantly greater than in controls. Concentrations of 0.04-0.005 SO/sub 2/ resulted in significantly greater respiration and R/G ratios. This procedure resulted in significantly reduced net and gross photosynthetic rates. Ozone exposures of 10-20 ppm for eight hours a day, five days a week, resulted in progressively lower net and gross photosynthetic rates as the week progressed and R/G ratios were significantly higher. Ozone exposures of 6-8 ppm reduced net and gross photosynthetic rates significantly. Average root/shoot ratios of all exposed plants were significantly greater (14.8%) than those grown in pollutant-free air. The concentrations employed were comparable to the federal air pollution standards. It was concluded that these low levels of pollutant gases are capable of altering physiological activities which may result in reduced yield.

  13. Expedient methods of respiratory protection. II. Leakage tests. Final report

    SciTech Connect

    Cooper, D.W.; Hinds, W.C.; Price, J.M.; Weker, R.; Yee, H.S.

    1983-07-01

    The following readily-available materials were tested on a manikin connected to a breathing simulator to determine the fraction of an approximately 2-..mu..m-diameter aerosol that would leak around the seal of the materials to the manikin's face: cotton/polyester shirt material, cotton handkerchief material, toweling (a wash cloth), a surgical mask (Johnson and Johnson Co., model HRI 8137), and a NIOSH-approved disposable face mask (3M, model number 8710). The leakage tests were performed to supplement the measurements of penetration through the materials, conducted as the first phase of this investigation. The leakage tests were performed with the materials held on to the face by three methods, leakage fractions being determined from comparisons with the penetration of the same aerosol for the materials fully taped to the face. At a breathing rate of 37 liters per minute, mean leakages ranged from 0.0 percent to 63 percent. Mean penetrations exclusive of leakage ranged from 0.6 percent to 39 percent. Use of nylon hosiery material (panty hose) to hold the handkerchief material or the disposable face mask to the face was found to be very effective in preventing leakage. Such a combination could be expected to reduce leakage around the handkerchief to about ten percent or less in practice, and around the mask to less than one percent, offering substantial protection from accidentally generated aerosols. The reduction in leakage around the mask provided by the hosiery material suggests the adaptation and use of such an approach in regular industrial hygiene practice. The third and final phase of this investigation is underway, in which the penetration of the materials by particles with diameters between 0.05 and 0.5 ..mu..m is being measured and the effectiveness of the methods for dose reduction in the presence of radioactive aerosols is being modeled.

  14. THE CARBON DIOXIDE LEAKAGE FROM CHAMBERS MEASURED USING SULFUR HEXAFLUORIDE

    EPA Science Inventory

    In plant chamber studies, if Co2 leaking from a chamber is not quantified, it can lead to an overestimate of assimilation rates and an underestimate of respiration rates: consequently, it is critical that Co2 leakage be determined. Sulfur Hexafluoride (SF6) was introduced into t...

  15. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    SciTech Connect

    Edwards, D.J.

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  16. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    SciTech Connect

    Pellett, G.L.; Northam, G.B.; Wilson, L.G.; Jarrett, O. Jr.; Antcliff, R.R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF. 42 refs.

  17. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  18. Development rates of two Xenopsylla flea species in relation to air temperature and humidity.

    PubMed

    Krasnov, B R; Khokhlova, I S; Fielden, L J; Burdelova, N V

    2001-09-01

    The rate of development of immature fleas, Xenopsylla conformis Wagner and Xenopsylla ramesis Rothschild (Siphonaptera: Xenopsyllidae) was studied in the laboratory at 25 degrees C and 28 degrees C with 40, 55, 75 and 92% relative humidity (RH). These fleas are separately associated with the host jird Meriones crassus Sundevall in different microhabitats of the Ramon erosion cirque, Negev Highlands, Israel. This study of basic climatic factors in relation to flea bionomics provides the basis for ecological investigations to interpret reasons for paratopic local distributions of these two species of congeneric fleas on the same host. Both air temperature and RH were positively correlated with duration of egg and larval stages in both species. Change of humidity between egg and larval environments did not affect duration of larval development at any temperature. At each temperature and RH, the eggs and larvae of X. ramesis did not differ between males and females in the duration of their development, whereas female eggs and larvae of X. conformis usually developed significantly faster than those of males. For both species, male pupae developed slower than female pupae at the same air temperature and RH. Air temperature, but not RH, affected the duration of pupal development. At each humidity, duration of the pupal stage was significantly longer at 25 degrees C than at 28 degrees C: 15.3+/-1.7 vs. 11.7+/-1.2 days in X. conformis; 14.1+/-2.0 vs. 11.5+/-1.7 days in X. ramesis, with a significantly shorter pupal period of the latter species at 25 degrees C. These limited interspecific bionomic contrasts in relation to basic climatic factors appear insufficient to explain the differential habitat distributions of X. conformis and X. ramesis.

  19. Instantaneous Leakage Evaluation of Metal Cask at Drop Impact

    SciTech Connect

    Hirofumi Takeda; Norihiro Kageyama; Masumi Wataru; Ryoji Sonobe; Koji Shirai; Toshiari Saegusa

    2006-07-01

    There have been a lot of tests and analyses reported for evaluation of drop tests of metal casks. However, no quantitative measurement has ever been made for any instantaneous leakage through metal gaskets during the drop tests due to loosening of the bolts in the containments and lateral sliding of the lids. In order to determine a source term for radiation exposure dose assessment, it is necessary to obtain fundamental data of instantaneous leakage. In this study, leak tests were performed by using scale models of the lid structure and a full scale cask without impact limiters simulating drop accidents in a storage facility, with aim of measuring and evaluating any instantaneous leakage at drop impact. Prior to drop tests of a full scale metal cask, a series of leakage tests using scale models were carried out to establish the measurement method and to examine a relationship between the amount of the lateral sliding of the lid and the leak rate. It was determined that the leak rate did not depend on the lateral sliding speeds. Drop tests of a full scale metal cask without impact limiters were carried out by simulating drop accidents during handling in a storage facility. The target was designed to simulate a reinforced concrete floor in the facility. The first test was a horizontal drop from a height of 1 m. The second test simulated a rotational impact around an axis of a lower trunnion of the cask from the horizontal status at a height of 1 m. In the horizontal drop test, the amount of helium gas leakage was calculated by integrating the leak rate with time. The total amount of helium gas leakage from the primary and secondary lids was 1.99 x 10{sup -6} Pa.m{sup 3}. This value is 9.61 x 10{sup -9}% of the initially installed helium gas. The amount of leakage was insignificant. In the rotational drop test, the total amount of leakage from the primary and secondary lids was 1.74 x 10{sup -5} Pa.m{sup 3}. This value is 8.45 x 10{sup -8}% of the initially installed

  20. Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth

    2013-04-01

    Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk

  1. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.

    PubMed

    Reichman, Rivka; Roghani, Mohammadyousef; Willett, Evan J; Shirazi, Elham; Pennell, Kelly G

    2016-11-12

    Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.

  2. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  3. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  4. Effect on air quality and flow rate of fresh water production in humidification and dehumidification system

    NASA Astrophysics Data System (ADS)

    Rajasekar, K.; Pugazhenthi, R.; Selvaraju, A.; Manikandan, T.; Saravanan, R.

    2017-03-01

    Water is the vital need of any living organisms of the world when water fails, functions of nature cease the world. The water scarcity is one of the major problems to be faced by the developing world, which indicates a critical need to develop inexpensive small-scale desalination technologies. The cost of the desalination process takes more, so the world expecting the desalination plants with minimum operating cost, so the utilization of renewable energy source is a preferable one. This research article provides a glimpse of an overview of the humidification-dehumidification (HDH) based desalination method which uses the solar energy. The HDH based desalination method monitored and evaluated the performance parameters, i.e. mass flow rates of water and air.

  5. Leakage Current Measurements in SOI Devices

    DTIC Science & Technology

    1991-12-01

    Total dose response of both NMOS and PMOS FETs fabrication on SOI substrates were studied. Back channel leakage currents were studied. Two types of...dose of the back channel and front channel of SIMOX and ZMR SOI substrates are reported. Some preliminary reports on the buried oxide leakage current are also provided. Bach channel leakage, SIMOX, ZMR, Total Dose Response .

  6. "Geyser" leakage on fluorescein angiography.

    PubMed

    Levy, Jaime; Fagan, Xavier J; Lifshitz, Tova; Schneck, Marina

    2013-11-22

    An 82-year-old patient with diabetes was followed up due to moderate nonproliferative diabetic retinopathy with macular edema in the right eye. Visual acuity was 6/36. Focal macular laser was conducted (A). Three years later, the patient presented with blurry vision in the right eye. Visual acuity was 3/60. Vitreous hemorrhage was observed (B), and neovascularization of the disc was suspected (C). Fluorescein angiography (D, mid venous phase; E-F, recirculation phase) confirmed neovascularization of the disc and depicted a striking vertical leakage. Panretinal photocoagulation was started. Possible explanations for the "geyser" leakage may be either a partial posterior vitreous detachment allowing the fluorescein to track upwards but not elsewhere or a pocket of syneretic vitreous allowing the fluorescein passage in which to diffuse, much like the passage the blood would have taken.

  7. Studies of axial-leakage simulations for homogeneous and heterogeneous EBR-II core configurations

    SciTech Connect

    Grimm, K.N.; Meneghetti, D.

    1985-08-01

    When calculations of flux are done in less than three dimensions, leakage-absorption cross sections are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. Since the neutron flux is axially dependent, the leakages, and hence the leakage-absorption cross sections, are also axially dependent. Therefore, to obtain axial flux profiles (or reaction rates) for individual subassemblies, an XY-geometry calculation delineating each subassembly has to be done at several axial heights with space- and energy-dependent leakage-absorption cross sections that are appropriate for each height. This report discusses homogeneous and heterogeneous XY-geometry calculations at various axial locations and using several differing assumptions for the calculation of the leakage-absorption cross section. The positive (outward) leakage-absorption cross sections are modeled as actual leakage absorptions, but the negative (inward) leakage-absorption cross sections are modeled as either negative leakage absorptions (+-B/sup 2/ method) or positive downscatter cross sections (the ..sigma../sub s/(1 ..-->.. g) method). 3 refs., 52 figs., 10 tabs.

  8. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  9. Chemical characterization of indoor air of homes from communes in Xuan Wei, China, with high lung cancer mortality rates

    EPA Science Inventory

    In a rural county, Xuan Wei, China, the lung cancer mortality rate is among China's highest, especially in women. This mortality rate is more associated with indoor air burning of smoky coal, as opposed to smokeless coal or wood, for cooking and heating under unvented conditions....

  10. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index.

  11. Peptic ulcer perforation: sonographic imaging of active fluid leakage.

    PubMed

    Minardos, Ioannis; Ioannis, Minardos; Ziogana, Dimitra; Dimitra, Ziogana; Hristopoulos, Hristos; Hristos, Hristopoulos; Dermitzakis, Ioannis; Ioannis, Dermitzakis

    2006-01-01

    Sonography is not the method of choice for the evaluation of suspected peptic ulcer perforation (PUP). However, indirect sonographic signs and direct visualization of PUP have been reported by several authors in recent years. We report a case of an elderly woman who presented with severe abdominal pain and positive rebound sign, in whom abdominal sonography demonstrated indirect signs of PUP, the site of perforation, and active air fluid leakage through the perforated anterior prepyloric antral wall.

  12. Effectiveness of traffic-related elements in tree bark and pollen abortion rates for assessing air pollution exposure on respiratory mortality rates.

    PubMed

    Carvalho-Oliveira, Regiani; Amato-Lourenço, Luís F; Moreira, Tiana C L; Silva, Douglas R Rocha; Vieira, Bruna D; Mauad, Thais; Saiki, Mitiko; Saldiva, Paulo H Nascimento

    2017-02-01

    The majority of epidemiological studies correlate the cardiorespiratory effects of air pollution exposure by considering the concentrations of pollutants measured from conventional monitoring networks. The conventional air quality monitoring methods are expensive, and their data are insufficient for providing good spatial resolution. We hypothesized that bioassays using plants could effectively determine pollutant gradients, thus helping to assess the risks associated with air pollution exposure. The study regions were determined from different prevalent respiratory death distributions in the Sao Paulo municipality. Samples of tree flower buds were collected from twelve sites in four regional districts. The genotoxic effects caused by air pollution were tested through a pollen abortion bioassay. Elements derived from vehicular traffic that accumulated in tree barks were determined using energy-dispersive X-ray fluorescence spectrometry (EDXRF). Mortality data were collected from the mortality information program of Sao Paulo City. Principal component analysis (PCA) was applied to the concentrations of elements accumulated in tree barks. Pearson correlation and exponential regression were performed considering the elements, pollen abortion rates and mortality data. PCA identified five factors, of which four represented elements related to vehicular traffic. The elements Al, S, Fe, Mn, Cu, and Zn showed a strong correlation with mortality rates (R(2)>0.87) and pollen abortion rates (R(2)>0.82). These results demonstrate that tree barks and pollen abortion rates allow for correlations between vehicular traffic emissions and associated outcomes such as genotoxic effects and mortality data.

  13. Pyrolysis of polymeric materials. I - Effect of chemical structure, temperature, heating rate, and air flow on char yield and toxicity

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Casey, C. J.

    1979-01-01

    Various polymeric materials, including synthetic polymers and cellulosic materials, were evaluated at different temperatures, heating rates and air flow rates for thermophysical and toxicological responses. It is shown that char yields appeared to be a function of air access as much as of the chemical structure of the material. It is stated that the sensitivity of the apparent thermal stability of some materials to air access is so marked that thermogravimetric studies in oxygen-free atmospheres may be a consistently misleading approach to comparing synthetic polymers intended to increase fire safety. Toxicity also appeared to be a function of temperature and air access as much as of the chemical structure of the material. Toxicity of the gases evolved seemed to increase with increasing char yield for some polymers.

  14. Method of detecting leakage from geologic formations used to sequester CO.sub.2

    DOEpatents

    White, Curt; Wells, Arthur; Diehl, J. Rodney; Strazisar, Brian

    2010-04-27

    The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

  15. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  16. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution.

    PubMed

    Finch, Caleb E; Beltrán-Sánchez, Hiram; Crimmins, Eileen M

    2014-01-01

    The past 200 years have enabled remarkable increases in human lifespans through improvements in the living environment that have nearly eliminated infections as a cause of death through improved hygiene, public health, medicine, and nutrition. We argue that the limit to lifespan may be approaching. Since 1997, no one has exceeded Jeanne Calment's record of 122.5 years, despite an exponential increase of centenarians. Moreover, the background mortality may be approaching a lower limit. We calculate from Gompertz coefficients that further increases in longevity to approach a life expectancy of 100 years in 21st century cohorts would require 50% slower mortality rate accelerations, which would be a fundamental change in the rate of human aging. Looking into the 21st century, we see further challenges to health and longevity from the continued burning of fossil fuels that contribute to air pollution as well as global warming. Besides increased heat waves to which elderly are vulnerable, global warming is anticipated to increase ozone levels and facilitate the spread of pathogens. We anticipate continuing socioeconomic disparities in life expectancy.

  17. Model-based flow rate control for an orfice-type low-volume air sampler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...

  18. Relationships between strength and endurance parameters and air depletion rates in professional firefighters.

    PubMed

    Windisch, Stephanie; Seiberl, Wolfgang; Schwirtz, Ansgar; Hahn, Daniel

    2017-03-17

    The aim of this study was to quantify the physical demands of a simulated firefighting circuit and to establish the relationship between job performance and endurance and strength fitness measurements. On four separate days 41 professional firefighters (39 ± 9 yr, 179.6 ± 2.3 cm, 84.4 ± 9.2 kg, BMI 26.1 ± 2.8 kg/m(2)) performed treadmill testing, fitness testing (strength, balance and flexibility) and a simulated firefighting exercise. The firefighting exercise included ladder climbing (20 m), treadmill walking (200 m), pulling a wire rope hoist (15 times) and crawling an orientation section (50 m). Firefighting performance during the simulated exercise was evaluated by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Multiple regression analysis based on the TSA-model served for the identification of the physiological determinants most relevant for professional firefighting. Three main factors with great influence on firefighting performance were identified (70.1% of total explained variance): VO2peak, the time firefighter exercised below their individual ventilatory threshold and mean breathing frequency. Based on the identified main factors influencing firefighting performance we recommend a periodic preventive health screening for incumbents to monitor peak VO2 and individual ventilatory threshold.

  19. Relationships between strength and endurance parameters and air depletion rates in professional firefighters

    PubMed Central

    Windisch, Stephanie; Seiberl, Wolfgang; Schwirtz, Ansgar; Hahn, Daniel

    2017-01-01

    The aim of this study was to quantify the physical demands of a simulated firefighting circuit and to establish the relationship between job performance and endurance and strength fitness measurements. On four separate days 41 professional firefighters (39 ± 9 yr, 179.6 ± 2.3 cm, 84.4 ± 9.2 kg, BMI 26.1 ± 2.8 kg/m2) performed treadmill testing, fitness testing (strength, balance and flexibility) and a simulated firefighting exercise. The firefighting exercise included ladder climbing (20 m), treadmill walking (200 m), pulling a wire rope hoist (15 times) and crawling an orientation section (50 m). Firefighting performance during the simulated exercise was evaluated by a simple time-strain-air depletion model (TSA) taking the sum of z-transformed parameters of time to finish the exercise, strain in terms of mean heart rate, and air depletion from the breathing apparatus. Multiple regression analysis based on the TSA-model served for the identification of the physiological determinants most relevant for professional firefighting. Three main factors with great influence on firefighting performance were identified (70.1% of total explained variance): VO2peak, the time firefighter exercised below their individual ventilatory threshold and mean breathing frequency. Based on the identified main factors influencing firefighting performance we recommend a periodic preventive health screening for incumbents to monitor peak VO2 and individual ventilatory threshold. PMID:28303944

  20. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure.

    PubMed

    Park, J H; Spengler, J D; Yoon, D W; Dumyahn, T; Lee, K; Ozkaynak, H

    1998-01-01

    The air exchange rates or air changes per hour (ACH) were measured under 4 conditions in 3 stationary automobiles. The ACH ranged between 1.0 and 3.0 h-1 with windows closed and no mechanical ventilation, between 1.8 and 3.7 h-1 for windows closed with fan set on recirculation, between 13.3 and 26.1 h-1 for window open with no mechanical ventilation, and between 36.2 and 47.5 h-1 for window closed with the fan set on fresh air. ACHs for windows closed with no ventilation were higher for the older automobile than for the newer automobiles. With the windows closed and fan turned off, ACH was not influenced by wind speed (p > 0.05). When the window was open, ACH appeared to be greatly affected by wind speed (R2 = 0.86). These measurements are relevant to understanding exposures inside automobiles to sources such as dry-cleaned clothes, cigarettes and airbags. Therefore, to understand the in-vehicle exposure to these internal sources, perchloroethylene (PCE) emitted from dry-cleaned clothes and environmental tobacco smoke (ETS) inside a vehicle were modeled for simulated driving cycles. Airbag deployment was also modeled for estimating exposure level to alkaline particulate and carbon monoxide (CO). Average exposure to PCE inside a vehicle for 30 minutes period was high (approximately 780 micrograms/m3); however, this is only 6% of the two-week exposure that is influenced by the storage of dry cleaned clothing at home. On the other hand, the exposure levels of respirable suspended particulate (RSP) and formaldehyde due to ETS could reach 2.1 mg/m3 and 0.11 ppm, respectively, when a person smokes inside a driving car even with the window open. In modeling the in-vehicle concentrations following airbag deployment, the average CO level over 20 minutes would not appear to present problem (less than 28 ppm). The peak concentration of respirable particulate would have exceeded 140 mg/m3. Since most of the particle mass is composed of alkaline material, these high levels

  1. Microvascular leakage of plasma proteins after PUVA and UVA

    SciTech Connect

    Staberg, B.; Worm, A.M.; Rossing, N.; Brodthagen, H.

    1982-04-01

    The transcapillary escape rate of albumin (TERalb), is a parameter of the leakage of macromolecules from the total microvasculature. In patients with psoriasis short-term PUVA treatment induces an increase in TERalb. In this study TERalb was measured in 3 groups of normal humans treated with PUVA, UVA and 8-methoxypsoralen. Treatment with PUVA and UVA caused a statistically significant increase in TERalb, whereas treatment with 8-methoxypsoralen did not induce any measurable changes. It is concluded that the UVA irradiation causes the abnormal leakage of macromolecules, whereas psoralen is not the responsible component. Furthermore the phenomenon can be elicited in normals and is not based on a preexisting psoriasis.

  2. Importance of the PMMA viscoelastic rheology on the reduction of the leakage risk during osteoporotic bone augmentation: A numerical leakage model through a porous media.

    PubMed

    Alenezi, Salem; Jerban, Saeed; Elkoun, Saïd

    2017-01-01

    Osteoporotic fractures poses one of the most problematic health issues that affects millions of people by weakening their bones (Osteoporosis). Polymethylmethacrylate (PMMA) cement is usually used to augment the bone and stabilize the fractures. Despite the benefit of using PMMA, it might cause a leakage where the cement undesirably access the surrounding tissues or vessels and lead to a serious complications. Consequently, it is important to study the leakage phenomenon and associated geometric and operation interactions. Although the experimental leakage models have been reported in many studies, a representative numerical leakage model is not exist. Therefore, the objectives of the present paper are to: (a) to develop and validate a representative numerical leakage model; and (b) to investigate numerically and analytically the importance of the rheological parameters (viscosity and relaxation time) on the cement flow to reduce the risk of leakage. ANSYS Polyflow was utilized to implement a 2D numerical leakage model to study the interaction of complex rheological parameters of the cement with the operational and geometrical structure of the representative porous media. In this model, the cement (represented by the upper-convected Maxwell model) flows from the entrance (tip of an 8 gauge cannula) through a porous media with a leakage path (blood vessels) toward the output (Bottom side). The verified and validated numerical leakage model showed the importance of the elastic and viscous part of the cement to control the uniformity of the distributed cement and augmentation pressure, respectively. Moreover, increasing the flow rate can lead to reduce the risk of leakage since the elastic effect will increase. Geometrical parameters of the porous media has a minor effect on changing the elasticity and subsequently on the uniformity of the distributed cement. In conclusion, Cement rheological parameters are found to be the most influential parameters to reduce the

  3. Investigation on the influence of leakage clearance on the flow field and performance of scroll hydraulic pump

    NASA Astrophysics Data System (ADS)

    Sun, Shuaihui; Huang, Yi; Guo, Pengcheng; Zuo, Juanli; Luo, Xingqi

    2016-11-01

    In the present paper, the computer fluid dynamics(CFD) with dynamic mesh model had been applied in scroll hydraulic pump to obtain its flow field at different leakage clearance. The fluid force on the orbiting scroll, the mass flow rate and the hydraulic efficiency at different leakage clearance were calculated based on the flow field data. The results indicated that when the leakage clearance increased from 0.5mm to 1.5mm, the average pressure, maximum of pressure fluctuation, leakage jet flow velocity, shaft power, cavitation degree decreased and the leakage flow rate increased. If the leakage clearance was 2.0mm, the high pressure discharge fluid flowed through the clearance and led to the increase of the average pressure and fluid force. When the leakage clearance is 1.0mm, the average pressure is far lower than that at the 0.5mm clearance, and the hydraulic efficiency is the highest.

  4. Comparison BIPM.RI(I)-K8 of high dose rate 192Ir brachytherapy standards for reference air kerma rate of the NPL and the BIPM

    NASA Astrophysics Data System (ADS)

    Alvarez, J. T.; Sander, T.; de Pooter, J. A.; Allisy-Roberts, P. J.; Kessler, C.

    2014-01-01

    An indirect comparison of the standards for reference air kerma rate for 192Ir high dose rate brachytherapy sources of the National Physical Laboratory (NPL), United Kingdom, and of the Bureau International des Poids et Mesures (BIPM) was carried out at the NPL in June 2010. The comparison result, based on the calibration coefficients for a transfer standard and expressed as a ratio of the NPL and the BIPM standards for reference air kerma rate, is 0.9989 with a combined standard uncertainty of 0.0057. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Modelling evolution of air dose rates in river basins in Fukushima Prefecture affected by sediment-sorbed radiocesium redistribution

    NASA Astrophysics Data System (ADS)

    Malins, A.; Sakuma, K.; Nakanishi, T.; Kurikami, H.; Machida, M.; Kitamura, A.; Yamada, S.

    2015-12-01

    The radioactive 134Cs and 137Cs isotopes deposited over Fukushima Prefecture by the Fukushima Daiichi nuclear disaster are the predominant radiological concern for the years following the accident. This is because the energetic gamma radiation they emit on decay constitutes the majority of the elevated air dose rates that now afflict the region. Therefore, we developed a tool for calculating air dose rates from arbitrary radiocesium spatial distributions across the land surface and depth profiles within the ground. As cesium is strongly absorbed by clay soils, its primary redistribution mechanism within Fukushima Prefecture is by soil erosion and water-borne sediment transport. Each year between 0.1~1% of the total radiocesium inventory in the river basins neighboring Fukushima Daiichi is eroded from the land surface and enters into water courses, predominantly during typhoon storms. Although this is a small amount in relative terms, in absolute terms it corresponds to terabecquerels of 134Cs and 137Cs redistribution each year and this can affect the air dose rate at locations of high erosion and sediment deposition. This study inputs the results of sediment redistribution simulations into the dose rate evaluation tool to calculate the locations and magnitude of air dose rate changes due to radiocesium redistribution. The dose rate calculations are supported by handheld survey instrument results taken within the Prefecture.

  6. MO-D-213-07: RadShield: Semi- Automated Calculation of Air Kerma Rate and Barrier Thickness

    SciTech Connect

    DeLorenzo, M; Wu, D; Rutel, I; Yang, K

    2015-06-15

    Purpose: To develop the first Java-based semi-automated calculation program intended to aid professional radiation shielding design. Air-kerma rate and barrier thickness calculations are performed by implementing NCRP Report 147 formalism into a Graphical User Interface (GUI). The ultimate aim of this newly created software package is to reduce errors and improve radiographic and fluoroscopic room designs over manual approaches. Methods: Floor plans are first imported as images into the RadShield software program. These plans serve as templates for drawing barriers, occupied regions and x-ray tube locations. We have implemented sub-GUIs that allow the specification in regions and equipment for occupancy factors, design goals, number of patients, primary beam directions, source-to-patient distances and workload distributions. Once the user enters the above parameters, the program automatically calculates air-kerma rate at sampled points beyond all barriers. For each sample point, a corresponding minimum barrier thickness is calculated to meet the design goal. RadShield allows control over preshielding, sample point location and material types. Results: A functional GUI package was developed and tested. Examination of sample walls and source distributions yields a maximum percent difference of less than 0.1% between hand-calculated air-kerma rates and RadShield. Conclusion: The initial results demonstrated that RadShield calculates air-kerma rates and required barrier thicknesses with reliable accuracy and can be used to make radiation shielding design more efficient and accurate. This newly developed approach differs from conventional calculation methods in that it finds air-kerma rates and thickness requirements for many points outside the barriers, stores the information and selects the largest value needed to comply with NCRP Report 147 design goals. Floor plans, parameters, designs and reports can be saved and accessed later for modification and recalculation

  7. Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.

    PubMed

    Mai, Horace K W; Chan, Daniel W T; Burnett, John

    2003-09-01

    In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.

  8. Numerical studies on the performance of an aerosol respirator with faceseal leakage

    NASA Astrophysics Data System (ADS)

    Zaripov, S. K.; Mukhametzanov, I. T.; Grinshpun, S. A.

    2016-11-01

    We studied the efficiency of a facepiece filtering respirator (FFR) in presence of a measurable faceseal leakage using the previously developed model of a spherical sampler with porous layer. In our earlier study, the model was validated for a specific filter permeability value. In this follow-up study, we investigated the effect of permeability on the overall respirator performance accounting for the faceseal leakage. The Total Inward Leakage (TIL) was calculated as a function of the leakage-to-filter surface ratio and the particle diameter. A good correlation was found between the theoretical and experimental TIL values. The TIL value was shown to increase and the effect of particle size on TIL to decrease as the leakage-to- filter surface ratio grows. The model confirmed that within the most penetrating particle size range (∼50 nm) and at relatively low leakage-to-filter surface ratios, an FFR performs better (TIL is lower) when the filter has a lower permeability which should be anticipated as long as the flow through the filter represents the dominant particle penetration pathway. An increase in leak size causes the TIL to rise; furthermore, under certain leakage-to-filter surface ratios, TIL for ultrafine particles becomes essentially independent on the filter properties due to a greater contribution of the aerosol flow through the faceseal leakage. In contrast to the ultrafine fraction, the larger particles (e.g., 800 nm) entering a typical high- or medium-quality respirator filter are almost fully collected by the filter medium regardless of its permeability; at the same time, the fraction penetrated through the leakage appears to be permeability- dependent: higher permeability generally results in a lower pressure drop through the filter which increases the air flow through the filter at the expense of the leakage flow. The latter reduces the leakage effect thus improving the overall respiratory protection level. The findings of this study provide

  9. Blower-door techniques for measuring interzonal leakage

    SciTech Connect

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  10. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  11. Leakage effects in car underhood aerothermal management: temperature and heat flux analysis

    NASA Astrophysics Data System (ADS)

    Khaled, Mahmoud; Habchi, Charbel; Harambat, Fabien; Elmarakbi, Ahmed; Peerhossaini, Hassan

    2014-10-01

    Air leakage from the engine compartment of a vehicle comes mainly from the junctions of the vehicle hood and the front end grill, the vehicle wings, the optical and the windshield. The present paper studies the thermal impact of these air leakage zones on the components of the vehicle engine compartment through temperature and heat-flux measurements. The front wheels of the test vehicle are positioned on a dynamometer and driven by the vehicle engine. The engine compartment is instrumented with almost 100 surface and air thermocouples and 20 fluxmeters of normal gradients. Measurements were made for three different thermal operating points. Five leak-sealing configurations are studied.

  12. E-beam treatment of trichloroethylene-air mixtures: Products and rates

    NASA Astrophysics Data System (ADS)

    Mill, Theodore; Su, Minggong; David Yao, C. C.; Matthews, Stephen M.; Wang, Francis T. S.

    1997-09-01

    Electron beam (E-beam) treatment of 3000 ppmv trichloroethylene (TCE) vapor in dry and wet air led to rapid, nearly quantitative, conversion of TCE to dichloroacetyl chloride, plus small amounts of phosgene. Higher E-beam doses, up to 110 kGy, led to oxidation of the initial products to CO, CO 2, HCl and Cl 2. The results parallel results found for photo- and Cl-atom initiated oxidation of TCE vapor, and are accounted for by an efficient Cl-atom chain oxidation. Lack of effect of 28,000 ppmv water vapor (90% RH) on rates or products reflects a very high efficiency for the Cl-atom chain oxidation and the very slow reaction of vapor phase water with acyl halides. Irradiation experiments conducted with TCE dissolved in aerated and deaerated water at 10 and 300 ppm showed marked differences in radiolytic products from those found in the vapor phase. A preliminary cost estimate indicates that E-beam treatment of TCE vapor is very competitive with conventional activated carbon treatment and catalytic oxidation.

  13. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  14. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality and health symptoms.

    PubMed

    Maula, Henna; Hongisto, Valtteri; Naatula, Viivi; Haapakangas, Annu; Koskela, Hannu

    2017-04-05

    The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO2 level 2260 ppm). CO2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odour intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. This article is protected by copyright. All rights reserved.

  15. Factors affecting apical leakage assessment.

    PubMed

    Karagöz-Küçükay, I; Küçükay, S; Bayirli, G

    1993-07-01

    This study was conducted to evaluate the influence of immediate versus delayed immersion time, and passive dye immersion versus centrifuged dye on apical leakage measurements. Eighty-four extracted human teeth with single straight canals were instrumented and divided into four experimental groups of 20 teeth each plus 2 negative and 2 positive controls. Low-temperature injection thermoplasticized gutta-percha and sealer were used to obturate the root canals. In groups A and B the filling materials were allowed to set for 72 h before the teeth were placed in India ink. In groups C and D the teeth were placed in India ink immediately after obturation. Also, in groups B and D the teeth were centrifuged in India ink for 20 min at 3,000 rpm before being immersed in ink. After 72 h in India ink, the teeth were cleared, and the linear extent of ink penetration was measured with a stereomicroscope. Statistical analysis of the data revealed no significant difference in leakage among the experimental groups whether the teeth were immersed in ink immediately after obturation or after setting of the filling materials for 72 h, and whether or not the teeth were centrifuged in ink prior to immersion.

  16. Ablation rate, caries removal, and restoration using Nd:YAG and Er:YAG lasers and air abrasion

    NASA Astrophysics Data System (ADS)

    White, Joel M.

    1998-04-01

    This study evaluated the ablation rate in dentin and enamel of the Nd:YAG laser (1 - 2W, 10Hz) and the Er:YAG laser (1 - 2.5W, 10Hz), compared to the high-speed drill, low-speed drill and air abrasion (fine and extra-fine particle size). Subsequently, the effectiveness of caries removal and restoration in enamel of the Nd:YAG laser at the same powers and pulse repetition rate was compared to the high-speed drill, low-speed drill, and air abrasion. Enamel and dentin of 1mm thick mid-coronal sections from extracted third molars were ablated by Er:YAG laser ((lambda) equals 2.94 micrometer), Nd:YAG laser ((lambda) equals 1.06 micrometer) both with air/water spray, high-speed drill with 300 carbide bur, and low-speed drill with $1/4 round bur and air abrasions at 160 psi, with fine air abrasion at 50 micrometer and extra fine at 27 micrometer particle size. Removal (ablation) rate defined as dentin or enamel thickness divided by time required for perforation of the samples was determined for lasers, drills and air abrasion. Multifactor randomized ANOVA (p less than 0.05) considered removal rate as a function of treatment conditions. Removal Rate (micrometers per second) Enamel Dentin High-speed drill 273 +/- 47.34 493 +/- 1.73 Low-speed drill 0 42 +/- 14.25 Nd:YAG 2W 0 103 +/- 37 Er:YAG 2W 35 +/- 10 348 +/- 101 Air abrasion/fine 220 +/- 27 433 +/- 99 Air abrasion/extra fine 151 +/- 13 203 +/- 30 Er:YAG laser at 2W 10Hz ablated both enamel and dentin faster than the low-speed drill but slower than the high-speed drill, while the Nd:YAG laser at identical power and pulse rate did not ablate healthy enamel but was capable of removing dentin. To determine caries removal rate in enamel, extracted superficial carious molars (n equals 35) that included minimal explorer penetration and radiographic confirmation of caries extent were selected. Samples were randomly distributed into treatment groups: high-speed drill (HS), low-speed drill (LS), Nd:YAG laser (L), Nd:YAG with air

  17. Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil.

    PubMed

    Hada, Toshiko; Inoue, Yoshihiro; Shiraishi, Akiko; Hamashima, Hajime

    2003-06-01

    The leakage of K(+) ions from Staphylococcus aureus in response to tea tree oil (TTO) was investigated with an ion-selective electrode. The amount of leaked K(+) ions and the rate of leakage of K(+) ions induced by TTO were dependent on the concentration of TTO. Measurements of initial rates required less time than measurements of total amounts and provided an index of the interaction between TTO and the cell membrane. Thus, the initial rate of leakage might be a more useful measure of the antibacterial activity of TTO than the total amount.

  18. Zero leakage separable and semipermanent ducting joints

    NASA Technical Reports Server (NTRS)

    Mischel, H. T.

    1973-01-01

    A study program has been conducted to explore new methods of achieving zero leakage, separable and semipermanent, ducting joints for space flight vehicles. The study consisted of a search of literature of existing zero leakage methods, the generation of concepts of new methods of achieving the desired zero leakage criteria and the development of detailed analysis and design of a selected concept. Other techniques of leak detection were explored with a view toward improving this area.

  19. Energy Conservation Through Duct Leakage Reduction

    DTIC Science & Technology

    2004-02-26

    Energy Conservation Through Duct Leakage Reduction February 26, 2004 Rich Glatt – Lindab Inc. Report Documentation Page Form ApprovedOMB No. 0704...4. TITLE AND SUBTITLE Energy Conservation Through Duct Leakage Reduction 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Wall – DW that installs like SW - easiest installing DW system on the market – Eliminates the need for costly flanged connections – SMACNA Leakage

  20. EFFECT OF VENTILATION SYSTEMS AND AIR FILTERS ON DECAY RATES OF PARTICLES PRODUCED BY INDOOR SOURCES IN AN OCCUPIED TOWNHOUSE

    EPA Science Inventory

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we me...

  1. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  2. CHANGES IN HEART RATE VARIABILITY AND LUNG FUNCTION OBSERVED IN NC PATROL TROOPERS EXPOSED TO PM AND AIR TOXICS

    EPA Science Inventory

    Changes in Heart Rate Variability and Lung Function in NC Patrol Troopers exposed to PM and Air Toxics

    Michael Riediker1, Wayne E Cascio1, Robert B Devlin2, Thomas Griggs1&4, Margaret Herbst1, Ronald W Williams3, Steve P McCorquodale4, Philip A Bromberg1
    1) University o...

  3. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  4. Leakage-current properties of encapsulants

    NASA Technical Reports Server (NTRS)

    Wen, L. C.

    1986-01-01

    A theoretical modeling of leakage current in ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB) modules is being developed and is described. The modeling effort derives mathematical relationships for the bulk and surface conductivites of EVA and PVB, the surface conductivities of glass and polymeric films, and the EVA and PVB pottants, all as functions of environmental parameters. Results from the modeling indicate that for glass/EVA, the glass surface controls the interfacial conductivity, although EVA bulk conductivity controls total leakage current. For PVB/glass, the interface conductivity controls leakage currents for relative humidity (RH) less than 40 to 50%, but PVB bulk conductivity controls leakage current above 50% RH.

  5. The IPEM code of practice for determination of the reference air kerma rate for HDR (192)Ir brachytherapy sources based on the NPL air kerma standard.

    PubMed

    Bidmead, A M; Sander, T; Locks, S M; Lee, C D; Aird, E G A; Nutbrown, R F; Flynn, A

    2010-06-07

    This paper contains the recommendations of the high dose rate (HDR) brachytherapy working party of the UK Institute of Physics and Engineering in Medicine (IPEM). The recommendations consist of a Code of Practice (COP) for the UK for measuring the reference air kerma rate (RAKR) of HDR (192)Ir brachytherapy sources. In 2004, the National Physical Laboratory (NPL) commissioned a primary standard for the realization of RAKR of HDR (192)Ir brachytherapy sources. This has meant that it is now possible to calibrate ionization chambers directly traceable to an air kerma standard using an (192)Ir source (Sander and Nutbrown 2006 NPL Report DQL-RD 004 (Teddington: NPL) http://publications.npl.co.uk). In order to use the source specification in terms of either RAKR, Κ(R) (ICRU 1985 ICRU Report No 38 (Washington, DC: ICRU); ICRU 1997 ICRU Report No 58 (Bethesda, MD: ICRU)), or air kerma strength, S(K) (Nath et al 1995 Med. Phys. 22 209-34), it has been necessary to develop algorithms that can calculate the dose at any point around brachytherapy sources within the patient tissues. The AAPM TG-43 protocol (Nath et al 1995 Med. Phys. 22 209-34) and the 2004 update TG-43U1 (Rivard et al 2004 Med. Phys. 31 633-74) have been developed more fully than any other protocol and are widely used in commercial treatment planning systems. Since the TG-43 formalism uses the quantity air kerma strength, whereas this COP uses RAKR, a unit conversion from RAKR to air kerma strength was included in the appendix to this COP. It is recommended that the measured RAKR determined with a calibrated well chamber traceable to the NPL (192)Ir primary standard is used in the treatment planning system. The measurement uncertainty in the source calibration based on the system described in this COP has been reduced considerably compared to other methods based on interpolation techniques.

  6. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  7. Is volcanic air pollution associated with decreased heart-rate variability?

    PubMed Central

    Chow, Dominic C; Grandinetti, Andrew; Fernandez, Ed; Sutton, A J; Elias, Tamar; Brooks, Barbara; Tam, Elizabeth K

    2010-01-01

    Objectives To determine the autonomic cardiovascular control among residents of Hawaii who are exposed to varying levels of volcanic air pollution (vog), which consists largely of sulfur dioxide (SO2) and acid aerosols. Methods In a cross-sectional study between April 2006 and June 2008, the authors measured cardiovagal autonomic function by heart-rate variability (HRV) in 72 healthy individuals who lived in four exposure zones on Hawaii Island: vog-free (n=18); episodic exposure to SO2 >200 ppb and acid aerosol (n=19); chronic exposure to SO2 ≥30 ppb and acid aerosol (n=15); and chronic exposure to acid aerosols (n=20). Individuals with diabetes or heart disease, or who had smoked in the preceding month were excluded. HRV was measured in all subjects during rest, paced breathing and active standing (Ewing manoeuvre). HRV was analysed in time and frequency domains and compared between the four exposure zones. Results There were no significant differences between exposure zones in HRV, in either time or frequency domains, even after adjustment for age, gender, ethnicity and body mass index. There was no significant HRV change in three individuals in whom HRV was measured before and during an exposure to combined SO2 100–250 ppb and concentration of respirable particles of diameter ≤2.5 μ (PM2.5) >500 μg/m3. Age was significantly correlated with time-domain parameters during paced breathing and the Ewing manoeuvre. Conclusions This study of healthy individuals found no appreciable effects of vog on the autonomic nervous system. PMID:21546995

  8. The air dose rate around the Fukushima Dai-ichi Nuclear Power Plant: its spatial characteristics and temporal changes until December 2012.

    PubMed

    Mikami, Satoshi; Maeyama, Takeshi; Hoshide, Yoshifumi; Sakamoto, Ryuichi; Sato, Shoji; Okuda, Naotoshi; Sato, Tetsuro; Takemiya, Hiroshi; Saito, Kimiaki

    2015-01-01

    Distribution maps of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant were constructed using the results of measurement obtained from approximately 6500 locations (at most) per measurement period. The measurements were conducted 1 m above the ground using survey meters in flat and spatially open locations. Spatial distribution and temporal change of the air dose rate in the area were revealed by examining the resultant distribution maps. The observed reduction rate of the air dose rate over the 18 months between June 2011 and December 2012 was greater than that calculated from radioactive decay of radiocesium by 10% in relative percentage except decontaminated sites. This 10% difference in the reduction of the air dose rate can be explained by the mobility of radiocesium in the depth direction. In the region where the air dose rate was lower than 0.25 μSv h(-1) on June 2011, the reduction of the air dose rate was observed to be smaller than that of the other dose rate regions, and it was in fact smaller than the reduction rate caused by radioactive decay alone. In contrast, the reduction rate was larger in regions with higher air dose rates. In flat and spatially open locations, no significant difference in the reduction tendency of air dose rates was observed among different land use classifications (rice fields, farmland, forests, and building sites).

  9. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  10. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  11. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  12. Authentic Assessment in the Geometry Classroom: Calculating the Classroom Air-Exchange Rate.

    ERIC Educational Resources Information Center

    Erich, David J.

    2002-01-01

    Introduces a room air-exchange activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)

  13. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  14. Western Mojave Desert, Rate of Progress Demonstration; Proposed Approval of California Air Plan Revision

    EPA Pesticide Factsheets

    EPA is proposing to approve a state implementation plan revision submitted by the State of California to meet Clean Air Act requirements applicable to the Western Mojave Desert (WMD) ozone nonattainment area.

  15. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  16. 49 CFR 236.735 - Current, leakage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2013-10-01 2013-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  17. 49 CFR 236.735 - Current, leakage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2014-10-01 2014-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  18. 49 CFR 236.735 - Current, leakage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2012-10-01 2012-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  19. 49 CFR 236.735 - Current, leakage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2011-10-01 2011-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  20. 49 CFR 236.735 - Current, leakage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Current, leakage. A stray electric current of relatively small value which flows through or across the... 49 Transportation 4 2010-10-01 2010-10-01 false Current, leakage. 236.735 Section 236.735 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD...

  1. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be...

  2. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be...

  3. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be...

  4. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be...

  5. 16 CFR 1507.5 - Pyrotechnic leakage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Pyrotechnic leakage. 1507.5 Section 1507.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES § 1507.5 Pyrotechnic leakage. The pyrotechnic chamber in fireworks devices shall be...

  6. Bag Test Measures Leakage From Insulated Pipe

    NASA Technical Reports Server (NTRS)

    Schock, Kent D.; Easter, Barry P.

    1994-01-01

    Test quantifies leakage of gas from pipe even though pipe covered with insulation. Involves use of helium analyzer to measure concentration of helium in impermeable bag around pipe. Test administered after standard soap-solution bubble test indicates presence and general class of leakage.

  7. Radiofrequency radiation leakage from microwave ovens.

    PubMed

    Lahham, Adnan; Sharabati, Afifeh

    2013-12-01

    This work presents data on the amount of radiation leakage from 117 microwave ovens in domestic and restaurant use in the West Bank, Palestine. The study of leakage is based on the measurements of radiation emissions from the oven in real-life conditions by using a frequency selective field strength measuring system. The power density from individual ovens was measured at a distance of 1 m and at the height of centre of door screen. The tested ovens were of different types, models with operating powers between 1000 and 1600 W and ages ranging from 1 month to >20 y, including 16 ovens with unknown ages. The amount of radiation leakage at a distance of 1 m was found to vary from 0.43 to 16.4 μW cm(-2) with an average value equalling 3.64 μW cm(-2). Leakages from all tested microwave ovens except for seven ovens (∼6 % of the total) were below 10 μW cm(-2). The highest radiation leakage from any tested oven was ∼16.4 μW cm(-2), and found in two cases only. In no case did the leakage exceed the limit of 1 mW cm(-2) recommended by the ICNIRP for 2.45-GHz radiofrequency. This study confirms a linear correlation between the amount of leakage and both oven age and operating power, with a stronger dependence of leakage on age.

  8. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  9. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.

  10. A two-dimensional simulation of plasma leakage due to dengue infection

    NASA Astrophysics Data System (ADS)

    Nuraini, N.; Windarto, Jayanti, Swarna; Soewono, Edy

    2014-03-01

    Dengue Hemorrhagic Fever (DHF) is a disease caused by Dengue virus infection. One major characteristic in a patient with DHF is the occurrence of plasma leakage. Plasma leakage is a consequence of the immune system mechanism which activates cytokine. As a result, permeability of vascular will increase. Another characteristic in a DHF patient is hypoalbuminea (decreasing of albumin concentration). Plasma leakage can be modelled by constructing mathematical model of albumin concentration in plasma blood due to increasing of cytokine. In this paper, decreasing of albumin concentration in blood plasma is modelled using diffusion equation. In addition, two-dimensional numerical simulations of albumin concentration are also presented. From the simulation, it is found that the greater leakage rate or the wider leakage area, the greater decreasing albumin concentration will be. Furthermore, when time t increases, the albumin concentration decreases to zero.

  11. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  12. Leakage diffusion of underwater crude oil in wind fields.

    PubMed

    Chen, Liqiong; Liu, Qi; Li, Yunyun; Lu, Rui; Wu, Shijuan; Li, Xin; Hou, Tao

    2016-01-01

    Leakage of underwater crude oil pipes causes severe pollution to soil and water, and results in great economic loss. To predict the diffusion area of spilled oil before it reaches the water's surface and to reduce the time required for emergency response, numerical simulations were conducted on underwater spilled oil diffusion of bare crude oil pipes using FLUENT software. The influences of water-surface wind speed, leakage hole diameter, water velocity, and initial leakage velocity on oil diffusion were analyzed. The results revealed the following: (1) with wind blowing on the surface of the water, the vertical displacement of spilled oil jet-flow was affected by the combined action of water flow and wind, making it difficult for a high-speed jet-flow to form. A horizontal oil flow mostly moved in the direction of the bottom water, and frontier oil droplets dispersed quickly; (2) during the diffusion of spilled oil in water, the maximum horizontal displacement mostly increased linearly, while the maximum vertical displacement initially increased quickly and then slowed; (3) the greater the initial velocity and leakage hole diameter, the higher the oil jet-flow and the wider the diffusion area; the higher the water flow rate and water-surface wind speed, the smaller the vertical displacement of spilled oil. The existence of water-surface wind had no obvious influence on the horizontal displacement of underwater spilled oil.

  13. Leakage assessment and identification of fluid leakage scenarios at CO2 storage sites (Invited)

    NASA Astrophysics Data System (ADS)

    Bunz, S.

    2013-12-01

    scenarios have been formulated for both the Sleipner and Snøhvit CO2 storage sites. The leakage scenarios largely include leakage along a chimney (blow-out structure) or along a fault but are adapted to the specific geological background at each storage site and hence, depending on its exact subsurface location and context may yield a complex migration pathway for CO2 from the storage formation to the seafloor. Initial modeling work shows that the leakage scenarios can be successfully implemented into the simulations of fluid flow. This modeling work is integrated with seismic modeling work on detection thresholds of CO2 in the overburden in order to develop simulation-assisted monitoring strategies for seabed and sub-seabed leakage detection of CO2. Within ECO2, the modeling of leakage scenarios provides important constraints on flux rates at the seafloor interface for associated activities in other work packages.

  14. Measurements of air dose rates in and around houses in the Fukushima Prefecture in Japan after the Fukushima accident.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro; Saito, Kimiaki

    2017-01-01

    Measurements of air dose rates for 192 houses in a less contaminated area (<0.5 μSv h(-1)) of the Fukushima Prefecture in Japan were conducted in both living rooms and/or bedrooms using optically stimulated luminescence (OSL) dosimeters and around the houses via a man-borne survey at intervals of several meters. The relation of the two air dose rates (inside and outside) for each house, including the background from natural radionuclides, was divided into several categories, determined by construction materials (light and heavy) and floor number, with the dose reduction factors being expressed as the ratio of the dose inside to that outside the house. For wooden and lightweight steel houses (classed as light), the dose rates inside and outside the houses showed a positive correlation and linear regression with a slope-intercept form due to the natural background, although the degree of correlation was not very high. The regression coefficient, i.e., the average dose reduction factor, was 0.38 on the first floor and 0.49 on the second floor. It was found that the contribution of natural radiation cannot be neglected when we consider dose reduction factors in less contaminated areas. The reductions in indoor dose rates are observed because a patch of ground under each house is not contaminated (this is the so-called uncontaminated effect) since the shielding capability of light construction materials is typically low. For reinforced steel-framed concrete houses (classed as heavy), the dose rates inside the houses did not show a correlation with those outside the houses due to the substantial shielding capability of these materials. The average indoor dose rates were slightly higher than the arithmetic mean value of the outdoor dose rates from the natural background because concrete acts as a source of natural radionuclides. The characteristics of the uncontaminated effect were clarified through Monte Carlo simulations. It was found that there is a great variation

  15. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.

    PubMed

    Dumont, Éric; Héquet, Valérie

    2017-03-06

    This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges).

  16. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect

    Pang, S.; Dakin, M.

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  17. Preoperative Nutritional Therapy Reduces the Risk of Anastomotic Leakage in Patients with Crohn's Disease Requiring Resections

    PubMed Central

    Guo, Zhen; Guo, Dong; Gong, Jianfeng; Zhu, Weiming; Zuo, Lugen; Sun, Jing; Li, Ning; Li, Jieshou

    2016-01-01

    Background. The rate of anastomotic leakage is high in surgeries for Crohn's disease, and therefore a temporary diverting stoma is often needed. We conducted this study to investigate whether preoperative nutritional therapy could reduce the risk of anastomotic leakage while decreasing the frequency of temporary stoma formation. Methods. This was a retrospective study. Patients requiring bowel resections due to Crohn's disease were reviewed. The rate of anastomotic leakage and temporary diverting stoma was compared between patients who received preoperative nutritional therapy and those on a normal diet before surgery. Possible predictive factors for anastomotic leakage were also analyzed. Results. One hundred and fourteen patients undergoing 123 surgeries were included. Patients in nutritional therapy (NT) group had a significantly lower level of C-reactive protein on the day before surgery. Patients in NT group suffered less anastomotic leakage (2.3% versus 17.9%, P = 0.023) and less temporary diverting stoma (22.8% versus 40.9%, P = 0.036). Serum albumin of the day before surgery ≤35 g/L and preoperative nutritional therapy were identified as factors which independently affected the rate of anastomotic leakage. Conclusion. Preoperative nutritional therapy reduced the risk of anastomotic leakage and the frequency of temporary diverting stoma formation in patients with Crohn's disease requiring resections. PMID:26858749

  18. Real time monitoring of petroleum leakage detection using etched fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shivananju, B. N.; Kiran, M.; Nithin, S. P.; Vidya, M. J.; Hegde, G. M.; Asokan, S.

    2013-06-01

    Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.

  19. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment.

  20. California residential indoor air quality study. Volume 2. Carbon monoxide and air exchange rate: A univariate and multivariate analysis. Topical report

    SciTech Connect

    Colome, S.D.; Wilson, A.L.; Tian, Y.

    1994-07-01

    This second volume provides a systematic evaluation of the data set focusing on the relationships of the recorded parameters with the following four outcome measures: indoor 48-hour average CO; net 48-hour average indoor minus outdoor CO; air exchange rates; and maximum 8-hour average indoor CO. Over 350 variables were measured and/or recorded for each house in the pilot study. These parameters included the concentrations of pollutants of interest (CO, benzene, NO2, toluene, radon, formaldehyde, and methane), housing characteristics (e.g., cooking fuel, burner adjustments, proper venting) and occupant practices (e.g., cigarette smoking, heating with the range/oven).

  1. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature.

    PubMed

    Wang, Kaicun; Zhou, Chunlüe

    2015-07-22

    Global analyses of surface mean air temperature (T(m)) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depend on the calculation methods of T(m). Existing global analyses calculate T(m) from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using T(m) calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  2. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  3. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  4. Elementary stage rate coefficients of heterogeneous catalytic recombination of dissociated air on thermal protective surfaces from ab initio approach

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Kroupnov, A. A.; Kovalev, V. L.

    2015-08-01

    Elementary stage rate coefficients of the full system of kinetic equations describing heterogeneous catalytic recombination of the dissociated air on the surfaces of thermal protective ceramic coatings of β-cristobalite and α-Al2O3 are determined using the quantum-mechanical calculations within the framework of cluster models and literature data. Both the impact and associative recombination processes of adsorbed oxygen and nitrogen atoms are taken into account.

  5. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  6. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  7. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  8. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    PubMed

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  9. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2009-03-01

    and plasma signal. The air plasma intensity was measured using a 40 kHz ultrasonic transducer, while the terahertz radiation was measured by a... calibrate the time axis of the streak camera ................................................... 28 8. Processed data used to calibrate the time axis of...field can be measured 5 directly, but is difficult to manipulate and requires bulky waveguides. However, in optics, radiation is viewed as light

  10. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    PubMed

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO2, VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its low

  11. Detecting and Reducing Gate Leakage in Superconducting Qubits using Randomized Benchmarking

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Kelly, J.; Barends, R.; Campbell, B.; Chen, Y.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Hoi, I.-C.; Jeffrey, E.; Megrant, A.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M.

    2015-03-01

    Superconducting qubits are a promising platform for building a quantum computer due to their scalability and ease of control. One potential drawback is the existence of more than two energy levels, which can allow the qubit to leak out of the computational subspace when performing operations. This leakage error is particularly detrimental in the surface code scheme, where it leads to correlated errors. I will present a method for characterizing gate leakage rates using randomized benchmarking, and present strategies based on these results for reducing leakage.

  12. Human subject testing of leakage in a loose-fitting PAPR

    SciTech Connect

    Johnson, A.T.; Koh, F.C.; Jamshidi, S.; Rehak, T.E.

    2008-07-01

    Leakage from loose-fitting PAPRs (powered air-purifying respirators) can compromise the safety of wearers. The Martindale Centurion MAX multifunction PAPR is a loose-fitting PAPR that also incorporates head, eye, and ear protection. This respirator is used in mines where coal dust usually is controlled by ventilation systems. Should the respirator be depended on for significant respiratory protection? Ten human volunteers were asked to wear the Centurion MAX inside a fog-filled chamber. Their inhalation flow rates were measured with small pitot-tube flowmeters held inside their mouths. They were video imaged while they breathed deeply, and the points at which the fog reached their mouths were determined. Results showed that an average of 1.1 L could be inhaled before contaminated air reached the mouth. As long as the blower purges contamination from inside the face piece during exhalation, the 1.1 L acts as a buffer against contaminants leaked due to overbreathing of blower flow rate.

  13. Multigas Leakage Correction in Static Environmental Chambers Using Sulfur Hexafluoride and Raman Spectroscopy.

    PubMed

    Jochum, Tobias; von Fischer, Joseph C; Trumbore, Susan; Popp, Jürgen; Frosch, Torsten

    2015-11-03

    In static environmental chamber experiments, the precision of gas flux measurements can be significantly improved by a thorough gas leakage correction to avoid under- or overestimation of biological activity such as respiration or photosynthesis. Especially in the case of small biological net gas exchange rates or gas accumulation phases during long environmental monitoring experiments, gas leakage fluxes could distort the analysis of the biogenic gas kinetics. Here we propose and demonstrate a general protocol for online correction of diffusion-driven gas leakage in plant chambers by simultaneous quantification of the inert tracer sulfur hexafluoride (SF6) and the investigated biogenic gases using enhanced Raman spectroscopy. By quantifying the leakage rates of carbon dioxide (CO2), methane (CH4), and hydrogen (H2) simultaneously with SF6 in the test chamber, their effective diffusivity ratios of approximately 1.60, 1.96, and 5.65 were determined, each related to SF6. Because our experiments suggest that the effective diffusivity ratios are reproducible for an individual static environmental chamber, even under varying concentration gradients and slight changes of the chamber sealing, an experimental method to quantify gas leakage fluxes by using effective diffusivity ratios and SF6 leakage fluxes is proposed. The method is demonstrated by quantifying the CO2 net exchange rate of a plant-soil ecosystem (Mirabilis jalapa). By knowing the effective chamber diffusivity ratio CO2/SF6 and the measured SF6 leakage rate during the experiment, the leakage contribution to the total CO2 exchange rate could be calculated and the biological net CO2 concentration change within the chamber atmosphere determined.

  14. A neural network based optimization system provides on-line coal fired furnace air flow balancing for heat rate improvement and NO{sub x} reduction

    SciTech Connect

    Radl, B.J.; Roland, W. Jr.

    1995-12-31

    The optimization system provides on-line, real-time air flow balancing without extensive testing or large complex physical models. NO{sub x} emissions and unit heat rate are very sensitive to air distribution and turbulence in the combustion zone. These issues are continuously changing due to ambient conditions, coal quality and the condition of plant equipment. This report discusses applying on-line, real-time and neural network to adjust secondary air flow and overfire air flow to reduce NO{sub x} and improve heat rate on various coal fired boiler designs.

  15. [Bile leakage in laparoscopic cholecystectomy. Authors' experience].

    PubMed

    Sperlongano, P; Pisaniello, D; Corsale, I; Cozza, G

    1999-01-01

    The Authors report their experience of two patients with bile leakage following videocholecystectomy (VLC) among a series of 163 cases. Reviewing the Literature, they analyze possible causes and mechanisms of bile spillage occurring after VCL. They also suggest some guidelines for a safe VLC, stressing the importance of the routinary placement of the sub-hepatic drainage to remove 48 hours to early detect possible bile leakages after surgery.

  16. Technology evaluation for space station atmospheric leakage

    SciTech Connect

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  17. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2007-01-01

    Seal leakage decreases with increasing surface speed due to reduced clearances from disk centrifugal growth. Annular and labyrinth seal leakage are 2-3 times greater than brush and finger seal leakage. Seal leakage rates increase with increasing temperature because of seal clearance growth due to different coefficients of thermal expansion between the seal and test disk. Seal power loss is not strongly affected by inlet temperature. Seal power loss increases with increasing surface speed, seal pressure differential, mass flow rate or flow factor, and radial clearance. The brush and finger seals had nearly the same power loss. Annular and labyrinth seal power loss were higher than finger or brush seal power loss. The brush seal power loss was the lowest and 15-30% lower than annular and labyrinth seal power loss.

  18. Leakage diagnostics, sealant longevity, sizing and technologytransfer in residential thermal distribution systems: Part II.Residential thermal Distribution Systesm, Phase VI FinalReport

    SciTech Connect

    Buchanan, C.; Modera, M.; Sherman, M.; Siegel, J.; Walker, I.; Wang, D.

    1998-12-01

    This report builds on and extends our previous efforts as described in "Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal Distribution Systems- CIEE Residential Thermal Distribution Systems Phase V Final Report, October 1997". New developments include defining combined duct and equipment efficiencies in a concept called "Tons At the Register" and on performance issues related to field use of the aerosol sealant technology. Some of the key results discussed in this report include: o Register, boot and air handler cabinet leakage can often represent a significant fraction of the total duct leakage in new construction. Because of the large range of pressures in duct systems an accurate characterization may require separating these components through improved leakage testing. o Conventional duct tape failed our accelerated longevity testing and is not, therefore, considered generally acceptable for use in sealing duct systems. Many other tapes and sealing approaches are available and practical and have passed our longevity tests. o Simulations of summer temperature pull-down time have shown that duct system improvements can be combined with equipment downsizing to save first cost, energy consumption, and peak power and still provide equivalent or superior comfort. o Air conditioner name plate capacity ratings alone are a poor indicator of how much cooling will actually be delivered to the conditioned space. Duct system efficiency can have as large an impact on performance as variations in SEER. o Mechanical duct cleaning techniques do not have an adverse impact on the ducts sealed with the Aerosol sealant. The material typically used in Aerosol sealing techniques does not appear to present a health or safety hazard. Results from this study were used by the California Energy Commission in the formation of the current Energy Efficiency Standards for Low-Rise Residential Buildings (CEC, (1998)), often referred to as Title 24

  19. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-03-01

    The oxidation rates of nuclear-grade graphite IG-110 in the kinetically-controlled temperature regime of graphite oxidation were predicted and compared in Very High Temperature Reactor air ingress accident scenarios. The oxidative mass loss of graphite was measured thermogravimetrically from 873 to 1873 K in 100% air (21 mol%). The activation energy was found to be 222.07 kJ/mol, and the order of reaction with respect to oxygen concentration is 0.76. The surfaces of the samples were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy before and after oxidation. These results are compared with those available in the literature, and our recently reported results for NBG-18 nuclear-grade graphite using the same technique.

  20. EFFECTS OF LEAKAGE NEUTRAL PARTICLES ON SHOCKS

    SciTech Connect

    Ohira, Yutaka

    2012-10-20

    In this paper, we investigate effects of neutral particles on shocks propagating into the partially ionized medium. We find that for 120 km s{sup -1} < u {sub sh} < 3000 km s{sup -1} (u {sub sh} is the shock velocity), about 10% of upstream neutral particles leak into the upstream region from the downstream region. Moreover, we investigate how the leakage neutral particles affect the upstream structure of the shock and particle accelerations. Using four-fluid approximations (upstream ions, upstream neutral particles, leakage neutral particles, and pickup ions), we provide analytical solutions of the precursor structure due to leakage neutral particles. It is shown that the upstream flow is decelerated in the precursor region and the shock compression ratio becomes smaller than without leakage neutral particles, but the total compression ratio does not change. Even if leakage of neutral particles is small (a few percent of total upstream particles), this smaller compression ratio of the shock can explain steep gamma-ray spectra from young supernova remnants. Furthermore, leakage neutral particles could amplify the magnetic field and heat the upstream region.

  1. Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Penkett, S. A.; Monks, P. S.; Carpenter, L. J.; Clemitshaw, K. C.; Ayers, G. P.; Gillett, R. W.; Galbally, I. E.; Meyer, C. P.

    1997-06-01

    Measurements of the sum of inorganic and organic peroxy radicals (RO2) and photolysis rate coefficients J(NO2) and J(O1D) have been made at Cape Grim, Tasmania in the course of a comprehensive experiment which studied photochemistry in the unpolluted marine boundary layer. The SOAPEX (Southern Ocean Atmospheric Photochemistry Experiment) campaign included measurements of ozone, peroxides, nitrogen oxides, water vapor, and many other parameters. This first full length paper concerned with the experiment focuses on the types of relationships observed between peroxy radicals and J(NO2), J(O1D) and √[J(O1D)] in different air masses in which ozone is either produced or destroyed by photochemistry. It was found that in baseline air with ozone loss, RO2 was proportional to √[J(O1D)], whereas in more polluted air RO2 was proportional to J(O1D). Simple algorithms were derived to explain these relationships and also to calculate the concentrations of OH radicals in baseline air from the instantaneous RO2 concentrations. The signal to noise ratio of the peroxy radical measurements was up to 10 for 1-min values and much higher than in other previous deployments of the instrument in the northern hemisphere, leading to the confident determination of the relationships between RO2 and J(O1D) in different conditions. The absolute concentration Of RO2 determined in these experiments is in some doubt, but this does not affect our conclusions concerned either with the behavior of peroxy radicals with changing light levels or with the concentrations of OH calculated from RO2. The results provide confidence that the level of understanding of the photochemistry of ozone leading to the production of peroxide via recombination of peroxy radicals in clean air environments is well advanced.

  2. Crash Rates of Scheduled Commuter and Air Carrier Flights Before and After a Regulatory Change

    PubMed Central

    Baker, Susan P.; Groff, Loren; Haaland, Wren; Qiang, Yandong; Rebok, George W.; Li, Guohua

    2010-01-01

    Introduction In 1997, in an effort to reduce the crash rate of scheduled commuter flights, the FAA required aircraft with 10–30 passenger seats to operate under stricter rules. Training and other requirements of 14 CFR Part 121 rules were applied to these midsize commuters, which previously had operated under the less strict Part 135 rules. Published crash rates obscured changes related to aircraft size. This research was undertaken to determine whether the rule change affected crash rates of aircraft with 10–30 passenger seats. Method We determined the number of passenger seats on each Part 135 or Part 121 aircraft that crashed between 1983 and 2007. For aircraft with < 10, 10–30, and > 30 seats, we estimated the numbers of departures and crash rates, adjusting for changes in total departures and numbers of in-service aircraft. Results The Part 135 crash rate tripled in 1997 when commuters with 10–30 seats were excluded, reflecting the administrative change. However, the crash rate of aircraft with 10–30 passenger seats began to decline 4 yr before the rule change; thereafter, their rate was lower than for larger aircraft. The fleet size of aircraft with 10–30 passenger seats increased from 1983 to 1997, then declined as they were replaced with larger aircraft in response to the rule change. Discussion No effect of the rule change on crash rates of 10–30-seat aircraft was apparent. The decline in their crash rates began before the rule change and may have been related to the 1992 requirement for ground proximity warning devices. PMID:19378909

  3. Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm▿

    PubMed Central

    Juhler, Susanne; Revsbech, Niels Peter; Schramm, Andreas; Herrmann, Martina; Ottosen, Lars D. M.; Nielsen, Lars Peter

    2009-01-01

    The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm was investigated by microsensor analysis, fluorescence in situ hybridization, quantitative PCR, and batch incubation activity measurements. In situ aerobic activity showed a significant decrease through the filter, while the distribution of ammonia-oxidizing bacteria (AOB) was highly skewed toward the filter outlet. Nitrite oxidation was not detected during most of the experimental period, and the AOB activity therefore resulted in NO2−, accumulation, with concentrations often exceeding 100 mM at the filter inlet. The restriction of AOB to the outlet section of the filter was explained by both competition with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2−, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow. PMID:19363071

  4. Leakage predictions for Rayleigh-step, helium-purge seals

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    1988-01-01

    Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies.

  5. Analysis of anastomotic leakage after rectal surgery: A case-control study

    PubMed Central

    Tanaka, Junichiro; Nishikawa, Takeshi; Tanaka, Toshiaki; Kiyomatsu, Tomomichi; Hata, Keisuke; Kawai, Kazushige; Kazama, Shinsuke; Nozawa, Hiroaki; Yamaguchi, Hironori; Ishihara, Soichiro; Sunami, Eiji; Kitayama, Joji; Watanabe, Toshiaki

    2015-01-01

    Background The incidence of anastomotic leakage in rectal surgery is around 10 percent. Poor blood supply to the anastomosis, high anastomotic pressure and tension, increased operative blood loss, long operative time, and male sex are risk factors of anastomotic leakage. In the present study, we examined anastomotic leakage cases in rectal surgery at our institute and tried to ascertain the risk factors. Methods Three hundred fifty-seven consecutive patients who underwent rectal resection with anastomosis between January 2008 and October 2013 were included in the study. Patients were divided into two groups according to the existence of anastomotic leakage. Clinicopathological features, operative procedures, and intraoperative outcomes were compared between the two groups. Regarding intraoperative procedure, we focused on the ligation level of the inferior mesenteric artery, installing a transanal drainage tube in the rectum, and constructing a diverting stoma. Results Anastomotic leakage occurred in eight patients. All of them were male (p = 0.0284). There were no statistical differences in other characteristics of the patients or tumors, in operative procedures, or in intraoperative outcomes. Conclusions In the present study, no statistically significant risk factors for anastomotic leakage in rectal surgery were detected, except for male sex. However, the rate of anastomotic leakage at our institute was revealed to be rather low. Our exertion to preserve good blood flow and to prevent high tension and pressure on the anastomosis in operation may have led to this result. PMID:26042185

  6. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings.

    PubMed

    Vasilyev, A V; Yarmoshenko, I V; Zhukovsky, M V

    2015-06-01

    Since 1995, requirements on energy-efficient building construction were established in Russian Building Codes. In the course of time, utilisation of such technologies became prevailing, especially in multi-storey building construction. According to the results of radon survey in buildings constructed meeting new requirements on energy efficiency, radon concentration exceeds the average level in early-constructed buildings. Preponderance of the diffusion mechanism of radon entry in modern multi-storey buildings has been experimentally established. The experimental technique of the assessment of ventilation rate in dwellings under real conditions was developed. Based on estimates of average ventilation rate, it was approved that measures to increase energy efficiency lead to reduction in ventilation rate and accumulation of higher radon concentrations indoors. Obtained ventilation rate values have to be considered as extremely low.

  7. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  8. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  9. The effects of air temperature on office workers' well-being, workload and productivity-evaluated with subjective ratings.

    PubMed

    Lan, Li; Lian, Zhiwei; Pan, Li

    2010-12-01

    Productivity bears a close relationship to the indoor environmental quality (IEQ), but how to evaluate office worker's productivity remains to be a challenge for ergonomists. In this study, the effect of indoor air temperature (17 °C, 21 °C, and 28 °C) on productivity was investigated with 21 volunteered participants in the laboratory experiment. Participants performed computerized neurobehavioral tests during exposure in the lab; their physiological parameters including heart rate variation (HRV) and electroencephalograph (EEG) were also measured. Several subjective rating scales were used to tap participant's emotion, well-being, motivation and the workload imposed by tasks. It was found that the warm discomfort negatively affected participants' well-being and increased the ratio of low frequency (LF) to high frequency (HF) of HRV. In the moderately uncomfortable environment, the workload imposed by tasks increased and participants had to exert more effort to maintain their performance and they also had lower motivation to do work. The results indicate that thermal discomfort caused by high or low air temperature had negative influence on office workers' productivity and the subjective rating scales were useful supplements of neurobehavioral performance measures when evaluating the effects of IEQ on productivity.

  10. Indoor air quality, air exchange rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.

    PubMed

    Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A

    2013-08-01

    This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings.

  11. 49 CFR 192.723 - Distribution systems: Leakage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control...

  12. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak...

  13. 49 CFR 192.723 - Distribution systems: Leakage surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control...

  14. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak...

  15. 49 CFR 192.723 - Distribution systems: Leakage surveys.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control...

  16. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak...

  17. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not... transports gas in conformity with § 192.625 without an odor or odorant, leakage surveys using leak...

  18. 49 CFR 192.723 - Distribution systems: Leakage surveys.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control...

  19. 49 CFR 192.723 - Distribution systems: Leakage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Distribution systems: Leakage surveys. 192.723... Distribution systems: Leakage surveys. (a) Each operator of a distribution system shall conduct periodic leakage surveys in accordance with this section. (b) The type and scope of the leakage control...

  20. 21 CFR 870.2640 - Portable leakage current alarm.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable leakage current alarm. 870.2640 Section... leakage current alarm. (a) Identification. A portable leakage current alarm is a device used to measure the electrical leakage current between any two points of an electrical system and to sound an alarm...

  1. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  2. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  3. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  4. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    EPA Science Inventory

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  5. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analysis

    EPA Science Inventory

    Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measureme...

  6. Relationships between Individual Differences and Accuracy in Rating Air Force Jet Engine Mechanic Performance

    DTIC Science & Technology

    1989-08-01

    may be enhanced to some extent (Thornton & Zorich , 1980). However, training costs may still be reduced by selecting for training those candidates with...ratee behaviors correctly noted by the rater (Thornton & Zorich , 1980). Several studies have investigated evaluation accuracy. For example, Borman (1977...correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420-428. Thornton, G., & Zorich , S. (1980). Training to improve

  7. Subsurface Barrier Formation as a CO2 Leakage Mitigation Technology

    NASA Astrophysics Data System (ADS)

    Castaneda Herrera, C. A.; Stevens, G.; Haese, R. R.

    2015-12-01

    Long-term CO2 containment in a geological storage reservoir is a key criterion for successfully implementing carbon capture and storage (CCS), however, CO2 leakage through different pathways cannot be completely ruled out in some instances. In this study we investigate the conditions for reactive barrier formation as a technology to mitigate and remediate CO2 leakage. We propose to inject a liquid reagent consistent of an alkaline sodium-silicate solution on top of the storage caprock, which will lead to silica mineral precipitation when in contact with an acidic, CO2-enriched fluid. This reaction will create a barrier that seals the leakage by reducing the permeability. Preliminary modelling has shown that the density, viscosity and alkalinity of the reagent fluid are critical for a successful seal formation, whereas differences in formation water composition and in the rock mineral composition are less important. In order to study the reaction through experiments, different reagent solutions were prepared and characterised in terms of silica concentration, density, viscosity and buffer capacity. In a static, diffusion-controlled batch experiment we observed silica mineral precipitation in the outer layer of the piece of rock inhibiting further mixing of the two fluids and slowing down the initial reaction rate. Core-flood experiments will be carried out to simulate barrier formation under fluid flow conditions. Here, the sealing efficiency of the reaction will be continuously measured in terms of a change in permeability.

  8. Monitoring the impact of the indoor air quality on silver cultural heritage objects using passive and continuous corrosion rate assessments

    NASA Astrophysics Data System (ADS)

    `t Hart, Lucy; Storme, Patrick; Anaf, Willemien; Nuyts, Gert; Vanmeert, Frederik; Dorriné, Walter; Janssens, Koen; de Wael, Karolien; Schalm, Olivier

    2016-10-01

    There is a long tradition in evaluating industrial atmospheres by measuring the corrosion rate of exposed metal coupons. The heritage community also uses this method, but the interpretation of the corrosion rate often lacks clarity due to the low corrosivity in indoor museum environments. This investigation explores the possibilities and drawbacks of different silver corrosion rate assessments. The corrosion rate is determined by three approaches: (1) chemical characterization of metal coupons using analytical techniques such as electrochemical measurements, SEM-EDX, XRD, and µ-Raman spectroscopy, (2) continuous corrosion monitoring methods based on electrical resistivity loss of a corroding nm-sized metal wire and weight gain of a corroding silver coated quartz crystal, and (3) characterization of the visual degradation of the metal coupons. This study confirms that subtle differences in corrosivity between locations inside a museum can be determined on condition that the same corrosion rate assessment is used. However, the impact of the coupon orientation with respect to the prevailing direction of air circulation can be substantially larger than the impact of the coupon location.

  9. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  10. Gas phase dispersion in compost as a function of different water contents and air flow rates.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2009-07-21

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  11. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  12. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower.

    PubMed

    Jafari, Mohammad Javad; Ghasemi, Roohollah; Mehrabi, Yadollah; Yazdanbakhsh, Ahmad Reza; Hajibabaei, Majid

    2012-12-10

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2-3 and further to 80.2% at L/G of >3, respectively. L/G of 2-3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  13. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki

    2017-02-01

    This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity.

  14. Properties of the seawater-air interface. 2. Rates of surface film formation under steady state conditions

    SciTech Connect

    Dragcevic, D.; Pravdic, V.

    1981-05-01

    The laboratory techniques of dynamic surface tension and of surface electrical potential measurements were used to determine rates of formation and of reorientation of organic surface films at the seawater-air interface. Relaxation times of surface films were determined for three characteristic samples obtained by screen and bottle sampling in the coastal waters of the northern Adriatic area. These data were compared with those for model samples produced by spreading oleic acid and crude oil on or dissolving polyethyleneglycol and sodium dodecyl sulfate in artificial seawater. Relaxation times were in the range of 0.1-1 s for most of the samples. A good representative value for field samples is 0.2 s. The temperature-dependence (the energies of activation) for the surface film relaxation indicates that several processes control material transport toward the seawater-air interface. The findings are interpreted as showing that an almost ever-present organic surface film influences the mechanism and the rate of material transport across the sea-atmosphere boundary.

  15. Particulate Air Pollution and the Rate of Hospitalization for Congestive Heart Failure among Medicare Beneficiaries in Pittsburgh, Pennsylvania.

    PubMed Central

    Wellenius, Gregory A.; Bateson, Thomas F.; Mittleman, Murray A.; Schwartz., Joel

    2006-01-01

    We used a case-crossover approach to evaluate the association between ambient air pollution and the rate of hospitalization for congestive heart failure (CHF) among Medicare recipients (age ≥ 65) residing in Allegheny County (Pittsburgh area), PA, during 1987–1999. We also explored effect modification by age, gender, and specific secondary diagnoses. During follow-up, there were 55,019 admissions with a primary diagnosis of CHF. We found that particulate matter with aerodynamic diameter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide – but not ozone – were positively and significantly associated with the rate of admission on the same day in single-pollutant models. The strongest associations were observed with CO, NO2 and PM10. The associations with CO and NO2 were the most robust in two-pollutant models, remaining statistically significant even after adjusting for other pollutants. Patients with a recent myocardial infarction were at greater risk of particulate-related admission, but there was otherwise no significant effect modification by age, gender, or other secondary diagnoses. These results suggest that short-term elevations in air pollution from traffic-related sources may trigger acute cardiac decompensation of heart failure patients and that those with certain comorbid conditions may be more susceptible to these effects. PMID:15901623

  16. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model (ISES Presentation)

    EPA Science Inventory

    Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure ...

  17. Oxidation and decomposition mechanisms of air sensitive aluminum clusters at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Mayo, Dennis H.; Guerieri, Philip M.; DeCarlo, Samantha; Ives, Ross; Bowen, Kit; Eichhorn, Bryan W.; Zachariah, Michael R.

    2016-09-01

    Molecular near zero oxidation state clusters of metals are of interest as fuel additives. In this work high heating rate decomposition of the Al(I) tetrameric cluster, [AlBr(NEt3)]4 (Et = C2H5), was studied at heating rates of up to 5 × 105 K/s using temperature-jump time-of-flight mass spectrometry (T-jump TOFMS). Gas phase Al and AlHx species were rapidly released during decomposition of the cluster, at ∼220 °C. The activation energy for decomposition was determined to be ∼43 kJ/mol. Addition of an oxidizer, KIO4, increased Al, AlO, and HBr signal intensities, showing direct oxidation of the cluster with gas phase oxygen.

  18. Development of a Portable Gamma-ray Survey System for the Measurement of Air Dose Rates

    NASA Astrophysics Data System (ADS)

    Goto, Jun; Shobugawa, Yugo; Kawano, Yoh; Amaya, Yoshihiro; Izumikawa, Takuji; Katsuragi, Yoshinori; Shiiya, Tomohiro; Suzuki, Tsubasa; Takahashi, Takeshi; Takahashi, Toshihiro; Yoshida, Hidenori; Naito, Makoto

    BIo-Safety Hybrid Automatic MOnitor-Niigata (BISHAMON), a portable gamma-ray survey system, was developed to support victims of the Fukushima Daiichi nuclear disaster. BISHAMON is capable of constructing a map of the distribution of ambient dose equivalent rates using vehicle-mounted or on-foot survey methods. In this study, we give an overview of BISHAMON and its measurement results including a comparison with those of other systems such as KURAMA.

  19. Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates

    SciTech Connect

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01

    In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.

  20. Airtightness Results of Roof-Only Air Sealing Strategies on 1 ½-Story Homes in Cold Climates

    SciTech Connect

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01

    In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.

  1. Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse

    NASA Astrophysics Data System (ADS)

    Howard-Reed, Cynthia; Wallace, Lance A.; Emmerich, Steven J.

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we measured the deposition of particles ranging from 0.3 to 10 μm in an occupied townhouse and also in an unoccupied test house. Experiments were run with three different sources (cooking with a gas stove, citronella candle, pouring kitty litter), with the central heating and air conditioning (HAC) fan on or off, and with two different types of in-duct filters (electrostatic precipitator and ordinary furnace filter). Particle size, HAC fan operation, and the electrostatic precipitator had significant effects on particle loss rates. The standard furnace filter had no effect. Surprisingly, the type of source (combustion vs. mechanical generation) and the type of furnishings (fully furnished including carpet vs. largely unfurnished including mostly bare floor) also had no measurable effect on the deposition rates of particles of comparable size. With the HAC fan off, average deposition rates varied from 0.3 h -1 for the smallest particle range (0.3-0.5 μm) to 5.2 h -1 for particles greater than 10 μm. Operation of the central HAC fan approximately doubled these rates for particles <5 μm, and increased rates by 2 h -1 for the larger particles. An in-duct electrostatic precipitator increased the loss rates compared to the fan-off condition by factors of 5-10 for particles <2.5 μm, and by a factor of 3 for 2.5-5.0 μm particles. In practical terms, use of the central fan alone could reduce indoor particle concentrations by 25-50%, and use of an in-duct ESP could reduce particle concentrations by 55-85% compared to fan-off conditions.

  2. Multicenter Analysis of Long-Term Oncologic Impact of Anastomotic Leakage After Laparoscopic Total Mesorectal Excision

    PubMed Central

    Kang, Jeonghyun; Choi, Gyu-Seog; Oh, Jae Hwan; Kim, Nam Kyu; Park, Jun Seok; Kim, Min Jung; Lee, Kang Young; Baik, Seung Hyuk

    2015-01-01

    Abstract This study aims to validate the oncologic outcomes of anastomotic leakage (AL) after laparoscopic total mesorectal excision (TME) in a large multicenter cohort. The impact of AL after laparoscopic TME for rectal cancer surgery has not yet been clearly described. This was a multicenter retrospective study of 1083 patients who underwent laparoscopic TME for nonmetastatic rectal cancer (stage 0–III). AL was defined as an anastomotic complication within 30 days of surgery irrespective of requiring a reoperation or interventional radiology. Estimated local recurrence (LR), disease-free survival (DFS), and overall survival (OS) were compared between the leakage group and the no leakage group using the log-rank method. Multivariate Cox-regression analysis was used to adjust confounding for survival. The incidence of AL was 6.4%. Mortality within 30 days of surgery occurred in 1 patient (1.4%) in the leakage group and 2 patients (0.2%) in the no leakage group. The leakage group showed a higher LR rate (6.4% vs 1.8%, P = 0.011). Five-year DFS and OS were significantly lower in the leakage group than the no leakage group (DFS 71.7% vs 82.1%, P = 0.016, OS 81.8% vs 93.5%, P = 0.007). Multivariate analysis showed that AL was an independent poor prognostic factor for DFS and OS (hazard ratio [HR] = 1.6; 95% confidence intervals [CI]: 1.0–2.6; P = 0.042, HR = 2.1; 95% CI: 1.0–4.2; P = 0.028, respectively). AL after laparoscopic TME was significantly associated with an increased rate of LR, systemic recurrence and poor OS. PMID:26200636

  3. Use of reference chemicals to determine passive uptake rates of common indoor air VOCs by collocation deployment of active and passive samplers.

    PubMed

    Xian, Qiming; Feng, Yong-Lai; Chan, Cecilia C; Zhu, Jiping

    2011-09-01

    Passive samplers have become more popular in their application in the measurement of airborne chemicals. For volatile organic compounds, the rate of a chemical's diffusivity is a determining factor in the quantity of the chemical being collected for a given passive sampler. While uptake rate of a chemical in the passive sampler can be determined either by collocation deployment of both active and passive samplers or use of controlled facilities such as environmental chambers, a new approach without a need for accurate active flow rate in the collocation experiment was demonstrated in this study. This approach uses chemicals of known uptake rates as references to calculate the actual flow rate of the active sampling in the collocation experiment. The active sampling rate in turn can be used in the determination of the uptake rates of all other chemicals present in the passive samplers. The advantage of such approach is the elimination of the errors in actual active sampling rate associated with low flow employed in the collocation experiment. Using this approach, passive uptake rates of more than 80 volatile organic compounds commonly present in indoor air were determined. These experimentally determined uptake rates correlate well with air diffusivity of the chemicals, indicating the regression equation describing such correlation might be useful in predicting the uptake rates of other volatile organic chemicals in indoor air based on their air diffusivity.

  4. Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys.

    PubMed

    Andoh, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro; Tanigaki, Minoru; Takamiya, Koichi; Sato, Nobuhiro; Okumura, Ryo; Uchihori, Yukio; Saito, Kimiaki

    2015-01-01

    A series of car-borne surveys using the Kyoto University RAdiation MApping (KURAMA) and KURAMA-II survey systems has been conducted over a wide area in eastern Japan since June 2011 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant and to evaluate the time-dependent trend of decrease in air dose rates. An automated data processing system for the KURAMA-II system was established, which enabled rapid analysis of large amounts of data obtained using about 100 KURAMA-II units. The initial data used for evaluating the migration status of radioactive cesium were obtained in the first survey, followed by other car-borne surveys conducted over more extensive and wider measurement ranges. By comparing the measured air dose rates obtained in each survey (until December 2012), the decreasing trend of air dose rates measured through car-borne surveys was found to be more pronounced than those expected on the basis of the physical decay of radioactive cesium and of the air dose rates measured using NaI (Tl) survey meters in the areas surrounding the roadways. In addition, it was found that the extent of decrease in air dose rates depended on land use, wherein it decreased faster for land used as building sites than for forested areas.

  5. Geologic Storage of CO2: Leakage Pathways and Environmental Risks

    NASA Astrophysics Data System (ADS)

    Celia, M. A.; Peters, C. A.; Bachu, S.

    2002-05-01

    of the overall storage scheme and contributes to possible climate change. To characterize these environmental consequences, reliable models of leakage characteristics and rates are needed. While leakage through natural flowpaths in the subsurface may occur, a more likely pathway is leakage through abandoned wells. This may be especially troublesome in mature sedimentary basins, which are often "punctured" by a very large number of exploration and production wells. For example, in the Alberta Basin there are more than 100,000 abandoned wells, the oldest from 1883. The cement used in the completion and abandonment of these wells, historically of variable quality and quantity, most probably has degraded with age and under the effect of formation brines. The cement may degrade even more rapidly when contacted by CO2 and possibly other components in the injection mixture (such as H2S). Cement properties and their modification through time must be understood in order to provide reliable estimates of leakage rates. Those leakage rates must then be linked to models of environmental consequences, and ultimately the entire analysis must be embedded in a probabilistic framework. Such an approach will allow leakage to be addressed rationally in terms of safety and long-term environmental impacts.

  6. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity

    PubMed Central

    Greenwald, Roby; Hayat, Matthew J.; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160–180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation (V˙E) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either V˙E or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance (V˙E/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful (V˙E/FVC = -3.859+0.101HR, mean percent error = 11.3±36%). PMID:26809066

  7. SCC Propagation Rate of Type 304, 304L Steels Under Oceanic Air Environment

    SciTech Connect

    Akio Kosaki

    2006-07-01

    Corrosion integrity of canister in the concrete cask for spent fuel storage is very important because the canister serves to maintain the sealability over the storage period of 40 to 60 years. Natural exposure and accelerated corrosion tests of conventional stainless steels for canister, that are Type 304, 304L, and 316(LN), for concrete cask's canister have been conducted by using many three Point Bending (3PB) test specimens and compared. The SCC propagation rates in Type 304 and 304L at the natural condition were about 1.2 E-12 to 1.8 E-11 m/s at the K (Stress Intensity Factor) range of 0.6 to 9.0 MPa/m, and that of the accelerate test (60 degrees C, 95%RHS., filled with NaCl mist.) were about 1.0 E-10 to 3.5 E-9 m/s at the K range of 0.3 to 32 MPa/m. The SCC propagation rates under both natural and accelerated conditions were independent with K. Both da/dt values of the direct exposure test and of the under glass exposure test were in the same scattering band. (author)

  8. Air pollution and mortality rates: a note on Lave and Seskin's pooling of cross-section and time-series data

    SciTech Connect

    Christainsen, G.B.; Degen, C.G.

    1980-06-01

    Air Pollution and Human Health (Johns Hopkins University Press, Baltimore, 1977) by Lester Lave and Eugene Seskin reports the results of regressions which suggest a strong association between air pollution and mortality rates. This note questions assumptions made by Lave and Seskin which underlie their estimation of a single-equation model using pooled cross-section and time-series data. If, in fact, these assumptions cannot be made, the association between air pollution and mortality rates appears considerably weakened, but it still appears to be significant.

  9. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  10. A method to investigate inter-aquifer leakage using hydraulics and multiple environmental tracers

    NASA Astrophysics Data System (ADS)

    Priestley, Stacey; Love, Andrew; Wohling, Daniel; Post, Vincent; Shand, Paul; Kipfer, Rolf; Tyroller, Lina

    2016-04-01

    Informed aquifer management decisions regarding sustainable yields or potential exploitation require an understanding of the groundwater system (Alley et al. 2002, Cherry and Parker 2004). Recently, the increase in coal seam gas (CSG) or shale gas production has highlighted the need for a better understanding of inter-aquifer leakage and contaminant migration. In most groundwater systems, the quantity or location of inter-aquifer leakage is unknown. Not taking into account leakage rates in the analysis of large scale flow systems can also lead to significant errors in the estimates of groundwater flow rates in aquifers (Love et al. 1993, Toth 2009). There is an urgent need for robust methods to investigate inter-aquifer leakage at a regional scale. This study builds on previous groundwater flow and inter-aquifer leakage studies to provide a methodology to investigate inter-aquifer leakage in a regional sedimentary basin using hydraulics and a multi-tracer approach. The methodology incorporates geological, hydrogeological and hydrochemical information in the basin to determine the likelihood and location of inter-aquifer leakage. Of particular benefit is the analysis of hydraulic heads and environmental tracers at nested piezometers, or where these are unavailable bore couplets comprising bores above and below the aquitard of interest within a localised geographical area. The proposed methodology has been successful in investigating inter-aquifer leakage in the Arckaringa Basin, South Australia. The suite of environmental tracers and isotopes used to analyse inter-aquifer leakage included the stable isotopes of water, radiocarbon, chloride-36, 87Sr/86Sr and helium isotopes. There is evidence for inter-aquifer leakage in the centre of the basin ~40 km along the regional flow path. This inter-aquifer leakage has been identified by a slight draw-down in the upper aquifer during pumping in the lower aquifer, overlap in Sr isotopes, δ2H, δ18O and chloride

  11. USAF bioenvironmental noise data handbook. Volume 166: AF/M32T-1 tester, pressurized cabin leakage, aircraft

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-07-01

    Measured and extrapolated data define the bioacoustic environments produced by a gasoline engine driven cabin leakage tester operating outdoors on a concrete apron at normal rated conditions. Near field data are presented for 37 locations at a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.

  12. High-repetition-rate laser ignition of fuel-air mixtures.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Zhang, Zhili; Sawyer, Jordan; Slipchenko, Mikhail N; Mance, Jason G; Gord, James R

    2016-04-01

    A laser-ignition (LI) method is presented that utilizes a high-repetition-rate (HRR) nanosecond laser to reduce minimal ignition energies of individual pulses by ∼10 times while maintaining comparable total energies. The most common LI employs a single nanosecond-laser pulse with energies on the order of tens of millijoules to ignite combustible gaseous mixtures. Because of the requirements of high energy per pulse, fiber coupling of traditional LI systems is difficult to implement in real-world systems with limited optical access. The HRR LI method demonstrated here has an order of magnitude lower per-pulse energy requirement than the traditional single-pulse LI technique, potentially allowing delivery through standard commercial optical fibers. Additionally, the HRR LI approach significantly increases the ignition probability of lean combustible mixtures in high-speed flows while maintaining low individual pulse energies.

  13. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  14. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  15. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  16. Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows.

    PubMed

    Wallace, L A; Emmerich, S J; Howard-Reed, C

    2002-07-01

    A year-long investigation of air change rates in an occupied house was undertaken to establish the effects of temperature, wind velocity, use of exhaust fans, and window-opening behavior. Air change rates were calculated by periodically injecting a tracer gas (SF(6)) into the return air duct and measuring the concentration in 10 indoor locations sequentially every minute by a gas chromatograph equipped with an electron capture detector. Temperatures were also measured outdoors and in the 10 indoor locations. Relative humidity (RH) was measured outdoors and in five indoor locations every 5 min. Wind speed and direction in the horizontal plane were measured using a portable meteorological station mounted on the rooftop. Use of the thermostat-controlled attic fan was recorded automatically. Indoor temperatures increased from 21 degrees C in winter to 27 degrees C in summer. Indoor RH increased from 20% to 70% in the same time period. Windows were open only a few percent of the time in winter but more than half the time in summer. About 4600 hour-long average air change rates were calculated from the measured tracer gas decay rates. The mean (SD) rate was 0.65 (0.56) h(-1). Tracer gas decay rates in different rooms were very similar, ranging only from 0.62 to 0.67 h(-1), suggesting that conditions were well mixed throughout the year. The strongest influence on air change rates was opening windows, which could increase the rate to as much as 2 h(-1) for extended periods, and up to 3 h(-1) for short periods of a few hours. The use of the attic fan also increased air change rates by amounts up to 1 h(-1). Use of the furnace fan had no effect on air change rates. Although a clear effect of indoor-outdoor temperature difference could be discerned, its magnitude was relatively small, with a very large temperature difference of 30 degrees C (54 degrees F) accounting for an increase in the air change rate of about 0.6 h(-1). Wind speed and direction were found to have very

  17. Health risks following ingestion of mercury and zinc air batteries.

    PubMed

    Nolan, M; Tucker, I

    1981-01-01

    This paper reports on a study set up to assess the corrosive behaviour of mercury and zinc air batteries in the gastric juice environment of the stomach. The results show a relatively rapid rate of corrosion for charged mercury batteries. In contrast, the zinc air battery showed no visible corrosion under the same conditions. In view of the toxic dangers from leakage of mercury batteries, it is recommended that steps be taken to ensure that such batteries do not remain in the acidic environment of the stomach, should ingestion occur.

  18. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  19. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-04-01

    A no-cost time extension was requested, to permit additional laboratory testing prior to undertaking field data collection. This was received in this reporting period. To minimize program cost, this additional testing is planned to be performed in concert with EPRI-funded testing at the Coal Flow Test Facility. Since the EPRI schedule was undecided, a hiatus occurred in the test effort. Instead, a significant effort was exerted to analyze the available laboratory test data to see whether the source and nature of noise behaviors could be identified, or whether the key flow information could be extracted even in the presence of the noise. One analysis approach involved filtering the data numerically to reject dynamics outside of various frequency bands. By varying the center frequency and width of the band, the effect of signal frequency on flow dynamics could be examined. Essentially equivalent results were obtained for all frequency bands that excluded a neighborhood of the transducer resonance, indicating that there is little advantage to be gained by limiting the experimental frequency window. Another approach examined the variation of the dynamics over a series of 1-second windows of data, producing an improvement in the prediction of coal flow rate. Yet another approach compared the dynamics of a series of 1-second windows to those of a series of 5-second windows, producing still better results. These results will be developed further in the next reporting period, which should also include further laboratory testing at the Coal Flow Test Facility.

  20. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect

    Wayne Hill; Roger Demler; Robert G. Mudry

    2005-01-01

    Additional calibration data were collected in the Coal Flow Test Facility early in this reporting period. These data comprised a total of 181 tests for stud and magnetic accelerometer mounts, with two mounting locations relative to two different pipe elbows, and including some tests with out-of-plane elbows upstream of the test section to produce coal ''roping''. The results found in analyzing these new data were somewhat disappointing: correlations for coal flow rate for a given mount type and mounting location were less accurate than desired, and degraded badly when data from other locations were included in the same analysis. Reviewing all of the data files (from both the earlier testing and recent calibration testing) disclosed a significant fraction of cases with several forms of noise. Eliminating these cases improved the correlations somewhat, but the number of cases that remained did not permit general conclusions to be drawn. It was finally learned that yet another type of noise is present in some data files, producing a strong effect on the correlation accuracy. The cases not subject to this noise correlated very well. It would be desirable to collect additional data in the Coal Flow Test Facility prior to moving on to field data collection, a change in program direction that would require a no-cost time extension.

  1. Chemical characterization of indoor air of homes from communes in Xuan Wei, China, with high lung cancer mortality rate

    NASA Astrophysics Data System (ADS)

    Chuang, J. C.; Cao, S. R.; Xian, Y. L.; Harris, D. B.; Mumford, J. L.

    In a rural county, Xuan Wei, China, the lung cancer mortality rate is among China's highest, especially in women. This mortality rate is more associated with indoor air burning of smoky coal, as opposed to smokeless coal or wood, for cooking and heating under unvented conditions. Homes using different fuels from communes with high and low lung cancer mortality rates were sampled for particulate matter (< 10 μm) and semivolatile organics. The fine particles obtained from homes using smoky coal contained highest concentrations of organic matter (> 70%), including PAH, followed by homes using wood and smokeless coal. The major components present in the smoky coal filter samples were PAH and alkylated PAH. The smokeless coal filter samples exhibited profiles which were similar to the smoky coal samples except that some sulfur compounds were found. The estimated concentration levels of PAH in the smokeless coal samples were about one to two orders of magnitude lower than those of the smoky coal samples. In addition to PAH, aliphatic compounds and fatty acids were the major components found in the wood samples. Selected sample extracts from homes using smoky coal were fractionated into four fractions, and the results showed that the PAH and polar fractions have high mutagenic activity. Chemical characterization of the PAH fraction indicated that concentrations of some alkylated PAH were higher than those of their parent compounds. Chemical characterization of the polar fractions showed that nitrogen heterocyclic compounds are present.

  2. Heart rate and heart rate variability assessment identifies individual differences in fear response magnitudes to earthquake, free fall, and air puff in mice.

    PubMed

    Liu, Jun; Wei, Wei; Kuang, Hui; Tsien, Joe Z; Zhao, Fang

    2014-01-01

    Fear behaviors and fear memories in rodents have been traditionally assessed by the amount of freezing upon the presentation of conditioned cues or unconditioned stimuli. However, many experiences, such as encountering earthquakes or accidental fall from tree branches, may produce long-lasting fear memories but are behaviorally difficult to measure using freezing parameters. Here, we have examined changes in heartbeat interval dynamics as physiological readout for assessing fearful reactions as mice were subjected to sudden air puff, free-fall drop inside a small elevator, and a laboratory-version earthquake. We showed that these fearful events rapidly increased heart rate (HR) with simultaneous reduction of heart rate variability (HRV). Cardiac changes can be further analyzed in details by measuring three distinct phases: namely, the rapid rising phase in HR, the maximum plateau phase during which HRV is greatly decreased, and the recovery phase during which HR gradually recovers to baseline values. We showed that durations of the maximum plateau phase and HR recovery speed were quite sensitive to habituation over repeated trials. Moreover, we have developed the fear resistance index based on specific cardiac response features. We demonstrated that the fear resistance index remained largely consistent across distinct fearful events in a given animal, thereby enabling us to compare and rank individual mouse's fear responsiveness among the group. Therefore, the fear resistance index described here can represent a useful parameter for measuring personality traits or individual differences in stress-susceptibility in both wild-type mice and post-traumatic stress disorder (PTSD) models.

  3. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  4. How Much Leakage Renders the Greenhouse Gas Footprint of Natural Gas Equivalent to Coal?

    NASA Astrophysics Data System (ADS)

    Sanchez, N., II; Mays, D. C.

    2015-12-01

    Under ideal circumstances, generating electricity from natural gas releases approximately half the carbon dioxide-equivalent emissions of coal. However, because the primary component of natural gas (i.e., methane) is a potent greenhouse gas, accounting for leakage is crucial when considering natural gas as a bridge fuel. This presentation answers the question: How much leakage renders the greenhouse gas (GHG) footprint of natural gas equivalent to coal? To answer this question, we present a simple model that assumes the GHG footprint for each fuel is the sum of emissions from (1) electricity generation and (2) natural gas leakage. Emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs). Emissions from natural gas leakage are estimated assuming that natural gas is 80% methane, which is converted to carbon dioxide-equivalent emissions using the Intergovernmental Panel on Climate Change's (IPCC's) global warming potential (GWP). One complication in using the GWP is its dependence on time horizon, where shorter time horizons penalize methane emissions more, and longer time horizons less. Specifically, the IPCC considers time horizons of 20, 100 and 500 years for comparison between the differing greenhouse gases. To explicitly account for the effect of time horizon, the results presented here are shown on a straightforward plot of GHG footprint versus time horizon for natural gas leakage rates of 0, 1, 2, 4, and 8%. This plot shows that natural gas leakage of 2.0% or 4.8% eliminates half of natural gas's GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9% or 9.1% completely eliminates the GHG footprint advantage over coal at 20- and 100-year time horizons, respectively. Results indicate that leakage control is essential for the electricity generated from the combustion of natural gas to create a smaller GHG footprint than the electricity generated from the combustion of coal.

  5. High rate of methane leakage from natural gas production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Natural gas production is growing as the United States seeks domestic sources of relatively clean energy. Natural gas combustion produces less carbon dioxide emissions than coal or oil for the amount of energy produced. However, one source of concern is that some natural gas leaks to the atmosphere from the extraction point, releasing methane, a potent greenhouse gas.

  6. 40 CFR 264.302 - Action leakage rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the leak detection system (LDS) can remove without the fluid head on the bottom liner exceeding l foot... design (e.g., slope, hydraulic conductivity, thickness of drainage material), construction, operation... decreases in the flow capacity of the system over time resulting from siltation and clogging, rib...

  7. 19 CFR 158.7 - Allowance for reduction or loss of merchandise by a natural force or by leakage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... subject to ad valorem, specific, or compound rates of duty found at the time of importation to be reduced or diminished by a natural force, such as evaporation, or by leakage, shall be appraised in...

  8. 19 CFR 158.7 - Allowance for reduction or loss of merchandise by a natural force or by leakage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subject to ad valorem, specific, or compound rates of duty found at the time of importation to be reduced or diminished by a natural force, such as evaporation, or by leakage, shall be appraised in...

  9. An Advanced Leakage Scheme for Neutrino Treatment in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-01

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  10. AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS

    SciTech Connect

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-15

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  11. Hydrocarbons Emissions Due to Wellbore and other Subsurface Leakage in the Uintah Basin, Utah

    NASA Astrophysics Data System (ADS)

    Watkins, C.; Lyman, S. N.

    2015-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. One potentially important emissions source is subsurface leakage of natural gas. Better understanding of wellbore and other subsurface leaks are important in providing ways to decrease pollution while increasing the efficiency of oil and gas production. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near wells are typically low, soil gas near some wells can contain more than 50% methane. In the summers of 2013-2015 we carried out campaigns to measure the emission rate of methane and other hydrocarbons from soils near wells in the Uintah Basin, Utah. We also measured emissions at several locations on individual well pads and determined that concentrations of hydrocarbons tend to decrease with distance from the well head. Soil emissions were also measured at non-well sites in the same area to determine background emission rates. Emissions from exposed coal, oil shale, gilsonite, and fault zone surfaces were also measured. Relationships of emissions with soil gas concentrations, meteorological conditions, and soil properties were also investigated.

  12. Investigation of the tip-leakage losses in turbine axial stages

    NASA Astrophysics Data System (ADS)

    Szymański, A.; Dykas, S.; Wróblewski, W.; Rulik, S.

    2014-08-01

    In turbomachinery, an influence of a tip-leakage flow on overall blade loss is crucial and its reduction is still worth striving for. In this paper a numerical analysis of the flow in tip seal of high-rotating gas turbine engine has been made. This analysis is a part of experimental research for testing the commercially used different tip seals solutions. Described test rig is predicted to be an universal tool for developing and examining different configurations of turbine blade tips. Presented numerical analysis is used to predict physical phenomena that may affect the rotor blade performance. In the numerical investigation the commercial Ansys CFX software was employed. The most important parameters were: mass flow rate at the inlet and outlet of the test bench, pressure and velocity distribution and the air temperature growth above the rotor. Also, an influence of test rig inlet and outlet geometry on flow uniformity was investigated. During the analysis the attention was focused also on minimizing the turbulence intensity in outlet area, that could cause significant difficulties in flow and stable work of the machine - generated eddies contributes to lower the mass flow rate.

  13. [METHODOLOGY FOR THE ASSESSMENT OF THE IMPACT OF THE ATMOSPHERIC AIR POLLUTION ON THE FORMATION OF THE LEVELS OF OVERALL MORBIDITY RATE OF BRONCHIAL ASTHMA].

    PubMed

    Veremchuk, L V; Cherpack, N A; Gvozdenko, T A; Volkova, M V

    2015-01-01

    In large cities with strong air pollution the formation of the levels of morbidity rate of bronchial asthma has a complex causation that requires the search for informative methods for identification of causes and consequences of this dependence. Method for the assessment of the dependence of overall levels of morbidity rate of bronchial asthma on the degree of air pollution allows you to select a "useful information" of the direct impact of air pollution on a background of random processes and latent relationship between human and environment. The use of the method of the information entropy analysis allowed us to estimate the total and the individual contribution of the separate components of air pollution on the formation of levels of total morbidity rate of bronchial asthma in the population of the city of Vladivostok. Levels of total incidence of this pathology were established to differ in various age groups. The adult population is more adapted to air pollution, but retains a high sensitivity to the impact of nitrogen dioxide. Levels of overall l morbidity rate of bronchial asthma in children and adolescents depend on the total air pollution with some dominance of the influence of suspended matter and carbon monoxide.

  14. Using the extended finite element method for simulation of transient well leakage in multilayer aquifers

    NASA Astrophysics Data System (ADS)

    Craig, James R.; Gracie, Robert

    2011-09-01

    The extended finite element (XFEM) is applied to the problem of transient leakage from abandoned or free-flowing artesian wells in perforated aquifer-aquitard systems. To more accurately capture the singularities in potentiometric head at the wells, the standard linear finite element basis is locally augmented with asymptotic analytical solutions which enable more accurate calculations of leakage rates between aquifers. Highly accurate flux estimates are obtained without the need for higher mesh resolution near wells. Simulations are carried out to test both the accuracy and convergence properties of the XFEM implementation, and the XFEM results are compared to those of a high-resolution standard finite element model. It is seen that for the type of singularity-driven problem posed here, the standard FEM is unable to resolve leakage rates without very fine discretization, but that the XFEM performs robustly with fewer degrees of freedom. The impact of aquifer geometric heterogeneity on leakage rates is assessed and seen to be an important factor in determining total leakage. It is demonstrated that the XFEM may be a valuable tool in many water resources applications where small-scale effects can impact global system behavior.

  15. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  16. Cuff leakage, not paravalvular leakage, in the Carpentier Edwards PERIMOUNT Magna Ease aortic bioprosthesis.

    PubMed

    Tokunaga, Shigehiko; Cho, Tomoki; Izubuchi, Ryo; Masuda, Munetaka

    2015-12-01

    Though the Carpentier Edwards PERIMOUNT Magna Ease valve is a bioprosthesis with documented excellent haemodynamics and easy implantability, this valve has a gap between the cobalt-chromium-nickel alloy stent and silicone sewing ring. This gap, which is widest just below each of the three commissural struts, lacks silicone and leaves the two-layer polytetrafluoroethylene fabric unsupported and unprotected. If the needle of a valve suture is placed in this structurally weak area of the sewing ring, the resultant fabric tear may result in a true cuff leakage, not the usual paravalvular leakage. We describe this pitfall in the context of a recent operation to alert surgeons everywhere that suture placement too close to the stent (missing the silicone sewing ring) can result in postoperative cuff leakage. We need to be very careful to include the silicone ring in each stitch to prevent injury to the valve cuff of this prosthesis and to avoid cuff leakage.

  17. Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects.

    PubMed

    Graff, Beata; Szyndler, Anna; Czechowicz, Krzysztof; Kucharska, Wiesława; Graff, Grzegorz; Boutouyrie, Pierre; Laurent, Stephane; Narkiewicz, Krzysztof

    2013-11-01

    Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.

  18. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  19. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  20. Prevalence rates of respiratory symptoms in Italian general population samples exposed to different levels of air pollution

    SciTech Connect

    Viegi, G. Univ. of Arizona, Tucson ); Paoletti, P.; Carrozzi, L.; Vellutini, M.; Diviggiano, E.; Pistelli, G.; Giutini, G. ); Di Pede, C. Occupational Medicine Service, Toscana ); Lebowitz, M.D. )

    1991-08-01

    The authors surveyed two general population samples aged 8 to 64 living in the unpolluted, rural area of the Po Delta (northern Italy) and in the urban area of Pisa (central Italy). Each subject filled out a standardized interviewer-administered questionnaire. The Pisa sample was divided into three groups according to their residence in the urban-suburban areas and to outdoor air pollution exposure (automobile exhaust only or industrial fumes as well). Significantly higher prevalence rates of all the respiratory symptoms and diseases were found in Pisa compared with the Po Delta. Current smoking was more frequent in the rural area, but the urban smokers had a higher lifetime cigarette consumption. Childhood respiratory trouble and recurrent respiratory illnesses were evenly distributed. Exposure to parental smoking in childhood and lower educational level were more frequent in Po Delta, whereas familial history of respiratory/allergic disorders and work and indoor exposures were more often reported in the city. Multiple logistic regression models estimating independently the role of the various risk factors showed significant odds ratios associated with residence in Pisa for all the symptoms but chronic phlegm. The conclusion, these preliminary analyses indicate an urban factor related to the rates of respiratory symptoms and diseases in Italy in the 1980s.

  1. Oxidation rate of nuclear-grade graphite NBG-18 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2013-07-01

    One of the most severe accident scenarios anticipated for VHTRs is an air ingress accident caused by a pipe break. Graphite oxidation could be severe under these conditions. In this work, the oxidation rate of NBG-18 nuclear-grade graphite was studied thermogravimetrically for different oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was developed for the temperature range of 873-1023 K. The activation energy of NBG-18 was 187 kJ/mol and the order of reaction was 1.25. The penetration depth of oxidant was about 3-4 mm for NBG-18 oxidized at 973 K. Increased porosity and changes in external geometry became more prominent at higher temperatures from about 1173 to 1873 K. The surface of oxidized NBG-18 was characterized by SEM, EDS, FTIR and XPS. Diffusion of oxygen to the graphite surface and walls of open volume pores. Adsorption of oxygen atoms on the graphite surface free active sites and complexes inducing the simultaneous forming of Csbnd O and Csbnd H bonds and breaking of Csbnd C bonds (dissociative chemisorption). Chemical reactions occur at the surface. Desorption of gaseous products, CO and CO2, from the graphite surface and transport to the bulk gas mixture.

  2. Structural and leakage integrity of tubes affected by circumferential cracking

    SciTech Connect

    Hernalsteen, P.

    1997-02-01

    In this paper the author deals with the notion that circumferential cracks are generally considered unacceptable. He argues for the need to differentiate two facets of such cracks: the issue of the size and growth rate of a crack; and the issue of the structural strength and leakage potential of the tube in the presence of the crack. In this paper the author tries to show that the second point is not a major concern for such cracks. The paper presents data on the structural strength or burst pressure characteristics of steam generator tubes derived from models and data bases of experimental work. He also presents a leak rate model, and compares the performance of circumferential and axial cracks as far as burst strength and leak rate. The final conclusion is that subject to improvement in NDE capabilities (sizing, detection, growth), that Steam Generator Defect Specific Management can be used to allow circumferentially degraded tubes to remain in service.

  3. Uncertainty Quantification of CO2 Leakage through a Fault with Multiphase and Geo-mechanic Effects

    NASA Astrophysics Data System (ADS)

    Lu, C.; White, J. A.; Hao, Y.; Sun, Y.; Chiaramonte, L.; Carroll, S.

    2012-12-01

    The potential for CO2 leakage through a permeable fault is a key concern for geologic CO2 sequestration (GCS) in saline formations, which typically involves CO2 being injected under supercritical conditions. If CO2 migrates vertically upward through a fault from the storage reservoir to an overlying fresh-water aquifer, phase change can occur because temperature and pressure decrease with decreasing depth. The decrease in CO2 density during phase transition causes an additional reduction in temperature (Joule-Thomson cooling effect), which reduces CO2 viscosity, resulting in an increase in the CO2 leakage rate. In this paper, we present a computational model for simulating the behavior of a leaky fault connecting a saline CO2 storage reservoir and an overlying fresh-water aquifer. We address phase transition, considering the nonlinear CO2 enthalpy and viscosity functions, the impact of geo-mechanics on rock hydraulic properties. The model is initialized to represent the hydrostatic and geothermal temperature gradients in the model domain, which extends from 230 to 2000 m below the ground surface. Time-varying boundary conditions of pressure and CO2 saturation are specified at the lower boundary to a hypothetical fault to represent conditions in an operating CO2 storage reservoir during both the injection and post-injection periods. The model results indicate that the CO2 leakage rate initially increases when CO2 migration is driven by both buoyancy and overpressure during the period of injection-driven pressure buildup in the reservoir. For the post-injection period when overpressure in the reservoir dissipates, CO2 leakage is only driven by buoyancy and the leakage rate decreases. The deterministic model of this faulted reservoir system is used within an uncertainty quantification (UQ) sampling framework in order to rigorously quantify the sensitivity of the brine and CO2 leakage response to the uncertain model parameters, including the input constitutive

  4. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  5. Scintigraphic detection of urinary leakage after kidney transplantation.

    PubMed

    DeLange, E E; Pauwels, E K; Lobatto, S; Tjon Pian Gi-van Loon, C E; van Hooff, J P

    1982-01-01

    Urinary leakage after kidney transplantation is a serious complication. In a retrospective study we analyzed 8 relevant cases of 14 patients with urinary leakage. In these eight patients kidney scintigraphy indicated the presence of urinary extravasation. Compared with other imaging modalities such as IV urography, cystography and ultrasound, scintigraphy seems to be an easy and safe method to detect urinary leakage. Moreover scintigraphic examination may suggest leakage, while this may not be clinically evident or suspected.

  6. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  7. Experimental determination of methane dissolution from simulated subsurface oil leakages

    NASA Astrophysics Data System (ADS)

    Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2013-12-01

    Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.

  8. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  9. Engine panel seals for hypersonic engine applications: High temperature leakage assessments and flow modelling

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Mutharasan, Rajakkannu; Du, Guang-Wu; Miller, Jeffrey H.; Ko, Frank

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating horizontal engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the seal concept design and development of two new seal classes that show promise of meeting these demands will be presented. These seals include the ceramic wafer seal and the braided ceramic rope seal. Presented are key elements of leakage flow models for each of these seal types. Flow models such as these help designers to predict performance-robbing parasitic losses past the seals, and estimate purge coolant flow rates. Comparisons are made between measured and predicted leakage rates over a wide range of engine simulated temperatures and pressures, showing good agreement.

  10. ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources

    SciTech Connect

    Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.; Hermann, O.W.

    1986-11-01

    This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. The code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.

  11. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  12. 49 CFR 192.706 - Transmission lines: Leakage surveys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Transmission lines: Leakage surveys. 192.706... Transmission lines: Leakage surveys. Leakage surveys of a transmission line must be conducted at intervals not exceeding 15 months, but at least once each calendar year. However, in the case of a transmission line...

  13. Liver Cirrhosis/Severe Fibrosis Is a Risk Factor for Anastomotic Leakage after Colorectal Surgery

    PubMed Central

    Hofmann, Irina; Willi, Niels; Stickel, Felix

    2016-01-01

    Purpose. Liver cirrhosis associated with high perioperative morbidity/mortality. This retrospective study determines whether liver cirrhosis represents a risk factor for anastomotic leakage after colonic anastomosis or not. Methods. Based on a prospective database with all consecutive colorectal resections performed at the authors' institution from 07/2002 to 07/2012 (n = 2104) all colonic and rectal anastomoses were identified (n = 1875). A temporary loop ileostomy was constructed in 257 cases (13.7%) either due to Mannheimer Peritonitis-Index > 29 or rectal anastomosis below 6 cm from the anal verge. More than one-third of the patients (n = 691) had postoperative contrast enema, either at the occasion of another study or prior to closure of ileostomy. The presence of liver cirrhosis and the development of anastomotic leakage were assessed by chart review. Results. The overall anastomotic leakage rate was 2.7% (50/1875). In patients with cirrhosis/severe fibrosis, the anastomotic leakage rate was 12.5% (3/24), while it was only 2.5% (47/1851) in those without (p = 0.024). The difference remained statistically significant after correction for confounding factors by multivariate analysis. Conclusion. Patients with liver cirrhosis/severe fibrosis have an increased risk of leakage after colonic anastomosis. PMID:28105046

  14. Natural variation of ambient dose rate in the air of Izu-Oshima Island after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Maedera, Fumihiko; Inoue, Kazumasa; Sugino, Masato; Sano, Ryosuke; Furue, Mai; Shimizu, Hideo; Tsuruoka, Hiroshi; Le Van, Tan; Fukushi, Masahiro

    2016-03-01

    The ambient dose rate in air and radioactivity concentration in soil samples collected on Izu-Oshima Island were observed in 2012, 2013 and 2014, i.e. 1, 2 and 3 years after the severe accident at the Fukushima Daiichi Nuclear Power Plant. A car-borne survey for the ambient dose rate in air was carried out for the entire island. Soil samples were collected for the radioactivity concentration measurements from 22 points. The ambient dose rates in air were 36 nGy h(-1) in 2012, 34 nGy h(-1) in 2013 and 29 nGy h(-1) in 2014. The corresponding radioactivity concentrations in those years for (134)Cs were 53, 39 and 29 Bq kg(-1) and for (137)Cs, 87, 73 and 75 Bq kg(-1). All the values have decreased every year.

  15. Efficient quantum dialogue without information leakage

    NASA Astrophysics Data System (ADS)

    Yin, Ai-Han; Tang, Zhi-Hui; Chen, Dong

    2015-02-01

    A two-step quantum dialogue scheme is put forward with a class of three-qubit W state and quantum dense coding. Each W state can carry three bits of secret information and the measurement result is encrypted without information leakage. Furthermore, we utilize the entangle properties of W state and decoy photon checking technique to realize three-time channel detection, which can improve the efficiency and security of the scheme.

  16. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; van der Velden-de Groot, C A; de Gooijer, C D; Beuvery, E C; Tramper, J

    1996-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10(-3) m(3) liquid per m(3) of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10(-4) m(3) liquid per m(3) of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.

  17. Smog O3 Production Rate in California Air: Marker Compounds Allow Checks on Source Attribution to Fire and Other Sources

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Esswein, R. F.; Cai, C.; Kaduwela, A.; Kulkarni, S.; Blake, D. R.; Weinheimer, A. J.; Fried, A.; Huey, L. G.

    2012-12-01

    We are able to attribute sources of both radical reactivity and NO that determined the smog-chemical production rate of ozone, P(O3), for NASA's wide-ranging sampling of California air in June, 2008, part of the ARCTAS intensive. We relate formaldehyde, HCHO, and reactive nitrogen oxides, NOx, to a variety of distinct "marker" species that identify origins. We have labeled the sources and markers as (i) Fire emissions (CH3CN), (ii) Biogenic emissions (Isoprene), (iii) Urban/business emissions (CHCl3), (iv) Transport-related fuel consumption, (SO2), and (v) Refining/Port emissions ("residual" toluene). We use multiple linear regression with some appropriate restrictions. We achieve R-squared or explained variance of 88% for HCHO (VOC's) and 60% for NOx. HCHO and NOx are slowly evolving measures of potential ozone generation. The two related but radiation-influenced measures j (HCHO->H+HCO) x [HCHO] and [NO] quantitatively, but non-linearly, relate to instantaneous ozone production in California air, with R-squared of 86-93%, just as in New York City (Chatfield et al., Atmos. Environ., 2010). Maps of attribution for 650 samples from the Port of San Diego to the Northern Sierra foothills, and offshore -— all show huge variability in source attributions for VOCs and NOx. They indicate a widespread fire-emission influence on VOCs as they produce peroxy radicals, but show no positive influence on NOx, in fact consuming NOx from other sources. Comparisons with simulations help to refine our attribution classes and also to check balances of VOC emissions in available inventories. The use of the P(O3) measures is directly translatable to a method for estimate smog-ozone production rate from space, as data from another intensive, DISCOVER-AQ, show. (Left) A rare example where all sources contribute significantly, with markers and tentative attributions marked. (Right) Three different situations describing the control of smog ozone production, all from the same geographic

  18. F-22 Pilot Heart Rate Response to +Gz and Relationship to Pilot Fitness Using U.S. Air Force Fitness Test Scores

    DTIC Science & Technology

    2015-08-19

    AFRL-SA-WP-SR-2015-0024 F-22 Pilot Heart Rate Response to +Gz and Relationship to Pilot Fitness Using U.S. Air Force Fitness Test Scores...To) July 2013 – June 2015 4. TITLE AND SUBTITLE F-22 Pilot Heart Rate Response to +Gz and Relationship to Pilot Fitness Using U.S. Air Force... Fitness Test Scores 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Marie-France M. McIntee, Mark J

  19. Experimental determination of the velocity and strain rate field in a laminar H2/Air counter-flow diffusion flame via LDA

    NASA Technical Reports Server (NTRS)

    Yeo, S. H.; Dancey, C. L.

    1991-01-01

    Measurements of the axial and radial components of velocity on the air side of stagnation in an axisymmetric H2/Air laminar counter-flow diffusion flame are reported. Results include the two-dimensional velocity field and computed velocity gradients (strain rates) along the stagnation streamline at two 'characteristic' strain rates, below the extinction limit. The measurements generally verify the modeling assumptions appropriate to the model of Kee et al. (1988). The 'traditional' potential flow model is not consistent with the measured results.

  20. Measurement of LINAC 90 degrees head leakage radiation TVL values.

    PubMed

    Li, Zuofeng; Mutic, Sasa; Low, Daniel

    2006-09-01

    One of the key components in modern LINAC room shielding design is the amount of 90 degrees head leakage radiation levels. With the general clinical acceptance of intensity-modulated radiation therapy (IMRT) technique, accurate knowledge of this quantity has become even more important. Measurement of 90 degrees head leakage radiation of medical linear accelerators can be technically challenging due to the low dose rate causing poor signal-to-noise ratios in most detectors. 90 degrees leakage tenth-value layer (TVL) values in concrete have not been reported for the Elekta linear accelerators. This report describes our measurements of 90 degrees leakage TVL values for 6, 10, and 18 MV x-ray beams for an Elekta Precise Treatment System. A large-volume (1000 cm3) unpressurized ionization chamber and a high sensitivity electrometer, together with a separate chamber bias power supply, were used in these measurements in order to maximize the signal-to-noise ratio. A lead enclosure, of minimum thickness 10 cm, was constructed inside the treatment room to house the ion chamber to reduce the influence of room-scattered radiation. A square aperture of 10 X 10 cm2 area was left in the shield and aimed towards the accelerator head. Measurements were performed with the chamber placed at approximately 2 m from the accelerator isocenter. Concrete slabs with individual dimensions of approximately 40 X 40 cm2 cross-sectional area and 5 cm thickness were placed between the accelerator head and the ion chamber for these measurements. The measurements were performed with total concrete thickness of up to 80 cm, so that values up to the third TVL were measured. These measurements showed thatthe first concrete TVL values are 22, 23, and 28 cm (8.6, 9.1, and 10.5 in.) for 6, 10, and 18 MV beams, while the average of the first 3 TVL's were 25, 26, and 29 cm (9.9, 10.2, and 11.5 in.). Measured values agreed to within 10% of previously reported values for Varian linear accelerators for

  1. Gas pipeline leakage detection based on PZT sensors

    NASA Astrophysics Data System (ADS)

    Zhu, Junxiao; Ren, Liang; Ho, Siu-Chun; Jia, Ziguang; Song, Gangbing

    2017-02-01

    In this paper, an innovative method for rapid detection and location determination of pipeline leakage utilizing lead zirconate titanate (PZT) sensors is proposed. The negative pressure wave (NPW) is a stress wave generated by leakage in the pipeline, and propagates along the pipeline from the leakage point to both ends. Thus the NPW is associated with hoop strain variation along the pipe wall. PZT sensors mounted on the pipeline were used to measure the strain variation and allowed accurate (within 2% error) and repeatable location (within 4% variance) of five manually controlled leakage points. Experimental results have verified the effectiveness and the location accuracy for leakage in a 55 meter long model pipeline.

  2. Observation of anomalous leakage increase of narrow and short BCPMOS

    NASA Astrophysics Data System (ADS)

    Xu, Y. Z.; Pohland, O.; Cai, C.; Puchner, H.

    2004-07-01

    Leakage performance of BCPMOS (Buried channel PMOS) is investigated by experimentally varying the LDD implant conditions. An anomalous leakage increase with Boron LDD implant is observed for a small geometry (narrow and short) PMOS. Experimental results indicate that the increase of leakage current for narrow and short channel PMOS can be explained by boron piling up at the edge of STI isolation and from source/drain towards the middle of channel. Further confirmation of boron piling up is proven by the surface channel NMOS threshold voltage. Based on the leakage sensitivity, BCPMOS LDD is optimized to reduce leakage current for the small geometry transistors.

  3. Alopecia associated with unexpected leakage from electron cone

    SciTech Connect

    Wen, B.C.; Pennington, E.C.; Hussey, D.H.; Jani, S.K.

    1989-06-01

    Excessive irradiation due to unexpected leakage was found on a patient receiving electron beam therapy. The cause of this leakage was analyzed and the amount of leakage was measured for different electron beam energies. The highest leakage occurred with a 6 x 6 cm cone using a 12 MeV electron beam. The leakage dose measured along the side of the cone could be as great as 40%. Until the cones are modified or redesigned, it is advised that all patient setups be carefully reviewed to assure that no significant patient areas are in the side scatter region.

  4. General characteristics of U.S. Air Force and U.S. Army rated male and female aircrew.

    PubMed

    Voge, V M

    1996-11-01

    The issue of women flying military combat aircraft has been controversial. We conducted a comprehensive survey, via anonymous questionnaire, of all U.S. Army and U.S. Air Force rated female aircrew and an equal number of age- and duty-matched male aircrew. We are reporting on the general information section of the questionnaire here: age, time in the military, flight role, desire to remain in the military, marital status, number of children, spousal encouragement of career, type of aircraft flown, aircraft mishap and injury history, and reasons for extended period of illness/medical incapacitation to fly. Males' and females' responses in most areas surveyed were very similar. However, women were more than twice as likely to have been medically grounded for a period of more than 30 days. Not all the excess groundings were due to pregnancies. The responses to this section of the questionnaire indicate that female military officer aircrew are similar to their male counterparts. About 20% of married female aircrew do not postpone pregnancies in deference to their military careers.

  5. SU-E-P-15: Technique Factor Modulation and Reference Plane Air Kerma Rates in Response to Simulated Patient Thickness Variations for a Sample of Current Generation Fluoroscopes

    SciTech Connect

    Wunderle, K; Rakowski, J; Dong, F

    2015-06-15

    Purpose: To evaluate and compare approaches to technique factor modulation and air kerma rates in response to simulated patient thickness variations for four state-of-the-art and one previous-generation interventional fluoroscopes. Methods: A polymethyl methacrylate (PMMA) phantom was used as a tissue surrogate for the purposes of determining fluoroscopic reference plane air kerma rates, kVp, mA, and spectral filtration over a wide range of simulated tissue thicknesses. Data were acquired for each fluoroscopic and acquisition dose curve within a default abdomen or body imaging protocol. Results: The data obtained indicated vendor- and model-specific variations in the approach to technique factor modulation and reference plane air kerma rates across a range of tissue thicknesses. Some vendors have made hardware advances increasing the radiation output capabilities of their fluoroscopes; this was evident in the acquisition air kerma rates. However, in the imaging protocol evaluated, all of the state-of-the-art systems had relatively low air kerma rates in the fluoroscopic low-dose imaging mode as compared to the previous-generation unit. Each of the newest-generation systems also employ copper filtration in the selected protocol in the acquisition mode of imaging; this is a substantial benefit, reducing the skin entrance dose to the patient in the highest dose-rate mode of fluoroscope operation. Conclusion: Understanding how fluoroscopic technique factors are modulated provides insight into the vendor-specific image acquisition approach and provides opportunities to optimize the imaging protocols for clinical practice. The enhanced radiation output capabilities of some of the fluoroscopes may, under specific conditions, may be beneficial; however, these higher output capabilities also have the potential to lead to unnecessarily high dose rates. Therefore, all parties involved in imaging, including the clinical team, medical physicists, and imaging vendors, must work

  6. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  7. Rationale for Measuring Duct Leakage Flows in Large Commercial Buildings

    SciTech Connect

    Wray, Craig P.; Diamond, Richard C.; Sherman, Max H.

    2005-07-01

    Industry-wide methods of assessing duct leakage are based on duct pressurization tests, and focus on ''high pressure'' ducts. Even though ''low pressure'' ducts can be a large fraction of the system and tend to be leaky, few guidelines or construction specifications require testing these ducts. We report here on the measured leakage flows from ten large commercial duct systems at operating conditions: three had low leakage (less than 5% of duct inlet flow), and seven had substantial leakage (9 to 26%). By comparing these flows with leakage flows estimated using the industry method, we show that the latter method by itself is not a reliable indicator of whole-system leakage flow, and that leakage flows need to be measured.

  8. Reserves in Context: Planning for Leakage from Protected Areas

    PubMed Central

    Renwick, Anna R.; Bode, Michael; Venter, Oscar

    2015-01-01

    When protected areas reduce threats within their boundaries, they often displace a portion of these threats into adjacent areas through a process known as ‘leakage’, undermining conservation objectives. Using theoretical models and a case study of terrestrial mammals in Indonesia, we develop the first theoretical explanation of how leakage impacts conservation actions, and highlight conservation strategies that mitigate these impacts. Although leakage is a socio-economic process, we demonstrate that its negative impacts are also affected by the distribution of species, with leakage having larger impacts in landscapes with homogeneous distribution of species richness. Moreover, leakage has a greater negative effect when conservation strategies are implemented opportunistically, even creating the potential for perversely negative consequences from protected area establishment. Leakage thereby increases the relative benefits of systematic conservation planning over opportunism, especially in areas with high leakage and heterogeneously distributed species. Although leakage has the potential to undermine conservation actions, conservation planning can minimize this risk. PMID:26053163

  9. FELERION: a new approach for leakage power reduction

    NASA Astrophysics Data System (ADS)

    R, Anjana; Somkuwar, Ajay

    2014-12-01

    The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%-94% as compared to the conventional approach.

  10. Heparin Leakage in Central Venous Catheters by Hemodynamic Transport

    NASA Astrophysics Data System (ADS)

    Barbour, Michael; McGah, Patrick; Gow, Kenneth; Aliseda, Alberto

    2014-11-01

    Central venous catheters (CVCs), placed in the superior vena cava for hemodialysis, are routinely filled with heparin, an anticoagulant, while not in use to maintain patency and prevent thrombus formation at the catheter tip. However, the heparin-lock procedure places the patient at risk for systemic bleeding incidences, as heparin is known to leak into the blood stream. We propose that the driving mechanism behind heparin leakage is advective-diffusive transport due to the pulsatile blood flow surrounding the catheter tip. This novel hypothesis is based on Planar Laser Induced Fluorescence (PLIF) measurements of heparin transport from a CVC placed inside an in vitro pulsatile flow loop and validated with CFD simulations. The results show an initial, fast (<10s), advection-dominated phase that rapidly depletes the concentration of heparin at the CVC tip, followed by a slow, diffusion-limited phase inside the catheter lumen, where concentration is still high, that is insufficient at replenishing the lost heparin at the tip. These results, which estimate leakage rates consistent with published in vivo data, predict that the concentration of heparin at the catheter tip is effectively zero for the majority of the interdialytic phase, rendering the heparin lock ineffective.

  11. Traffic-Related Air Pollution and Acute Changes in Heart Rate Variability and Respiratory Function in Urban Cyclists

    PubMed Central

    Kulka, Ryan; Dubeau, Aimee; Martin, Christina; Wang, Daniel; Dales, Robert

    2011-01-01

    Background: Few studies have examined the acute health effects of air pollution exposures experienced while cycling in traffic. Objectives: We conducted a crossover study to examine the relationship between traffic pollution and acute changes in heart rate variability. We also collected spirometry and exhaled nitric oxide measures. Methods: Forty-two healthy adults cycled for 1 hr on high- and low-traffic routes as well as indoors. Health measures were collected before cycling and 1–4 hr after the start of cycling. Ultrafine particles (UFPs; ≤ 0.1 μm in aerodynamic diameter), particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), black carbon, and volatile organic compounds were measured along each cycling route, and ambient nitrogen dioxide (NO2) and ozone (O3) levels were recorded from a fixed-site monitor. Mixed-effects models were used to estimate associations between air pollutants and changes in health outcome measures relative to precycling baseline values. Results: An interquartile range increase in UFP levels (18,200/cm3) was associated with a significant decrease in high-frequency power 4 hr after the start of cycling [β = –224 msec2; 95% confidence interval (CI), –386 to –63 msec2]. Ambient NO2 levels were inversely associated with the standard deviation of normal-to-normal (NN) intervals (β = –10 msec; 95% CI, –20 to –0.34 msec) and positively associated with the ratio of low-frequency to high-frequency power (β = 1.4; 95% CI, 0.35 to 2.5) 2 hr after the start of cycling. We also observed significant inverse associations between ambient O3 levels and the root mean square of successive differences in adjacent NN intervals 3 hr after the start of cycling. Conclusions: Short-term exposures to traffic pollution may contribute to altered autonomic modulation of the heart in the hours immediately after cycling. PMID:21672679

  12. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster

    PubMed Central

    Nunes, Maria D S; Dolezal, Marlies; Schlötterer, Christian

    2013-01-01

    Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species. PMID:23452233

  13. Heating rate measurements over 30 deg and 40 deg (half angle) blunt cones in air and helium in the Langley expansion tube facility

    NASA Technical Reports Server (NTRS)

    Reddy, N. M.

    1980-01-01

    Convective heat transfer measurements, made on the conical portion of spherically blunted cones (30 deg and 40 deg half angle) in an expansion tube are discussed. The test gases used were helium and air; flow velocities were about 6.8 km/sec for helium and about 5.1 km/sec for air. The measured heating rates are compared with calculated results using a viscous shock layer computer code. For air, various techniques to determine flow velocity yielded identical results, but for helium, the flow velocity varied by as much as eight percent depending on which technique was used. The measured heating rates are in satisfactory agreement with calculation for helium, assuming the lower flow velocity, the measurements are significantly greater than theory and the discrepancy increased with increasing distance along the cone.

  14. Endoluminal vacuum therapy for the treatment of anastomotic leakage after anterior rectal resection.

    PubMed

    Weidenhagen, R; Gruetzner, K U; Wiecken, T; Spelsberg, F; Jauch, K-W

    2008-08-01

    Anastomotic leakage is the most important complication after (deep) anterior rectal resection, and is the main cause for the high level of patient mortality and morbidity. It can lead to generalized peritonitis, with a severe septic progression involving multiple organ failure and potentially culminating in the death of the patient. Despite numerous improvements in the surgical technique, it has so far not been possible to reduce the leakage rate significantly. An innovative endoscopic method for treating anastomotic leakage has now been developed and established clinically at the Department of Surgery, University of Munich-Grosshadern. Working together with B. Braun, we have been able to develop the technique of endoluminal vacuum therapy further into the Endo-SPONGE treatment, and prepare it as an autonomous therapeutic method. In the following report we present our experiences to date in the area of endoluminal vacuum therapy.

  15. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  16. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    PubMed

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials.

  17. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  18. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    PubMed

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  19. Fat graft-assisted internal auditory canal closure after retrosigmoid transmeatal resection of acoustic neuroma: Technique for prevention of cerebrospinal fluid leakage.

    PubMed

    Azad, Tareq; Mendelson, Zachary S; Wong, Anni; Jyung, Robert W; Liu, James K

    2016-02-01

    The retrosigmoid transmeatal approach remains an important strategy in the surgical management of acoustic neuromas. Gross total resection of acoustic neuromas requires removal of tumor within the cerebellopontine angle as well as tumor involving the internal auditory canal (IAC). Drilling into the petrous bone of the IAC can expose petrous air cells, which can potentially result in a fistulous tract to the nasopharynx manifesting as cerebrospinal fluid (CSF) rhinorrhea. We describe our method of IAC closure using autologous fat graft and assessed the rates of postoperative CSF leakage. We performed a retrospective study of 24 consecutive patients who underwent retrosigmoid transmeatal resection of acoustic neuroma who underwent our method of fat graft-assisted IAC closure. We assessed rates of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, and occurrence of meningitis. Twenty-four patients (10 males, 14 females) with a mean age of 47 years (range 18-84) underwent fat graft-assisted IAC closure. No lumbar drains were used postoperatively. There were no instances of postoperative CSF leak (incisional leak, rhinorrhea, or otorrhea), pseudomeningocele formation, or occurrence of meningitis. There were no graft site complications. Our results demonstrate that autologous fat grafts provide a safe and effective method of IAC defect closure to prevent postoperative CSF leakage after acoustic tumor removal via a retrosigmoid transmeatal approach. The surgical technique and operative nuances are described.

  20. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  1. Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios.

    PubMed

    Roncone, R L; Li, L; Brazas, J C

    1993-11-15

    Fabrication and characterization of a waveguide grating that is highly efficient in producing a single channel of output-coupled light are described. The thin-film assembly consisted of a waveguide-grating system fabricated upon a highly reflecting dielectric stack and isolated by a thick buffer layer. This single-leakage-channel grating coupler utilized the reflectance of the dielectric stack to redirect the light output coupled toward the substrate back into air, where it constructively interfered with light initially output coupled into air. Measured branching ratios were compared with values predicted by a rigorous computer model and agreed to within 2%. Experimental branching ratio values exceeding 98% were obtained.

  2. EVA Suit Microbial Leakage Investigation Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Baker, Christopher; Clayton, Ronald; Rucker, Michelle

    2016-01-01

    The objective of this project is to collect microbial samples from various EVA suits to determine how much microbial contamination is typically released during simulated planetary exploration activities. Data will be released to the planetary protection and science communities, and advanced EVA system designers. In the best case scenario, we will discover that very little microbial contamination leaks from our current or prototype suit designs, in the worst case scenario, we will identify leak paths, learn more about what affects leakage--and we'll have a new, flight-certified swab tool for our EVA toolbox.

  3. Detecting margin leakage of dental composite restorations

    SciTech Connect

    Wu, W.; Cobb, E.; Dermann, K.; Rupp, N.W.

    1983-01-01

    The degree of microleakage between a restoration and the cavity wall is difficult to quantify objectively. A silver-staining method is used and compared to the radioisotope method with results that indicate a superior definition and more accurate evaluation of microleakage. In addition to the accuracy, two advantages are presented: (1) scoring of the leakage can be refined and divided into more precise numbers, and (2) teeth can be observed directly in a microscope without resorting to the indirect interpretation of film or photograph.

  4. Using numerical simulation methods to predict the effects of balancing coal and primary air flow rates on furnace emissions

    SciTech Connect

    Schwab, M.J.; Nelson, R.K.; Hardman, R.R.; Facchiano, T.

    1996-12-31

    This paper presents the technical results of a computer modeling exercise to quantify the impacts of balanced and unbalanced coal flows on NO{sub x} emissions and other boiler performance indicators. Using Airflow Sciences Corporation`s proprietary codes, separate computational fluid dynamics models of the furnace region and coal nozzles of a 200 MW{sub e} tangentially-fired boiler equipped with an ABB C-E Services Low NO{sub x} Concentric Firing System (Level II) were constructed. In modeling the coal combustion process, the numerical simulation of gas conditions within the furnace is accomplished by coupling the fluid dynamics relationships with sub-models that predict heat transfer (conduction, convection and radiation), turbulence, coal particle trajectories and temperatures, coal devolatilization, char combustion and equilibrium (mixing limited) chemistry. The equilibrium chemistry sub-model defines concentrations of the products of combustion at all locations within the furnace, with the exception of NO{sub x} concentrations. The generation of NO{sub x} is decoupled from the CFD simulation and is determined using finite-rate chemistry. The model was validated using test results from a recently completed US Department of Energy-sponsored Clean Coal Project at Gulf Power Company`s Plant Lansing Smith Unit 2. Validation was accomplished through comparison of the model results with experimental data including NO{sub x} emissions, unburned carbon, furnace exit gas temperatures, carbon monoxide levels, and excess oxygen values. Following validation, additional simulations were run to quantify the effect of balanced and unbalanced coal flows. Conditions simulated included the as-found condition, a fully balanced condition, a mill-by-mill fully balanced condition, and a {+-}10 percent balanced condition. The results showed that NO{sub x} emissions were not significantly affected by improving the distributions of primary air and coal between the burners.

  5. Continued Investigation of Leakage and Power Loss Test Results for Competing Turbine Engine Seals

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2006-01-01

    Secondary seal leakage in jet engine applications results in power losses to the engine cycle. Likewise, seal power loss in jet engines not only result in efficiency loss but also increase the heat input into the engine resulting in reduced component lives. Experimental work on labyrinth and annular seals was performed at NASA Glenn Research Center to quantify seal leakage and power loss at various temperatures, seal pressure differentials, and surface speeds. Data from annular and labyrinth seals are compared with previous brush and finger seal test results. Data are also compared to literature. Annular and labyrinth seal leakage rates are 2 to 3 times greater than brush and finger seal rates. Seal leakage decreases with increasing speed but increases with increasing test temperature due to thermal expansion mismatch. Also seal power loss increases with surface speed, seal pressure differential, mass flow rate, and radial clearance. Annular and labyrinth seal power losses were higher than those of brush or finger seal data. The brush seal power loss was 15 to 30 percent lower than annular and labyrinth seal power loss.

  6. Modeling of the double leakage and leakage spillage flows in axial flow compressors

    NASA Astrophysics Data System (ADS)

    Du, Hui; Yu, Xianjun; Liu, Baojie

    2014-04-01

    A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters, i.e. the compressor massflow coefficient, ϕ and compressor loading coefficient, Ψ, and some critical blade geometrical parameters, i.e. blade solidity, σ, stagger angle, β S , blade chord length, C, and blade pitch length, S. By using this model, the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process. Considering the leading edge spillage flow usually indicates the inception of spike-type stall, i.e. the compressor is a tip critical design, this model could also be used as a tool to choose the critical design parameters for designers. At last, some experimental data from literature was used to validate the model and the results proved that the model was reliable.

  7. Surface Monitoring of Leakage From Geologic CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Strazisar, B. R.; Klusman, R. W.; Wells, A. W.

    2003-12-01

    The capture of carbon dioxide (CO2) from large point sources and long term storage in geological formations has received much recent attention as a potential green house gas mitigation option. Among the proposed storage locations are active and depleted oil and natural gas reservoirs, unmineable coal seams, and deep saline aquifers. The success of any candidate storage location greatly depends on its ability to keep CO2 underground for a long period of time. In order to evaluate the success or failure of a CO2 storage operation, it is important to monitor injection sites to detect CO2 released at the surface. The U.S. Department of Energy has placed a high priority on the development of inexpensive, effective methods to measure, monitor, and verify long term sequestration of CO2 in geological sinks. Monitoring the leakage of CO2 is a challenging task, due to the small expected concentrations above a leaking reservoir as well as the relatively large background of CO2 present in the atmosphere. Another complication is the fact that CO2 continually diffuses from the soil into the atmosphere due to plant and microbial respiration. Any leak of CO2 from a reservoir would have to be differentiated from these other processes. In cooperation with the Texas Bureau of Economic Geology at the University of Texas, the National Energy Technology Laboratory is conducting a comprehensive surface monitoring effort at the site of a pilot scale injection project. In this project, approximately 4000 tons of CO2 will be injected into the Frio formation, a deep, non-petroleum bearing saline aquifer. Surface monitoring includes the detection of injected tracer molecules, direct measurement of CO2 soil flux, soil gas analysis, and carbon isotope analysis from soil gas CO2. These measurements, in conjunction with a parallel modeling effort and deep seismic surveys, will provide an accurate measure of the leak rate of CO2 to the surface (or an upper limit of leakage). Such an understanding

  8. On leakage and seepage from geological carbon sequestration sites

    SciTech Connect

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  9. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour.

  10. Counterflow diffusion flames of hydrogen, and hydrogen plus methane, ethylene, propane, and silane vs. air - Strain rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. Burton; Wilson, L. G.

    1991-01-01

    Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.

  11. Optical imaging to map blood-brain barrier leakage

    NASA Astrophysics Data System (ADS)

    Jaffer, Hayder; Adjei, Isaac M.; Labhasetwar, Vinod

    2013-11-01

    Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.

  12. Tasman leakage in a fine-resolution ocean model

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; England, Matthew H.; Zika, Jan D.; Sloyan, Bernadette M.

    2012-03-01

    Tasman leakage, the westward flow of thermocline waters south of Australia from the Pacific to the Indian Ocean, is one of the lesser-studied of the inter-ocean exchanges. Here, some of the properties of the Tasman leakage are inferred from Lagrangian particles integrated using the three-dimensional velocity fields of the 1/10 degree resolution OFES model. The mean Tasman leakage in this model is 4.2 Sv, with a standard deviation of 4.3 Sv. The heat flux associated with this leakage lies in the range 0.08-0.18 PW. There is large variability in the Tasman leakage on both sub-weekly and inter-annual scales, but no trend over the 1983-1997 period. Despite the large weekly variability, with peaks of more than 20 Sv, it appears that less than half of the Tasman leakage is carried within eddies.

  13. Determination of air-kerma strength for the {sup 192}Ir GammaMedplus iX pulsed-dose-rate brachytherapy source

    SciTech Connect

    Riley, A. D.; Pike, T. L.; Micka, J. A.; Fulkerson, R. K.; DeWerd, L. A.

    2013-07-15

    Purpose: Pulsed-dose-rate (PDR) brachytherapy was originally proposed to combine the therapeutic advantages of high-dose-rate (HDR) and low-dose-rate brachytherapy. Though uncommon in the United States, several facilities employ pulsed-dose-rate brachytherapy in Europe and Canada. Currently, there is no air-kerma strength standard for PDR brachytherapy {sup 192}Ir sources traceable to the National Institute of Standards and Technology. Discrepancies in clinical measurements of the air-kerma strength of the PDR brachytherapy sources using HDR source-calibrated well chambers warrant further investigation.Methods: In this research, the air-kerma strength for an {sup 192}Ir PDR brachytherapy source was compared with the University of Wisconsin Accredited Dosimetry Calibration Laboratory transfer standard well chambers, the seven-distance technique [B. E. Rasmussen et al., 'The air-kerma strength standard for 192Ir HDR sources,' Med. Phys. 38, 6721-6729 (2011)], and the manufacturer's stated value. Radiochromic film and Monte Carlo techniques were also employed for comparison to the results of the measurements.Results: While the measurements using the seven-distance technique were within + 0.44% from the manufacturer's determination, there was a + 3.10% difference between the transfer standard well chamber measurements and the manufacturer's stated value. Results showed that the PDR brachytherapy source has geometric and thus radiological qualities that exhibit behaviors similar to a point source model in contrast to a conventional line source model.Conclusions: The resulting effect of the pointlike characteristics of the PDR brachytherapy source likely account for the differences observed between well chamber and in-air measurements.

  14. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  15. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  16. A harmonic pulse testing method for leakage detection in deep subsurface storage formations

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan

    2015-06-01

    Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.

  17. The effects of indoor particle exposure on blood pressure and heart rate among young adults: An air filtration-based intervention study

    NASA Astrophysics Data System (ADS)

    Lin, Lian-Yu; Chen, Hua-Wei; Su, Te-Li; Hong, Gui-Bing; Huang, Li-Chu; Chuang, Kai-Jen

    2011-10-01

    This study aims to evaluate whether air filtration can modify the effect of indoor particles on blood pressure (BP) and heart rate (HR) in a young, healthy population. We recruited 60 students to participate in a study of multiple, prolonged exposures to either particle-filtered or non-filtered indoor air. We made four home visits in which we took continuous 48-hour measurements of systolic BP (SBP), diastolic BP (DBP), and HR in each participant. Particulate matter less than 2.5 μm in diameter (PM 2.5) and total volatile organic compounds (VOCs) were measured at each participant's home. We used mixed-effects models to associate BP and HR with indoor particles and total VOCs, which were averaged over 1-hour to 8-hour periods prior to physiological measurements. We found that the mean values for indoor PM 2.5 exposures at 1-hour to 4-hour were associated with an elevation in SBP, DBP and HR. The effects of indoor PM 2.5 on BP and HR were greatest during the visits without air filtration. During visits with air filtration, participants showed no significant change in BP and HR in response to indoor PM 2.5 exposure. We concluded that air filtration can reduce indoor PM 2.5 concentrations and modify the effect of PM 2.5 on BP and HR in a healthy, young population.

  18. Fluid leakage near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Dapp, Wolf B.; Müser, Martin H.

    2016-02-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again.

  19. Fluid leakage near the percolation threshold

    PubMed Central

    Dapp, Wolf B.; Müser, Martin H.

    2016-01-01

    Percolation is a concept widely used in many fields of research and refers to the propagation of substances through porous media (e.g., coffee filtering), or the behaviour of complex networks (e.g., spreading of diseases). Percolation theory asserts that most percolative processes are universal, that is, the emergent powerlaws only depend on the general, statistical features of the macroscopic system, but not on specific details of the random realisation. In contrast, our computer simulations of the leakage through a seal—applying common assumptions of elasticity, contact mechanics, and fluid dynamics—show that the critical behaviour (how the flow ceases near the sealing point) solely depends on the microscopic details of the last constriction. It appears fundamentally impossible to accurately predict from statistical properties of the surfaces alone how strongly we have to tighten a water tap to make it stop dripping and also how it starts dripping once we loosen it again. PMID:26839261

  20. Torque Transmission Device at Zero Leakage

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.

    2005-01-01

    In a few critical applications, mechanical transmission of power by rotation at low speed is required without leakage at an interface. Herein we examine a device that enables torque to be transmitted across a sealed environmental barrier. The barrier represents the restraint membrane through which the torque is transmitted. The power is transferred through elastic deformation of a circular tube into an elliptical cross-section. Rotation of the principle axis of the ellipse at one end results in a commensurate rotation of an elliptical cross section at the other end of the tube. This transfer requires no rigid body rotation of the tube allowing a membrane to seal one end from the other. Both computational and experimental models of the device are presented.

  1. Feasibility study of tank leakage mitigation using subsurface barriers

    SciTech Connect

    Treat, R.L.; Peters, B.B.; Cameron, R.J.; McCormak, W.D.; Trenkler, T.; Walters, M.F.; Rouse, J.K.; McLaughlin, T.J.; Cruse, J.M.

    1994-09-21

    The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulating air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.

  2. The study of mercury exchange rate between air and soil surface in Hongfeng reservoir region, Guizhou, PR China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Feng, X.; Qiu, G.

    2003-05-01

    In summer of 2002, we measured the exchange flux of mercury between air and soil surface using the method of Dynamic Flux Chamber (DFC) in Hongfeng lake region. At the same time, we recorded meteorological parameters such as air temperature, soil temperature, wind speed and solar radiation using a multi-function mini-weather station (global water III). Soil, moss and fertilizer samples in study area were also collected. The Hg fluxes of air/soil surface rangeed from -11.0ng m^{-2} h^{-1} to 219.0ng m^{-2}h^{-1}, averaged at 29.2 ng m^{-2} h^{-1} (n = 508). The data show that the exchange of mercury is bi-direction between air and soit surface: namely both emission and deposition of mercury occurs, but Hg emission is much more frequent than deposition process (n_{deposition} =3,n_{emission}= 505). The average mercury content in soil, moss, fertilizer sample are 249.9± 24.1ng/g (n=3), 450.4 ± 64.6ng/g (n=2), 53.4ng/g (n= 1) respectively.

  3. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  4. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect

    R. Demler

    2006-04-01

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have

  5. The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250°C

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Won; McEachern, Rod J.; Taylor, Peter; Wood, Donald D.

    1996-06-01

    The effect of fission products on the rate of U3O8 formation was investigated by oxidizing UO2-based SIMFUEL (simulated high burnup nuclear fuel) and unirradiated UO2 fuel specimens in air at 250°C for different times (1-317 days). The progress of oxidation was monitored by X-ray diffraction, revealing that the rate of U3O8 formation declines with increasing burnup. An expression was derived to describe quantitatively the time for U3O8 powder formation as a function of simulated burnup. These findings were supported by additional isochronal oxidation experiments conducted between 200 and 300°C.

  6. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  7. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  8. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  9. 49 CFR 178.345-13 - Pressure and leakage tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... adjacent cargo tanks empty and at atmospheric pressure. Each closure, except pressure relief devices and... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage tests. 178.345-13 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.345-13 Pressure and leakage tests. (a)...

  10. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  11. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  12. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage test. 178.348-5 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b)...

  13. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  14. 49 CFR 178.346-5 - Pressure and leakage tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Pressure and leakage tests. 178.346-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.346-5 Pressure and leakage tests. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  15. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pressure and leakage test. 178.347-5 Section 178... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b)...

  16. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  17. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  18. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  19. 49 CFR 178.348-5 - Pressure and leakage test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pressure and leakage test. 178.348-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.348-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....

  20. 49 CFR 178.347-5 - Pressure and leakage test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pressure and leakage test. 178.347-5 Section 178... Specifications for Containers for Motor Vehicle Transportation § 178.347-5 Pressure and leakage test. (a) Each cargo tank must be tested in accordance with § 178.345-13 and this section. (b) Pressure test....