Science.gov

Sample records for air lift pump

  1. DWPF Air Lift Pump Life Cycle Evaluation

    SciTech Connect

    IMRICH, KENNETH

    2004-03-15

    The Defense Waste Processing Facility (DWPF) air lift pump was successfully tested at Clemson for 72 days of operation. It provided sufficient flow to pump molten glass without excessive foaming. Slurry feeding also did not reveal any problems with cold cap stability. Metallurgically the Inconel 690 (690) portions of the pump were in excellent condition with no visual evidence of degradation even in high flow regions, i.e., air/melt interface and glass discharge regions. Spinel deposits, which completely covered the air passage on one side, were found at the inlet of each platinum/rhodium (Pt/Rh) nozzle. Although the deposits were extensive, they were porous and did not have an adverse effect on the operation of the pump. The technique used to secure the platinum/rhodium nozzles to the 690 housing appeared to be adequate with only minor oxidation of the 690 threads and glass in-leakage. Galvanic attack was observed where the nozzle formed a seal with the 690. Significant pitting of the 690 was observed around the entire seal. Intergranular cracking of the Pt/Rh alloy was extensive but the cause could not be determined. Testing would be required to evaluate the degradation. Data from the performance test and the metallurgical evaluation are being used to modify the design of the first DWPF production air lift pump. It will be fabricated entirely from 690 and use argon as the purge gas. It is intended to have a service life of 6 months. Recommendations for insertion, operation, and inspection of the pump are also included in this report. Performance data collected from the operation of the production pump will be used to further optimize the design. Laboratory exposure tests should also be performed to evaluate the galvanic effect between platinum/rhodium and 690.

  2. A Physically Based Model for Air-Lift Pumping

    NASA Astrophysics Data System (ADS)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  3. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    SciTech Connect

    Kentfield, J.A.C.

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  4. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  5. Design study of an air pump and integral lift engine ALF-504 using the Lycoming 502 core

    NASA Technical Reports Server (NTRS)

    Rauch, D.

    1972-01-01

    Design studies were conducted for an integral lift fan engine utilizing the Lycoming 502 fan core with the final MQT power turbine. The fan is designed for a 12.5 bypass ratio and 1.25:1 pressure ratio, and provides supercharging for the core. Maximum sea level static thrust is 8370 pounds with a specific fuel consumption of 0.302 lb/hr-lb. The dry engine weight without starter is 1419 pounds including full-length duct and sound-attenuating rings. The engine envelope including duct treatment but not localized accessory protrusion is 53.25 inches in diameter and 59.2 inches long from exhaust nozzle exit to fan inlet flange. Detailed analyses include fan aerodynamics, fan and reduction gear mechanical design, fan dynamic analysis, engine noise analysis, engine performance, and weight analysis.

  6. What`s new in artificial lift. Part 1 -- Sucker rod pumping, progressing cavity pumping, gas lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1997-03-01

    Breaking the overall concept of artificially lifting producing oil and gas wells--vs. relying solely on the wells` ability to flow at desired rates--into two parts, this article discusses the three techniques of sucker rod and progressing cavity (PC) pumping, and gas lift. In the major category of sucker rod pumping, nine recently introduced new techniques include: a new standing valve cage; three types of improved stuffing boxes; a pump inlet gas separator; a computerized well monitor; improved paraffin removal techniques; tubing lining with polyethylene; and a novel way to dispose of produced water in a gas well. Three advances for PC pumping include: introduction of a metallic stator, a flowrate controller to prevent pump damage and a locking tubing collar to prevent backoff. Two gas-lift innovations describe a wireline retrievable valve for coiled tubing and applications of CO{sub 2} gas lift in West Texas.

  7. An experimental study on the airlift pump with air jet nozzle and booster pump.

    PubMed

    Cho, Nam-Cheol; Hwang, In-Ju; Lee, Chae-Moon; Park, Jung-Won

    2009-01-01

    The experiments for high head airlifting performance with vertical tube were examined for wastewater treatment. Comparing with the centrifugal pump and other pumps, the airlift pump has some problems and limited applications. However, an advantage of an airlift pump is in its geometrical simplicity, not having any moving parts, so it is suitable in lifting fluids including tiny pieces of metal or grit. In this study, for the purpose of high lifting head, an air jet nozzle was used. We have performed experimentally according to various characteristics of the airlift pump system such as the change of submerged depth, lifting head of liquid-air mixture (total head) and air flow rate. This work has verified through experiments that airlift pump shows lifting ability for 3 m (Sr = 0.3) in comparison with conventional height, 2 m (Sr = 0.4). Also, we suggested that the new airlift pump system with the air booster pump be used to improve the higher lifting head performance.

  8. Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control.

    PubMed

    Kim, Jungkyu; Kang, Minjee; Jensen, Erik C; Mathies, Richard A

    2012-02-21

    We describe the development and characterization of pneumatically actuated "lifting gate" microvalves and pumps. A fluidic layer containing the gate structure and a pneumatic layer are fabricated by soft-lithography in PDMS and bonded permanently with an oxygen plasma treatment. The microvalve structures are then reversibly bonded to a featureless glass or plastic substrate to form hybrid glass-PDMS and plastic-PDMS microchannel structures. The break-through pressures of the microvalve increase linearly up to 65 kPa as the closing pressure increases. The pumping capability of these structures ranges from the nanoliter to microliter scale depending on the number of cycles and closing pressure employed. The micropump structures exhibit up to 86.2% pumping efficiency from flow rate measurements. The utility of these structures for integrated sample processing is demonstrated by performing an automated immunoassay. These lifting gate valve and pump structures enable facile integration of complex microfluidic control systems with a wide range of lab-on-a-chip substrates.

  9. Lifting gate PDMS microvalves and pumps for microfluidic control

    PubMed Central

    Kim, Jungkyu; Kang, Minjee; Jensen, Erik C.; Mathies, Richard A.

    2012-01-01

    We describe the development and characterization of pneumatically actuated “lifting gate” microvalves and pumps. A fluidic layer containing the gate structure and a pneumatic layer are fabricated by soft-lithography in PDMS and bonded permanently with an oxygen plasma treatment. The microvalve structures are then reversibly bonded to a featureless glass or plastic substrate to form hybrid glass-PDMS and plastic-PDMS microchannel structures. The breakthrough pressures of the microvalve increase linearly up to 65 kPa as the closing pressure increases. The pumping capability of these structures ranges from the nanoliter to microliter scale depending on the number of cycles and closing pressure employed. The micropump structures exhibit up to 86.2% pumping efficiency from flow rate measurements. The utility of these structures for integrated sample processing is demonstrated by performing an automated immunoassay. These lifting gate valve and pump structures enable facile integration of complex microfluidic control systems with a wide range of lab-on-a-chip substrates. PMID:22257104

  10. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  11. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  12. 58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, April 9, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. Darrieus wind-turbine and pump performance for low-lift irrigation pumping. Final report

    SciTech Connect

    Hagen, L.J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind-powered pumping system for low-lift (i.e., < 15 m head) irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind-powered prototype in a farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind-powered tailwater pumping systems in western Kansas. The power source selected was a two-bladed, 6-m-diameter, 9-m-tall Darrieus vertical-axis wind turbine with 0.10 solidity and 36.1 M/sup 2/ swept area.

  14. What`s new in artificial lift. Part 2: Advances in electrical submersible pumping equipment and instrumentation/control, plus other new artificial lift developments

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1996-04-01

    The Part 1 article presented last month discussed recent industry artificial lift innovations for sucker rod pumping, progressing cavity pumping and gas lift. Described in this presentation are 22 advances recently introduced by 15 different companies for electrical submersible pumping (ESP), and other new developments related to artificial lift field operations. ESP innovations include contributions ranging from new downhole pump equipment, gas separators and cables to various surface controllers/monitors. Other R and D contributions cover desangers, separators, fluid level measurements, chemical injection and well-heads.

  15. Current developments lighter than air systems. [heavy lift airships

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types.

  16. Gas-lift pumps for flowing and purifying molten silicon

    DOEpatents

    Kellerman, Peter L.; Carlson, Frederick

    2016-02-23

    The embodiments herein relate to a sheet production apparatus. A vessel is configured to hold a melt of a material and a cooling plate is disposed proximate the melt. This cooling plate configured to form a sheet of the material on the melt. A pump is used. In one instance, this pump includes a gas source and a conduit in fluid communication with the gas source. In another instance, this pump injects a gas into a melt. The gas can raise the melt or provide momentum to the melt.

  17. What's new in artificial lift; Part 1: Industry developments in electrical submersible pumps and accessories; gas lift innovations; and new tools for control and measurement

    SciTech Connect

    Lea, J.F. ); Winkler, H.W. , Lubbock, TX )

    1994-03-01

    In this first article of a two-part series, several new developments by manufacturers of downhole electrical submersible pumps (ESPs) are discussed, including a progressive cavity pump and motor system, advances in cables and penetrators, and new lines of sensors and drives. Several gas-lift innovations are covered, such as: an electric surface controlled gas-lift valve, a retrievable valve latch, spoolable retrievable gas-lift valves and sidepocket mandrels, and an improved plunger-lift seal. Also described in the category of miscellaneous new equipment are: a high-rate waterflood mandrel and valve, net oil meter, less expensive downhole memory gauge, downhole oil/water separation system and a new laser coating process. Part 2, to follow next month, will introduce advances in beam and progressive cavity pumping.

  18. Lifted methane-air jet flames in a vitiated coflow

    SciTech Connect

    Cabra, R.; Chen, J.-Y.; Dibble, R.W.; Karpetis, A.N.; Barlow, R.S.

    2005-12-01

    The present vitiated coflow flame consists of a lifted jet flame formed by a fuel jet issuing from a central nozzle into a large coaxial flow of hot combustion products from a lean premixed H{sub 2}/air flame. The fuel stream consists of CH{sub 4} mixed with air. Detailed multiscalar point measurements from combined Raman-Rayleigh-LIF experiments are obtained for a single base-case condition. The experimental data are presented and then compared to numerical results from probability density function (PDF) calculations incorporating various mixing models. The experimental results reveal broadened bimodal distributions of reactive scalars when the probe volume is in the flame stabilization region. The bimodal distribution is attributed to fluctuation of the instantaneous lifted flame position relative to the probe volume. The PDF calculation using the modified Curl mixing model predicts well several but not all features of the instantaneous temperature and composition distributions, time-averaged scalar profiles, and conditional statistics from the multiscalar experiments. A complementary series of parametric experiments is used to determine the sensitivity of flame liftoff height to jet velocity, coflow velocity, and coflow temperature. The liftoff height is found to be approximately linearly related to each parameter within the ranges tested, and it is most sensitive to coflow temperature. The PDF model predictions for the corresponding conditions show that the sensitivity of flame liftoff height to jet velocity and coflow temperature is reasonably captured, while the sensitivity to coflow velocity is underpredicted.

  19. 111. AIR CONDENSATE PUMP. NOTE MAIN DISCHARGE HEADER ABOVE STEAMEND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. AIR CONDENSATE PUMP. NOTE MAIN DISCHARGE HEADER ABOVE STEAM-END CYLINDER. NOTE ALSO, THE 30' DISCHARGE VALVE AND ACTUATER TO THE LEFT OF THE PUMP. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  20. 35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VIEW LOOKING EAST IN PUMP ROOM. AIR COMPRESSOR ON LEFT, FUEL OIL PUMP BEHIND ON LEFT, FUEL OIL HEATERS AND PUMPS IN BACKGROUND WITH DRAIN SYSTEM - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  1. A Lighter-Than-Air System Enhanced with Kinetic Lift

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2002-01-01

    A hybrid airship system is proposed in which the buoyant lift is enhanced with kinetic lift. The airship would consist of twin hulls in which the buoyant gas is contained. The twin hulls would be connected in parallel by a wing having an airfoil contour. In forward flight, the wing would provide kinetic lift that would add to the buoyant lift. The added lift would permit a greater payload/altitude combination than that which could be supported by the buoyant lift alone. The buoyant lift is a function of the volume of gas and the flight altitude. The kinetic lift is a function of the airfoil section, wing area, and the speed and altitude of flight. Accordingly there are a number of factors that can be manipulated to arrive at a particular design. Particular designs could vary from small, lightweight systems to very large, heavy-load systems. It will be the purpose of this paper to examine the sensitivity of such a design to the several variables. In addition, possible uses made achievable by such a hybrid system will be suggested.

  2. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  3. Weight Lift Capabilities of Air Force Basic Trainees

    DTIC Science & Technology

    1983-05-01

    month period of data collection. The 63 male Flights were selected at random during the same period. The age range for enlistment in the Air Force is...17 to 35 years. The age range for male subjects in this study was from 17 to 33 years with a mean of 19.75. More than 90 percent of the males were in...the 17 to 22 age group. The older subjects were entering the Air National Guard or the Air Force Reserves. The age range for the female subjects was

  4. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  5. Compressed air piping, 241-SY-101 hydraulic pump retrieval trailer

    SciTech Connect

    Wilson, T.R.

    1994-12-12

    The following Design Analysis was prepared by the Westinghouse Hanford Company to determine pressure losses in the compressed air piping installed on the hydraulic trailer for the 241-SY-101 pump retrieval mission.

  6. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  7. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    SciTech Connect

    Choi, B.C.; Chung, S.H.

    2010-12-15

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

  8. Vein-style air pumping tube and tire system and method of assembly

    DOEpatents

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  9. Solar assisted heat pump on air collectors: A simulation tool

    SciTech Connect

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis; Tsoutsos, Theocharis; Botzios-Valaskakis, Aristotelis

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  10. Air Source Cold Climate Heat Pump

    DTIC Science & Technology

    2013-08-01

    The buildings were modified so that one zone used the cold climate heat pump and the other zone used its original modern central HVAC system . Both...been updated with insulation, a sheet metal roof, and a modern central HVAC system . Both buildings had two zones for heating and cooling, which...climate heat pump and the other zone used its original modern central HVAC system . Both zones were instrumented so that energy consumption and

  11. Effect of Impeller Geometry on Lift-Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump.

    PubMed

    Nishida, Masahiro; Nakayama, Kento; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Kawaguchi, Yasuo; Kuwana, Katsuyuki; Yamane, Takashi

    2016-06-01

    The effect of the flow path geometry of the impeller on the lift-off and tilt of the rotational axis of the impeller against the hydrodynamic force was investigated in a centrifugal blood pump with an impeller supported by a single-contact pivot bearing. Four types of impeller were compared: the FR model with the flow path having both front and rear cutouts on the tip, the F model with the flow path having only a front cutout, the R model with only a rear cutout, and the N model with a straight flow path. First, the axial thrust and the movement about the pivot point, which was loaded on the surface of the impeller, were calculated using computational fluid dynamics (CFD) analysis. Next, the lift-off point and the tilt of the rotational axis of the impeller were measured experimentally. The CFD analysis showed that the axial thrust increased gently in the FR and R models as the flow rate increased, whereas it increased drastically in the F and N models. This difference in axial thrust was likely from the higher pressure caused by the smaller circumferential velocity in the gap between the top surface of the impeller and the casing in the FR and R models than in the F and N models, which was caused by the rear cutout. These results corresponded with the experimental results showing that the impellers lifted off in the F and N models as the flow rate increased, whereas it did not in the FR and R models. Conversely, the movement about the pivot point increased in the direction opposite the side with the pump outlet as the flow rate increased. However, the tilt of the rotational axis of the impeller, which oriented away from the pump outlet, was less than 0.8° in any model under any conditions, and was considered to negligibly affect the rotational attitude of the impeller. These results confirm that a rear cutout prevents lift-off of the impeller caused by a decrease in the axial thrust.

  12. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  13. The Linearized Unsteady Lifting Surface Theory Applied to the Pump-Jet Propulsive System.

    DTIC Science & Technology

    1981-08-01

    and incident flow angle, which is present only in the steady state (q-R=O) since the blades are considered rigid, is given as the sum WRc + WRf where R...Technology, August 1968; published as "A New Procedure for the Solution of Lifting Surface Problems," J. Hydro - nautics, Vol.3, No.1, January 1969. 8. Tsakonas

  14. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  15. Air-to-water heat pumps for the home

    SciTech Connect

    Bodzin, S.

    1997-07-01

    Heat pump water heaters may be on the rise again. Retrofitters have shied away from this form of water heating due to concerns about cost, moise, efficiency, and maintaenance. Recent advances have overcome some of these problems and are helping the technology find a niche in both hot and cold climates. The topics covered in this article include the following: how heat pump water heaters work; air source from where to where, including air conditioning, heat recovery ventilation, hybrid systems; nuisances; maintenance; costs; to install or not to install; performance: a trick to quantify. 2 figs.

  16. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola.

    PubMed

    Choi, Dubok; Maeng, Jeung-Moo; Ding, Ji-Lu; Cha, Wol-Suk

    2007-08-01

    For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were 25degrees C and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. K2HPO4 and MgSO4 x 7H2O were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F pinicola.

  17. Energy storage by compressed air. [using windpowered pumps

    NASA Technical Reports Server (NTRS)

    Szego, G. C.

    1973-01-01

    The feasibility of windpower energy storage by compressed air is considered. The system is comprised of a compressor, a motor, and a pump turbine to store air in caverns or aquifiers. It is proposed that storage of several days worth of compressed air up to 650 pounds per square inch can be used to push the aquifier up closer to the container dome and thus initiate piston action by simply compressing air more and more. More energy can be put into it by pressure increase or pushing back the water in the aquifier. This storage system concept has reheat flexibility and lowest cost effectiveness.

  18. Field evaluation of gas-lift and progressive-cavity pumps as effective dewatering methods for coalbed methane wells. Final report, April 1984-December 1985

    SciTech Connect

    Graves, S.L.; Hollingsworth, F.C.; Beavers, W.M.

    1986-03-01

    Field evaluations of gas-lift and progressive-cavity pumps were conducted to determine their effectiveness as dewatering techniques for coalbed-methane wells in the Warrior Coal Field. AMPCO installed a gas-lift system in AMPCO Well No. 6. Problems included poor performance of all gas-lift valve designs and higher instantaneous water production rates than anticipated due to heading and unloading. The test provided the conclusion that gas lift is an effective start-up dewatering tool for initial removal of large amounts of water and solids but that in use as a long-term dewatering tool, needs additional evaluation relative to capital cost, valve design, and extended performance.

  19. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  20. Reduced energy and volume air pump for a seat cushion

    SciTech Connect

    Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

    1997-08-19

    An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

  1. Reduced energy and volume air pump for a seat cushion

    SciTech Connect

    Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.

    1997-01-01

    An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.

  2. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  3. Research on the performance of low-lift diving tubular pumping system by CFD and Test

    NASA Astrophysics Data System (ADS)

    Xia, Chenzhi; Cheng, Li; Liu, Chao; Zhou, Jiren; Tang, Fangping; Jin, Yan

    2016-11-01

    Post-diving tubular pump is always used in large-discharge & low-head irrigation or storm drainage pumping station, its impeller and motor share the same shaft. Considering diving tubular pump system's excellent hydraulic performance, compact structure, good noise resistance and low operating cost, it is used in Chinese pump stations. To study the hydraulic performance and pressure fluctuation of inlet and outlet passage in diving tubular pump system, both of steady and unsteady full flow fields are numerically simulated at three flow rate conditions by using CFD commercial software. The asymmetry of the longitudinal structure of inlet passage affects the flow pattern on outlet. Especially at small flow rate condition, structural asymmetry will result in the uneven velocity distribution on the outlet of passage inlet. The axial velocity distribution uniformity increases as the flow rate increases on the inlet of passage inlet, and there is a positive correlation between hydraulic loss in the passage inlet and flow rate's quadratic. The axial velocity distribution uniformity on the outlet of passage inlet is 90% at design flow rate condition. The predicted result shows the same trend with test result, and the range of high efficiency area between predicted result and test result is almost identical. The dominant frequency of pressure pulsation is low frequency in inlet passage at design condition. The dominant frequency is high frequency in inlet passage at small and large flow rate condition. At large flow rate condition, the flow pattern is significantly affected by the rotation of impeller in inlet passage. At off-design condition, the pressure pulsation is strong at outlet passage. At design condition, the dominant frequency is 35.57Hz, which is double rotation frequency.

  4. Lift Increase by Blowing Out Air, Tests on Airfoil of 12 Percent Thickness, Using Various Types of Flap

    NASA Technical Reports Server (NTRS)

    Schwier, W.

    1947-01-01

    The NACA 23012-4 airfoil was investigated for the purpose of increasing lift by means of blowing out air from the wing, in conjunction with the effect of plain flap of variable contour and slotted flap of 25 percent chord length. The wing also was provided with a hinged nose, to be deflected at will. Air was blown out frcm the wing immediately in front of the flap; also at the opening between wing and hinged nose,tangentially to the surface of the wing. Another device employed to increase maximum lift was a movable slat, to be opened to form a clot. Lift was measured in relation to the volume of blown-out air and considerable increases were observed with increasing volume.

  5. What's new in artificial lift

    SciTech Connect

    Lea, J.F.; Winker, H.W.

    1989-05-01

    New developments might be expected to decline as oil, and thus equipment and service, prices decrease. However, there is no indication that this is occurring. In fact, several new and innovative developments are covered in this article. Of the more unique are a new geometry pumping unit and a hydraulic powered sucker and rod system. Other items described in this article include: New pump-off controller; Automatic balancing for air balanced pumping units; New rod couplings; New pump plunger; Sucker rod pulsation dampener; Stripper type BOP; Rod coupling tool; ESP cable protectors; New ESP motor; VSD communications interface; ESP gas separator; Portable hydraulic production test unit; Casing gas lift plunger; Production shut-of valve; Ceramic material for pump parts; Pressure transmitter; and New versatile packer.

  6. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor.

  7. Ram air turbine driving a variable displacement hydraulic pump

    SciTech Connect

    Dickes, G.E.; Brekhus, R.D.; Seidel, W.E.

    1992-09-08

    This patent describes a ram air turbine for use in generating power for an aircraft by driving a load with an airstream intercepting blades of the turbine as the aircraft moves through the air with the turbine applying power to the load during rotation of the blades in a first rotational velocity range and during rotation of the blades in a second rotational velocity range which is lower than the first rotational velocity. It comprises a variable displacement hydraulic pump; and a reduced power output.

  8. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  9. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces...

  10. Regional characterisation of hydraulic properties of rock using air-lift data

    NASA Astrophysics Data System (ADS)

    Wladis, David; Gustafson, Gunnar

    Hydrogeologic studies are commonly data-intense. In particular, estimations of hydraulic properties of hard rock often require large amounts of data. In many countries, large quantities of hydrogeologic data have been collected and archived over the years. Therefore, the use of existing data may provide a cost-efficient alternative to collecting new data in early stages of hydrogeologic studies, although the available data may be considered imprecise. Initially, however, the potential usefulness, i.e., the expected accuracy, of the available data in each specific case must be carefully examined. This study investigates the possibilities of obtaining estimates of transmissivity from hard-rock air-lift data in Sweden within an order of magnitude of results obtained from high-quality injection-test data. The expected accuracy of the results was examined analytically and by means of statistical methods. The results were also evaluated by comparison with injection-test data. The results indicate that air-lift data produce estimates of transmissivity within an order of magnitude compared to injection-test data in the studied examples. The study also shows that partial penetration and hydrofracturing may only affect the estimations approximately half an order of magnitude. Thus, existing data may provide a cost-efficient alternative to collection of new data in early stages of hydrogeologic studies. Résumé Les études hydrogéologiques reposent en général sur un nombre important de données. En particulier, l'estimation des propriétés hydrauliques des roches indurées exige souvent un grand nombre de données. Dans de nombreuses régions, des données hydrogéologiques très nombreuses ont été recueillies et archivées depuis longtemps. C'est pourquoi le recours à des données existantes peut être une alternative intéressante en termes de coût par rapport à l'obtention de nouvelles données dans les premières étapes des études hydrogéologiques, même si

  11. Steady-state computer design model for air-to-air heat pumps

    NASA Astrophysics Data System (ADS)

    Fischer, S. K.; Rice, C. K.

    1981-12-01

    A FORTRAN-4 computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes is described. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The heat pump design model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. Documentation of how to use and/or modify the model is provided.

  12. An ultrasonic air pump using an acoustic traveling wave along a small air gap.

    PubMed

    Koyama, Daisuke; Wada, Yuji; Nakamura, Kentaro; Nishikawa, Masato; Nakagawa, Tatsuyuki; Kihara, Hitoshi

    2010-01-01

    An ultrasonic air pump that uses a traveling wave along a small air gap between a bending vibrator and a reflector is discussed. The authors investigate ultrasonic air pumps that make use of bending vibrators and reflectors and confirm that air can be induced to flow by generating an asymmetric acoustic standing wave along an air gap. In this paper, we proposed a novel ultrasonic air pump in which a traveling wave along an air gap induces acoustic streaming and achieves one-way airflow. Two new reflector configurations, stepped and tapered, were designed and used to generate traveling waves. To predict airflow generation, sound pressure distribution in the air gap was calculated by means of finite element analysis (FEA). As a preliminary step, 2 FEA models were compared: one piezoelectric-structure-acoustic model and one piezoelectric- structure-fluid model, which included the viscosity effect of the fluid. The sound pressure distribution in the air gap, including fluid viscosity, was calculated by the FEA because it is expected to be dominant and thus have a strong effect on the sound pressure field in such a thin fluid layer. Based on the FEA results of the stepped and the tapered reflectors, it was determined that acoustic traveling waves could propagate along the gaps. Experiments were carried out with the designed bending vibrator and the reflectors. The acoustic fields in the air gap were measured via a fiber optic probe, and it was determined that the sound pressure and the phase distribution tendencies corresponded well with the results computed by FEA. Through our experiments, one-way airflow generation, in the same direction of the traveling wave and with the maximum flow velocity of 5.6 cm/s, was achieved.

  13. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and functional (or hydraulic) characteristics that affect energy consumption, energy efficiency, water..., steam, or electricity. Packaged terminal heat pump means a packaged terminal air conditioner...

  14. Transient Lift-Off Test Results for an Experimental Hybrid Bearing in Air

    DTIC Science & Technology

    2009-12-01

    ABSTRACT Turbo- pump applications that use ball bearings in cryogenic fluids can experience rapid wear when the pump is at full power, limiting the...life of the bearing. Hybrid bearings have been proposed for use in next-generation turbo- pumps because of their Diameter X Speed (DN) life, low...application ideal [1]. The cryogenic applications proposed for the next-generation of turbo- pumps utilize the pump -discharge fluid as the external

  15. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  16. From medicine to natural philosophy: Francis Hauksbee's way to the air-pump.

    PubMed

    Brundtland, Terje

    2008-06-01

    Francis Hauksbee (1660-1713) is well known for his double-barrelled air-pump. However, the origin of this pump, and Hauksbee's background, are often described as a mystery. This text seeks to dispel the riddle. It is argued that Hauksbee's competence as an exceptional maker of air-pumps was developed between 1699 and 1703 as a result of his experiences with the construction, manufacturing and sale of cupping-glasses. His cupping utensils embodied a new design, where syringes were used to evacuate the glasses, instead of the traditional way by fire or mouth suction. These syringes, which in fact were small air-pumps, were perfected between 1699 and 1701. A larger syringe, introduced in 1701, served as a transition from the cupping-syringe to his first air-pump for use in natural philosophy. This syringe was described as a 'combined engine', which could serve as an air-pump, a condensing engine and a syringe for injecting air, wax or mercury into pathological specimens. Hauksbee's first air-pump was a single-barrelled model introduced in 1702, based on the combined engine. Its various features, such as easy and convenient leak-tightening, exact pressure measurements by an in-built barometer and an air-inlet function for readmission of air into the receiver, are discussed. Finally, it is shown that these activities gave Hauksbee the reputation of being an outstanding instrument-maker, years before the double-barrelled air-pump was in sight.

  17. Air-Fed Visors Used for Isocyanate Paint Spraying—Potential Exposure When the Visor Is Lifted

    PubMed Central

    Clayton, Mike; Baxter, Nick

    2015-01-01

    Continuous-flow air-supplied breathing apparatus with a visor is the respiratory protective equipment (RPE) of choice within the motor vehicle repair trade for protection against exposure to isocyanate paints. Whilst these devices are capable of providing adequate protection, a common workplace practice of sprayers lifting up the visor of their RPE immediately after spraying when checking the quality of the paint finish is thought to have an impact on the protection afforded. While the visor lift may be only for a few seconds, this action, especially if repeated numerous times during a work shift, could potentially result in a significant increase in exposure. Informal interviews with paint sprayers were conducted to understand the reasons for this behaviour followed by a series of laboratory tests to quantify the potential degree of exposure as a result of a visor lift. The majority of the paint sprayers interviewed explained their reasons for lifting their visors immediately after spraying and before the spray booth had been adequately cleared by ventilation. The main reasons given for a visor lift included a combination of habit, poor visibility due to poor visual clarity of the visor screen material, over spray, scratched visor screens, internal visor reflections, and poor booth lighting. The findings of the tests showed that the degree of protection provided by the visor when in the lifted position is in the approximate range of 1–3.7 (mean 1.7) and over the whole of the exposure period (from start of the lift to recovery of protection after refitting) is in the approximate range of 1.4–9.0 (mean 2.7). This is a significant reduction when compared to the assigned protection factor of 40 for this class of device and the measured protection factors of 5000–10 000 when worn correctly. These results clearly demonstrate that lifting the visor whilst still within a contaminated atmosphere considerably increases the wearer’s exposure and that this is an

  18. Air-Fed Visors Used for Isocyanate Paint Spraying--Potential Exposure When the Visor Is Lifted.

    PubMed

    Clayton, Mike; Baxter, Nick

    2015-11-01

    Continuous-flow air-supplied breathing apparatus with a visor is the respiratory protective equipment (RPE) of choice within the motor vehicle repair trade for protection against exposure to isocyanate paints. Whilst these devices are capable of providing adequate protection, a common workplace practice of sprayers lifting up the visor of their RPE immediately after spraying when checking the quality of the paint finish is thought to have an impact on the protection afforded. While the visor lift may be only for a few seconds, this action, especially if repeated numerous times during a work shift, could potentially result in a significant increase in exposure.Informal interviews with paint sprayers were conducted to understand the reasons for this behaviour followed by a series of laboratory tests to quantify the potential degree of exposure as a result of a visor lift.The majority of the paint sprayers interviewed explained their reasons for lifting their visors immediately after spraying and before the spray booth had been adequately cleared by ventilation. The main reasons given for a visor lift included a combination of habit, poor visibility due to poor visual clarity of the visor screen material, over spray, scratched visor screens, internal visor reflections, and poor booth lighting.The findings of the tests showed that the degree of protection provided by the visor when in the lifted position is in the approximate range of 1-3.7 (mean 1.7) and over the whole of the exposure period (from start of the lift to recovery of protection after refitting) is in the approximate range of 1.4-9.0 (mean 2.7). This is a significant reduction when compared to the assigned protection factor of 40 for this class of device and the measured protection factors of 5000-10 000 when worn correctly.These results clearly demonstrate that lifting the visor whilst still within a contaminated atmosphere considerably increases the wearer's exposure and that this is an example where

  19. Cold-air performance of a tip turbine designed to drive a lift fan. 1: Baseline performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1976-01-01

    Full admission baseline performance was obtained for a 0.4 linear scale of the LF460 lift fan turbine over a range of speeds and pressure ratios without leakage air. These cold-air tests covered a range of speeds from 40 to 140 percent of design equivalent speed and a range of scroll inlet to diffuser exit static pressure ratios from 2.0 to 4.2. Results are presented in terms of specific work, torque, mass flow, efficiency, and total pressure drop.

  20. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  1. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  2. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  3. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. 305.12 Section 305.12 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and furnaces (including boilers) shall use one size, similar colors, and typefaces with consistent...

  4. Recent Research in Compression Refrigeration Cycle Air Source Heat Pumps.

    NASA Astrophysics Data System (ADS)

    Arai, Akira; Senshu, Takao

    The most important theme for heat pump air conditioners is the improvement of energy saving and comfort. Recently, cycle components, especially compressores and heat exchangers have been improved greatly in their performance and efficiency. As for compressors, large progress in their efficiencies have been made by detailed analysises such as mechanical losses and by the development of a new type compression mechanism. As for heat exchangers, various high heat transfer surfaces have been developed together with the improvement of the production technologies for them. Further, the effect of the capacity-modulated cycle is evaluated quantitatively through the improvements of static and transient cycle simulation technologies. And in order to realize this cffect, the electrically driven expansion valves heve been marketed. This review introduces the trends of these energy-saving technologies as well as comfort improvement studies.

  5. An analysis of water-to-air heat pump systems for use in government facilities

    NASA Astrophysics Data System (ADS)

    Fretzs, R. G.

    1980-09-01

    Energy consumption is an important issue for government managers. Examined in this thesis is one source of potential energy savings: a method of heating and cooling buildings. Water-to-air heat pumps are analyzed and cost comparisons to conventional heating/cooling systems (gas, fuel oil, electric resistance, and air-to-air heat pumps) are made. The theory of heat pump technology is presented to show how water source heat pumps achieve improved efficiencies over conventional systems. Sources of and disposal of water to support the systems are discussed. Cost comparisons are presented based on computer simulations and fuel cost graphs. Twenty-one percent of U.S. energy consumption is used to heat and cool buildings. Water-to-air heat pumps provide a 30-50 percent savings over other systems. Therefore, a potential 10 percent savings in total energy consumption exists through the use of water source heat pumps.

  6. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  7. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  8. Nanostructured carbon materials based electrothermal air pump actuators.

    PubMed

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-06-21

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg(-1)), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg(-1), respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (∼ 0.4 MPa).

  9. Application of Dielectric-Barrier Discharge to the Stabilization of Lifted Non-Premixed Methane/Air Jet Flames

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao; Zhao, Xiang-Hong

    2016-11-01

    Recent studies have shown that the application of non-thermal plasma is a promising way to enhance the flame stabilization and combustion efficiency. The present study experimentally investigates the effect of a dielectric-barrier discharge (DBD) on the stabilization of lifted non-premixed methane/air jet flames. The jet flame with co-annular DBD is produced by a co-flow burner and has a Reynolds number of Re = 2500, 5000, 7000, and 9000. The application of DBD is seen to have an impact on the flame lift-off height, and the degree of impact is subject to flow conditions (such as Reynolds number and co-flow velocity) and plasma power. In general, the enhancement of flame stabilization, indicated by the decrease in lift-off height, is most evident at low Reynolds number and co-flow velocity. For flames with a Reynolds number less than Re = 5000, flames are attached to the nozzle regardless of the co-flow velocity and plasma power; at Re = 5000, flames are often intermittently attached. The enhancement is not that significant at high Reynolds number and co-flow velocity at least for the plasma power employed in the current study. A slight increase in plasma power leads to enhanced flame stabilization.

  10. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L.

  11. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  12. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  13. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... total heating output of a central air-conditioning heat pump during its normal annual usage period for... heat pump (or its produced heating effect, depending on the mode of operation) to its net work input, when both the cooling (or heating) effect and the net work input are expressed in identical units...

  14. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  15. Cold-air performance of a tip turbine designed to drive a lift fan

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.

    1978-01-01

    Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency.

  16. Coronary air embolism in off-pump surgery caused by blower-mister device.

    PubMed

    Korkmaz, Askin Ali; Guden, Mustafa; Korkmaz, Feride; Yuce, Murat

    2008-01-01

    Gaseous emboli caused by the blower-mister result in air locks within coronary vessels. We describe the case of a coronary air embolism caused by a blower-mister device on off-pump surgery. The tip of the device unexpectedly entered the coronary artery through arteriotomy and caused the air emboli. Air locks in the coronary circulation led to hemodynamic deterioration, and cardiopulmonary bypass was started following the emergency cannulation.

  17. Method of scavenging air and oil and gear pump therefor

    SciTech Connect

    Hutchison, R.M.

    1991-04-02

    This patent describes a gear pump. It comprises first and second intermeshing gears capable of being rotatable driven for pumping a liquid, means for housing the first and second intermeshing gears, the housing means including and inlet means for communicating the gear pump with a source of liquid which may contain a gas, the rotation of the intermeshing gears and the resulting centrifugal force on the liquid being pumped causing separation of liquid from the gas where the liquid supplied to the gear pump through the inlet means contains a gas, wherein the housing means further includes first outlet means for discharging only liquid which has been separated from the gas when the liquid supplied to the gear pump contains a gas, and second outlet means for discharging gas and any remaining liquid, wherein the second outlet means is located in the housing means adjacent a mesh zone of the inter meshing gears on a side of the gears opposite to that of the inlet means, and wherein the first outlet means is located in the housing means intermediate the second outlet means and the inlet means such that the first outlet means is located upstream with respect to the travel direction of the gears and the liquid pumped thereby from the mesh zone of the gears and the second outlet means.

  18. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    PubMed

    Mortensen, Niels A

    2007-07-09

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whispering-gallery modes in air-clad structures resembling an overall cylindrical symmetry. Highly symmetric air-clad structures may thus suppress the pump-absorption efficiency eta below the ergodic scaling law etainfinity Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively.

  19. After Boyle and the Leviathan: the second generation of British air pumps.

    PubMed

    Brundtland, Terje

    2011-01-01

    This paper examines the second generation of British air pumps, covering the period 1700-1750. The air pump originated in the 1650s and 1660s thanks to the work of Otto von Guericke in Magdeburg, Robert Boyle in Oxford and London, and Accademia del Cimento in Florence. While these first models were often seen as unreliable and temperamental, and available to a small group only, the next period saw the air pump transformed into a publicly accessible device for use in public and private demonstrations, in practical applications, as well as in the production of new knowledge. In England, the instrument maker Francis Hauksbee and his followers played a decisive role in this process, which was connected, among other things, to popular medicine, anatomy and health. In this period, pneumatics (the field of air pumps and air-pump practice) reached a state where the pump came to be regarded as an unproblematic tool; and where a vacuum' came to be thought of and handled as an object.

  20. New and expected developments in artificial lift

    SciTech Connect

    Lea, J.F.; Winkler, H.W.

    1994-12-31

    Artificial lift is a broad subject. This paper discusses some of the new developments in the major areas of artificial lift. These are (1) beam lift, (2) electrical submersible pumping, (3) gas lift, (4) hydraulic pumping and (5) miscellaneous topics. The beam lift discussion concerns a new rod material, downhole measurements for rod loading, unit design and some miscellaneous topics. The ESP (Electrical Submersible Pump) section includes a discussion on solids handling, downhole sensor technology, new motor temperature limitations, motor efficiency, and other topics. The gas lift discussion includes mention of coiled tubing with gas lift valves internal, a surface controlled gas lift valve concept, and gas lift valve testing and modeling. Hydraulic pumping is used in many locations with deep pay and fairly small production rates. New hydraulic developments include a wider availability of power fluid pumps other than positive displacement pumps, and small jet pumps specifically designed for de-watering gas wells. Some miscellaneous developments include an insertable PC (progressing cavity) pump and improved plunger lift algorithms and equipment.

  1. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    SciTech Connect

    Xu, Hang Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  2. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  3. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  4. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  5. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  6. 10 CFR 429.16 - Central air conditioners and heat pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.16 Central air conditioners... mean divided by 1.05, where: ER02MY11.030 and (B) Any represented value of the energy efficiency or other measure of energy consumption of the central air conditioner or heat pump for which...

  7. Final report: Long Term Test of a Gear-Type Pump for the Am/Cm Project

    SciTech Connect

    Duignan, M.R.

    1998-04-01

    At the request of the Immobilization Technology section, the Experimental Thermal Fluids group carried out a test to determine the operational characteristics of a gear-type pump. This pump was under consideration as a replacement for the air-lift melter feed pumping system of the Americium and Curium Project.

  8. Pump

    SciTech Connect

    Johnson, J.W.; Abdul.Hye, A.B.M.

    1983-10-25

    A pump for injecting chemicals into a well employs a pivot arm for synchronous movement with a well pump. The pivot arm causes reciprocation of a plunger within the body of the chemical pump. The plunger, during its upward stroke causes the entry of chemicals from an outside source into the pump body and, during its downward stroke, causes the exiting of the chemicals into the well. (2 claims.

  9. Lifting liquid from boreholes

    SciTech Connect

    Reese, T.E.

    1983-05-17

    A device for lifting liquid from boreholes comprises a pump which is located downhole in the region of a production formation and which consists of a fluid-actuated, double-action piston. The pump is connected by fluid pressure lines to a source of fluid pressure disposed above ground and a switching valve is connected to provide fluid pressure to alternate sides of the piston to effect reciprocation thereof.

  10. Air embolism during off-pump coronary artery bypass graft surgery -A case report-.

    PubMed

    Chang, Choo-Hoon; Shin, Young Hee; Cho, Hyun-Sung

    2012-07-01

    There have been several reports of gas embolism occurring during off-pump coronary artery bypass graft (OPCAB) surgery. However, all these cases of air embolism were associated with the repair of venous circulation, using a CO(2) blower. In this report, we describe a rare case of air embolism in the coronary arteries associated with the use of a CO(2) blower during OPCAB. There was no injury to the veins during OPCAB. The air embolism was treated successfully with cardiopulmonary bypass.

  11. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  12. Calf muscle pump impairment and delayed healing of venous leg ulcers: air plethysmographic findings.

    PubMed

    Simka, Marian

    2007-08-01

    There is a need for a diagnostic tool to predict clinical outcome of venous leg ulcer patients, as the prognosis of healing based on clinical data alone has not appeared to be satisfactory. Air plethysmographic assessment of calf muscle pump was performed in the supine and upright position in 129 patients with active ulcers on their legs. All patients were managed in a specialized leg ulcer clinic. Results of air plethysmography were compared to clinical data and time of healing of ulcers. Muscle pump failure was found in 42.6% of extremities (supine position, 33.3%; upright, 22.5%; both, 12.4%). Patients with insufficient pump were older, and their ulcers were larger. Failure of pump was found more often in patients who began the treatment after long, unsuccessful, non-specialized care. Healing time of ulcers was prolonged in cases with insufficient pump. Regarding the subgroups with good clinical prognosis (patients with small ulcers or with a short history of ulceration), it was found that insufficiency of muscle pump correlated with delayed healing. It could be summarized that venous leg ulcers associated with calf muscle failure were larger, long-standing, and that their healing even after specialized treatment was delayed. Impaired muscle pump function revealed in plethysmographic examination can be a prognostic factor of delayed healing of leg ulcer. Ulcers with poor prognosis according to plethysmographic findings, and no quick recovery after standard management, should be considered for advanced therapies.

  13. [The effect of air within the infusion syringe on drug delivery of syringe pump infusion systems] .

    PubMed

    Schulz, G; Fischer, J; Neff, T; Bänziger, O; Weiss, M

    2000-12-01

    Application of highly concentrated short-acting vasoactive drugs in the critically ill patient requires precisely working syringe pump systems for continuous intravenous drug delivery. We performed a bench study to investigate the consequences of small amounts of air entrapped within a 50-ml infusion syringe. In particular we studied the effect of entrapped air on drug delivery after moderate vertical displacement of the pump by 50 cm (e.g. in preparation for transport) and the effect on the time required to trigger the pressure alarm after occlusion of the infusion line. At a flow rate of 1 ml/h, lowering the syringe pump prolonged the zero-drug delivery time from (mean +/- SD) 4.1 +/- 0.8 min (without air) to 6.2 +/- 0.9 (with 1 ml air) and to 13.1 +/- 0.9 min (with 2 ml of air, p < 0.001 for all comparisons). Entrapping of 2 ml of air within the syringe resulted in a 2.6-fold prolongation of the occlusion alarm time after accidental occlusion of the infusion line and a 3-fold increase of the resulting infusion bolus after occlusion. Enclosed air within infusion syringes considerably affects the syringe compliance. It increases the susceptibility of constant drug delivery to vertical displacement of syringe pumps and impairs the occlusion alarm function. Therefore, any air in syringe of infusion pump systems should be carefully removed. To avoid infusion boluses of short-acting vasoactive drugs after accidental occlusions, the occluded infusion line should be released to ambient pressure first.

  14. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  15. Effectiveness of a municipal ground-coupled reversible heat pump system compared to an air-source system

    SciTech Connect

    Oerder, S.A.; Meyer, J.P.

    1998-10-01

    A municipal water network ground-coupled reversible heat pump was investigated as an alternative to conventional air-source heat pumps. It is projected that a system of this kind can be installed and operated at a lower cost than the commercially available systems. Models for the analysis of the ground-coupled reversible heat pump and conventional air-to-air systems were developed to evaluate the effectiveness of the ground-coupled system. The results indicate that this system can provide a cost-effective alternative to the more conventional air-to-air systems.

  16. Ignition of sounding rocket motors with hand-pumped air

    NASA Technical Reports Server (NTRS)

    Rakowsky, E. L.; Marchese, V. P.

    1974-01-01

    Method demonstrates inexpensive, safe, and foolproof concept for solid propellant rocket motors, using simple handpump to deliver air. Flueric ignition was accomplished using system without stored energy and with complete absence of electrical energy and wiring.

  17. Cold-air performance of a tip turbine designed to drive a lift fan. 3: Effect of simulated fan leakage on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1978-01-01

    Performance data were obtained experimentally for a 0.4 linear scale version of the LF460 lift fan turbine for a range of scroll inlet total to diffuser exit static pressure ratios at design equivalent speed with simulated fan leakage air. Tests were conducted for full and partial admission operation with three separate combinations of rotor inlet and rotor exit leakage air. Data were compared to the results obtained from previous investigations in which no leakage air was present. Results are presented in terms of mass flow, torque, and efficiency.

  18. Development of a High Performance Air Source Heat Pump for the US Market

    SciTech Connect

    Abdelaziz, Omar; Shen, Bo; Gao, Zhiming; Baxter, Van D; Iu, Ipseng

    2011-01-01

    Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

  19. Air transport of the IABP patient. Intra-Aortic Balloon Pump.

    PubMed

    Hatlestad, Daniel C; Van Horn, Julie

    2002-01-01

    The intra-aortic balloon pump (IABP) has evolved into an easily transported, computer-driven device for invasively assisting circulation. This article reviews the use of the IABP during interfacility patient transport by air. Air transport of the IABP-dependent patient creates unique clinical, logistical, and technical challenges. We review the function and clinical application of IABP in various air transport conditions. We also identify the complications of intra-aortic balloon pumping, such as hemorrhage, loss of trigger signals, cardiac arrest, and atmospheric pressure changes, and offer solutions. The effective clinical use of IABP in the air transport environment involves more than familiarity with the device and implications for its use; rapid identification of problems and implementation of solutions are required for successful transport and patient outcomes.

  20. Air-lift bioreactors for algal growth on flue gas: Mathematical modeling and pilot-plant studies

    SciTech Connect

    Vunjak-Novakovic, G.; Kim, Y.; Wu, X.X.; Berzin, I.; Merchuk, J.C.

    2005-08-03

    Air-lift reactors (ALRs) have great potential for industrial bioprocesses, because of the low level and homogeneous distribution of hydrodynamic shear. One growing field of application is the flue-gas treatment using algae for the absorption of CO{sub 2}, In this paper, we discuss the requirements for photosynthetic biomass growth in an ALR. The effects of the operating variables are analyzed using a mathematical model that accounts for the effects of ALR geometry, fluid flow, and illumination on the biomass growth. On the basis of the ALR principles and the specific requirements of photosynthetic processes, we developed a 'triangular' ALR configuration that is particularly suitable for algal growth. We describe the design and operation of this novel bioreactor and present the first series of experimental data obtained for two different algal species in a pilot-scale unit supplied with flue gases from a small power plant. The measured removal efficiency of CO{sub 2} was significant (82.3 12.5% on sunny days and 50.1 6.5% on cloudy days) and consistent with the increase in the algal biomass.

  1. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    PubMed Central

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell’Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260

  2. Massive systemic air embolism during off-pump coronary artery surgery.

    PubMed

    Kuralay, Erkan

    2009-01-01

    In OPCAB (off-pump coronary artery bypass) operations, development of cardiac arrest during the distal anastomosis to obtuse marginal coronary artery leads to significantly low blood pressure in the ascending aorta. Therefore, blowing of compressed air in high flow on not-slinged coronary artery may cause air mobilization from the coronary artery system into the ascending aorta that may result in severe brain damage.

  3. The solar assisted air-source heat pump system, part 1

    NASA Astrophysics Data System (ADS)

    Hino, T.

    1980-11-01

    A new heat pump heating and air conditioning system was proposed and tested. It features the effective utilization of climatic conditions as its heat sources and sinks, to improve the thermodynamic efficiencies. Reduced electricity consumption, utility load leveling and the least environmental pollutions are expected. The outdoor unit of this heat pump is composed of aluminum panels that are painted black to enhance the radiative heat exchange and fixed almost perpendicularly to improve the natural convective heat transfer with air. The working fluid is halocarbon and commonly used in the heat transfer circuits and the refrigeration cycle. In the heating cycle, the liquid refrigerant evaporates in the passages of the panel. When insolation to the panels is sufficient to meet the heat pump evaporator capacity, the panel temperature will be almost the same as the outdoor air temperature. Thus little convective heat loss to the surrounding air occurs. As the insolation decreases the panel temperature falls several degrees below the outdoor air to absorb heat out of the air until the equilibrium condition is reached.

  4. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  5. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heat pumps. 431.92 Section 431.92 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... that affect energy consumption, energy efficiency, water consumption, or water efficiency. Coefficient... humidity control of the supplied air, and reheating function. Energy Efficiency Ratio, or EER means...

  6. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brandemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost-effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  7. Painting as Rhetorical Performance: Joseph Wright's "An Experiment on a Bird in the Air Pump."

    ERIC Educational Resources Information Center

    Helmers, Marguerite

    2001-01-01

    Explores three broad areas of inquiry: what significance visual images have for rhetorical analysis; how a study of nonverbal material might be conducted; and whether visual explanations depend on the image or the viewer. Argues that viewers understand Joseph Wright's painting "The Air Pump" in terms of its subject, its exhibition space, the…

  8. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  9. Development of New Air-Cooled Heat Pump Chiller 'Compact Cube'

    NASA Astrophysics Data System (ADS)

    Ookoshi, Yasushi; Ito, Takuya; Yamaguchi, Hiroshi; Kato, Yohei; Ochiai, Yasutaka; Tanaka, Kosuke; Uji, Yoshihiro; Nakayama, Hiroshi

    Further improvement of the performance is requested to air-cooled heat pump chiller from the viewpoint of the global warming prevention. Smaller unit is needed to facilitate the renewal from absorption chiller to air-cooled heat pump chiller. To meet such needs, we developed compact new air-cooled heat pump chiller with high efficiency, 'Compact cube'. The developed machine is side-flow type with U-shaped fin and tube heat exchangers. With this structure, the uniform air velocity, high packed density of the heat exchangers, and the unit miniaturization have been implemented. The refrigeration cycle with two-evaporating temperature has also been implemented. The cooling COP of this cycle is 2% higher compared with conventional one-evaporating temperature cycle because of the rise of average evaporating temperature. In a new model, a new control system, which controls both capacity of compressors and air flow rate corresponding to heat load, has been implemented. As a result, the developed machine achieved IPLV(Integrated Part load Value) to 6.2(MCHV-P1800AE) which is 29% better than the conventional unit.

  10. Performance evaluation of a selected three-ton air-to-air heat pump in the heating mode

    NASA Astrophysics Data System (ADS)

    Domingorena, A. A.; Ball, S. J.

    1980-01-01

    An air-to-air split system residential heat pump of nominal under laboratory conditions. This was the second of a planned series of experiments to obtain a data base of system and component performance for heat pumps. The system was evaluated under both steady-state and frosting-defrosting conditions; sensitivity of the system performance to variations in the refrigerant charge was measured. From the steady-state tests, the heating capacity and coefficient of performance were computed, and evaluations were made of the performance parameters of the fan and fan motor units, the heat exchangers and refrigerant metering device, and the compressor. System heat losses were analyzed. The frosting-defrosting tests allowed the observation of system and component performance under dynamic conditions, and measurement of performance degradation under frosting conditions.

  11. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  12. An experimental and analytical investigation into the performance of centrifugal pumps operating with air-water mixtures

    NASA Astrophysics Data System (ADS)

    Sterrett, John Douglas

    1994-01-01

    An investigation was made into the performance of centrifugal pumps when two-phase non-condensable mixtures of gas and liquid are flowing. This problem is encountered during loss-of-coolant accidents in nuclear reactor systems and in the pumping of oil where natural gas may be present in the mixture. Analytical and experimental techniques were used to address the issues of scaling between a model and a prototype pump and the validity of the single-phase pump affinity laws when two-phase flows are present. The results from this effort have also provided insight into the physical phenomena which cause the degradation in pump performance. An analytical model for the motion of a single bubble through a pump impeller is provided. The results from this fundamental problem show that the Coriolis and buoyancy forces are important in describing the kinematics of a gas phase. These results show that dynamic similitude is not preserved between a model and prototype impeller when the standard single-phase pump scaling relationships are used. The motion of a single bubble is also shown to be influenced by the magnitude of the pump suction pressure. The results from an extensive series of air-water two phase pump tests are provided. A 1/4 scale pump, modeled after the Savannah River Site K-reactor pumps, was tested over a wide range of pump speeds, flow rates, and suction pressures. These results indicate that the single-phase pump affinity laws are not applicable to two-phase pump flows and that the magnitude of the pump suction pressure is an important quantity in determining the pump performance. A second analytical model is developed for two-phase flow through a pump impeller. The results from this one-dimensional, two-fluid, non-homogeneous streamline model show good agreement with the experimental data. The model results support the experimental data in showing that the single-phase pump affinity relationships are not valid for two-phase pump flows and that dynamic

  13. Development of an algorithm to regulate pump output for a closed air-loop type pneumatic biventricular assist device.

    PubMed

    Nam, Kyoung Won; Lee, Jung Joo; Hwang, Chang Mo; Choi, Jaesoon; Choi, Hyuk; Choi, Seong Wook; Sun, Kyung

    2009-12-01

    The closed air space-type of extracorporeal pneumatic ventricular assist device (VAD) developed by the Korea Artificial Organ Center utilizes a bellows-transforming mechanism to generate the air pressure required to pump blood. This operating mechanism can reduce the size and weight of the driving unit; however, the output of the blood pump can be affected by the pressure loading conditions of the blood sac. Therefore, to guarantee a proper pump output level, regardless of the pressure loading conditions that vary over time, automatic pump output regulation of the blood pump is required. We describe herein a pump output regulation algorithm that was developed to maintain pump output around a reference level against various afterload pressures, and verified the pump performance in vitro. Based on actual operating conditions in animal experiments, the pumping rate was limited to 40-84 beats per minute, and the afterload pressure was limited to 80-150 mm Hg. The tested reference pump output was 4.0 L/min. During experiments, the pump output was successfully and automatically regulated within the preset area regardless of the varying afterload conditions. The results of this preliminary experiment can be used as the basis for an automatic control algorithm that can enhance the stability and reliability of the applied VAD.

  14. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  15. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  16. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; van der Velden-de Groot, C A; de Gooijer, C D; Beuvery, E C; Tramper, J

    1996-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10(-3) m(3) liquid per m(3) of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10(-4) m(3) liquid per m(3) of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.

  17. Analysis of the performance of an air-water heat pump: Regulation of intrinsic performances

    NASA Astrophysics Data System (ADS)

    Martin-Neuville, H.; Reybillet, M.; Patureau, J. P.

    Improvements for an electrical compressor heat pump of around 12 kW with air as a heat source are examined. To test the heat pump under different weather conditions a test loop has been built. On the condenser side a water circuit with several capacities and heat exchangers simulates the thermal behavior of a 120 sq m dwelling. A commercial domestic heat pump was extensively tested. The instantaneous performance of the heat pump agreed well with the data claimed by the manufacturer. The annual energy saving, however, was significantly less due to the following: (1) loss of efficiency caused by defrosting cycles; (2) loss of efficiency due to inadequate thermal load matching between the heat pump and the house. It was shown that control of the condensing temperature can bring energy savings of 10 percent. This could probably also be realized by load matching with a compressor with a variable speed; and (3) the inefficient operation of components such as the evaporator and the condenser heat exchangers and the expansion valve. Optimization could lead to a considerable improvement. Modifications in the compressor are proposed which may lead to an increase in efficiency to 60 or 70 percent.

  18. Effects of outlet blade angle of centrifugal pump on the pump performance under air-water two-phase flow conditions

    SciTech Connect

    Minemura, Kiyoshi; Kinoshita, Katsuhiko; Ihara, Masaru; Furukawa, Hironori; Egashira, Kazuyuki

    1995-12-31

    To establish the optimum design parameters of offshore oil well centrifugal pumps, which should deliver crude oil containing a large amount of gas, various shapes of pump impeller with different outlet blade angles, locations of leading-edge and numbers of impeller blades as the design parameters were tested with various rotating speeds and suction pressures under air-water two-phase flow conditions. The greater the outlet blade angle, the less the degradation of the pump performance becomes, showing the optimum blade angle approximately equals to 90{degree}.

  19. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  20. A custom flexible experimental setup to test air source heat pump for smart buildings

    NASA Astrophysics Data System (ADS)

    Cracium, Vasile S.; Bojesen, Carsten; Trifa, Viorel

    2012-09-01

    In this paper a custom made experimental stand is presented, named controlled lab environment (CLE or climatic box), built for testing an air source heat pump (ASHP) under controlled evaporator ambient conditions and verify the performance and behavior of a theoretical model of the ASHP as a basis for optimization and efficiency improvements. While the data acquisitions from experiments are not yet available, the paper presents the design considerations and schematics of the CLE and a thermodynamic model of an ASHP.

  1. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  2. Forehead lift

    MedlinePlus

    ... both sides even. If you have already had plastic surgery to lift your upper eyelids, a forehead ... Managing the cosmetic patient. In: Neligan PC, ed. Plastic Surgery . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2013: ...

  3. Buttock Lift

    MedlinePlus

    ... after surgery using a needle and syringe. Poor wound healing. Sometimes areas along the incision line heal poorly ... might be given antibiotics if there is a wound healing problem. Scarring. Incision scars from a buttock lift ...

  4. Turbulent Navier-Stokes Flow Analysis of an Advanced Semispan Diamond-Wing Model in Tunnel and Free Air at High-Lift Conditions

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.

    2002-01-01

    Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.

  5. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  6. A novel method to determine air leakage in heat pump clothes dryers

    SciTech Connect

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage area in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.

  7. A novel method to determine air leakage in heat pump clothes dryers

    DOE PAGES

    Bansal, Pradeep; Mohabir, Amar; Miller, William

    2016-01-06

    A heat pump clothes dryer offers the potential to save a significant amount of energy as compared with conventional vented electric dryers. Although heat pump clothes dryers (HPCD) offer higher energy efficiency; it has been observed that they are prone to air leakages, which inhibits the HPCD's gain in efficiency. This study serves to develop a novel method of quantifying leakage, and to determine specific leakage locations in the dryer drum and air circulation system. The basis of this method is the American Society of Testing and Materials (ASTM) standard E779 10, which is used to determine air leakage areamore » in a household ventilation system through fan pressurization. This ASTM method is adapted to the dryer system, and the leakage area is determined by an analysis of the leakage volumetric flow - pressure relationship. Easily accessible leakage points were quantified: the front and back crease (in the dryer drum), the leakage in the dryer duct, the air filter, and the remaining leakage in the drum. The procedure allows investigators to determine major components contributing to leakage in HPCDs, thus improving component design features that result in more efficient HPCD systems.« less

  8. Rotary recuperative magnetic heat pump

    NASA Astrophysics Data System (ADS)

    Kirol, Lance D.; Dacus, Michael W.

    A bench scale rotary magnetic heat pump now being built is described. The unique design feature of this heat pump is the method for achieving recuperator fluid flow, which relies simply on parallel flow paths; the primary flow leg allows heat transfer between external load and sink and magnetic working material, while parallel flow accomplishes recuperation. The bench scale test is intended to demonstrate feasibility of the concept and to verify that all significant loss mechanisms are identified and treated properly in performance models, but is not a scaled down version of a practical heat pump. Working material is gadolinium foil 76 microns thick with 127-micron spaces for fluid flow. Magnetic fields are created by neodymium-iron-boron-permanent magnets with an air gap field of about 0.9 Tesla. Due to the low field (practical heat pumps will use superconducting magnets with field strength around 9 T); temperature lift is limited to 11 K.

  9. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  10. Analysis of several methods of pumping cooling air for turbojet engine afterburners

    NASA Technical Reports Server (NTRS)

    Samuels, John C; Yanowitz, Herbert

    1953-01-01

    Several methods of pumping air to an annular cooling passage surrounding a typical axial-flow turbojet-engine afterburner were evaluated and compared on the basis of thrust and specific fuel consumption of the systems. Each system was analyzed over a range of afterburner-wall temperatures, flight Mach numbers, and exhaust-gas temperatures at sea level and 35,000 feet. Ram pressure recovery, boundary-layer pressure recovery, and the engine-jet actuated ejector appear to be satisfactory systems at high Mach numbers. Cooling with compressor-exit air bleed was found to be unsatisfactory,but the use of compressor-exit bleed air as the primary fluid in a high-performance ejector was satisfactory. The use of an auxiliary compressor driven from the engine shaft increased the thrust and decreased the specific fuel consumption of the engine for many of the conditions investigated.

  11. Is the air handling capability of the quadrox D pump dependent within an ECMO circuit? An in vitro study.

    PubMed

    Gill, Martin C; Dando, Hayden; John, Dittmer

    2010-09-01

    The occurrence of gaseous microemboli (GME) within the extracorporeal membrane oxygenation circuit is largely overlooked, as are methods to ameliorate this occurrence. We aimed to determine if the air handling capability of the Quadrox D oxygenator was dependent upon whether it was used in conjunction with a centrifugal or roller pump; and if application of a Pall air eliminating filter (AEF) would prevent circuit air introduction from intravenous infusions. Using a blood primed circuit 1 mL of air was infused pre pump. GME were quantified post pump and post oxygenator using the EDAC Quantifier. Trials were conducted at 1 and 2 L/min flow. To prevent GME recirculation a Capiox SX18 was used in circuit with negative pressure applied to its oxygenator; an EDAC cuvette distal to this device quantified GME recirculation. Following air infusion, 3-5 minute data recordings were carried out for each trial. Separate trials were carried out for centrifugal and roller pumps, and for each flow rate. The process was then repeated following the application of the AEF to the air infusion line. More GME were detected post Quadrox D when the centrifugal pump was used in comparison to the roller pump at 1 L/min (p < .05), and 2 L/min (p = .05). A greater volume of air was detected post Quadrox D when used in conjunction with the centrifugal device at 1 L/min (p < or = .05), and 2 L/min (p < or = .05). Application of the AEF resulted in zero GME detected at any circuit location. The results of this study confirm that a greater total count and volume of GME are detected distal to the Quadrox D when used in conjunction with a Rotaflow centrifugal pump. Application of a Pall AEF to infusion and drug lines can prevent air introduction from this source.

  12. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  13. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; Velden-de Groot, C A; Gooijer, C D; Beuvery, E C; Tramper, J

    1997-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarrierswas studied as a function of the gas flow rate in a smallair-lift loop reactor. The death rate may be described byfirst-order death-rate kinetics. The first-order death-rateconstant as calculated from the decrease in viable cells, theincrease in dead cells and the increase in LDH activity islinear proportional to the gas flow rate, with a specifichypothetical killing volume in which all cells are killed ofabout 2.10(-3)m(3) liquid per m(3) of air bubbles.In addition, an experiment was conducted in the sameair-lift reactor with Vero cells grown inside porous Asahimicrocarriers. The specific hypothetical killing volumecalculated from this experiment has a value of 3.10(-4)m(3) liquid per m(3) of air bubbles, which shows thatthe porous microcarriers were at least in part able to protectthe cells against the detrimental hydrodynamic forcesgenerated by the bubbles.

  14. Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyces hansenii immobilized in alginate beads.

    PubMed

    Pérez-Bibbins, Belinda; de Souza Oliveira, Ricardo Pinheiro; Torrado, Ana; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2014-01-01

    Cell immobilization has shown to be especially adequate for xylitol production. This work studies the suitability of the air lift bioreactor for xylitol production by Debaryomyces hansenii immobilized in Ca-alginate operating in fed-batch cultures to avoid substrate inhibition. The results showed that the air lift bioreactor is an adequate system since the minimum air flow required for fluidization was even lower than that leading to the microaerobic conditions that trigger xylitol accumulation by this yeast, also maintaining the integrity of the alginate beads and the viability of the immobilized cells until 3 months of reuses. Maximum productivities and yields of 0.43 g/l/h and 0.71 g/g were achieved with a xylose concentration of 60 g/l after each feeding. The xylose feeding rate, the air flow, and the biomass concentration at the beginning of the fed-batch operation have shown to be critical parameters for achieving high productivities and yields. Although a maximum xylitol production of 139 g/l was obtained, product inhibition was evidenced in batch experiments, which allowed estimating at 200 and 275 g/l the IC50 for xylitol productivity and yield, respectively. The remarkable production of glycerol in the absence of glucose was noticeable, which could not only be attributed to the osmoregulatory function of this polyol in conditions of high osmotic pressure caused by high xylitol concentrations but also to the role of the glycerol synthesis pathway in the regeneration of NAD(+) in conditions of suboptimal microaeration caused by insufficient aeration or high oxygen demand when high biomass concentrations were achieved.

  15. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  16. Miscellaneous component design for Tank 241SY101 pump removal

    SciTech Connect

    Huang, F.H.

    1995-03-02

    A mixer pump has been used to mitigate the hydrogen build-up in tank 241SY101 (SY101), located in the 200 West Area of the Hanford Site. New equipment is being prepared for the removal, transport, storage, and disposal of the test pump. The disposal equipment for the test pump now in tank SY101 includes a shipping container, a strong back, a lifting beam, a test weight, container support stands, a modified mock-up pump, a flexible receiver blast shield, a lifting yoke, and a yoke brace. The structural evaluations of container and strong back are detailed in another supporting document (WHC 1994a), the engineering analyses of flexible receiver blast shield/lifting yoke and yoke brace are given in other supporting documents (WHC 1994b, WHC 1994c), respectively. Engineering tasks that were contracted to Advanced Engineering Consultants (AEC) include the design and analysis of the following. Two spreader-beam lifting devices. a Container test weight. Container support saddles. Mock-up pump modification. This report documents the work description, design basis, assumptions, and design calculations provided by AEC for the above components. All AEC documents appear in Appendix A. Additional work conducted by Westinghouse Hanford Company (WHC) on the modified container test weight, modification to the mock-up pump, the removable support for the transport assembly, and saddle modification for air pallets also are included in this document.

  17. Feasibility of an air motor-driven centrifugal blood-pumping system.

    PubMed

    Forbes, S J; Akula, J; Smith, W A

    1996-07-01

    The use of cardiopulmonary bypass (CPB) is extending out of the cardiac surgery operating room into new venues. The long-term goal of this project is the development of a completely disposable temporary-use CPB system that could be economically distributed to all of the units where it might be needed. Centrifugal blood pumps have demonstrated successful and widespread use. However, they are not as widely available as might be desired because they require a large and expensive console. An inexpensive, small, lightweight, disposable unit, in contrast, could be widely distributed for emergency care of patients and would be logistically practical for patient transportation between the presenting institution and a major cardiac care facility equipped for definitive treatment. An air motor might be an approach to such a device. The current research project underway at the University of Akron in conjunction with the Cleveland Clinic Foundation has focused on the following key feasibility issues: air consumption, air motor noise, and sealing the rotating shaft. Prototypes have been constructed from commercially available vane and turbine motors. Early studies have demonstrated favorable results with regard to air consumption and shaft sealing and directions for handling air motor noise.

  18. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    PubMed

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  19. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    PubMed Central

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  20. The RD/D opportunities for large air-conditioning and heat-pump systems

    NASA Astrophysics Data System (ADS)

    MacDonald, M.; Goldenberg, D.; Hudgins, E.

    1982-06-01

    The marketplace factors that constrain a more rapid implementation of energy-conserving heating, ventilating, and air conditioning (HVAC) systems and system operation in commercial buildings are summarized. The focus was on large air conditioning and heat pump equipment. Use of currently available energy-efficient equipment and systems is presently limited by the economic situation of the building owners. Although case histories of energy-efficient buildings highlight the potential of new and existing equipment and systems, the majority of systems and equipment being installed today do not measure up to that potential. The major recommendations deal with developing the market for energy-efficient HVAC systems by reversing existing market forces that promote energy consumption; promoting technical research and educational programs; increasing the number of technical people competent in the area of high-efficiency system application and maintenance.

  1. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Kawakami, Ryuichiro; Imai, Kazuya; Nakajima, Hidekazu; Okamoto, Hiroaki; Hihara, Eiji

    To improve rated efficiency and partial load efficiency of gas engine heat pump (GHP), we are developing a new type air-cooled absorption refrigerator which is driven by the engine waste hot water. To shape the compact absorption refrigerator body that was able to be built into the space of a GHP outdoor-unit, an air-cooled sub-cooled adiabatic absorber and flowing liquid film plate type generator were newly developed. Maximum cooling capacity was increased about 20%, rated load COP was increased 40%, and partial load COP was increased 46% or less, as a result of the combination examination of a prototype 8.0kW absorption refrigerator and a 56kW GHP at a laboratory.

  2. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    NASA Technical Reports Server (NTRS)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  3. Design of a Prototype EHD Air Pump for Electronic Chip Cooling Applications

    NASA Astrophysics Data System (ADS)

    Emmanouil, D. Fylladitakis; Antonios, X. Moronis; Konstantinos, Kiousis

    2014-05-01

    This paper presents the design, optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications. Suitable high-voltage electrode configurations were selected and studied, in terms of the characteristics of the generated electric field, which play an important role in ionic wind flow. For this purpose, dedicated software is used to implement finite element analysis. Critical design parameters, such as the electric field intensity, wind velocity, current flow and power consumption are investigated. Two different laboratory prototypes are fabricated and their performances experimentally assessed. This procedure leads to the fabrication of a final prototype, which is then tested as a replacement of a typical fan for cooling a high power density electronic chip. To assist towards that end, an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer's CPU core of variable power. The parametric study leads to the fabrication of experimental single-stage EHD pumps, the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV. Finally, the theoretical and experimental results are evaluated and potential applications are proposed.

  4. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    NASA Astrophysics Data System (ADS)

    Muszyński, Tomasz; Kozieł, Sławomir Marcin

    2016-09-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

  5. Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study.

    PubMed

    Mitsumaru, A; Yozu, R; Matayoshi, T; Morita, M; Shin, H; Tsutsumi, K; Iino, Y; Kawada, S

    2001-01-01

    In a closed circuit with a centrifugal blood pump, one of the serious obstacles to clinical application is sucking of air bubbles into the drainage circuit. The goal of this study was to investigate the efficiency of an air filter at the drainage site. We used whole bovine blood and the experimental circuit consisted of a drainage circuit, two air filters, a centrifugal blood pump, a membrane oxygenator, a return circuit, and a reservoir. Air was injected into the drainage circuit with a roller pump, and the number and size of air bubbles were measured. The air filter at the drainage site could remove the air bubbles (>40 microm) by itself, but adding a vacuum removed more bubbles (>40 microm) than without vacuum. Our results suggest that an air filter at the drainage site could effectively remove air bubbles, and that adding the filter in a closed circuit with a centrifugal blood pump would be safer.

  6. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  7. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  8. Aerothermodynamic measurements on a proposed assured crew return vehicle (ACRV) lifting-body configuration at Mach 6 and 10 in air

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Rhode, Matthew N.; Buck, Gregory M.

    1990-01-01

    A 0.02-scale model of a lifting-body concept for possible application to the Assured Crew Return Vehicle from Space Station Freedom was tested at Mach 6 and 10 in air. Thermal mappings and surface streamline patterns were obtained at angles of attack ranging from 0 to 30 deg and unit Reynolds numbers Re from 2 to 8 x 10 to the 6th/ft. Areas that experienced the highest heating were near the model nose and tip-fin leading edges. The effect of Re on windward centerline heating coefficients was negligible, whereas increases in angles of attack produced increases in heating. At Mach 6 and the highest unit Re, turbulent heat at the windward centerline was three to four times the laminar level. Leeward crossflow separation and vortex reattachment along the centerline are evident across the Re and angle-of-attack ranges tested, indicative of a complex flowfield.

  9. Rational design of a culture medium for the intensification of lipid storage in Chlorella sp. Performance evaluation in air-lift bioreactor.

    PubMed

    Giordano, Pablo C; Beccaria, Alejandro J; Goicoechea, Héctor C

    2014-04-01

    An optimal medium to culture Chlorella sp., microalgae capable of storage intracellular lipids was obtained. This culture medium consists of a saline base plus carbon-energy and nitrogen sources. Significant factors exerting influence on the culture parameters were selected. Then, by applying response surface methodology coupled to desirability function, an optimal formulation, specific for the heterotrophic growth of Chlorella sp. that allows maximizing lipid concentration was obtained. During the experimental verification, the possibility of replacing commercial glucose by hydrolysates obtained from lignocellulosic materials was evaluated. Biochemical hydrolysate of corn bran allowed obtaining important improvements in lipid concentration. Finally, the optimal formulation was evaluated in an air-lift bioreactor performing a fed-batch culture. Culturing the strain in these conditions allowed rising lipid concentrations.

  10. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  11. Three-dimensional flow observation on the air entrainment into a vertical-wet-pit pump

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Maeda, T.; Nagura, T.; Inoue, T.

    2016-11-01

    The authors consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the “vertical wet-pit pump,” and has many practical advantages in construction, maintenance and operation. Most of the flows appearing in various industrial and environmental problems like the present suction- sump flow become often complicated owing to both of their unsteadiness with poor periodicity and their fully-three-dimensionality. In order to understand the complicated flow inside a suction sump in the vertical-wet-pit-pump configuration, the authors experimentally observe the flow using the three-dimensional particle tracking velocimetry (3D-PTV) technique, which includes more unknown factors in accuracy and reliability than other established measuring techniques. So, the authors examine the simultaneous measurement by the 3D-PTV with another velocimetry the ultrasonic velocity profiler. As a result, under the suitable condition with high accuracy, the authors have revealed the complicated flow.

  12. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    A gas engine-driven heat pump (GHP) uses a natural gas-or LPG-powered engine to drive the compressor in a vapor-compression refrigeration cycle. The GHP has the benefits of being able to use the fuel energy effectively by recovering waste heat from the engine jacket coolant and exhaust gas and also to keep high efficiency even at part-load operation by varying the engine speed with relative ease. Hence, energy-efficient heat source systems for air-conditioning and hot water supply may be constructed with GHP chillers in place of conventional electrical-driven heat pump chillers. GHPs will necessarily contribute to the peak shaving of electrical demand in summer. In this study, the performance characteristics of a 457kW GHP chiller have been investigated by a simulation model analysis, for both cooling and heating modes. From the results of the analysis, it has been found that the part-load characteristics of the GHP chiller are fairly well. The evaluation of the heat source systems using GHP chillers will be described in Part 2.

  13. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  14. Method for reaching air-tightness of the joint between the casing of an impeller pump and its cover

    NASA Astrophysics Data System (ADS)

    Ryakhovskii, O. A.; Malysheva, G. V.; Vorob'ev, A. N.

    2016-12-01

    A method is considered to reach the air-tightness of the flange joint of the casing of an impeller pump with its cover using an anaerobic sealant instead of a gasket made of a thermoplastic material. The possible causes of leakage of working fluids that are related to the errors of machining flange surfaces and the specific features of their assembly are shown. The properties of anaerobic sealants that ensure the air-tightness of the flange joints are presented.

  15. Artificial lift with coiled tubing for flow testing the Monterey formation, offshore California

    SciTech Connect

    Peavy, M.A.; Fahel, R.A. )

    1991-05-01

    This paper provides a technical comparison of jet-pump and nitrogen lift during the drillstem tests (DST's) of a low-gravity, high-viscosity crude on a semisubmersible drilling vessel. Eight DST testing sequences are presented to demonstrate that jet-pump-lift operations are better suited than nitrogen-lift techniques for obtaining reservoir data during Monterey DST's.

  16. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  17. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  18. Air Source Heat Pumps for Cold Climate Applications: Recent U. S. R&D Results from IEA HPP Annex 41

    SciTech Connect

    Baxter, Van D; Groll, Dr. Eckhard A.; Shen, Bo

    2014-01-01

    Air source heat pumps are easily applied to buildings almost anywhere. They are widespread in milder climate regions but their use in cold regions is hampered due to low efficiency and heating capacity at cold outdoor temperatures. This article describes selected R&D activities aimed at improving their cold weather performance.

  19. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 1: Transmittal documents; Executive summary; Project summary

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described.

  20. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  1. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  2. Closed circuit cardiopulmonary bypass with centrifugal pump for open-heart surgery: new trial for air removal.

    PubMed

    Morita, M; Yozu, R; Matayoshi, T; Mitsumaru, A; Shin, H; Kawada, S

    2000-06-01

    The purpose of this study is to examine the efficiency of venous air removal with a new cardiopulmonary bypass (CPB) circuit design for conventional open-heart surgeries. A main concern with a closed circuit for open-heart surgeries is air entrainment into the venous line. A venous filter was placed proximal to the centrifugal pump. The circuit proximal to the centrifugal pump was divided into two lines; one line was attached to the venous reservoir outlet. By clamping the line to the reservoir, this circuit becomes closed. Negative pressure was applied to the purge line connected to the venous reservoir for venous air removal. Micro bubbles were measured at two locations, both distal to the venous and arterial filters. When the injection rate reached 100 ml/min, with the air-injection over 30 s, micro bubbles greater than 40 micro were observed at the outlet of venous filter. However, there was no micro bubble greater than 40 micro detected at the outlet of arterial filter. Although micro bubbles greater than 40 micro were not detected at the outlet of the arterial filter up to the injection rate of 300 ml/min, when the injection rate reached 400 ml/min, micro bubbles greater than 50 microm were detected distal to the arterial filter. From this examination, we determined that air entrained in the venous line up to approximately 300 ml/min is automatically removed by this method with the pressure-balanced condition. This pressure balance means that resistance of venous return, gravity siphon, negative pressure by centrifugal pump, and negative pressure applied to the air-purge line of the filter are balanced; that is, the venous return is sufficient, and the venous reservoir volume is kept stable. From this study we determined that this circuit design efficiently removes the entrained air in the venous line.

  3. Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico

    SciTech Connect

    Collins, S. S.; Bailey, G. A.; Jackson, T. O.

    2003-02-25

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using

  4. Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico.

    SciTech Connect

    Collins, Sue S.; Jackson, Timmie Okchumpulla (Weston Solutions, Inc., Albuquerque, NM); Bailey, Glenn A.

    2003-01-01

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using

  5. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect

    Ally, Moonis Raza; Munk, Jeffrey D; Baxter, Van D

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  6. Development of grapevine somatic embryogenesis using an air-lift bioreactor as an efficient tool in the generation of transgenic plants.

    PubMed

    Tapia, Eduardo; Sequeida, Alvaro; Castro, Alvaro; Montes, Christian; Zamora, Pablo; López, Reinaldo; Acevedo, Fernando; Prieto, Humberto

    2009-01-01

    The grapevine genetic transformation programs have relayed on the use of solid media-based somatic embryogenesis. To reach a high throughput of candidate gene evaluation in 'Thompson Seedless', a semi-automatic system allowing viable transformation of explants was designed. An intermediate procedure using liquid media and agitated flasks was first characterized, leading to reduction in the biomass duplication time of pro-embryogenic (PE) cells from 30 d in dishes to 14 d. The oxygen transfer coefficient value in this system was 213h(-1) at 120rpm and 25 degrees C with a 16/8-h (light/darkness) photoperiod. The scaling-up to the air-lift bioreactor decreased the biomass duplication time of PE cells up to 5.3 d post-inoculation (pi) and an average volumetric productivity of 1.6g/(dxL). Although slight browning was seen in the explants during the phase of 8-14 d pi, no losses in their viability and regenerative capability were observed. Cultured cells showed normal elongation in the transition from heart- to the torpedo-shape and finally to advanced developmental stages, with radicle emergence and whole plant generation. Agrobacterium-mediated transformation of cells was efficiently incorporated after this multiplication process by use of conventional procedures in dishes, allowing the generation of transgenic plantlets confirmed by PCR.

  7. A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor.

    PubMed

    Lennartsson, Patrik R; Niklasson, Claes; Taherzadeh, Mohammad J

    2011-03-01

    A complete process for the production of bioethanol and fungal biomass from spruce and birch was investigated. The process included milling, pretreatment with N-methylmorpholine-N-oxide (NMMO), washing of the pretreated wood, enzymatic hydrolysis, and cultivation of the zygomycetes fungi Mucor indicus. Investigated factors included wood chip size (0.5-16 mm), pretreatment time (1-5h), and scale of the process from bench-scale to 2m high air-lift reactor. Best hydrolysis yields were achieved from wood chips below 2mm after 5h of pretreatment. Ethanol yields (mg/g wood) of 195 and 128 for spruce, and 175 and 136 for birch were achieved from bench-scale and airlift, respectively. Fungal biomass yields (mg/g wood) of 103 and 70 for spruce, and 86 and 66 for birch from bench scale and airlift respectively were simultaneously achieved. NMMO pretreatment and cultivation with M. indicus appear to be a good alternative for ethanol production from birch and spruce.

  8. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  9. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  10. Design and performance of an axial air-gap solution pump motor

    NASA Astrophysics Data System (ADS)

    Hawsey, R. A.; Sohns, C. W.; Daniel, D. S.; Bailey, J. M.

    1990-05-01

    An axial air gap, permanent magnet, brushless dc motor was designed and was evaluated on a dynamometer to measure operating characteristics. The motor must deliver 0.167 hp (approx. 120 W) to the pump rotor at 1800 rpm. Initial performance data with a half-bridge, Hall-probe synchronized drive system and a dry motor bearing did not achieve the desired motor performance. Subsequently, a commercial full-bridge, speed regulated sensorless drive system was used to test the motor. The motor delivered the required 90 oz-in. of torque at 1800 rpm. These data revealed the need for rewinding the stator core to improve motor efficiency. A second stator core, with deeper slots and additional turns of wire, was subsequently fabricated and tested. At 1800 rpm, the drive system could produce only 60 oz-in. of torque due to an unexpectedly high generated voltage. Motor efficiency was 60 to 70 pct. at this torque level when the data were corrected for bearing and coupling drag.

  11. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  12. Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Simonet, S.; Bois, G.; Issa, A.

    2012-11-01

    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this

  13. Total facelift: forehead lift, midface lift, and neck lift.

    PubMed

    Park, Dong Man

    2015-03-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined.

  14. Total Facelift: Forehead Lift, Midface Lift, and Neck Lift

    PubMed Central

    2015-01-01

    Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

  15. Theoretical Study on Dynamic Characteristics of Energy Efficiency Standard Value of Ground Water Heat Pump Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Wang, Zhiwei; Zhang, Zhonghe; Cao, Wei; Li, Peng

    The energy efficiency standard value of the ground water heat pump air-conditioning system is the benchmar parameter for energy saving operation and control of the system. According to each loop's process energy consumption of the system, the control equation of energy efficiency standard value of the water source side loop, heat pump unit and user side loop is established respectively. The dynamic characteristics of the standard value variation with the air-conditioning hourly heating and cooling load is revealed, and the energy efficiency standard value of each loop can be also obtained, and the qualitative sensitivity analysis of the dynamic characteristics in each subsystem is carried out. For system energy saving operation and control, the basic data and theoretical guidance can be provided.

  16. Effects of rheological change by addition of carboxymethylcellulose in culture media of an air-lift fermentor on poly-D-3-hydroxybutyric acid productivity in autotrophic culture of hydrogen-oxidizing bacterium, Alcaligenes eutrophus.

    PubMed

    Taga, N; Tanaka, K; Ishizaki, A

    1997-03-05

    The effects of rheological change by addition of sodium carboxymethylcellulose (CMC) to culture medium in an air-lift-type fermentor on autotrophic production of poly-(D-3-hydroxybutyric acid) [P(3HB)] by two-stage culture of Alcaligenes eutrophus is investigated. Addition of 0.05% CMC increased P(3HB) production rate during the P(3HB) accumulation phase to twice that of the control culture. It was thought that addition of a small amount of CMC was beneficial for production of P(3HB) employing the air-lift fermentor under safe autotrophic culture conditions in wich oxygen concentration was maintained below 6.9% (v/v). the volumetric mass transfer coefficient (K(L)a) observed in the presence of CMC is shown to correlated with the P(3HB) production rate obtained. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 529-533, 1997.

  17. O.H. Module Vacuum Lifting Fixture

    SciTech Connect

    McGivern, Paul; /Fermilab

    1987-12-31

    In order to move the 800 lb. copper plates that make up the O.H. modules a vacuum lifting device has been made that will lift the plates safely. The purpose of this report is to provide documentation for the structural integrity of the system and to make sure that it passes all of the safety requirements that have been established for a system of this nature. The vacuum system is composed of a PIAB model M125 vacuum pump that has the pumping capacity of 27 in. Hg. This pump will produce vacuum for three 8 1/2 in. diameter suction cups or pads. A pressure gauge is fixed on the unit to allow the operator to continually monitor the pressure during all lifts. An additional safety feature is a mechanical vacuum monitoring device that is set to emit a shrill tone if the system vacuum falls below 24 in. Hg. A 'bleed' valve fixed on the unit will be used to let the system go to atmospheric pressure once the lift is complete. A 3 psi. check valve and a vacuum reserve of 384 in. is used to insure that the device will not just drop the object if the pump fails. A schematic for the pumping system is given in Figure 1.

  18. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 3: Appendix F through I

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  19. Commercialization of air conditioning heat pump/water heater. Final technical report, Volume 2: Appendix A through E

    SciTech Connect

    1996-01-30

    This is the final technical report on a commercialization project for an air conditioning heat pump water heater. The objective of the project was to produce a saleable system which would be economically competitive with natural gas and cost effective with regard to initial cost versus annual operating costs. The development and commercialization of the system is described. Compiled data included in numerous figures, tables and graphs.

  20. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    The disk pump was investigated at the Air Force Rocket Propulsion Laboratory (AFRPL) to determine the feasibility of using a novel viscous pumping... pump primarily for application as an inducer. The disk pump differs drastically from conventional pumps because of the following major factors: (1) The...The pump inlet relative velocity is equal only to the through flow velocity between the disks. Therefore, there is good indication that the disk pump will

  1. Variable Lifting Index (VLI)

    PubMed Central

    Waters, Thomas; Occhipinti, Enrico; Colombini, Daniela; Alvarez-Casado, Enrique; Fox, Robert

    2015-01-01

    Objective: We seek to develop a new approach for analyzing the physical demands of highly variable lifting tasks through an adaptation of the Revised NIOSH (National Institute for Occupational Safety and Health) Lifting Equation (RNLE) into a Variable Lifting Index (VLI). Background: There are many jobs that contain individual lifts that vary from lift to lift due to the task requirements. The NIOSH Lifting Equation is not suitable in its present form to analyze variable lifting tasks. Method: In extending the prior work on the VLI, two procedures are presented to allow users to analyze variable lifting tasks. One approach involves the sampling of lifting tasks performed by a worker over a shift and the calculation of the Frequency Independent Lift Index (FILI) for each sampled lift and the aggregation of the FILI values into six categories. The Composite Lift Index (CLI) equation is used with lifting index (LI) category frequency data to calculate the VLI. The second approach employs a detailed systematic collection of lifting task data from production and/or organizational sources. The data are organized into simplified task parameter categories and further aggregated into six FILI categories, which also use the CLI equation to calculate the VLI. Results: The two procedures will allow practitioners to systematically employ the VLI method to a variety of work situations where highly variable lifting tasks are performed. Conclusions: The scientific basis for the VLI procedure is similar to that for the CLI originally presented by NIOSH; however, the VLI method remains to be validated. Application: The VLI method allows an analyst to assess highly variable manual lifting jobs in which the task characteristics vary from lift to lift during a shift. PMID:26646300

  2. Microbial monitoring and performance evaluation for H2S biological air emissions control at a wastewater lift station in South Texas, USA.

    PubMed

    Jones, Kim D; Yadavalli, Naga; Karre, Anand K; Paca, Jan

    2012-01-01

    A pilot-scale biological sequential treatment system consisting of a biotrickling filter and two biofilters was installed at Waste Water Lift Station # 64 in Brownsville, Texas, USA to evaluate the performance of the system being loaded with variable concentrations of wastewater hydrogen sulfide (H(2)S) emissions. In this study, the effectiveness of sulfur oxidizing bacteria along with the distribution of various sulfur species and their correlation with the performance of the biofilters was evaluated. The biofilters were packed with engineered media consisting of plastic cylinders with compacted organic material which was supplied by Met-Pro Environmental Air Solutions (formerly Bio·Reaction Industries). The overall performance of the pilot-scale biological sequential treatment system with an Empty Bed Residence Time (EBRT) of 60s and the overall performance of the biofilter unit with an EBRT of 35s developed a removal efficiency of > 99% at H(2)S levels up to 500 ppm. A decrease in performance over time was observed in the first and second sections of the first biofilter unit with the third section of the biofilter unit ultimately becoming the most robust unit removing most of the pollutant. The second biofilter unit was not needed and subsequently removed from the system. The number of CFUs in sulfur oxidizing T.thioparus selective media grew significantly in all four sections of the biofilter over the two months of pilot operation of the biological unit. The sulfur oxidizer growth rates appeared to be highest at low total sulfur content and at slightly acidic pH levels. This study has implications for improving the understanding of the distribution of sulfur oxidizing bacteria throughout the length of the biofilter columns, which can be used to further optimize performance and estimate breakthrough at these very high H(2)S input loadings.

  3. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  4. Lift generation by the avian tail.

    PubMed

    Maybury, W J; Rayner, J M; Couldrick, L B

    2001-07-22

    Variation with tail spread of the lift generated by a bird tail was measured on mounted, frozen European starlings (Sturnus vulgaris) in a wind tunnel at a typical air speed and body and tail angle of attack in order to test predictions of existing aerodynamic theories modelling tail lift. Measured lift at all but the lowest tail spread angles was significantly lower than the predictions of slender wing, leading edge vortex and lifting line models of lift production. Instead, the tail lift coefficient based on tail area was independent of tail spread, tail aspect ratio and maximum tail span. Theoretical models do not predict bird tail lift reliably and, when applied to tail morphology, may underestimate the aerodynamic optimum tail feather length. Flow visualization experiments reveal that an isolated tail generates leading edge vortices as expected for a low-aspect ratio delta wing, but that in the intact bird body-tail interactions are critical in determining tail aerodynamics: lifting vortices shed from the body interact with the tail and degrade tail lift compared with that of an isolated tail.

  5. Lift truck safety review

    SciTech Connect

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  6. Laboratory determination of frosting and defrosting losses for a high-efficiency air-source heat pump

    SciTech Connect

    Miller, W.A.; Ellison, R.D.

    1981-01-01

    Tests were performed to detail system and component performance data, to quantify the dynamic losses, and to seek and evaluate methods for reducing these losses. A high efficiency split-system heat pump was installed in two separate air loops, with one loop housing the indoor unit and the other housing the outdoor unit. Calculations of the heat pump's performance based on air-side measurements were within 3% of that based on refrigerant side measurements. Refrigerant flow rate was measured using a turbine flow meter. Refrigerant temperatures and pressures were measured with thermocouples and pressure transducers connected at various strategic locations in the refrigeration circuit. Electric power consumption for all motors was measured with Thermal-watt converters. Performance of the heat pump was measured under steady-state, dehumidification, and frosting-defrosting conditions with major emphasis placed on the dynamic frosting operation of the system. The study encompassed an evaluation of the system and component performance for ambient temperature levels of 8.3, 4.4, 1.7, -1.1 and -8.3/sup 0/C and for discrete humidity levels ranging from 50 to 90%.

  7. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  8. Quiet powered-lift propulsion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-05-01

    A preliminary design study of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations was performed. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented.

  10. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  11. Monitoring of ozone precursors in ambient air using pumped and diffusive sampling on the sorbent Carbopack X

    NASA Astrophysics Data System (ADS)

    Quincey, Paul; Butterfield, David; D'Souza, Hansa; Henderson, Malcolm

    EU legislation for ambient ozone concentrations puts a requirement on Member States to monitor a large set of ozone precursor species, mostly hydrocarbons. We describe an investigation into how much of this information is readily available from manual methods used routinely for benzene monitoring in the United Kingdom, using pumped or diffusive sampling of ambient air onto the sorbent Carbopack X, followed by thermal desorption and gas chromatography with a flame ionisation detector. Identifiable peaks were assessed for reliability by comparison with independent automated measurements and emissions inventories. We conclude that 21 of the 29 specified hydrocarbons can be usefully monitored without any change to the methods used.

  12. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source.

    PubMed

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-11-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100  fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700  cm-1 with a 190 pJ pulse energy and 0.5% RMS stability.

  13. Small solar pump for direct irrigation applications

    SciTech Connect

    Chadwick, D.G.; Willardson, L.S.

    1982-12-01

    A prototype solar powered water pump is described. The low-head vacuum lift pump uses a thermodynamic liquid to drive a floating piston which alternately draws water into a pumping chamber then pushes it past a check valve to a higher elevation. A discussion of typical crop requirements illustrates how this pump might be used in practice.

  14. High lift selected concepts

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    The benefits to high lift system maximum life and, alternatively, to high lift system complexity, of applying analytic design and analysis techniques to the design of high lift sections for flight conditions were determined and two high lift sections were designed to flight conditions. The influence of the high lift section on the sizing and economics of a specific energy efficient transport (EET) was clarified using a computerized sizing technique and an existing advanced airplane design data base. The impact of the best design resulting from the design applications studies on EET sizing and economics were evaluated. Flap technology trade studies, climb and descent studies, and augmented stability studies are included along with a description of the baseline high lift system geometry, a calculation of lift and pitching moment when separation is present, and an inverse boundary layer technique for pressure distribution synthesis and optimization.

  15. Measuring Lift with the Wright Airfoils

    ERIC Educational Resources Information Center

    Heavers, Richard M.; Soleymanloo, Arianne

    2011-01-01

    In this laboratory or demonstration exercise, we mount a small airfoil with its long axis vertical at one end of a nearly frictionless rotating platform. Air from a leaf blower produces a sidewise lift force L on the airfoil and a drag force D in the direction of the air flow (Fig. 1). The rotating platform is kept in equilibrium by adding weights…

  16. Development of a closed air loop electropneumatic actuator for driving a pneumatic blood pump.

    PubMed

    Jeong, Gi Seok; Hwang, Chang Mo; Nam, Kyoung Won; Ahn, Chi Bum; Kim, Ho Chul; Lee, Jung Joo; Choi, Jaesoon; Son, Ho Sung; Fang, Yong Hu; Son, Kuk Hui; Lim, Choon Hak; Sun, Kyung

    2009-08-01

    In this study, we developed a small pneumatic actuator that can be used as an extracorporeal biventricular assist device. It incorporated a bellows-transforming mechanism to generate blood-pumping pressure. The cylindrical unit is 88 +/- 0.1 mm high, has a diameter of 150 +/- 0.1 mm, and weighs 2.4 +/- 0.01 kg. In vitro, maximal outflow at the highest pumping rate (PR) exceeded 8 L/min when two 55 mL blood sacs were used under an afterload pressure of 100 mm Hg. At a pumping rate of 100 beats per minute (bpm), maximal hydraulic efficiency was 9.34% when the unit supported a single ventricle and 13.8% when it supported both ventricles. Moreover, pneumatic efficiencies of the actuator were 17.3% and 33.1% for LVAD and BVAD applications, respectively. The energy equivalent pressure was 62.78 approximately 208.10 mm Hg at a PR of 60 approximately 100 bpm, and the maximal value of dP/dt during systole was 1269 mm Hg/s at a PR of 60 bpm and 979 mm Hg/s at a PR of 100 bpm. When the unit was applied to 15 calves, it stably pumped 3 approximately 4 L/min of blood at 60 bpm, and no mechanical malfunction was experienced over 125 days of operation. We conclude that the presently developed pneumatic actuator can be utilized as an extracorporeal biventricular assist device.

  17. The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application

    SciTech Connect

    Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo

    2016-05-23

    S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance and subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.

  18. Air swallowing can be responsible for non-response of heartburn to high-dose proton pump inhibitor.

    PubMed

    Zentilin, P; Accornero, L; Dulbecco, P; Savarino, E; Savarino, V

    2005-06-01

    Intraluminal electrical impedance is a novel technique, which is able for the first time to provide a qualitative assessment of refluxed material moving from the stomach to the oesophagus. In other words, the presence of air can be differentiated from that of liquid, because the former is characterised by high and the latter by low impedance compared with baseline. Moreover, the combined measurement of electrical impedance and pH-metry permits to distinguish acid from non-acid liquid reflux. One of the most important clinical applications of this method is to assess the reasons for poor response of GORD patients to high-dose proton pump inhibitors. This case report describes the results of impedance in the evaluation of a young woman, who did not respond to twice-daily doses of rabeprazole. She continued to complain of heartburn as major symptom and impedance allowed us to clarify that it was not related to acid or non-acid reflux, but to air swallowing. Therefore, this technique identified aerophagia to be responsible for persistent heartburn despite high-dose proton pump inhibitor and prevented the adoption of more aggressive, but probably unuseful therapies, such as the surgical one.

  19. Benchmark performance analysis of an ECM-modulated air-to-air heat pump with a reciprocating compressor

    SciTech Connect

    Rice, C.K.

    1992-01-01

    A benchmark analysis was conducted to predict the maximum steady- state performance potential of a near-term modulating residential- size heat pump. Continuously variable-speed, permanent-magnet electronically commutated motors (ECMs) were assumed to modulate the compressor and the indoor and outdoor fans in conjunction with existing modulating reciprocating compressor technology. A modulating heat pump design tool was used to optimize this ECM benchmark heat pump, using speed ranges and total heat exchanger sizes per-unit-capacity equivalent to that used by the highest SEER-rated variable-speed unit presently on the market (SEER = 16.4). Parametric steady-state performance optimization was conducted at a nominal design cooling ambient of 95{degree}F (35{degree}C) and at three off-design ambients of 82{degree}F (27.8{degree}C) cooling and 47{degree}F and 17{degree}F (8.3{degree}C and {minus}8.3{degree}C) heating. In comparison to the reference commercially available residential unit, the analysis for the ECM benchmark predicted steady-state heating COPs about 35% higher and a cooling EER almost 25% higher at the nominal design cooling condition. The cooling EER at 82{degree}F (27. 8{degree}C) was 13% higher than that of the reference unit when a comparable sensible heat ratio of 0.71 was maintained, while an EER gain of 24% at the 82{degree}F (27.8{degree}C) rating point was predicted when the sensible heat ratio was relaxed to 0.83. 28 refs., 14 figs., 7 tabs.

  20. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  1. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  2. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... water, or gas, but may not include reverse cycle refrigeration as a heating means. Single package... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled, evaporatively-cooled, or water source (not including ground water source) electrically operated, unitary...

  3. Methodology for Automated Detection of Degradation and Faults in Packaged Air Conditioners and Heat Pumps Using Only Two Sensors

    SciTech Connect

    2016-02-10

    The software was created in the process of developing a system known as the Smart Monitoring and Diagnostic System (SMDS) for packaged air conditioners and heat pumps used on commercial buildings (known as RTUs). The SMDS provides automated remote monitoring and detection of performance degradation and faults in these RTUs and could increase the awareness by building owners and maintenance providers of the condition of the equipment, the cost of operating it in degraded condition, and the quality of maintenance and repair service when it is performed. The SMDS provides these capabilities and would enable conditioned-based maintenance rather than the reactive and schedule-based preventive maintenance commonly used today, when maintenance of RTUs is done at all. Improved maintenance would help ensure persistent peak operating efficiencies, reducing energy consumption by an estimated 10% to 30%.

  4. Catwalk grate lifting tool

    DOEpatents

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  5. Catwalk grate lifting tool

    DOEpatents

    Gunter, Larry W.

    1992-01-01

    A device for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate.

  6. High lift aerodynamics

    NASA Technical Reports Server (NTRS)

    Sullivan, John; Schneider, Steve; Campbell, Bryan; Bucci, Greg; Boone, Rod; Torgerson, Shad; Erausquin, Rick; Knauer, Chad

    1994-01-01

    The current program is aimed at providing a physical picture of the flow physics and quantitative turbulence data of the interaction of a high Reynolds number wake with a flap element. The impact of high lift on aircraft performance is studied for a 150 passenger transport aircraft with the goal of designing optimum high lift systems with minimum complexity.

  7. Portable Lifting Seat

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    Portable lifting machine assists user in rising from seated position to standing position, or in sitting down. Small and light enough to be carried like briefcase. Used on variety of chairs and benches. Upholstered aluminum box houses mechanism of lifting seat. Springs on outer shaft-and-arm subassembly counterbalance part of user's weight to assist motor.

  8. Understanding Wing Lift

    ERIC Educational Resources Information Center

    Silva, J.; Soares, A. A.

    2010-01-01

    The conventional explanation of aerodynamic lift based on Bernoulli's equation is one of the most common mistakes in presentations to school students and is found in children's science books. The fallacies in this explanation together with an alternative explanation for aerofoil lift have already been presented in an excellent article by Babinsky…

  9. Portable seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A portable seat lift that can help individuals either (1) lower themselves to a sitting position or (2) raise themselves to a standing position is presented. The portable seat lift consists of a seat mounted on a base with two levers, which are powered by a drive unit.

  10. Lift mechanics of downhill skiing and snowboarding

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Igci, Yesim; Andreopoulos, Yiannis

    2005-11-01

    A simplified mathematical model is derived to describe the lift mechanics of downhill skiing and snowboarding, where the lift contributions due to both the transiently trapped air and the compressed snow crystals are determined for the first time. Using Shimizu's empirical relation to predict the local variation in snow permeability, we employ force and moment analysis to predict the angle of attack of the planing surface, the penetration depth at the leading edge and the shift in the center of pressure for two typical snow types, fresh and wind-packed snow. We present numerical solutions for snowboarding and asymptotic analytic solutions for skiing for the case where there are no edging or turning maneuvers, which shows that approximately 50% of the total lift force is generated by the trapped air in the case of wind-packed snow for snowboarding and 40% for skiing. For highly permeable fresh powder snow the lift contribution from the pore air pressure drops to < 20%. This new theory is an extension of the series of studies on lift generation in highly compressible porous media.

  11. Characteristic Analysis of Vuilleumier Cycle Machine and Its Application to Air-Conditioning Heat Pump

    NASA Astrophysics Data System (ADS)

    Sekiya, Hiroshi

    The Vuilleumier (VM) cycle machine is realized as a regenerative and external-combustion machine in the same way as a Stirling (ST) cycle machine. In the VM cycle, heat enters the cyc1e from hot and cold temperature heat sources and is delivered to an intermediate temperature heat source by a working gas. In consequence of the theoretical cycle, output power is not produced. The VM cycle machine is made of the same elements as the ST cycle machine and also closely connected with the ST cycle machine in its working principle. By means of analysis using an isothermal model, it is found that the VM cycle machine is internally divided into a ST engine and a ST refrigerator. In addition, the calculated results by a simulation model based on a so-called 3rd-order method clarify that the VM cycle machine has different featuers from the ST cycle macine with regard to the working gas behavior, the energy flow and the performance depending on the revolution speed. Application of the VM cycle machine to a heat pump for heating and cooling takes effect on the environment and energy problems arising on a terrestrial scale. In reacent years, research and development have been making on the VM haet pumps.

  12. Samus Counter Lifting Fixture

    SciTech Connect

    Stredde, H.; /Fermilab

    1998-05-27

    A lifting fixture has been designed to handle the Samus counters. These counters are being removed from the D-zero area and will be transported off site for further use at another facility. This fixture is designed specifically for this particular application and will be transferred along with the counters. The future use of these counters may entail installation at a facility without access to a crane and therefore a lift fixture suitable for both crane and/or fork lift usage has been created The counters weigh approximately 3000 lbs. and have threaded rods extended through the counter at the top comers for lifting. When these counters were first handled/installed these rods were used in conjunction with appropriate slings and handled by crane. The rods are secured with nuts tightened against the face of the counter. The rod thread is M16 x 2({approx}.625-inch dia.) and extends 2-inch (on average) from the face of the counter. It is this cantilevered rod that the lift fixture engages with 'C' style plates at the four top comers. The strongback portion of the lift fixture is a steel rectangular tube 8-inch (vertical) x 4-inch x .25-inch wall, 130-inch long. 1.5-inch square bars are welded perpendicular to the long axis of the rectangular tube at the appropriate lift points and the 'C' plates are fastened to these bars with 3/4-10 high strength bolts -grade 8. Two short channel sections are positioned-welded-to the bottom of the rectangular tube on 40 feet centers, which are used as locators for fork lift tines. On the top are lifting eyes for sling/crane usage and are rated at 3500 lbs. safe working load each - vertical lift only.

  13. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  14. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for testing. Conduct testing with the following installed: (1) the most restrictive filter(s); (2... restriction. c. Testing a ducted unit without having an indoor air filter installed is permissible as long as... of section 4.2 for information on region IV.) For heat pumps that use a time-adaptive defrost...

  15. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  16. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... testing with the following installed: (1) the most restrictive filter(s); (2) supplementary heating coils... ducted unit without having an indoor air filter installed is permissible as long as the minimum external... on region IV.) For heat pumps that use a time-adaptive defrost control system (see Definition...

  17. Wingless Flight: The Lifting Body Story

    NASA Technical Reports Server (NTRS)

    Reed, R. Dale; Lister, Darlene (Editor); Huntley, J. D. (Editor)

    1997-01-01

    Wingless Flight tells the story of the most unusual flying machines ever flown, the lifting bodies. It is my story about my friends and colleagues who committed a significant part of their lives in the 1960s and 1970s to prove that the concept was a viable one for use in spacecraft of the future. This story, filled with drama and adventure, is about the twelve-year period from 1963 to 1975 in which eight different lifting-body configurations flew. It is appropriate for me to write the story, since I was the engineer who first presented the idea of flight-testing the concept to others at the NASA Flight Research Center. Over those twelve years, I experienced the story as it unfolded day by day at that remote NASA facility northeast of los Angeles in the bleak Mojave Desert. Benefits from this effort immediately influenced the design and operational concepts of the winged NASA Shuttle Orbiter. However, the full benefits would not be realized until the 1990s when new spacecraft such as the X-33 and X-38 would fully employ the lifting-body concept. A lifting body is basically a wingless vehicle that flies due to the lift generated by the shape of its fuselage. Although both a lifting reentry vehicle and a ballistic capsule had been considered as options during the early stages of NASA's space program, NASA initially opted to go with the capsule. A number of individuals were not content to close the book on the lifting-body concept. Researchers including Alfred Eggers at the NASA Ames Research Center conducted early wind-tunnel experiments, finding that half of a rounded nose-cone shape that was flat on top and rounded on the bottom could generate a lift-to-drag ratio of about 1.5 to 1. Eggers' preliminary design sketch later resembled the basic M2 lifting-body design. At the NASA Langley Research Center, other researchers toyed with their own lifting-body shapes. Meanwhile, some of us aircraft-oriented researchers at the, NASA Flight Research Center at Edwards Air

  18. A low energy, bio-secure, 'hybrid' recirculation system incorporating air lift pumps for water circulation, aeration, and CO2 degassing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ‘Hybrid’ recirculating aquaculture system design utilizes elements of both a ‘Centralized’ design concept with a single water treatment system for a number of fish tanks and the ‘Modular’ design concept which employs a individual treatment system for each fish culture tank. The ‘Hybrid’ recirculat...

  19. High gantry for lifting and handling

    NASA Technical Reports Server (NTRS)

    Kerley, J. J., Jr.; Tereniak, W. T.

    1977-01-01

    Standard gantry has been inexpensively modified with standard pipes to allow lifting of heavy loads to distances between 14 and 30 ft. Addition of air mounts permits extensive and sensitive equipment to be moved smoothly and safely over smooth or moderately rough surfaces. Unit has been tested at 6000 pounds without yielding.

  20. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  1. Aerodynamic Lifting Force.

    ERIC Educational Resources Information Center

    Weltner, Klaus

    1990-01-01

    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  2. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  3. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  4. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  5. DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS OF THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. East elevation of lowlift pumping station, looking west. Former preliminary ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East elevation of low-lift pumping station, looking west. Former preliminary sedimentation basin is in foreground. High-lift pumping station is in background. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  7. Proton pump inhibitor-associated pneumonia: Not a breath of fresh air after all?

    PubMed

    Fohl, Alexander L; Regal, Randolph E

    2011-06-06

    Over the past two decades, proton pump inhibitors (PPIs) have emerged as highly effective and relatively safe agents for the treatment of a variety of gastrointestinal disorders. Unfortunately, this desirable pharmacological profile has also contributed to superfluous and widespread use in both the inpatient and outpatient settings. While generally well-tolerated, research published over the last decade has associated these agents with increased risks of Clostridium difficile disease, fractures likely due to calcium malabsorption and both community-acquired (CAP) and hospital-acquired pneumonias (HAP). The mechanism behind PPI-associated pneumonia may be multifactorial, but is thought to stem from compromising the stomach's "acid mantle" against gastric colonization of acid-labile pathogenic bacteria which then may be aspirated. A secondary postulate is that PPIs, through their inhibition of extra-gastric H(+)/K(+)-ATPase enzymes, may reduce the acidity of the upper aerodigestive tract, thus resulting in increased bacterial colonization of the larynx, esophagus and lungs. To date, several retrospective case control studies have been published looking at the association between PPI use and CAP. Some studies found a temporal relationship between PPI exposure and the incidence of pneumonia, but only two could define a dose-response relationship. Furthermore, other studies found an inverse correlation between duration of PPI use and risk of CAP. In terms of HAP, we reviewed two retrospective cohort studies and one prospective study. One retrospective study in a medical ICU found no increased association of HAP in PPI-exposed patients compared to no acid-lowering therapy, while the other in cardiothoracic surgery patients showed a markedly increased risk compared to those receiving H(2)RAs. The one prospective study in ICU patients showed an increased risk of HAP with PPIs, but not with H(2)RAs. In conclusion, the current literature shows a slight trend toward an

  8. Impulse pumping modelling and simulation

    NASA Astrophysics Data System (ADS)

    Pierre, B.; Gudmundsson, J. S.

    2010-08-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  9. An Integrated Microfabricated Chip with Double Functions as an Ion Source and Air Pump Based on LIGA Technology

    PubMed Central

    Li, Hua; Jiang, Linxiu; Guo, Chaoqun; Zhu, Jianmin; Jiang, Yongrong; Chen, Zhencheng

    2017-01-01

    The injection and ionization of volatile organic compounds (VOA) by an integrated chip is experimentally analyzed in this paper. The integrated chip consists of a needle-to-cylinder electrode mounting on the Polymethyl Methacrylate (PMMA) substrate. The needle-to-cylinder electrode is designed and fabricated by Lithographie, Galvanoformung and Abformung (LIGA) technology. In this paper, the needle is connected to a negative power supply of −5 kV and used as the cathode; the cylinder electrodes are composed of two arrays of cylinders and serve as the anode. The ionic wind is produced based on corona and glow discharges of needle-to-cylinder electrodes. The experimental setup is designed to observe the properties of the needle-to-cylinder discharge and prove its functions as an ion source and air pump. In summary, the main results are as follows: (1) the ionic wind velocity produced by the chip is about 0.79 m/s at an applied voltage of −3300 V; (2) acetic acid and ammonia water can be injected through the chip, which is proved by pH test paper; and (3) the current measured by a Faraday cup is about 10 pA for acetic acid and ammonia with an applied voltage of −3185 V. The integrated chip is promising for portable analytical instruments, such as ion mobility spectrometry (IMS), field asymmetric ion mobility spectrometry (FAIMS), and mass spectrometry (MS). PMID:28054980

  10. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  11. Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK).

    PubMed

    Ding, Pengji; Mitryukovskiy, Sergey; Houard, Aurélien; Oliva, Eduardo; Couairon, Arnaud; Mysyrowicz, André; Liu, Yi

    2014-12-01

    Recently, S. Mitryukovskiy et al. presented experimental evidence showing that backward Amplified Spontaneous Emission (ASE) at 337 nm can be obtained from plasma filaments in nitrogen gas pumped by circularly polarized 800 nm femtosecond pulses (Opt. Express, 22, 12750 (2014)). Here, we report that a seed pulse injected in the backward direction can be amplified by ~200 times inside this plasma amplifier. The amplified 337 nm radiation can be either linearly or circularly polarized, dictated by the seeding pulse, which is distinct from the non-polarized nature of the ASE. We performed comprehensive measurements of the spatial profile, optical gain dynamics, and seed pulse energy dependence of this amplification process. These measurements allow us to deduce the pulse duration of the ASE and the amplified 337 nm radiation as well as the corresponding laser intensity inside the plasma amplifier. It indicates that the amplification is largely in the unsaturated regime and that further improvement of laser energy is possible. Moreover, we observed optical gain in plasma created in ambient air. This represents an important step towards future applications exploiting backward lasing for remote atmospheric sensing.

  12. An Integrated Microfabricated Chip with Double Functions as an Ion Source and Air Pump Based on LIGA Technology.

    PubMed

    Li, Hua; Jiang, Linxiu; Guo, Chaoqun; Zhu, Jianmin; Jiang, Yongrong; Chen, Zhencheng

    2017-01-04

    The injection and ionization of volatile organic compounds (VOA) by an integrated chip is experimentally analyzed in this paper. The integrated chip consists of a needle-to-cylinder electrode mounting on the Polymethyl Methacrylate (PMMA) substrate. The needle-to-cylinder electrode is designed and fabricated by Lithographie, Galvanoformung and Abformung (LIGA) technology. In this paper, the needle is connected to a negative power supply of -5 kV and used as the cathode; the cylinder electrodes are composed of two arrays of cylinders and serve as the anode. The ionic wind is produced based on corona and glow discharges of needle-to-cylinder electrodes. The experimental setup is designed to observe the properties of the needle-to-cylinder discharge and prove its functions as an ion source and air pump. In summary, the main results are as follows: (1) the ionic wind velocity produced by the chip is about 0.79 m/s at an applied voltage of -3300 V; (2) acetic acid and ammonia water can be injected through the chip, which is proved by pH test paper; and (3) the current measured by a Faraday cup is about 10 pA for acetic acid and ammonia with an applied voltage of -3185 V. The integrated chip is promising for portable analytical instruments, such as ion mobility spectrometry (IMS), field asymmetric ion mobility spectrometry (FAIMS), and mass spectrometry (MS).

  13. NASA Heavy Lift Rotorcraft Systems Investigation

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2005-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  14. TMI-2 reactor vessel plenum final lift

    SciTech Connect

    Wilson, D C

    1986-01-01

    Removal of the plenum assembly from the TMI-2 reactor vessel was necessary to gain access to the core region for defueling. The plenum was lifted from the reactor vessel by the polar crane using three specially designed pendant assemblies. It was then transferred in air to the flooded deep end of the refueling canal and lowered onto a storage stand where it will remain throughout the defueling effort. The lift and transfer were successfully accomplished on May 15, 1985 in just under three hours by a lift team located in a shielded area within the reactor building. The success of the program is attributed to extensive mockup and training activities plus thorough preparations to address potential problems. 54 refs.

  15. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  16. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. JWST Lifting System

    NASA Technical Reports Server (NTRS)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  18. Forehead lift - slideshow

    MedlinePlus

    ... Indications URL of this page: //medlineplus.gov/ency/presentations/100020.htm Forehead lift - series—Indications To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  19. Breast lift (mastopexy) - slideshow

    MedlinePlus

    ... Incisions URL of this page: //medlineplus.gov/ency/presentations/100188.htm Breast lift (mastopexy) - series—Incisions To use the sharing features on this page, please enable JavaScript. Go to slide 1 out of 3 Go to slide 2 ...

  20. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  1. Lifting as You Climb

    ERIC Educational Resources Information Center

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  2. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  3. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  4. Static Thrust Analysis of the Lifting Airscrew

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Hefner, Ralph A

    1937-01-01

    This report presents the results of a combined theoretical and experimental investigation conducted at the Georgia School of Technology on the static thrust of the lifting air screw of the type used in modern autogiros and helicopters. The theoretical part of this study is based on Glauert's analysis but certain modifications are made that further clarify and simplify the problem. Of these changes the elimination of the solidity as an independent parameter is the most important. The experimental data were obtained from tests on four rotor models of two, four, and five blades and, in general, agree quite well with the theoretical calculations. The theory indicates a method of evaluating scale effects on lifting air screws, and these corrections have been applied to the model results to derive general full-scale static thrust, torque, and figure-of-merit curves for constant-chord, constant-incidence rotors. Convenient charts are included that enable hovering flight performance to be calculated rapidly.

  5. Lifting speed preferences and their effects on the maximal lifting capacity

    PubMed Central

    LIN, Chiuhsiang Joe; CHENG, Chih-Feng

    2016-01-01

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants’ preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity. PMID:27383532

  6. Lifting speed preferences and their effects on the maximal lifting capacity.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng

    2017-02-07

    The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.

  7. Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids

    SciTech Connect

    Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook

    2005-07-01

    This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.

  8. Helicopter Toy and Lift Estimation

    ERIC Educational Resources Information Center

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  9. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  10. Radioactive air emissions notice of construction use of a portable exhauster on single shell tanks (SSTs) during salt well pumping

    SciTech Connect

    GRANDO, C.J.

    1999-11-18

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping.

  11. High lift wake investigation

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Schneider, S. P.; Hoffenberg, R.

    1996-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although known to be important for high-lift systems, few studies of such decelerated wakes exist. In this study, the wake of a flat plate has been subjected to an adverse pressure gradient in a two-dimensional diffuser, whose panels were forced to remain attached by use of slot blowing. Pitot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  12. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  13. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  14. Lift and Drag Performance of Odontocete Cetacean Flippers

    DTIC Science & Technology

    2009-01-01

    Cooper et al., 2008). The cross-section of a typical flipper is similar to that of a modern engineered air/ hydrofoil (Fish, 2004; Miklosovic et al., 2004...to modern engineered hydrofoils , which have hydrodynamic properties such as lift coefficient, drag coefficient and associated efficiency. Field...study are differentiated by whether or not their lift curves are linear. An engineered hydrofoil with linear behavior in the non-stall region was also

  15. High-Lift Systems on Commercial Subsonic Airliners

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1996-01-01

    peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.

  16. Powered-lift aircraft technology

    NASA Technical Reports Server (NTRS)

    Deckert, W. H.; Franklin, J. A.

    1989-01-01

    Powered lift aircraft have the ability to vary the magnitude and direction of the force produced by the propulsion system so as to control the overall lift and streamwise force components of the aircraft, with the objective of enabling the aircraft to operate from minimum sized terminal sites. Power lift technology has contributed to the development of the jet lift Harrier and to the forth coming operational V-22 Tilt Rotor and the C-17 military transport. This technology will soon be expanded to include supersonic fighters with short takeoff and vertical landing capability, and will continue to be used for the development of short- and vertical-takeoff and landing transport. An overview of this field of aeronautical technology is provided for several types of powered lift aircraft. It focuses on the description of various powered lift concepts and their operational capability. Aspects of aerodynamics and flight controls pertinent to powered lift are also discussed.

  17. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    SciTech Connect

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  18. Improving the Energy Performance of Multi-Unit Residential Buildings Using Air-Source Heat Pumps and Enclosed Balconies

    NASA Astrophysics Data System (ADS)

    Touchie, Marianne

    Existing multi-unit residential buildings (MURBs) are important assets for urban regions such as Toronto, Canada. These buildings provide high-density housing and allow for the efficient provision of public services and utilities. However, MURB energy-use imposes a significant environmental burden. A preliminary part of the study presented here found that the median energy intensity of MURBs in Toronto is 300ekWh/m2 and that this energy-use accounts for 17% of residential greenhouse gas (GHG) emissions in the City. To reduce this environmental burden, this work explores a novel energy retrofit strategy involving a suite-based air-source heat pump (ASHP) operating in an enclosed balcony space which serves as a thermal buffer zone (TBZ) to improve the cold-weather ASHP performance in a heating-dominated climate. More broadly, a methodology for assessing the impact of an energy retrofit measure is developed. First, energy-use and interior condition data were collected from a 1960s MURB over the course of one year. The subject building was found to have a higher-than-average energy intensity of 374ekWh/m2 and other operational issues including overheating of suites. These data were then used to calibrate an energy model so that the proposed retrofit strategy could be modeled. Next, the proposed retrofit strategy was tested in a mock apartment unit constructed in a climate-controlled chamber. The testing showed that the coefficient of performance of the ASHP could be improved by operating it in a TBZ with access to heat from solar gains. This finding was used to modify the subject building energy model which showed that applying the proposed retrofit could reduce the annual energy intensity and GHG emissions of the building by 39% and 45%, respectively. An estimate of the impact of applying this retrofit strategy to Toronto MURBs with energy intensities greater than the median results in a median sector energy intensity of 236ekWh/m 2.

  19. A Novel, Low-Cost, Reduced-Sensor Approach for Providing Smart Renote Monitoring and Diagnostics for Packaged Air Conditioners and Heat Pumps

    SciTech Connect

    Brambley, Michael R.

    2009-09-01

    This report describes conceptually an approach to providing automated remote performance and conditioning monitoring and fault detection for air conditioners and heat pumps that shows great promise to reduce the capital and installation costs of such systems from over $1000 per unit to $200 to $400 per unit. The approach relies on non-intrusive electric load monitoring (NIELM) to enable separation of the power use signals of compressors and fans in the air conditioner or heat pump. Then combining information on the power uses and one or two air temperature measurements, changes in energy efficiency and occurrence of major faults would be detected. By decreasing the number of sensors used from between ten and twenty in current diagnostic monitoring systems to three for the envisaged system, the capital cost of the monitoring system hardware and the cost of labor for installation would be decreased significantly. After describing the problem being addressed and the concept for performance monitoring and fault detection in more detail, the report identifies specific conditions and faults that the proposed method would detect, discusses specific needs for successful use of the NIELM approach, and identifies the major elements in the path from concept to a commercialized monitoring and diagnostic system.

  20. Pumping and Breastmilk Storage

    MedlinePlus

    ... by washing your pumping equipment with soap and water and letting the equipment air dry. Storage of breastmilk Store your breastmilk in clean glass or hard BPA-free plastic bottles with tight-fitting lids. You can also use ...

  1. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  2. International Conference on Underground Pumped Hydro and Compressed Air Energy Storage, San Francisco, CA, September 20-22, 1982, Collection of Technical Papers

    NASA Astrophysics Data System (ADS)

    1982-08-01

    Topics discussed include an assessment of the market potential of compressed air energy storage (CAES) systems, turbocompressor considerations in CAES plants, subsurface geological considerations in siting an underground pumped hydro (UPH) project, and the preliminary assessment of waste heat recovery system for CAES plants. Also considered are CAES caverns design for leakage, simulation of the champagne effect in CAES plants, design of wells and piping for an aquifer CAES plant, various aspects of the Huntor CAES facility, low-pressure CAES, subsurface instrumentation plan for the Pittsfield CAES field test facility, and the feasibility of UPH storage in the Netherlands.

  3. Finite difference calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump on graphics processing unit array

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-09-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed threedimension model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have not yet been observed in the calculation in the ultrasonic air pump of this type.

  4. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump.

  5. Detail of lift wire rope attachment to lift span at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of lift wire rope attachment to lift span at southeast corner. Note rope-adjustment turnbuckle with strap keepers to prevent its rotation, which could pull the bridge out of alignment. A single rope and light-gauge attachment at each corner were adequate for lifting the span because most of its weight was balanced by the two counterweights. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD

  6. The hydraulic ram (or impulse) pump

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2014-03-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described, along with a working demonstration model constructed from plastic waste pipe and fittings.

  7. The Hydraulic Ram (Or Impulse) Pump

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  8. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  9. Framelet lifting in image processing

    NASA Astrophysics Data System (ADS)

    Lu, Da-Yong; Feng, Tie-Yong

    2010-08-01

    To obtain appropriate framelets in image processing, we often need to lift existing framelets. For this purpose the paper presents some methods which allow us to modify existing framelets or filters to construct new ones. The relationships of matrices and their eigenvalues which be used in lifting schemes show that the frame bounds of the lifted wavelet frames are optimal. Moreover, the examples given in Section 4 indicate that the lifted framelets can play the roles of some operators such as the weighted average operator, the Sobel operator and the Laplacian operator, which operators are often used in edge detection and motion estimation applications.

  10. Design Optimization and the Limits of Steady-State Heating Efficiency for Conventional Single-Speed Air-Source Heat Pumps

    SciTech Connect

    Rice, C.K.

    2001-06-06

    The ORNL Heat Pump Model and an optimizing program were used to explore the limits of steady-state heating efficiency for conventional air-source heat pumps. The method used allows for the simultaneous optimization of ten selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. Designs were optimized for a fixed heating capacity, but the results may be scaled to other capacities. Substantial performance improvement is predicted compared to today's state of the art heat pump. With increased component efficiencies that are expected in the near future and with modest increases in heat exchanger area, a 28% increase in heating efficiency is predicted; for long-term improvements with considerably larger heat exchangers, a 56% increase is possible. The improved efficiencies are accompanied by substantial reductions in the requirements for compressor and motor size. The predicted performance improvements are attributed not only to improved components and larger heat exchangers but also to the use of an optimizing design procedure. Deviations from the optimized design may be necessary to make use of available component sizes and to maintain good cooling-mode performance while improving the heating efficiency. Sensitivity plots (i.e., COP as a function of one or more design parameters) were developed to explore design flexibilities and to evaluate their consequences. The performance of the optimized designs was compared to that of modified ideal cycles to assess the factors that limit further improvement. It is hoped that the design methods developed will be useful to designers in the heat pump industry.

  11. Feasibility study of modern airships, phase 1. Volume 2: Parametric analysis (task 3). [lift, weight (mass)

    NASA Technical Reports Server (NTRS)

    Lancaster, J. W.

    1975-01-01

    Various types of lighter-than-air vehicles from fully buoyant to semibuoyant hybrids were examined. Geometries were optimized for gross lifting capabilities for ellipsoidal airships, modified delta planform lifting bodies, and a short-haul, heavy-lift vehicle concept. It is indicated that: (1) neutrally buoyant airships employing a conservative update of materials and propulsion technology provide significant improvements in productivity; (2) propulsive lift for VTOL and aerodynamic lift for cruise significantly improve the productivity of low to medium gross weight ellipsoidal airships; and (3) the short-haul, heavy-lift vehicle, consisting of a simple combination of an ellipsoidal airship hull and existing helicopter componentry, provides significant potential for low-cost, near-term applications for ultra-heavy lift missions.

  12. Optimization of Wastewater Lift Stations for Reduction of Energy Usage and Greenhouse Gas Emissions (WERF Report INFR3R11)

    EPA Science Inventory

    One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...

  13. Gearbox fault diagnosis using adaptive redundant Lifting Scheme

    NASA Astrophysics Data System (ADS)

    Hongkai, Jiang; Zhengjia, He; Chendong, Duan; Peng, Chen

    2006-11-01

    Vibration signals acquired from a gearbox usually are complex, and it is difficult to detect the symptoms of an inherent fault in a gearbox. In this paper, an adaptive redundant lifting scheme for the fault diagnosis of gearboxes is developed. It adopts data-based optimisation algorithm to lock on to the dominant structure of the signal, and well reveal the transient components of the vibration signal in time domain. Both lifting scheme and adaptive redundant lifting scheme are applied to analyse the experimental signal from a gearbox with wear fault and the practical vibration signal from a large air compressor. The results confirm that adaptive redundant lifting scheme is quite effective in extracting impulse and modulation feature components from the complex background.

  14. The development and testing of a fieldworthy system of improved fluid pumping device and liquid sensor for oil wells

    SciTech Connect

    Buckman, W.G.

    1992-10-05

    An economical gas lift system has been designed that uses the airlift principles of the APOP system to enable one to pump deep wells which have been initially pumped using jack pumps. It can be constructed and installed in oil and/or gas wells where jack pumps have been operating. The 2 in. tubing in the bore hole is left in place and the rods are pulled from the normally 2 in. tubing. A 1 in. or greater diameter tubing containing a one way valve near its bottom and several small holes near the bottom of the 1 in. tube and just above the one way valve is installed into the 2 in. tubing. The one inch tube extends the total length of the 2 in. tubing and is seated on the seating nipple at the bottom of the 2 in. tubing. The space between the concentric tubes can serve as the gas(air) line and the center 1 in. tube serves as the liquid discharge line. This enables this pump to be used in many marginal wells which ordinarily would be uneconomical to pump. This is especially true for deep wells because the cost of jack pumps and the tubing as well as the maintenance to pump liquids from bore holes that are several thousand feet deep is substantial.

  15. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  16. Effects of range and mode on lifting capability and lifting time.

    PubMed

    Lee, Tzu-Hsien

    2012-01-01

    This study examined the effects of 3 lifting ranges and 3 lifting modes on maximum lifting capability and total lifting time. The results demonstrated that the maximum lifting capability for FK (from floor to knuckle height) was greater than that for KS (from knuckle height to shoulder height) or FS (from floor to shoulder height). Additionally, asymmetric lifting with initial trunk rotation decreased maximum lifting capability compared with symmetric lifting or asymmetric lifting with final trunk rotation. The difference in total lifting time between KS and FS was not significant, while FK increased total lifting time by ~20% compared with FS even though the travel distance was 50% shorter.

  17. Project LIFT: Year 1 Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  18. Project LIFT: Year Two Report

    ERIC Educational Resources Information Center

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) has completed its second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  19. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  20. What is a safe lift?

    PubMed

    Espinoza, Kathy

    2013-09-01

    In a perfect world, a "safe" lift would be 51 pounds if the object is within 7 inches from the front of the body, if it is at waist height, if it is directly in front of the person, if there is a handle on the object, and if the load inside the box/bucket doesn't shift once lifted. If the load to be lifted does not meet all of these criteria, then it is an unsafe lift, and modifications must be made. Modifications would include lightening the load, getting help, or using a mechanical lifting device. There is always a way to turn an unsafe lift into a safer lift. An excellent resource for anyone interested in eliminating some of the hazards associated with lifting is the "Easy Ergonomics" publication from Cal/OSHA. This booklet offers practical advice on how to improve the workplace using engineering and administrative controls, problem-solving strategies and solutions, and a vast amount of ergonomics information and resources. "Easy Ergonomics" can be obtained by calling Cal/OSHA's education and training unit in Sacramento at 800-963-9424. A free copy can be obtained via www.dir.ca.gov/dosh/puborder.asp.

  1. Detail of wall in highlift pumping station with Armstrong "Corkoustic" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of wall in high-lift pumping station with Armstrong "Corkoustic" cladding and glazed brick. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  2. Front elevation of highlift pumping station. Colesville Road (also called ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Front elevation of high-lift pumping station. Colesville Road (also called U.S. Route 29 or Columbia Pike) is in foreground. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  3. View of the main stairway in the highlift pumping station, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the main stairway in the high-lift pumping station, looking from the second floor landing to the ground floor. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  4. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1986-01-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Company, acting as Contractor of the City of Long Beach, Operator of the Long Beach Unit. Thums Long Beach Company currently operates 700 submersible pump installations located on four man-made islands and one land fill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100 percent pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from utilizing higher efficiency pumps and a reduced frequency of pulling submersible equipment.

  5. Testing new submersible pumps for proper sizing and reduced costs

    SciTech Connect

    O'Toole, W.P.; O'Brien, J.B.

    1989-02-01

    This paper describes an ongoing program to improve overall submersible pump performance by Thums Long Beach Co., acting as contractor for the City of Long Beach, operator of the Long Beach Unit. Thums Long Beach Co. currently operates 700 submersible pump installations located on four manmade islands and one landfill pier location. The program began with spot testing of submersible pumps for Thums' use. It has evolved to 100% pump testing and the stipulation that only pumps with newly manufactured parts are acceptable. The primary goals of this program are to increase well production and to lower lifting costs. Critical to these goals is increasing the average length of run by using accurate pump-performance data to design equipment and by rejecting defective pumps before they are run. Increased production is realized from better designs. Lower lifting costs result from using more efficient pumps and a reduced frequency of pulling submersible equipment.

  6. Casing pumps can curb costs, increase output in certain wells

    SciTech Connect

    Gabrel, R.; Cornett, T.

    1987-04-13

    Casing pumps can increase production while cutting costs in wells producing up to 40-b/d fluid and 350-Mcfd gas. Picking the oil and gas well suitable for this application is the key to obtaining such benefits. This article describes the method for making that decision. Casing pumps eliminate gas-locking. The costs of maintaining and operating a casing pump are less than that for the conventional sucker rod pumping system. Like plunger lifts, casing pumps are self-contained pumps that use the well's pressurized gas as the energy source, in turn allowing all of this energy to be sold. Yet, while plunger lifts normally require several hundred pounds of shut-in pressure, casing pumps typically require only 100 lb of shut-in pressure to operate. Casing pumps require no tubing, sucker rods, timers, or outside sources of energy.

  7. Labyrinth seal testing for lift fan engines

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    An abradable buffered labyrinth seal for the control of turbine gas path leakage in a tip-turbine driven lift fan was designed, tested, and analyzed. The seal configuration was not designed to operate in any specific location but was sized to be evaluated in an existing test rig. The final sealing diameter selected was 28 inches. Results of testing indicate that the flow equations predicted seal air flows consistent with measured values. Excellent sealing characteristics of the abradable coating on the stator land were demonstrated when a substantial seal penetration of .030 inch into the land surface was encountered without appreciable wear on the labyrinth knife edges.

  8. Mechanism of the lift force acting on a levitating drop over a moving surface

    NASA Astrophysics Data System (ADS)

    Saito, Masafumi; Tagawa, Yoshiyuki; Kameda, Masaharu

    2014-11-01

    The purpose of this study is to understand the levitation mechanism of a drop over a moving surface. In our experiment we softly deposit a silicon-oil drop onto the inner wall of a rotating hollow cylinder. With sufficiently large velocity of the wall, the drop steadily levitates. The drop reaches a stable angular position in the cylinder, where the drag and lift balance the weight of the drop. The lift force, which is vital for the levitation, is generated inside a thin air film existing between the drop and the wall. Here three-dimensional shape of the air film plays a crucial role for the magnitude of the lift force. Note that, although the shapes of some levitating drops had been reported, the lift estimated from the shape had not been validated. Using interferometric technique, we measure the three-dimensional shape of the air film under the drop. We then calculate the lift by applying the lubrication theory. This lift is compared with that estimated from the angular position. Both lifts show a fair agreement. In addition, we investigate the shapes of the air film under drops with various sizes, viscosities and wall velocities. We discuss effects of these parameters on the shape and the lift. JSPS KAKENHI Grant Number 26709007.

  9. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  10. Lifting hydro's potential

    NASA Astrophysics Data System (ADS)

    Lihach, N.

    1980-12-01

    The advantages of hydroelectric power, in terms of capital, operating and maintenance costs and in terms of fuel and environmental considerations, are causing an upgrading of existing installations to provide more generating capacity. Hydrocapacity supplies 1/8 of the U.S. electric energy and will probably increase from 50 to 100% by the early 2000's as the price of other forms of energy rises. Ways of increasing output are: better water control, uprating of hydrogenerators, standardization of turbines, and methods of pumped hydro, an energy storage technique. An obstacle to this aim is the cumbersome licensing process of competing federal agencies which places a particular burden on small projects.

  11. Integrated Heat Pump (IHP) System Development - Air-Source IHP Control Strategy and Specifications and Ground-Source IHP Conceptual Design

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D

    2007-05-01

    The integrated heat pump (IHP), as one appliance, can provide space cooling, heating, ventilation, and dehumidification while maintaining comfort and meeting domestic water heating needs in near-zero-energy home (NZEH) applications. In FY 2006 Oak Ridge National Laboratory (ORNL) completed development of a control strategy and system specification for an air-source IHP. The conceptual design of a ground-source IHP was also completed. Testing and analysis confirm the potential of both IHP concepts to meet NZEH energy services needs while consuming 50% less energy than a suite of equipment that meets current minimum efficiency requirements. This report is in fulfillment of an FY06 DOE Building Technologies (BT) Joule Milestone.

  12. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  13. Experimental Investigation of a Lift Augmented Ground Effect Platform

    DTIC Science & Technology

    2005-09-01

    10 Section 5 - Coanda Effect ............................................................................................ 11...11 Figure 9: Coanda effect : entrainment of air into the jet and jet deflection towards the...rotational velocity out of ground effect ............................... 36 Figure 27: Percentage difference in lift between Coanda nozzles and straight

  14. Estimates of nitric oxide production for lifting spacecraft reentry

    NASA Technical Reports Server (NTRS)

    Park, C.

    1971-01-01

    The amount of nitric oxide which may be produced by heating of air during an atmospheric reentry of a lifting spacecraft is estimated by three different methods. Two assume nitrogen fixation by the process of sudden freezing, and the third is a computer calculation using chemical rate equations.

  15. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  16. Lifting strength in two-person teamwork.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  17. Moving base simulation of an ASTOVL lift-fan aircraft

    NASA Technical Reports Server (NTRS)

    Chung, William W. Y.; Borchers, Paul F.; Franklin, James A.

    1995-01-01

    Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft was conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to (1) assess the effects of lift-fan propulsion system design features on aircraft control during transition and vertical flight including integration of lift fan/lift/cruise engine/aerodynamic controls and lift fan/lift/cruise engine dynamic response, (2) evaluate pilot-vehicle interface with the control system and head-up display including control modes for low-speed operational tasks and control mode/display integration, and (3) conduct operational evaluations of this configuration during takeoff, transition, and landing similar to those carried out previously by the Ames team for the mixed-flow, vectored thrust, and augmentor-ejector concepts. Based on results of the simulation, preliminary assessments of acceptable and borderline lift-fan and lift/cruise engine thrust response characteristics were obtained. Maximum pitch, roll, and yaw control power used during transition, hover, and vertical landing were documented. Control and display mode options were assessed for their compatibility with a range of land-based and shipboard operations from takeoff to cruise through transition back to hover and vertical landing. Flying qualities were established for candidate control modes and displays for instrument approaches and vertical landings aboard an LPH assault ship and DD-963 destroyer. Test pilot and engineer teams from the Naval Air Warfare Center, Boeing, Lockheed, McDonnell Douglas, and the British Defence Research Agency participated in the program.

  18. 11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from floating hoppers, to the pump house (on the far right). From there they were either lifted by conveyor belt to the weighing room (top center) and thence to the holding tanks, or were washed through sealers, weighed and then sluiced to holding tanks. The process used depended upon the type and size of fish. The square cement vat (center) was to be a settling tank from which fish oil, reclaimed from the reduction process, was to be pumped into the round metal tank (above the vat). This process however, was never fully utilized before the sardines ran out. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  19. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  20. Advanced heat pump cycle

    SciTech Connect

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  1. Null lifts and projective dynamics

    SciTech Connect

    Cariglia, Marco

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  2. Vortex Lift Augmentation by Suction

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1983-01-01

    Lift performance is improved on a 60 degrees swept Gothic wing. Vortex lift at moderate to high angles of attack on highly swept wings used to improve takeoff performance and maneuverability. New design proposed in which suction of propulsion system augments vortex. Turbofan placed at down stream end of leading-edge vortex system induces vortex to flow into inlet which delays onset of vortex breakdown.

  3. Extreme high-head portables provide more pumping options

    SciTech Connect

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  4. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  5. Production of heavy oil with a hydraulic gas pump

    SciTech Connect

    Amani, M.

    1995-12-31

    The original designs of the Hydraulic Gas Pump were first presented in Society of Petroleum Engineers SPE paper 025422. This pump is still in the conceptual stage, but the technology to build it is available. This paper presents its theoretical applications for the production of heavy oil. An important advantage of the Hydraulic Gas Pump is its ability to pump liquids from deep wells. Rod pumps are limited when pumping viscous oil from deep wells because of problems with rod stress and rod fall. The Hydraulic Gas Pump can provide an alternative to rod pumps for lifting heavy oil from deep wells. Another advantage of the Hydraulic Gas Pump for the production of heavy oil is its ability to operate in gassy, sandy, and high temperature environments. Gas and steam do not affect its efficiency. This makes the pump useful for steam projects, fire-flood projects, or lifting heavy oil in gassy environments. The Hydraulic Gas Pump operates by a rotative gas compression system. This paper presents a discussion of its operation and its lift capacity.

  6. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  7. An evaluation of underbody forced-air and resistive heating during hypothermic, on-pump cardiac surgery.

    PubMed

    Engelen, S; Himpe, D; Borms, S; Berghmans, J; Van Cauwelaert, P; Dalton, J E; Sessler, D I

    2011-02-01

    We conducted a randomised controlled trial to compare the efficacy of underbody forced-air warming (Arizant Healthcare Inc, Eden Prairie, MN, USA) with an underbody resistive heating mattress (Inditherm Patient Warming System, Rotherham, UK) and passive insulation in 129 patients having hypothermic cardiac surgery with cardiopulmonary bypass. Patients were separated from cardiopulmonary bypass at a core temperature of 35 °C and external warming continued until the end of surgery. Before cardiopulmonary bypass, the temperature-vs-time slopes were significantly greater in both active warming groups than in the passive insulation group (p < 0.001 for each). However, the slopes of forced-air and resistive warming did not differ (p = 0.55). After cardiopulmonary bypass, the rate of rewarming was significantly greater with forced-air than with resistive warming or passive insulation (p < 0.001 for each), while resistive warming did not differ from passive insulation (p = 0.14). However, absolute temperature differences among the groups were small.

  8. Interior, view of pumps looking at the north (window) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, view of pumps looking at the north (window) and east walls, view to northwest - Ellsworth Air Force Base, Rushmore Air Force Station, Water Pump Station, Menoher Road, Blackhawk, Meade County, SD

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  10. Testing and analysis of modified HMMWV front lift provisions

    NASA Astrophysics Data System (ADS)

    Cavallaro, Christopher; Dooley, Robert B.; Weight, Kristen D.; Cavallaro, Paul V.

    1992-05-01

    The U.S. Army Materials Technology Laboratory (MTL) was requested by the Tank and Automotive Command (TACOM) and the Military Traffic Management Command (MTMC) to investigate the performance of the modified front lift provisions on the high mobility, multipurpose, wheeled vehicle (HMMWV). In order to evaluate the front lift provisions, a series of simulated air lift, ultimate pull, and fatigue tests were performed. Each type of test was performed for two different load magnitudes and angles. In addition to the mechanical tests performed, nondestructive testing procedures were utilized to inspect the provisions for imperfections and cracks before and after testing. A finite element analysis (FEA) was also conducted to analyze the hook and the provision bracket for each of the two load configurations.

  11. Designs and Technology Requirements for Civil Heavy Lift Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Yamauchi, Gloria K.; Watts, Michael E.

    2006-01-01

    The NASA Heavy Lift Rotorcraft Systems Investigation examined in depth several rotorcraft configurations for large civil transport, designed to meet the technology goals of the NASA Vehicle Systems Program. The investigation identified the Large Civil Tiltrotor as the configuration with the best potential to meet the technology goals. The design presented was economically competitive, with the potential for substantial impact on the air transportation system. The keys to achieving a competitive aircraft were low drag airframe and low disk loading rotors; structural weight reduction, for both airframe and rotors; drive system weight reduction; improved engine efficiency; low maintenance design; and manufacturing cost comparable to fixed-wing aircraft. Risk reduction plans were developed to provide the strategic direction to support a heavy-lift rotorcraft development. The following high risk areas were identified for heavy lift rotorcraft: high torque, light weight drive system; high performance, structurally efficient rotor/wing system; low noise aircraft; and super-integrated vehicle management system.

  12. Mist lift analysis summary report

    SciTech Connect

    Davenport, R.L.

    1980-09-01

    The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

  13. Calculation of the distributed loads on the blades of individual multiblade propellers in axial flow using linear and nonlinear lifting surface theories

    NASA Technical Reports Server (NTRS)

    Pesetskaya, N. N.; Timofeev, I. YA.; Shipilov, S. D.

    1988-01-01

    In recent years much attention has been given to the development of methods and programs for the calculation of the aerodynamic characteristics of multiblade, saber-shaped air propellers. Most existing methods are based on the theory of lifting lines. Elsewhere, the theory of a lifting surface is used to calculate screw and lifting propellers. In this work, methods of discrete eddies are described for the calculation of the aerodynamic characteristics of propellers using the linear and nonlinear theories of lifting surfaces.

  14. 123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Experimental research on dust lifting by propagating shock wave

    NASA Astrophysics Data System (ADS)

    Żydak, P.; Oleszczak, P.; Klemens, R.

    2017-03-01

    The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.

  16. Serrated-Planform Lifting-Surfaces

    NASA Technical Reports Server (NTRS)

    McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

    1999-01-01

    A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

  17. Optimum design for LRE centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhu, Zuchao; Zhang, Guoqian; Sun, Jiren

    1995-05-01

    We set up a mathematical model to predict low specific speed liquid rocket engine (LRE) centrifugal pump unit performance. Using the model in question, performance predictions were carried out for 10 types of LRE centrifugal pumps. Relative errors between experimental values and predicted values associated with efficiency and lift were all within 4%. Using the model in question, design optimization with efficiency as the target function was carried out on AM-7H and O pumps as well as AM-1R pumps and AM-50 pumps. Results clearly show that, with a presupposition of surety systems possessing high vapor corrosion characteristics, the efficiencies of these four types of pumps can be respectively raised 6.5%, 5.22%, 5.2%, and 4.41%.

  18. Lift-Off Instability During the Impact of a Drop on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Rubinstein, Shmuel; Kolinski, John; Mahadevan, L.

    2014-11-01

    We directly measure the rapid spreading dynamics succeeding the impact of a droplet of fluid on a solid, dry surface. Upon impact, the air separating the liquid from the solid surface fails to drain and wetting is delayed as the liquid rapidly spreads outwards over a nanometer thin film of air. We show that the approach of the spreading liquid front toward the surface is unstable and the spreading front lifts off away from the surface. Lift-off ensues well before the liquid contacts the surface, in contrast with prevailing paradigm where lift-off of the liquid is contingent on solid-liquid contact and the formation of a viscous boundary layer. Here I will discuss the dynamics of liquid spreading over a thin film of air and its lift-off away from the surface over a large range of fluid viscosities.

  19. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  20. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  1. Endoscopic brow lifts uber alles.

    PubMed

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  2. Unsteady Lift Generation for MAVs

    DTIC Science & Technology

    2010-10-22

    canonical pitch - up , pitch -down wing maneuver, in 39th AIAA Fluid Dynamics Conference, AIAA 2009-3687, San Antonio, TX, 22-25 June 2009. [7] C. P. Ellington...unsteady lift generation on three-dimensional flapping wings in the MAV flight regime and, if a leading edge vortex develops at MAV-like Reynolds numbers... wing rotates in a propeller-like motion through a wing stroke angle up to 90 degrees. Unsteady lift and drag force data was acquired throughout the

  3. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  4. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  5. A program for calculating turbofan-driven lift-fan propulsion system performance

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Fuhs, A. E.; Paterson, J. A.

    1976-01-01

    The performance of a turbofan-powered lift fan propulsion system for vertical takeoff and landing (VTOL) aircraft is calculated. The program formulation consists of taking bleed air from a turbofan engine, heating the bleed air in an interburner, and passing it through a tip turbine to drive a lift fan. Two options are available: bleed air from the engine exhaust, or bleed air that has passed through the engine fan only. This computer program will benefit persons unfamiliar with the thermodynamics of engine cycle analysis.

  6. Variable displacement vane pump

    SciTech Connect

    Tschantz, J.S.; Bisson, B.J.

    1997-12-31

    What has been developed under this program is a pumping system which can vary the amount of fuel delivered according to engine needs, thereby reducing the temperature rise of the fuel to very low levels. This permits the elimination of the air/oil coolers and conserves the vital airflow through the fan. The variable displacement vane pump (VDVP) also permits a substantial simplification of the control system with the elimination of complex metering valves, offering a significant reduction in fuel system cost. This program was initiated to develop a technology that embodied the ruggedness of the gear pump with the efficiency and metering versatility of the variable displacement vane pump. Thick metal vanes emulate the teeth on pumping gears while the simple, elegant swing cam feature provides the variable displacement capability without the unwieldy multiple cam segments found in other concepts. The result is a pumping architecture which is rugged, light in weight and extremely versatile, having demonstrated superb heat management and controllability in extensive bench and engine testing. This paper will report the results that the pumps have achieved to date both in terms of durability and efficiency.

  7. Solar heat pump simulator

    NASA Astrophysics Data System (ADS)

    Catan, M. A.

    A simulator was utilized to provide controlled-temperature sources and sinks to an experimental water-to-water laboratory heat pump test bed. This combination was used to demonstrate and explore the potential of the vapor-compression cycle to deliver high COP's at SAHP source temperatures. Results from the simulator were used in computer simulations of complete systems performed by BNL, by the SAHP contractors, and by others. A two-speed compressor was first tested at high source temperatures on the BNL simulator. In view of the decision by both contractors to construct water-to-air (rather than water-to-water) heat pumps, the BNL simulator was fitted with an air-side test loop. The prototype heat pump was tested under steady-state conditions on the BNL simulator.

  8. Optimum lifting system for horizontal wells and reentries

    SciTech Connect

    Goite, J.; Joubert, G.

    1995-12-31

    This paper presents theoretical result predicted from a mathematical model derived from field data and results of modifications implemented to the completion of well CI-87, based upon the evaluation and diagnosis of the lifting system. In 1991, a detailed study of pressure-production data on horizontal well CI-87 was performed, indicating a productivity index of 0.044 m{sup 3}/kPa (1.9 stb/psi) and production rates over 159 m{sup 3}/d (1,000 stb/d). The initial production rate from this well was found to be in the range of 47.7 to 71.5 m{sup 3}/d (300 to 450 stb/d). This performance, far from the original estimate, made it necessary to revise the lifting system and surface equipment. The production optimization study of well CI-87 was done applying the nodal analysis technique to well`s production arrangements, using a computer program developed by our petroleum investigation institute (INTEVEP). This program allowed sensibility analysis on relevant production parameters such as: pump speed, injection rate of diluent, and the gas-liquid ratio produced through the pump. The model was used to design an optimum plan comprising well completion and pumping in order to assure maximum production. The main conclusion of the study was that the pump efficiency was low because of the high volume of free gas handled by the downhole pump. A new completion design that allows venting of free gas through the annulus increases the production rate up to an average of 1000 stb/d.

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4: System planning studies

    NASA Astrophysics Data System (ADS)

    1981-04-01

    Preliminary design and planning studies of water compensated compressed air energy storage (CAES) and underground pumped hydroelectric (UPH) power plants are presented. The costs of the CAES and UPH plant designs, and the results of economic evaluations performed for the PEPCO system are presented. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  10. Gas Interference in Sucker Rod Pump

    NASA Astrophysics Data System (ADS)

    Samad, Abdus

    2010-10-01

    Commonly used artificial lift or dewatering system is sucker rod pump and gas interference of the pump is the biggest issue in the oil and gas industry. Gas lock or fluid pound problems occur due to the gas interference when the pump has partially or completely unfilled plunger barrel. There are several techniques available in the form of patents to solve these problems but those techniques have positive as well as negative aspects. Some of the designs rely on the leakage and some of the designs rely on the mechanical arrangements etc to break the gas lock. The present article compares the existing gas interference handling techniques.

  11. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  12. Study for Air Vehicles at High Speeds, Identifying the Potential Benefits to Transport Aircraft of a Continuously Variable Geometry Trailing-Edge Structure that can be Utilized for Aircraft Control, Trim, Load-Alleviation, and High Lift

    DTIC Science & Technology

    2011-08-01

    1.58 for deltas , Ref.16. The GR is a function of CLmax, wing loading (W/S), rolling friction (µ), Thrust (T) and Lift Induced Drag factor (k). VSTALL...5.2.10 L/D – CL, M 0.75, AR 6 WING + TAILPLANE, Effect of Flap Angle (Plain Flap ) CDi Wing CDi Tail CDo PITCH TRIMMED CASES δTE CL...Geometry and Modelling 6.2. High Speed (M 0.75) Performance, Clean Wing , Plain Flaps and Variable TE 6.3. Low Speed (M 0.20) Performance 6.4. Stability

  13. Prosthetic Hand Lifts Heavy Loads

    NASA Technical Reports Server (NTRS)

    Carden, James R.; Norton, William; Belcher, Jewell G.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand designed to enable amputee to lift diverse heavy objects like rocks and logs. Has simple serrated end effector with no moving parts. Prosthesis held on forearm by system of flexible straps. Features include ruggedness, simplicity, and relatively low cost.

  14. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  15. How to Use Nasal Pump Sprays

    MedlinePlus

    Using Nasal Pump SpraysBlow your nose gently before using the spray. Prime the pump bottle by spraying it into the air a ... Breathe in quickly while squeezing down on the pump bottle one time. Repeat in other nostril. Do ...

  16. 46 CFR 64.43 - Lifting fittings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Lifting fittings. 64.43 Section 64.43 Shipping COAST... HANDLING SYSTEMS Standards for an MPT § 64.43 Lifting fittings. Each MPT must have attached lifting fittings so that the tank remains horizontal and stable while being moved....

  17. Vertical Lift - Not Just For Terrestrial Flight

    NASA Technical Reports Server (NTRS)

    Young, Larry A

    2000-01-01

    Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.

  18. Protect Your Back: Guidelines for Safer Lifting.

    ERIC Educational Resources Information Center

    Cantu, Carolyn O.

    2002-01-01

    Examines back injury in teachers and child care providers; includes statistics, common causes of back pain (improper alignment, improper posture, improper lifting, and carrying), and types of back pain (acute and chronic). Focuses on preventing back injury, body mechanics for lifting and carrying, and proper lifting and carrying of children. (SD)

  19. Project LIFT: Year Three Student Outcomes Memo

    ERIC Educational Resources Information Center

    Norton, Michael; Kim, Dae Y.; Long, Daniel A.

    2016-01-01

    Research for Action (RFA) was commissioned to evaluate changes in student outcomes during the first three years of the Project Leadership and Investment for Transformation (LIFT). This report focuses on two questions: (1) how do LIFT students' behavioral and academic performance compare to those of a matched set of non-LIFT comparison students?;…

  20. An Alternative Maxillary Sinus Lift Technique – Sinu Lift System

    PubMed Central

    T, Parthasaradhi; B, Shivakumar; Kumar, T.S.S.; P, Suganya

    2015-01-01

    Objectives: Maxillary sinus augmentation surgical techniques have evolved greatly allowing successful placement of dental implants in the atrophic posterior maxillary region. The purpose of the present study is to evaluate the clinical and radiological outcomes and postoperative morbidity of sinus floor elevation procedures performed using the minimally invasive surgical technique the Sinu lift system. Materials and Methods: Sinus lift procedure was done using the sinu lift system by a transcrestal approach and bone augmentation was done on ten systemically healthy patients using β- tricalcium phosphate and platelet rich plasma mix. The study was evaluated upto six months period with bone related parameters being assessed at base line using CT scan, OPG and after six months the results were analysed using SPSS Version 18.0 software (p < 0.01 (0.005). Wilcoxson signed rank sum test was used to correlate between preoperative and postoperative measurements. Implant placements were done at the desired area of sinus augmentation with a two year follow up. (Nobel Biocare, Nobel Biocare Holding AG, Zürich-Flughafen, Switzerland) Results: The augmented sites had a significant increase in the bone parameters at the desired grafted region. The mean gain in bone height as observed in CT Scan had revealed increased measurements from 5.80mm±0.98 to 10.20mm±1.68 at the sixth month evaluation. This was statistically significant (0.005). Clinically, no complications were observed during or after the surgical procedure. Conclusion: Within the limitations of this study, the Sinu lift system with a controlled working action resulted in high procedural success and this procedure may be an alternative to the currently used surgical methods. PMID:25954702

  1. Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W. (Inventor); Howard, Floyd G. (Inventor); Bushnell, Dennis M. (Inventor); Holmes, Bruce J. (Inventor)

    1992-01-01

    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.

  2. Use of Heavy Lift Ship as a Maintenance and Repair Vessel

    DTIC Science & Technology

    2007-04-01

    of storage for MAR equipment and supplies • Provision of all required over the side services o Electrical power o High/low pressure air o Distilled...for Navy ships [15]. Training for this program includes the following capabilities: • Air compressor repair • Air conditioning and refrigeration...and an air conditioner [9]. Each unit can be supplied either by excess power from the heavy lift ship or by additional 30 kW generators. An internal

  3. All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging.

    PubMed

    Slipchenko, Mikhail N; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2013-01-14

    An all-diode-pumped, multistage Nd:YAG amplifier is investigated as a means of extending the duration of high-power, burst-mode laser pulse sequences to an unprecedented 30 ms or more. The laser generates 120 mJ per pulse at 1064.3 nm with a repetition rate of 10 kHz, which is sufficient for a wide range of planar laser diagnostics based on fluorescence, Raman scattering, and Rayleigh scattering, among others. The utility of the technique is evaluated for image sequences of formaldehyde fluorescence in a lifted methane-air diffusion flame. The advantages and limitations of diode pumping are discussed, along with long-pulse diode-bar performance characteristics to guide future designs.

  4. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  5. Pump and Signal Taper for Airclad Fibers

    DTIC Science & Technology

    2006-01-05

    as follows: Crystal Fibre A/S will develop a taper/coupler solution to interface between a new polarization maintaining/polarizing amplifier fiber ...MM) pump combiner with a high NA air-clad output. The input side of the combiner is 7 individual MM pump delivery solid all- glass fibers . The NA of...pump combiner. MOTIVATION FINAL REPORT ITEM 0002 In a typical standard fused fiber coupler a number of all- glass 0.22 NA pump

  6. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  7. Aerodynamics of Supersonic Lifting Bodies

    DTIC Science & Technology

    1981-02-01

    verso of front cover. 19 Y WOROS (Continue on rt.’,;erso side i recessary and identily by block number) Theoretical Aerodynamics Lifting Bodies Wind ...waverider solution, developed from the supersonic wedge flow solution, is then i Fused to fashion vertLcal stabilizer-likh control surfaces. Wind ...served as Project Engineers ror thE wind tunnel work. Important contributions were also made bv: Mr. iis±ung Miin; Lee, -M. Beom-Soo Kim, Mtr. Martin Weeks

  8. Lift enhancement by bats' dynamically changing wingspan

    PubMed Central

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2015-01-01

    This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882

  9. Generalised Eisenhart lift of the Toda chain

    SciTech Connect

    Cariglia, Marco; Gibbons, Gary

    2014-02-15

    The Toda chain of nearest neighbour interacting particles on a line can be described both in terms of geodesic motion on a manifold with one extra dimension, the Eisenhart lift, or in terms of geodesic motion in a symmetric space with several extra dimensions. We examine the relationship between these two realisations and discover that the symmetric space is a generalised, multi-particle Eisenhart lift of the original problem that reduces to the standard Eisenhart lift. Such generalised Eisenhart lift acts as an inverse Kaluza-Klein reduction, promoting coupling constants to momenta in higher dimension. In particular, isometries of the generalised lift metric correspond to energy preserving transformations that mix coordinates and coupling constants. A by-product of the analysis is that the lift of the Toda Lax pair can be used to construct higher rank Killing tensors for both the standard and generalised lift metrics.

  10. Allometry of hummingbird lifting performance.

    PubMed

    Altshuler, D L; Dudley, R; Heredia, S M; McGuire, J A

    2010-03-01

    Vertical lifting performance in 67 hummingbird species was studied across a 4000 m elevational gradient. We used the technique of asymptotic load-lifting to elicit maximum sustained muscle power output during loaded hovering flight. Our analysis incorporated direct measurements of maximum sustained load and simultaneous wingbeat kinematics, together with aerodynamic estimates of mass-specific mechanical power output, all within a robust phylogenetic framework for the Trochilidae. We evaluated key statistical factors relevant to estimating slopes for allometric relationships by performing analyses with and without phylogenetic information, and incorporating species-specific measurement error. We further examined allometric relationships at different elevations because this gradient represents a natural experiment for studying physical challenges to animal flight mechanics. Maximum lifting capacity (i.e. vertical force production) declined with elevation, but was either isometric or negatively allometric with respect to both body and muscle mass, depending on elevational occurrence of the corresponding taxa. Maximum relative muscle power output exhibited a negative allometry with respect to muscle mass, supporting theoretical predictions from muscle mechanics.

  11. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  12. Overview of NASA HSR high-lift program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.

    1992-01-01

    The viewgraphs and discussion of the NASA High-Speed Research (HSR) Program being conducted to develop the technologies essential for the successful U.S. development of a commercial supersonic air transport in the 2005 timeframe are provided. The HSR program is being conducted in two phases, with the first phase stressing technology to ensure environmental acceptability and the second phase stressing technology to make the vehicle economically viable (in contrast to the current Concorde design). During Phase 1 of the program, a key element of the environmental emphases is minimization of community noise through effective engine nozzle noise suppression technology and through improving the performance of high-lift systems. An overview of the current Phase 1 High-Lift Program, directed at technology for community noise reduction, is presented. The total target for takeoff engine noise reduction to meet expected regulations is believed to be about 20 EPNdB. The high-lift research is stressing the exploration of innovative high-lift concepts and advanced flight operations procedures to achieve a substantial (approximately 6 EPNdB) reduction in community noise to supplement the reductions expected from engine nozzle noise suppression concepts; primary concern is focused on the takeoff and climbout operations where very high engine power settings are used. Significant reductions in aerodynamic drag in this regime will allow substantial reductions in the required engine thrust levels and therefore reductions in the noise generated.

  13. The relationship between maximal lifting capacity and maximum acceptable lift in strength-based soldiering tasks.

    PubMed

    Savage, Robert J; Best, Stuart A; Carstairs, Greg L; Ham, Daniel J

    2012-07-01

    Psychophysical assessments, such as the maximum acceptable lift, have been used to establish worker capability and set safe load limits for manual handling tasks in occupational settings. However, in military settings, in which task demand is set and capable workers must be selected, subjective measurements are inadequate, and maximal capacity testing must be used to assess lifting capability. The aim of this study was to establish and compare the relationship between maximal lifting capacity and a self-determined tolerable lifting limit, maximum acceptable lift, across a range of military-relevant lifting tasks. Seventy male soldiers (age 23.7 ± 6.1 years) from the Australian Army performed 7 strength-based lifting tasks to determine their maximum lifting capacity and maximum acceptable lift. Comparisons were performed to identify maximum acceptable lift relative to maximum lifting capacity for each individual task. Linear regression was used to identify the relationship across all tasks when the data were pooled. Strong correlations existed between all 7 lifting tasks (rrange = 0.87-0.96, p < 0.05). No differences were found in maximum acceptable lift relative to maximum lifting capacity across all tasks (p = 0.46). When data were pooled, maximum acceptable lift was equal to 84 ± 8% of the maximum lifting capacity. This study is the first to illustrate the strong and consistent relationship between maximum lifting capacity and maximum acceptable lift for multiple single lifting tasks. The relationship developed between these indices may be used to help assess self-selected manual handling capability through occupationally relevant maximal performance tests.

  14. Pumping system

    SciTech Connect

    Kime, J.A.

    1987-05-19

    This patent describes a gas-oil production system for pumping formation fluid in a well through a tubing string within which a down hole pump connects to a hydraulic stroking device through a rod string providing the pump including a plunger reciprocally driven by the hydraulic stroking device toward an upper terminal position during a plunger upstroke. The rod string normally supports the weight of a column of fluid and toward a lower terminal position at the end of a plunger downstroke during which the weight of the column fluid is normally transferred to the tubing string through fluid within the pump. The method for detecting when the well is pumped off comprises: supplying working fluid to the hydraulic stroking device to raise the hydraulic stroking device and thereby move the plunger from the lower terminal position to the upper terminal position; and removing the working fluid at a controlled rate from the hydraulic stroking device.

  15. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  16. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  17. Preliminary design study of Underground Pumped Hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH, Appendix D: Power plant

    NASA Astrophysics Data System (ADS)

    1981-06-01

    Studies were undertaken to determine power plant arrangements for a single stage reversible pump turbine two step underground pumped hydro (UPH) installation and for a multi-stage reversible pump turbine single step (MSRPT) UPH installation. Arrangements consist of: the underground powerhouses; transformer galleries; associated mechanical and electrical equipment; the administration and control building; hoist head frames; the access; draft tube and bus tunnels; and the switchyard. Primary considerations including the number and size of pump turbine and motor generator units, starting methods, transformers, high voltage connections, geotechnical and construction aspects and safety were studied. A feasibility analysis to minimize costs was conducted. The study led to the selection of suitable equipment and layouts for the powerhouses, transformer galleries, and associated facilities. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  18. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  19. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... entering and leaving the indoor coil. If needed, use an air sampling device to divert air to a sensor(s... device may also divert air to a remotely located sensor(s) that measures dry bulb temperature. The air sampling device and the remotely located temperature sensor(s) may be used to determine the entering...

  20. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  1. Maximum isoinertial lifting capabilities for different lifting ranges and container dimensions.

    PubMed

    Lee, Tzu-Hsien

    2005-05-01

    The aim of this study was to examine the effects of lifting range and container dimension on human maximum isoinertial lifting capability in the sagittal plane. Ten young and experienced lifters were tested for their maximum isoinertial lifting capabilities for 12 different lifting conditions (three lifting ranges x four container dimensions). The results showed that lifting range and container dimension significantly affected human maximum isoinertial lifting capability. The order for the highest to lowest lifting capability for the three lifting ranges was FK (from floor to knuckle height, 0-74 cm), FS (from floor to shoulder height, 0-141 cm) and KS (from knuckle height to shoulder height, 74-141 cm) regardless of the container dimension, and for the four container dimensions was 50 x 35 x 15 cm(3), 70 x 35 x 15 cm(3), 50 x 50 x 15 cm(3) and 70 x 50 x 15 cm(3) regardless of the lifting range. The mean(SD) maximum isoinertial lifting capability ranged from 29.3(3.3) kg for the combination of KS range and 70 x 50 x 15 cm(3) container to 53.2(5.7)kg for the combination of FK range and 50 x 35 x 15 cm(3) container. The results of this study can help our knowledge of human maximum isoinertial lifting capability and designing the upper limit of lifting weight.

  2. Training for lifting; an unresolved ergonomic issue?

    PubMed

    Sedgwick, A W; Gormley, J T

    1998-10-01

    The paper describes a nine year project on lifting training which included nine trans-Australia consensus conferences attended by more than 900 health professionals. Major outcomes were: (1) The essence of lifting work is the need for the performer to cope with variability in task, environment, and self, and the essence of lifting skill is therefore adaptability; (2) the semi-squat approach provides the safest and most effective basis for lifting training; (3) for lifting training to be effective, the basic principles of skill learning must be systematically applied, with adaptability as a specific goal; (4) physical work capacity (aerobic power, strength, endurance, joint mobility) is a decisive ingredient of safe and effective lifting and, in addition to skill learning, should be incorporated in the training of people engaging regularly in heavy manual work; (5) if effective compliance with recommended skilled behaviour is to be achieved, then training must apply the principles and methods appropriate to adult learning and behaviour modification.

  3. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2009-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  4. Influence of Lift Offset on Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2008-01-01

    The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed, by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

  5. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  6. Computation of viscous transonic flow about a lifting airfoil

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Liu, C. Y.

    1976-01-01

    The viscous transonic flow about a stationary body in free air was numerically investigated. The geometry chosen was a symmetric NACA 64A010 airfoil at a freestream Mach number of 0.8, a Reynolds number of 4 million based on chord, and angles of attack of 0 and 2 degrees. These conditions were such that, at 2 degrees incidence unsteady periodic motion was calculated along the aft portion of the airfoil and in its wake. Although no unsteady measurements were made for the NACA 64A010 airfoil at these flow conditions, interpolated steady measurements of lift, drag, and surface static pressures compared favorably with corresponding computed time-averaged lift, drag, and surface static pressures.

  7. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    SciTech Connect

    Hwang, I.H. . Dept. of Physics); Lee, J.H. . Langley Research Center)

    1991-09-01

    This paper reports on the efficiencies and threshold pump intensities of various solid-state laser materials that have been estimated to compare their performance characteristics as direct solar-pumped CW lasers. Among the laser materials evaluated in this research, alexandrite has the highest slope efficiency of about 12.6%; however, it does not seem to be practical for solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AMO) solar constants and its slope efficiency is about 12% when thermal deformation is completely prevented.

  8. Advanced chemical heat pumps using liquid-vapor reactions

    NASA Astrophysics Data System (ADS)

    Kirol, L.

    Chemical heat pumps utilizing liquid-vapor reactions can be configured in forms analogous to electric drive vapor-compression heat pumps and heat activated absorption heat pumps. Basic thermodynamic considerations eliminate some heat pumps and place restrictive working fluid requirements on others, but two thermodynamically feasible systems have significant potential advantage over conventional technology. An electric drive reactive heat pump can use smaller heat exchangers and compressor than a vapor-compression machine, and have more flexible operating characteristics. A waste heat driven heat pump (temperature amplifier) using liquid-vapor chemical reactions can operate with higher coefficient of performance and smaller heat exchangers than an absorption temperature amplifying heat pump. Higher temperatures and larger temperature lifts should also be possible.

  9. Development of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  10. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  11. Aerodynamic lift effect on satellite orbits

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Cleland, J. G.; Devries, L. L.

    1975-01-01

    Numerical quadrature is employed to obtain orbit perturbation results from the general perturbation equations. Both aerodynamic lift and drag forces are included in the analysis of the satellite orbit. An exponential atmosphere with and without atmospheric rotation is used. A comparison is made of the perturbations which are caused by atmospheric rotation with those caused by satellite aerodynamic effects. Results indicate that aerodynamic lift effects on the semi-major axis and orbit inclination can be of the same order as the effects of atmosphere rotation depending upon the orientation of the lift vector. The results reveal the importance of including aerodynamic lift effects in orbit perturbation analysis.

  12. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  13. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  14. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  15. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  16. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  17. Heat pump with external combustion

    NASA Astrophysics Data System (ADS)

    Bauer, B.; Mantel, A.

    1985-12-01

    A heat pump unit, in which the pump cycle and a Clausius-Rankine vapor power unit are connected by a common condenser and a Combined Expansion-Compression Machine (CECM) with heat as propulsive energy is discussed. A CECM according to the Free Piston (FP) principle, with air as the working fluid, was developed. The FP machine was tested. A CECM according to the FP principle, with R 114 as the working fluid, was constructed. A heat pump test facility was designed and built. A test rig to show the thermal stability of refrigerants was developed.

  18. An advanced CFD model to study the effect of non-condensable gas on cavitation in positive displacement pumps

    NASA Astrophysics Data System (ADS)

    Iannetti, Aldo; Stickland, Matthew T.; Dempster, William M.

    2015-09-01

    An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The "full" cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million) was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.

  19. Cold-air investigation of a 3 1/2-stage fan-drive turbine with a stage loading factor of 4 designed for an integral lift engine. 1: Turbine design and performance of first stage

    NASA Technical Reports Server (NTRS)

    Whitney, W. J.; Schum, H. J.; Behning, F. P.

    1975-01-01

    The design of the 3 1/2-stage turbine is described, and the cold-air performance of the first stage, modified for axial inlet conditions, is presented. The performance of the modified single-stage turbine and of two comtemporary high-stage-loading-factor turbines is compared with that estimated with a reference prediction method.

  20. Lunar base heat pump, phase 1 draft

    NASA Astrophysics Data System (ADS)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-04-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387K to 377K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360K (versus 385K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were analyzed

  1. Lunar base heat pump, phase 1

    NASA Astrophysics Data System (ADS)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-07-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  2. Lunar base heat pump, phase 1

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  3. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  4. Mars to orbit with pumped hydrazine

    SciTech Connect

    Whitehead, J C

    1999-04-27

    A propulsion point design is presented for lifting geological samples from Mars. Vehicle complexity is kept low by choosing a monopropellant single stage. Little new development is needed, as miniature pump fed hydrazine has been demonstrated. Loading the propellant just prior to operation avoids structural, thermal, and safety constraints otherwise imposed by earlier mission phases. Hardware mass and engineering effort are thereby diminished. The Mars liftoff mass is 7/8 hydrazine, <5% propulsion hardware, and >3% each for the payload and guidance.

  5. Adapting the sucker rod pump to your well's requirements

    SciTech Connect

    Not Available

    1981-04-01

    Devices must be incorporated in sucker rod pumps to keep an insert pump or the standing valve of a tubing pump in their working positions, yet permit their retrieval. Pump holddowns or anchors may be either cup type or mechanical; normally they are located either at the tip or the bottom of the pump. Most common in wells of approx. 6000 ft and shallower is the 3-cup holddown utilizing cups approx. 30 to 40 thousandths of an inch larger than the I.D. of their seating nipple. The hydrostatic head on the cups does most of the work. Should it be necessary to pull the anchored pump, its holddown cups function like swab cups within the restricted I.D. of the seating nipple. The pump barrel becomes a plunger in the tubing. Until the holddown cups emerge from the seating nipple into the larger tubing I.D., the pulling unit must lift, not only the rods and pump, but also all the fluid in the tubing. In deep wells, the preference is for mechanical holddowns, which release in response to a predetermined pull so that no lifting of the fluid column is involved in unseating the pump.

  6. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  7. 33 CFR 118.85 - Lights on vertical lift bridges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the navigable channel under the span will be marked by a range of two green lights when the vertical lift...

  8. In-well air stripping/bioventing study at Tyndall Air Force Base, Florida. Final technical report, 13 September 1991-30 November 1995

    SciTech Connect

    Alleman, B.C.

    1996-01-03

    This study was conducted to determine the feasibility of incorporating in-well air stripping systems into the design of bioventing systems to effectively extend bioventing to simultaneously remediate hydrocarbon contamination in both the vadose and saturated zones. The field study was conducted for 12 months between June 1994 and June 1995. The data demonstrated that the in-well air stripping systems were able to circulate the groundwater throughout the 25-foot radius of influence. The well systems were shown to be effective at remediating the benzene, toluene, ethylbenzene, and xylenes (BTEX) of the hydrocarbon contamination in the groundwater within the treatment cell. Conclusions made included: (1) the air lift pumping mechanism was capable of circulating groundwater in the aquifer; (2) the volatile compounds were effectively stripped from the groundwater; (3) anoxic groundwater entering the well was sufficiently oxygenated during air lift; (4) the residual oxygen in the off-gas from the in-well air stripping system was sufficient for supporting bioventing in the vadose zone; (5) volatile compounds in the off-gas from the well system were degraded in the vadose zone through bioventing when the mass loading did not exceed the degradative capacity of the microorganisms; and (6) bioventing was very effective for remediating residual hydrocarbon contamination in the vadose zone.

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 11: Plant design. UPH

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The plant design for an underground pumped hydroelectric (UPH) storage facility having maximum generating capacity of 2000 MW and energy storage capacity of 20,000 MWh at a nominal heat of 5000 ft. is presented. The UPH facility is a two step configuration with single-stage reversible pump-turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. The surface facilities and upper reservoir, shafts and hoists, penstocks and hydraulic tunnels, powerhouses, and intermediate and lower reservoirs are described. Details of the power plant electrical and mechanical equipment, including pump-turbine and motor-generator units, are given. The development of the site is outlined together with the construction methods and schedule. The cost estimates and a cost-risk analysis are presented. Plant operation, including unit operation, two-step operation, plant efficiency, and availability, is outlined.

  10. Mars Reconnaissance Orbiter (MRO) Lifts Off

    NASA Technical Reports Server (NTRS)

    2005-01-01

    At 7:43 a.m. EDT an Atlas V launch vehicle, 19 stories tall, with a two-ton Mars Reconnaissance Orbiter (MRO) on top, lifts off the pad on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. All systems performed nominally for NASA's first launch of an Atlas V on an interplanetary mission. MRO established radio contact with controllers 61 minutes after launch and within four minutes of separation from the upper stage. Initial contact came through an antenna at the Japan Aerospace Exploration Agency's Uchinoura Space Center in southern Japan. Mars is 72 million miles from Earth today, but the spacecraft will travel more than four times that distance on its outbound-arc trajectory to intercept the red planet on March 10, 2006. The orbiter carries six scientific instruments for examining the surface, atmosphere and subsurface of Mars in unprecedented detail from low orbit. NASA expects to get several times more data about Mars from MRO than from all previous Martian missions combined. Researchers will use the instruments to learn more about the history and distribution of Mars' water. That information will improve understanding of planetary climate change and will help guide the quest to answer whether Mars ever supported life. The orbiter will also evaluate potential landing sites for future missions.

  11. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  12. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  13. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  14. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 1 2014-10-01 2014-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  15. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  16. 49 CFR 37.203 - Lift maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Lift maintenance. 37.203 Section 37.203 Transportation Office of the Secretary of Transportation TRANSPORTATION SERVICES FOR INDIVIDUALS WITH DISABILITIES (ADA) Over-the-Road Buses (OTRBs) § 37.203 Lift maintenance. (a) The entity shall establish...

  17. Training Guidelines: Fork Lift Truck Driving.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    This manual of operative training guidelines for fork lift truck driving has been developed by the Ceramics, Glass and Mineral Products Industry Training Board (Great Britain) in consultation with a number of firms which manufacture fork lift trucks or which already have training--programs for their use. The purpose of the guidelines is to assist…

  18. Lip Lifting: Unveiling Dental Beauty.

    PubMed

    Stanley, Kyle; Caligiuri, Matthew; Schlichting, Luís Henrique; Bazos, Panaghiotis K; Magne, Michel

    2017-01-01

    The focus for the achievement of complete success in the esthetic zone has traditionally been on addressing deficiencies of intraoral hard and soft tissue. Often, these deficiencies are accompanied by esthetic concerns regarding the lips that are routinely neglected by the dental team. A predictable plastic surgery technique - the lip lift - has been used for decades to enhance lip esthetics by shortening the senile upper lip to achieve a more youthful appearance. Over the years, this technique has been refined and used in many different ways, allowing its routine incorporation into full facial esthetic planning. Through restoration of the upper lip to its optimal position, the artistry of the dentist and dental technician can truly be appreciated in the rejuvenated smile. By the introduction of this minimally invasive surgical technique to the dental community, patients stand to benefit from a comprehensive orofacial approach to anterior dental esthetic planning.

  19. Heavy-lift airship dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, M. B.; Ringland, R. F.; Jex, H. R.

    1983-01-01

    The basic aerodynamic and dynamic properties of an example heavy-lift airship (HLA) configuration are analyzed using a nonlinear, multibody, 6-degrees-of-freedom digital simulation. The slung-payload model is described, and a preliminary analysis of the coupled vehicle-payload dynamics is presented. Trim calculations show the importance of control mixing selection and suggest performance deficiencies in crosswind stationkeeping for the unloaded example HLA. Numerically linearized dynamics of the unloaded vehicle exhibit a divergent yaw mode and an oscillatory pitch mode whose stability characteristic is sensitive to flight speed. An analysis of the vehicle-payload dynamics shows significant coupling of the payload dynamics with those of the basic HLA. It is shown that significant improvement in the vehicle's dynamic behavior can be achieved with the incorporation of a simple flight controller having proportional, rate, and integral-error feedbacks.

  20. Lift-off instability during the impact of a drop on a solid surface.

    PubMed

    Kolinski, John M; Mahadevan, L; Rubinstein, Shmuel M

    2014-04-04

    We directly measure the rapid spreading dynamics succeeding the impact of a droplet of fluid on a solid, dry surface. Upon impact, the air separating the liquid from the solid surface fails to drain and wetting is delayed as the liquid rapidly spreads outwards over a nanometer thin film of air. We show that the approach of the spreading liquid front toward the surface is unstable and the spreading front lifts off away from the surface. Lift-off ensues well before the liquid contacts the surface, in contrast with prevailing paradigm where lift-off of the liquid is contingent on solid-liquid contact and the formation of a viscous boundary layer. Here we investigate the dynamics of liquid spreading over a thin film of air and its lift-off away from the surface over a large range of fluid viscosities and find that the lift-off instability is dependent on viscosity and occurs at a time that scales with the viscosity to the power of one half.

  1. Lift-Off Instability During the Impact of a Drop on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Kolinski, John M.; Mahadevan, L.; Rubinstein, Shmuel M.

    2014-04-01

    We directly measure the rapid spreading dynamics succeeding the impact of a droplet of fluid on a solid, dry surface. Upon impact, the air separating the liquid from the solid surface fails to drain and wetting is delayed as the liquid rapidly spreads outwards over a nanometer thin film of air. We show that the approach of the spreading liquid front toward the surface is unstable and the spreading front lifts off away from the surface. Lift-off ensues well before the liquid contacts the surface, in contrast with prevailing paradigm where lift-off of the liquid is contingent on solid-liquid contact and the formation of a viscous boundary layer. Here we investigate the dynamics of liquid spreading over a thin film of air and its lift-off away from the surface over a large range of fluid viscosities and find that the lift-off instability is dependent on viscosity and occurs at a time that scales with the viscosity to the power of one half.

  2. Representing pump-capacity relations in groundwater simulation models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW.

  3. Representing pump-capacity relations in groundwater simulati on models

    USGS Publications Warehouse

    Konikow, L.F.

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW. ?? 2009 National Ground Water Association.

  4. Representing pump-capacity relations in groundwater simulation models.

    PubMed

    Konikow, L F

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW.

  5. View of West end of central lift span truss web ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of West end of central lift span truss web of Tensaw River Bridge, showing web brace of lift girder superstructure, looking west - Tensaw River Lift Bridge, Spanning Tensaw River at U.S. Highway 90, Mobile, Mobile County, AL

  6. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  7. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  8. NOAA-L satellite is lifted for mating

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Inside the B16-10 spacecraft processing hangar at Vandenberg Air Force Base, Calif., workers oversee the lifting and rotating of the National Oceanic and Atmospheric Administration (NOAA-L) satellite to allow for mating of the Apogee Kick Motor (AKM). NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. Delta XTE Lift and Mate at Complex 17A

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This NASA Kennedy Space Center (KSC) video release presents footage of the lift and mate of NASA's X-ray Timing Explorer (XTE) to a McDonnell Douglas Delta II rocket at Launch Complex 17A, Cape Canaveral Air Station. The video includes shots of the workcrews as well as wide angle views of the spacecraft in its launching position. The XTE was launched into a circular orbit with an altitude of 600 km and an inclination of 23 degrees on Dec. 30, 1995.

  9. Rear semicircular section of the highlift pumping station basement with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rear semi-circular section of the high-lift pumping station basement with remnants of the piping systems and suction wells at rear wall. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  10. An experimental study of the lift, drag and static longitudinal stability for a three lifting surface configuration

    NASA Technical Reports Server (NTRS)

    Ostowari, C.; Naik, D.

    1986-01-01

    The experimental procedure and aerodynamic force and moment measurements for wind tunnel testing of the three lifting surface configuration (TLC) are described. The influence of nonelliptical lift distributions on lift, drag, and static longitudinal stability are examined; graphs of the lift coefficient versus angle of attack, the pitching moment coefficient, drag coefficient, and lift to drag ratio versus lift coefficient are provided. The TLC data are compared with the conventional tail-aft configuration and the canard-wing configuration; it is concluded that the TLC has better lift and high-lift drag characteristics, lift to drag ratio, and zero-lift moments than the other two configurations. The effects of variations in forward and tail wind incidence angles, gap, stagger, and forward wind span on the drag, lift, longitudinal stability, and zero-lift moments of the configuration are studied.

  11. A Child with Signs of Developmental Apraxia of Speech with Whom a Palatal Lift Prosthesis Was Used to Manage Palatal Dysfunction.

    ERIC Educational Resources Information Center

    Hall, Penelope K.; And Others

    1990-01-01

    A 7-year-old girl who exhibited characteristics consistent with developmental apraxia of speech, including excessive nasal resonance and nasal emission of air resulting from velopharyngeal port dysfunction, was fitted with a palatal lift prosthesis and followed for 11 years. Results of use of the lift and speech/language remedial programing are…

  12. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  13. A computer controlled pulsatile pump: preliminary study.

    PubMed

    Zwarts, M S; Topaz, S R; Jones, D N; Kolff, W J

    1996-12-01

    A Stepper Motor Driven Reciprocating Pump (SDRP) can replace roller pumps and rotary pumps for cardio pulmonary bypass, hemodialysis and regional perfusion. The blood pumping ventricles are basically the same as ventricles used for air driven artificial hearts and ventricular assist devices. The electric stepper motor uses a flexible linkage belt to produce a reciprocating movement, which pushes a hard sphere into the diaphragm of the blood ventricles. The SDRP generates pulsatile flow and has a small priming volume. The preset power level of the motor driver limits the maximum potential outflow pressure, so the driver acts as a safety device. A double pump can be made by connecting two fluid pumping chambers to opposing sides of the motor base. Each pump generates pulsatile flow. Pressure and flow studies with water were undertaken. Preliminary blood studies showed low hemolysis, even when circulating a small amount of blood up to 16 hours.

  14. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  15. Modeling lift operations with SASmacr Simulation Studio

    NASA Astrophysics Data System (ADS)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  16. High Lift Common Research Model for Wind Tunnel Testing: An Active Flow Control Perspective

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Melton, Latunia P.; Viken, Sally A.; Andino, Marlyn Y.; Koklu, Mehti; Hannon, Judith A.; Vatsa, Veer N.

    2017-01-01

    This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.

  17. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  18. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  19. Solar-heat-pump simulator

    NASA Astrophysics Data System (ADS)

    Catan, M. A.

    A solar assisted heat pump (SAHP) hardware simulator was constructed to demonstrate the potential of the vapor compression heat pump to obtain high COP's at high source temperatures, to explore the means to obtain such high efficiencies, and to test prototype hardware resulting from the SAHF development program. The original water coolant system which simulated heating loads was upgraded to accommodate liquid to air heat pumps. A further refinement to the simulator was the addition of a on-line data acquisition and reduction facility. Testing of an experimental mockup heat pump designed to operate efficiently under SAHP system conditions demonstrated that very high COP's can be achieved with conventional components. One prototype marketable SAHP constructed by Northrop has been tested under steady state conditions using the simulator.

  1. Secondary lift for magnetically levitated vehicles

    DOEpatents

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  2. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  3. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  4. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 2: Project design criteria: UPH

    NASA Astrophysics Data System (ADS)

    1981-05-01

    The design criteria for an underground pumped hydroelectric (JPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh at a nominal head of 5000 ft are documented. The UPH facility is a two step configuration with single stage reversible pump turbines, each step consisting of a 1000 MW plant at a nominal head of 2500 ft. Overall design criteria including operating requirements, civil/structural criteria, geotechnical criteria, mechanical criteria and electrical criteria are detailed. Specific requirements are given for the upper reservoir, intake/outlet structure, penstock and draft tubes, powerhouses, transformer galleries, intermediate reservoir, lower reservoir, shafts and hoists, switchyard and surface buildings. The requirements for the power plant electrical and mechanical equipment, including pump turbine and motor generator units, are referred to. Electrical design criteria are given to meet the requirements of two power houses located underground at different depths, but these criteria may not necessarily reflect PEPCO's current engineering practice. The criteria refer to a specific site and take into account the site investigation results. The design criteria given were used as the basis for the plant design.

  5. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.

  6. 4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Unit 4 Turbine Pit Oil Jacking Pump and Wicket Gate Linkages, view to the north. The jacking pump, located along the wall on the left side of photograph, is used for pumping oil to lift the thrust bearing prior to starting the unit. Note the wicket gate linkages attached to the operating ring and visible in the lower center of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  7. Application of electrical submersible pumps in heavy crude oil in Boscan Field

    SciTech Connect

    Bortolin, L.L.

    1995-12-31

    During recent years optimization of artificial lift methods has been applied in the oil industry, in order to evaluate the effect on oil well production and to establish a company`s optimal investment policies. Higher costs on new artificial lifting equipment and facilities for new fields have created the necessity to review the latest available technology of different lifting methods and specially that related to electrical submersible pumps (ESP). Few studies in the area of heavy crude oil production optimization using ESP as a lifting method have been published. This paper discusses the results of an ESP pilot project performed in 24 wells in Boscan field, and analyzes the performance of the equipment and its application range. The ESP equipment was installed in completions at depths ranging from 7000 to 9000 feet, with a 10{degrees}API gravity crude and bottomhole temperature of 180{degrees}F. It was concluded that despite a reduction of the pump`s efficiency, the ESP equipment does qualify as a good alternative lifting method for heavy oil production. It is also possible to obtain higher production rates. The results obtained in this pilot project, confirm that submersible pumps are an alternative method for lifting heavy crude oil from relatively deep reservoirs.

  8. Experimental determination of baseball spin and lift.

    PubMed

    Alaways, L W; Hubbard, M

    2001-05-01

    The aim of this study was to develop a new method for the determination of lift on spinning baseballs. Inertial trajectories of (a) ball surface markers during the first metre of flight and (b) the centre of mass trajectory near home-plate were measured in a pitch using high-speed video. A theoretical model was developed, incorporating aerodynamic Magnus-Robins lift, drag and cross forces, which predicts the centre of mass and marker trajectories. Parameters including initial conditions and aerodynamic coefficients were estimated iteratively by minimizing the error between predicted and measured trajectories. We compare the resulting lift coefficients and spin parameter values with those of previous studies. Lift on four-seam pitches can be as much as three times that of two-seam pitches, although this disparity is reduced for spin parameters greater than 0.4.

  9. Heavy Lift & Propulsion Technology (HL&PT)

    NASA Video Gallery

    Cris Guidi delivers a presentation from the Heavy Lift & Propulsion Technology (HL&PT) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of ...

  10. Performances of four magnetic heat-pump cycles

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Murphy, R. W.; Mei, V. C.; Chen, G. L.

    Magnetic heat pumps (MHP) have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42 percent loss in coefficient of performance at 260 K cooling temperature, and a 15 percent loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed.

  11. Integrated lift/drag controller for aircraft

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)

    1974-01-01

    A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.

  12. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  13. Liftings and stresses for planar periodic frameworks.

    PubMed

    Borcea, Ciprian; Streinu, Ileana

    2015-06-01

    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.

  14. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  15. Heat pump

    SciTech Connect

    Apte, A.J.

    1982-11-30

    A single working fluid heat pump system having a turbocompressor with a first fluid input for the turbine and a second fluid input for the compressor, and a single output volute or mixing chamber for combining the working fluid output flows of the turbine and the compressor. The system provides for higher efficiency than single fluid systems whose turbine and compressor are provided with separate output volutes.

  16. The effect of asymmetry on psychophysical lifting capacity for three lifting types.

    PubMed

    Han, B; Stobbe, T J; Hobbs, G R

    2005-03-15

    The effect of asymmetry on a person's lifting capacity was investigated using the psychophysical approach. Ten male college students lifted a box from pallet height (15 cm) to conveyor height (75 cm) at a frequency of one and five lifts/min. Three types of asymmetric lifting tasks (step-turn, middle twist and twist) were studied using 90 and 180 degrees task angles. Lifting capacity reductions for middle twist and twist at a 90 degrees asymmetric angle were about one-half of the 30% reduction that would be calculated by the 1991 National Institute for Occupational Safety & Health (NIOSH) lifting equation. The lifting capacity reduction for step-turn at 180 degrees was 14.9%, although that reduction cannot be calculated in the NIOSH equation. The middle twist lifting capacity was greatest among the three types at a 90 degrees task angle. The reductions for the middle twist and step-turn were not proportional to the task angle. This is contrary to the proportional reduction in the NIOSH lifting equation. Heart rate did not increase with an increase in task angle. Based on the results of this research, a different approach to assigning the asymmetric multiplier is proposed. This approach includes a task angle (as opposed to asymmetric angle) of up to 180 degrees.

  17. Novice Lifters Exhibit A More Kyphotic Lifting Posture Than Experienced Lifters In Straight-Leg Lifting

    PubMed Central

    Riley, A.E.; Craig, T.D.; Sharma, N.K.; Billinger, S.A.; Wilson, S.E.

    2015-01-01

    As torso flexion and repetitive lifting are known risk factors for low back pain and injury, it is important to investigate lifting techniques that might reduce injury during repetitive lifting. By normalizing lumbar posture to a subject’s range of motion (ROM), as a function of torso flexion, this research examined when subjects approached their range of motion limits during dynamic lifting tasks. For this study, it was hypothesized that experienced lifters would maintain a more neutral lumbar angle relative to their range of motion, while novice lifters would approach the limits of their lumbar ROM during the extension phase of a straight-leg lift. The results show a statistically significant difference in lifting patterns for these two groups supporting this hypothesis. The novice group maintained a much more kyphotic lumbar angle for both the flexion (74% of the lumbar angle ROM) and extension phases (86% of the lumbar angle ROM) of the lifting cycle, while the experienced group retained a more neutral curvature throughout the entire lifting cycle (37% of lumbar angle ROM in flexion and 48% of lumbar angle ROM in extension). By approaching the limits of their range of motion, the novice lifters could be at greater risk of injury by placing greater loads on the supporting soft tissues of the spine. Future research should examine whether training subjects to assume more neutral postures during lifting could indeed lower injury risks. PMID:26077846

  18. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  19. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  20. Industrial heat pumps; Where and when

    SciTech Connect

    Ranade, S.M. ); Chao, Y.T. )

    1990-10-01

    Components such as compressors, heat exchangers, expansion valves, etc., that constitute typical heat pump systems have been around for a long time. The reverse Rankine cycle, which forms the thermodynamic basis of industrial heat pumps, has been used extensively in commercial and residential refrigeration and air conditioning systems. Today, despite this familiarity and experience with its components, the industrial heat pump itself remains an enigma. This is probably due to either lack of information or misinformation regarding its industrial applications. The primary objectives of this article are to present an overview of types of industrial heat pumps and to provide general guidelines on their appropriate placement.

  1. Factor analysis of H2S emission at a wastewater lift station: a case study.

    PubMed

    Chen, Dong; Szostak, Paul

    2013-04-01

    Odor and corrosion are common problems in domestic wastewater collection, transportation, pumping, and treatment processes. Based on the comparison among odorous compounds and onsite observations at a wastewater lift station, H2S is more likely to have caused the odor and corrosion problems than methanethiol and other organic sulfides. The field data from both air and wastewater quality monitoring demonstrated that more H2S (1 ppmv) was formed at a more negative redox potential, lower pH, and a higher temperature of wastewater. Since the lower detection level of most current analytical techniques is much greater than human's smell and the reference concentration for adverse health effects, automatic monitoring on the threshold of H2S formation provides a mechanism to trigger control techniques only when necessary for cost saving purposes. Based on Gibbs free energy, a more negative redox potential is required to form H2S with an increase in pH and a decrease in temperature and SO 4(2-) concentration. However, pH effect is more significant than both temperature and SO 4(2-) concentration for H2S formation. It is recommended that H2S control techniques be started when the redox potential is below -44 mV, the pH is lower than 5.6, and the temperature is higher than 11.5 °C to control H2S below the reference concentration. Corroded concrete particles were examined by X-ray diffraction, which showed that the dominant crystal form was quartz.

  2. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (b) Special preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.812 Section 178.812... Testing of IBCs § 178.812 Top lift test. (a) General. The top lift test must be conducted for...

  3. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Large Packagings, from the side. (b) Special preparation for the top lift test. (1) Metal and rigid... 49 Transportation 2 2010-10-01 2010-10-01 false Top lift test. 178.975 Section 178.975... Testing of Large Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted...

  4. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all IBC design types designed to be lifted from the top or, for flexible IBCs, from the side. (b)...

  5. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Top lift test. 178.975 Section 178.975... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of all of Large Packagings design types to be lifted from the top or, for flexible Large Packagings,...

  6. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preparation for the top lift test. (1) Metal, rigid plastic, and composite IBC design types must be loaded to... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.812 Section 178.812... Top lift test. (a) General. The top lift test must be conducted for the qualification of all...

  7. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2011-10-01 2011-10-01 false Bottom lift test. 178.811 Section...

  8. 49 CFR 178.975 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Packagings § 178.975 Top lift test. (a) General. The top lift test must be conducted for the qualification of... distributed. (c) Test method. (1) A Large Packaging must be lifted in the manner for which it is designed... 49 Transportation 3 2013-10-01 2013-10-01 false Top lift test. 178.975 Section...

  9. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... evenly distributed. (c) Test method. All IBC design types must be raised and lowered twice by a lift... 49 Transportation 2 2010-10-01 2010-10-01 false Bottom lift test. 178.811 Section 178.811... Testing of IBCs § 178.811 Bottom lift test. (a) General. The bottom lift test must be conducted for...

  10. 49 CFR 178.811 - Bottom lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Bottom lift test. (a) General. The bottom lift test must be conducted for the qualification of all IBC.... (c) Test method. All IBC design types must be raised and lowered twice by a lift truck with the forks... 49 Transportation 3 2013-10-01 2013-10-01 false Bottom lift test. 178.811 Section...

  11. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van…

  12. Research on the Lift-off Effect of Receiving Longitudinal Mode Guided Waves in Pipes Based on the Villari Effect

    PubMed Central

    Xu, Jiang; Sun, Yong; Zhou, Jinhai

    2016-01-01

    The magnetostrictive guided wave technology as a non-contact measurement can generate and receive guided waves with a large lift-off distance up to tens of millimeters. However, the lift-off distance of the receiving coil would affect the coupling efficiency from the elastic energy to the electromagnetic energy. In the existing magnetomechanical models, the change of the magnetic field in the air gap was ignored since the permeability of the rod is much greater than that of air. The lift-off distance of the receiving coil will not affect the receiving signals based on these models. However, the experimental phenomenon is in contradiction with these models. To solve the contradiction, the lift-off effect of receiving the longitudinal mode guided waves in pipes is investigated based on the Villari effect. A finite element model of receiving longitudinal guided waves in pipes is obtained based on the Villari effect, which takes into account the magnetic field in the pipe wall and the air zone at the same time. The relation between the amplitude of the induced signals and the radius (lift-off distance) of the receiving coil is obtained, which is verified by experiment. The coupling efficiency of the receiver is a monotonic decline with the lift-off distance increasing. The decay rate of the low frequency wave is slower than the high frequency wave. Additionally, the results show that the rate of change of the magnetic flux in the air zone and in the pipe wall is the same order of magnitude, but opposite. However, the experimental results show that the error of the model in the large lift-off distance is obvious due to the diffusion of the magnetic field in the air, especially for the high frequency guided waves. PMID:27657068

  13. Wind powered direct drive water pumping systems

    SciTech Connect

    Sadhu, D.

    1983-12-01

    Wind turbine of comparatively large capacities are used exclusively for electricity generation, and so far small multiblade horizontal axis turbines are extensively employed for water pumping with reciprocating piston pumps. However, the advent of wind turbines for irrigation, characterised with large discharge volume pumps, require application of large capacity and efficient ones to make the operation viable. An analysis is made in this paper to find matching pump coupled directly with wind turbine for optimum system operation in variable speed. There exist various type of wind turbines, operating on different principles having characteristics different, dependent not only on the types but also on the design criteria of the individuals. Water pumps are also of various types whose operation characteristics vary with the type, mode of operation and design parameters. A nondimensional analysis is carried out to match the two, to operate at optimum, by superimposing the operating characteristics of the one over the other. The transmission method is also taken in account on the investment analysis of the whole system. Positive displacement pumps are best suited for high starting torque turbines e.g. Savonius or Filippini or multiblade horizontal axis rotors, and consequently are less efficient, though is advantageous for high water lift operation.

  14. Energy saving pump and pumping system

    SciTech Connect

    Chang, K.C.

    1983-08-02

    A centrifugal pump and a pumping system are disclosed that recover hydraulic energy in response to flow capacity reduction and spontaneously provide a recirculating flow at low capacities when pump cooling is needed. From a upstream source the fluid is guided by two suction lines to two parallel pumping mechanisms housed by a common discharge casing. Said pumping mechanisms have a combined hydraulic characteristic that the first pumping mechanism will force a reverse flow through the second pumping mechanism, when pump discharge is reduced by the system below a certain low flow rate. The reverse flow will then return to the upstream fluid source through a suction line. The pump is the protected from overheating by a circulating flow at low flow capacities. At the same time, said reverse flow generates a turbine action on the second pumping mechanism and transmits the contained hydraulic energy back to the rotor and thereby results in power saving at low flow capacities.

  15. Lifting teams in health care facilities: a literature review.

    PubMed

    Haiduven, Donna

    2003-05-01

    1. Manual lifting and transfer activities are job tasks frequently associated with back injuries in nursing personnel. One approach with potential to decrease these injuries is the lifting team. 2. In program evaluations completed to date, there have been numerous benefits and several limitations attributed to use of lifting teams in health care facilities. 3. Benefits of lifting teams include reductions in lost time workdays, restricted workdays, workers' compensation claims, and injuries to lifting team members; satisfaction of patients, staff, and lifting team members; and capacity of the lifting team to absorb the majority of high risk lifts and transfers on shifts in which they operate. 4. Lifting teams may not be appropriate for all settings, require infrastructure and lifting team equipment to support their use, and require careful consideration related to staffing. However, when their use is appropriate, efforts to overcome their limitations can be accomplished with careful evaluation of outcome measures and indicators.

  16. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  17. Solar preheater for residential heat pumps

    SciTech Connect

    1983-01-01

    The Solar Preheater for Residential Heat PUmps was designed to offset the weakest points in a heat pump system using solar energy. These weak points affect both energy efficiency and comfort, and are: (1) the heat pumps need to defrost its outside coils, and (2) its use of resistance coils when outside air is very cold. While a heat pump can claim close to 100% efficiency in its conversion of electricity to heat, these efficiencies drop way off under the above circumstances. Less dramatic energy savings should also occur during the heat pump's normal operation, since a heat pump takes available heat and condenses it to heat the house. It seems reasonable to say that if there is more heat in the outside air it will take less time to raise the temperature inside. The net effect should be similar to having the heat pump located several hundred miles south of the home it is heating. There are several ways to achieve solar augmentation of heat pump operation, but most are either too expensive, too difficult for do-it-yourselfers, or are not easily adaptable to existing units. The solar preheater for residential heat pumps gets around all the above restrictions.

  18. Multiphase pump field trials demonstrate practical applications for the technology

    SciTech Connect

    Dal Porto, D.F.; Larson, L.A.

    1996-12-31

    The results of two multiphase pump field trials are presented. One field trial was conducted offshore on a platform in the Gulf of Mexico (GOM). It is a low pressure boost (100 psi) application involving gas lifted wells. The other field trial was conducted onshore in an oil field in Alberta, Canada. This multiphase pump was designed for a high pressure boost (850 psi) capability with primarily rod pumped wells feeding the suction of the pump. The offshore pump was sized to handle the flow from one well. By lowering the back-pressure on the well, increased production was realized. The increased flow from one of the wells far surpassed the predicted quantity. Early problems with the double mechanical seal system were overcome and a new, simplified single mechanical seal system has been designed and installed. The onshore multiphase pump clearly demonstrated that a twin screw pump can operate reliably in a field environment, even under severe slug flow conditions. The trial indicated that a considerable portion of the liquid in the recycle stream (required because of the high gas fraction of the multiphase fluid from the field) flashes into gas which occupies more volume in the pump than if it remained liquid. This decreased the capability of the pump to handle net flow from the field. These conditions motivated a re-evaluation of the pump sizing techniques. Performance data and lessons learned information are presented for both field trials.

  19. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  20. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  1. Development of a Through Tubing (Microhole) Artificial Lift System

    SciTech Connect

    Steve Bodden

    2006-09-30

    The goal of this project was to develop a small diameter pump system capable of being deployed through existing production tubing strings in oil/gas wells. The pump system would then pump water up an inner tubing string (likely coil tubing) and allow gas to flow in the annulus between the coil tubing and production tubing. Accomplishing this would allow wells that are currently loaded up (unable to flow at high enough rates to lift the fluid out of the wellbore) to continue to produce additional gas/oil reserves. The project was unable to complete a working test system due to unforeseen complexities in coupling the system components together in part due to the small diameter. Although several of the individual components were sourced and secured, coupling them together and getting electricity to the motor proved technically more difficult than expected. Thus, the project is no longer active due primarily to the complications realized in coupling the components and the difficulties in getting electricity to the submersible motor in a slimhole system. The other problem in finishing this project was the lack of financial resources. When the grant was first applied for it was expected that it would be awarded in early 2004. Since the grant was not actually awarded until the end of August 2004, GPS had basically run out of $$$ and the principle developer (Steve Bodden) had to find a full time job which began in late July 2004. When the grant was finally awarded in late August, it was still hoped that the project could proceed as a part time development but with less financial exposure to the partners in GPS. This became very problematic as it still had many technical obstacles to overcome to get it to the stage of prototype testing.

  2. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  3. Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Fajfar, B.; Konsewicz, R. K.

    1976-01-01

    Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.

  4. Improvement of Laminar Lifted Flame Stability Excited by High-Frequency Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Hirota, Mitsutomo; Hashimoto, Kota; Oso, Hiroki; Masuya, Goro

    A high-frequency (20kHz) standing wave was applied to the unburned mixture upstream of a methane-air lifted jet flame using a bolt-clamped Langevin transducer (BLT) to improve stability. The flow field near the flame was visualized using acetone planar-laser-induced fluorescence (PLIF). The standing wave decreased the lifted flame height and increased the blow-off limit. The upstream flow field of the center jet then bent. This phenomenon appeared when there was a density difference between the center jet and the surrounding secondary flow. When the density of the center jet was less than that of the co-flow, the center jet was redirected to the pressure anti-node side. Conversely, when the density of the center jet was greater than that of the co-flow, the center jet was redirected to the pressure node side. This redirection tended to stabilize the laminar lifted flame.

  5. Lift and Drag Characteristics and Gliding Performance of an Autogiro as Determined in Flight

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1933-01-01

    This report presents the results of flight test of the Pitcairn "PCA-2" autogiro. Lift and drag coefficients with the propeller stopped have been determined over approximately a 90 degree range of angles of attack. Based on the sum of fixed-wing and swept-disk areas, the maximum lift coefficient is 0.895, the minimum drag coefficient with propeller stopped is 0.015, and the maximum l/d with propeller stopped is 4.8. Lift coefficients were found also with the propeller delivering positive thrust and did not differ consistently from those found with propeller stopped. Curves of gliding performance included in this report show a minimum vertical velocity of 15 feet per second at an air speed of 36 miles per hour and a flight-path angle of -17 degrees. In vertical descent the vertical velocity is 35 feet per second.

  6. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  7. Numerical simulation of pump-intake vortices

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  8. Design of a portable powered seat lift

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce

    1993-01-01

    People suffering from degenerative hip or knee joints find sitting and rising from a seated position very difficult. These people can rely on large stationary chairs at home, but must ask others for assistance when rising from any other chair. An orthopedic surgeon identified to the MSFC Technology Utilization Office the need for development of a portable device that could perform a similar function to the stationary lift chairs. The MSFC Structural Development Branch answered the Technology Utilization Office's request for design of a portable powered seat lift. The device is a seat cushion that opens under power, lifting the user to near-standing positions. The largest challenge was developing a mechanism to provide a stable lift over the large range of motion needed, and fold flat enough to be comfortable to sit on. CAD 3-D modeling was used to generate complete drawings for the prototype, and a full-scale working model of the Seat lift was made based on the drawings. The working model is of low strength, but proves the function of the mechanism and the concept.

  9. Lifting device for nuclear power plants

    SciTech Connect

    Krieger, F.

    1984-07-17

    A lifting device for lifting and transporting nuclear fuel elements. This device comprises a mast-like support on the lower end of which automatically operated and locked gripping pawls are provided. The support has a considerable height and may be referred to as lifting mast. The gripping pawls and their operating mechanism are referred to as gripping-head. The gripping-head and the lifting mast are telescopically movable relative to each other. To this end guide rods and compression springs are interposed between the lower end of the lifting mast and the gripping-head. The gripping-head comprises two concentric annular members which are relatively movable or rotatable about their common geometrical axis. One of the annular members supports the gripping pawls are T-shaped. One of their transverse ends is adapted to engage the fuel rods, and the other of their transverse ends is adapted to engage curved grooves in the other annular member. The rotary motion of one annular member relative to the other gripping pawls. In their limit positions the two annular members are blocked by a safety lever engaging slits or slots.

  10. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  11. Pump apparatus

    SciTech Connect

    Kime, J.A.

    1987-02-17

    This patent describes a gas-oil well production system for pumping formation fluid wherein a down hole pump is provided having a barrel including a barrel fluid inlet, a barrel fluid outlet, a barrel chamber, and a plunger mounted in the barrel chamber having a plunger chamber. The plunger is reciprocally driven between an upper terminal position at the end of the plunger upstroke and a lower terminal position at the end of the plunger downstroke. The method for removing developed gaseous fluids in the formation fluid from the barrel chamber comprises: drawing formation fluid into the barrel chamber during the plunger upstroke; providing gas port means in the barrel; expelling the developed gaseous fluids from the barrel chamber through the gas port means during the occurrence of that portion of the plunger downstroke from the upper terminal position of the gas port means; and substantially blocking the gas port means and moving formation fluid into the plunger chamber during the occurrence of that portion of the plunger downstroke from below the gas port means to the lower terminal position.

  12. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  13. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  14. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  15. Unsteady lifting-line theory with applications

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.; Widnall, S. E.

    1982-01-01

    Unsteady lifting-line theory is developed for a flexible unswept wing of large aspect ratio oscillating at low frequency in inviscid incompressible flow. The theory is formulated in terms of the acceleration potential and treated by the method of matched asymptotic expansions. The wing displacements are prescribed and the pressure field, airloads, and unsteady induced downwash are obtained in closed form. Sample numerical calculations are presented. The present work identifies and resolves errors in the unsteady lifting-line theory of James and points out a limitation in that of Van Holten. Comparison of the results of Reissner's approximate unsteady lifting-surface theory with those of the present work shows favorable agreement. The present work thus provides some formal justification for Reissner's ad hoc theory. For engineering purposes, the region of applicability of the theory in the reduced frequency-aspect ratio domain is identified approximately and found to cover most cases of practical interest.

  16. Coriolis effects enhance lift on revolving wings.

    PubMed

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  17. Modeling and simulation performance of sucker rod beam pump

    SciTech Connect

    Aditsania, Annisa; Rahmawati, Silvy Dewi Sukarno, Pudjo; Soewono, Edy

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  18. Modeling and simulation performance of sucker rod beam pump

    NASA Astrophysics Data System (ADS)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-09-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  19. Investigation of hydrogen and helium pumping by sputter ion pumps for Jupiter and outer planets mass spectrometer

    NASA Technical Reports Server (NTRS)

    Scott, B. W.

    1977-01-01

    The phenomena of ion pumping is reviewed with emphasis on the pumping mechanism for hydrogen and helium. The experimental tests measure the performance of a small, flight proven ion pump which has a nominal four liter/second pumping speed for air. The speed of this pump for hydrogen and helium, and for hydrogen/helium mixes, is presented with particular detail regarding the time dependence. Pump test results are related to anticipated performance of the mass spectrometer by the pumping speeds for the gases to the partial pressure in the ion source. From this analysis, the pump specifications are quantified in terms of mission goals and in terms of observed pumping speeds for the various gases, load levels, and time periods.

  20. Crawl space-assisted heat pumps

    NASA Astrophysics Data System (ADS)

    McGill, R. N.

    By means of field tests in real houses, it was found that the source air for the heat pump can be preheated (or precooled) by drawing the outdoor air through the crawl space before it is used by the heat pump. The outdoor air is warmed (or cooled) by flowing over the crawl space earth. Most of the data is from winter months, when one would expect the most benefit for heat pump performance. Generally, greater preheating occurs at lower outdoor air temperatures; and, the effect tapers off to virtually no gain at about 10 C. The preheating effect has been shown to be sustained for an entire winter season. Another experiment proved that the preheating does come, in great part, from the earth and not simply from the house above. Analysis had also led to the conclusion that the heat transfer mechanism is by simple conduction within the upper 0.3 m of the crawl space earth.

  1. A "place n play" modular pump for portable microfluidic applications.

    PubMed

    Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong

    2012-03-01

    This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.

  2. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  3. The Distribution of Lift Over Wing Tips and Ailerons

    NASA Technical Reports Server (NTRS)

    Bacon, David L

    1924-01-01

    This investigation was carried out in the 5-foot wind tunnel of the Langley Memorial Aeronautical Laboratory for the purpose of obtaining more complete information on the distribution of lift between the ends of wing spars, the stresses in ailerons, and the general subject of airflow near the tip of a wing. It includes one series of tests on four models without ailerons, having square, elliptical, and raked tips respectively, and a second series of positively and negatively raked wings with ailerons adjusted to different settings. The results show that negatively raked tips give a more uniform distribution of air pressure than any of the other three arrangements, because the tip vortex does not disturb the flow at the trailing edge. Aileron loads are found to be less severe on wings with negative application to the calculation of aileron and wing stresses and also to facilitate the proper distribution of load in sand testing. Contour charts show in great detail the complex distribution lift over the wing.

  4. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... service. 65.107 Section 65.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.107 Standards: Pumps in light... the greater of either 10 percent of the pumps in a process unit or three pumps in a process unit...

  5. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... service. 65.107 Section 65.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.107 Standards: Pumps in light... the greater of either 10 percent of the pumps in a process unit or three pumps in a process unit...

  6. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... service. 65.107 Section 65.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.107 Standards: Pumps in light... the greater of either 10 percent of the pumps in a process unit or three pumps in a process unit...

  7. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... service. 65.107 Section 65.107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Equipment Leaks § 65.107 Standards: Pumps in light... the greater of either 10 percent of the pumps in a process unit or three pumps in a process unit...

  8. Condoms hitch lift with truckers.

    PubMed

    Kilimwiko, L

    1991-09-01

    This article reports on the efforts being made in Dar Es Salaam, Tanzania and other road stops in central Tanzania to provide condoms to long-haul drivers and the women who serve on-the-road-companionship. The Truck Driver's AIDS Intervention Project (TDAIP) in collaboration with the African Medical Research Foundation (AMREF) and Tanzania's National AIDS Control Program (NACP) are working to protect these 2 at risk populations. Along the 1000 km Tanzania/Zambia highway, gasoline pump attendants offer drivers condoms. Prostitutes at these stops also offer condoms. There are meter long stickers with "condoms prevent AIDs" available. The message from the NACP regional office is that those at risk, such as truck drivers, are unlikely to attend rallies, or hear radio message when behind the wheel. Research has shown that men are more receptive to messages given in a work setting. Barmaids at 5 of the most frequented truckstops have been trained as peer health educators. Their job is to sensitize the men to the dangers of AIDs. An operating example is given of the barmaid serving drinks, and when approached, replies with the messages of how protection can be accomplished. One partner only is recommended, and if this is not possible, then one should avoid assuming "labda huyu hana ukimwi" (hopefully this one is AIDs free). There is no safe sex. The peer educators are trained in AIDs prevention and communication skills, and are paid a monthly wage. 725,000 condoms and 250,000 pieces of educational literature were distributed by TDAIP at these 5 truckstops in the 1st 6 months of 1990. Several drawbacks to this effort have occurred. It is difficult to sustain the distribution system outside a medical setting, and it is difficult to effectively monitor and support peer educators spread out across the country. One barmaid observed that those seeking condoms were primarily from outside Tanzania: Zambia, Malawi, Zaire, Rwanda, and Burundi, where better information about the

  9. Reciprocating pump with partial flow reversal

    SciTech Connect

    Frazier, T.L.; Dozier, J.D.

    1986-01-21

    This patent describes a reciprocating type pump for lifting fluid from wells and for other similar applications where operating conditions make its actions subject to blockage by mobile fines. The pump consists of a number of interactive components. The first component described in the patent is a pump barrel with a standing check valve at the bottom. The next components detailed are a pump plunger with a traveling check valve at the bottom and a mechanism for reciprocating the plunger in the barrel over a predetermined stroke distance with upper and lower limits on the motion. A principal feature of the patent which is discussed at length is the existence of a port in the barrel which is located above the middle of the stroke distance. Similarly, a means associated with the plunger for closing the port during that portion of the stroke distance when the plunger is below the level of the port is elucidated upon. The final component modality which is represented in the patent is a mechanism for biasing the traveling check valve closed against back pressure of less than a predetermined value such that the fluid is pumped back to reverse flow and thus effects the unblocking of the mobile fines during a portion of the stroke distance of each cycle.

  10. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?

    PubMed

    Jump, Robin L P; Pultz, Michael J; Donskey, Curtis J

    2007-08-01

    Proton pump inhibitors (PPIs) have been identified as a risk factor for Clostridium difficile-associated diarrhea (CDAD), though the mechanism is unclear because gastric acid does not kill C. difficile spores. We hypothesized that the vegetative form of C. difficile, which is killed by acid, could contribute to disease pathogenesis if it survives in room air and in gastric contents with elevated pH. We compared the numbers of C. difficile spores and vegetative cells in stools of patients prior to and during the treatment of CDAD. We assessed the survival of vegetative cells on moist or dry surfaces in room air versus anaerobic conditions and in human gastric contents, in pH-adjusted gastric contents, and in gastric contents from individuals receiving PPI therapy. Stool samples obtained from patients prior to the initiation of antibiotic treatment for C. difficile contained approximately 10-fold more vegetative cells than spores. On dry surfaces, vegetative C. difficile cells died rapidly, whereas they remained viable for up to 6 h on moist surfaces in room air. Vegetative C. difficile cells had only marginal survival in gastric contents at low pH; adjustment to a pH of >5 resulted in survival similar to that in the phosphate-buffered saline control. The survival of vegetative C. difficile in gastric contents obtained from patients receiving PPIs was also increased at a pH of >5. The ability of the vegetative form of C. difficile to survive on moist surfaces and in gastric contents with an elevated pH suggests a potential mechanism by which PPI therapy could increase the risk of acquiring C. difficile.

  11. Constant lift rotor for a heavier than air craft

    NASA Technical Reports Server (NTRS)

    Stroub, R. H. (Inventor)

    1979-01-01

    A rotor blade extended radially from a hub, characterized by an elongated spar and a plurality of axially aligned shells pivotally mounted on the spar is presented. Each has an aerodynamic center located in trailing relation with the spar and supported thereby for simultaneous axial and angular displacement as centrifugal forces are applied, a pitch controller plus a plurality of pivotal pitch limiting arms transversely related to the spar. A push-pull link interconnecting the arms is used for imparting simultaneous pivotal motion, whereby the angular relationship of the arms to the spar is varied for varying the motion of the trucks along the arms for thus limiting the pitch of the segments about the spar.

  12. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.

    PubMed

    Nishimura, Ikuya; Ichikawa, S; Mikami, M; Ishitoya, H; Motomura, T; Kawamura, M; Linneweber, J; Glueck, J; Shinohara, T; Nosé, Y

    2013-01-01

    The Gyro centrifugal pump developed as a totally implantable artificial heart was designed with a free impeller, in which the rotational shaft (male bearing) of the impeller was completely separated from the female bearing. For this type of pump, it is very important to keep the proper magnet balance (impeller-magnet and actuator-magnet) in order to prevent thrombus formation and/or bearing wear. When the magnet balance is not proper, the impeller is jerked down into the bottom bearing. On the other hand, if magnet balance is proper, the impeller lifted off the bottom of the pump housing within a certain range of pumping conditions. In this study, this floating phenomenon was investigated in detail. The floating phenomenon was proved by observation of the impeller behavior using a transparent acrylic pump. The impeller floating phenomenon was mapped on a pump performance curve. The impeller floating phenomenon is affected by the magnet-magnet coupling distance and rotational speed of the impeller. In order to keep the proper magnet balance and to maintain the impeller floating phenomenon at the driving condition of right and left pump, the magnet-magnet coupling distance was altered by a spacer which was installed between the pump and actuator. It became clear that the same pump could handle different conditions (right and left ventricular assist), by just changing the thickness of the spacer. When magnet balance is proper, the floating impeller phenomenon occurs automatically in response to the impeller rev. It is called "the dynamic RPM suspension".

  13. Camera trocar lifting in office gasless laparoscopic sterilization under local anesthesia

    PubMed Central

    Bergström, Bo S.

    2010-01-01

    We evaluated 35 cases of a mechanical approach to abdominal wall lifting, used in office-based gasless laparoscopic sterilization under local anesthesia. Lifting of the abdominal wall, using the camera trocar as an anchoring device and complemented by suprapubic lifting by means of a towel clamp, led to passive intra-abdominal air filling, giving sufficient space to identify, anesthetize, coagulate and cut the Fallopian tubes. Only mild sedation was necessary. All women walked to and from the operating room. All had successful tubal ligation. The overall satisfaction rate was 97%. The mechanical lifting moment was not painful. With the exception of one woman with failed tubal anesthesia, all women had a low mean pain score of 2.6 (VAS 0–10). No complications occurred except one wound infection. The costs were < ¼ of those of traditional laparoscopic sterilization and office hysteroscopic sterilization. This approach is effective for office-based laparoscopic sterilization. Room air, two strings and a needle replace active gas insufflation and narcosis. PMID:20450443

  14. Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.

    PubMed

    Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David

    2016-12-06

    There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift

  15. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  16. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  17. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  18. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  19. The lift-fan powered-lift aircraft concept: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1993-01-01

    This is one of a series of reports on the lessons learned from past research related to lift-fan aircraft concepts. An extensive review is presented of the many lift-fan aircraft design studies conducted by both government and industry over the past 45 years. Mission applications and design integration including discussions on manifolding hot gas generators, hot gas dusting, and energy transfer control are addressed. Past lift-fan evaluations of the Avrocar are discussed. Lessons learned from these past efforts are identified.

  20. Development of the Permian Basin beam pump failure database

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed Mahbubur

    Artificial Lift Energy Optimization Consortium (ALEOC) was formed by eleven oil companies operating in the Permian Basin with the primary goal of improving oil field operations through sharing experiences. Beam pumping system received special attention because it is the most widely used artificial lift method in the Permian Basin as well as in the world. The combined effort to optimize beam pumping system calls for the creation of a central database, which will hold beam pump related data from diverse sources and will offer ways to analyze the data to obtain valuable insight about the nature, magnitude and trend of beam pump failure. The database mentioned above has been created as part of this work. The database combines beam pump failure data from about 25,000 wells owned by different companies into a single, uniform and consistent format. Moreover, two front-end computer applications have been developed to interact with the database, to run queries, and to make plots form the query results. One application is designed for desktop, while the other one is designed for the Internet. Both applications calculate failure frequencies of pump, rod, and tubing, and summarize the results in various ways. Thus the database and the front-end applications together provide a powerful means for analyzing beam pump failure data. Much useful information can be gathered from the database, such as the most vulnerable component in the system, the best and the worst performers, and the most troublesome operating area. Such information can be used for benchmarking performance, identifying best design/operational practices, design modification, and long term production planning. Results from data analysis show that the pump has the highest probability to fail in a beam pumping system, followed by the rod string and the tubing string. The overall failure in the Permian Basin shows a general decline with time.