Sample records for air mass approach

  1. Winter air-mass-based synoptic climatological approach and hospital admissions for myocardial infarction in Florence, Italy.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero

    2006-09-01

    The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.

  2. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  3. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  4. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  5. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  6. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results

  7. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  8. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  9. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  10. Exposure chamber measurements of mass transfer and partitioning at the plant/air interface.

    PubMed

    Maddalena, Randy L; McKone, Thomas E; Kado, Norman Y

    2002-08-15

    Dynamic measures of air and vegetation concentrations in an exposure chamber and a two-box mass balance model are used to quantify factors that control the rate and extent of chemical partitioning between vegetation and the atmosphere. A continuous stirred flow-through exposure chamber was used to investigate the gas-phase transfer of pollutants between air and plants. A probabilistic two-compartment mass balance model of plant/air exchange within the exposure chamber was developed and used with measured concentrations from the chamber to simultaneously evaluate partitioning (Kpa), overall mass transfer across the plant/air interface (Upa), and loss rates in the atmosphere (Ra) and aboveground vegetation (Rp). The approach is demonstrated using mature Capsicum annuum (bell pepper) plants exposed to phenanthrene (PH), anthracene (AN), fluoranthene (FL) and pyrene (PY). Measured values of log Kpa (V[air]/V[fresh plant]) were 5.7, 5.7, 6.0, and 6.2 for PH, AN, FL, and PY, respectively. Values of Upa (m d(-1)) under the conditions of this study ranged from 42 for PH to 119 for FL. After correcting for wall effects, the estimated reaction half-lives in air were 3, 9, and 25 h for AN, FL and PY. Reaction half-lives in the plant compartment were 17, 6, 17, and 5 d for PH, AN, FL, and PY, respectively. The combined use of exposure chamber measurements and models provides a robust tool for simultaneously measuring several different transfer factors that are important for modeling the uptake of pollutants into vegetation.

  11. Subtropical air masses over eastern Canada: Their links to extreme precipitation

    NASA Astrophysics Data System (ADS)

    Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad

    2017-04-01

    We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this

  12. Settlement with Amherst, Mass., Company Reduces Emissions to Air

    EPA Pesticide Factsheets

    Under the terms of a recent settlement with the U.S. Environmental Protection Agency (EPA), John S. Lane and Son, Inc. (JS Lane), a sand and gravel company in Amherst, Mass., has taken steps to reduce air pollution, as required by the Clean Air Act (CAA).

  13. Air-to-air combat analysis - Review of differential-gaming approaches

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1981-01-01

    The problem of evaluating the combat performance of fighter/attack aircraft is discussed, and the mathematical nature of the problem is examined. The following approaches to air combat analysis are reviewed: (1) differential-turning differential game and (2) coplanar differential game. Selected numerical examples of these approaches are presented. The relative advantages and disadvantages of each are analyzed, and it is concluded that air combat analysis is an extremely difficult mathematical problem and that no one method of approach is best for all purposes. The paper concludes with a discussion of how the two approaches might be used in a complementary manner.

  14. Boundary layers at a dynamic interface: air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew

    2017-11-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  15. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  16. Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Schwartz, R.; Mecke, M.

    1991-01-01

    The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.

  17. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  18. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing

    2018-04-01

    Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.

  20. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  1. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  2. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  3. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  4. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  5. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  6. Estimation of air-to-grass mass interception factors for iodine.

    PubMed

    Karunakara, N; Ujwal, P; Yashodhara, I; Sudeep Kumara, K; Mohan, M P; Bhaskar Shenoy, K; Geetha, P V; Dileep, B N; James, Joshi P; Ravi, P M

    2018-06-01

    Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m 2  kg -1 with mean value of 2.2 m 2  kg -1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m 2  kg -1 with mean value of 2.3 m 2  kg -1 . The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall. Copyright © 2017. Published by Elsevier Ltd.

  7. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  8. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  9. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  10. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  11. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  12. Trace gases and air mass origin at Kaashidhoo, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Lobert, Jürgen M.; Harris, Joyce M.

    2002-10-01

    Carbon monoxide (CO) was measured at the Kaashidhoo Climate Observatory (KCO, Republic of Maldives) between February 1998 and March 2000 to assess the regional pollution of the remote atmosphere in the northern Indian Ocean. CO showed a distinct annual cycle with maximum daily mixing ratios of around 240 parts per billion (ppb), a seasonal difference of about 200 ppb, and high variability during the dry seasons. Detailed air mass trajectory analysis for 1998, 1999, and 2000 was used to identify source regions and to associate them with various levels of pollution encountered at KCO. We conclude that most significant changes in local pollution throughout the year are caused by changes in air masses. Air at KCO generally originated from three main regions with decreasing pollution: India and southeast Asia, the Arabian Sea, and the Southern Hemisphere. We show that isentropic air mass trajectories can be used to predict CO pollution levels at KCO to a certain extent and vice versa. Nitrous oxide, CFC-11, CFC-12, CCI4, and SF6 were measured during the Indian Ocean Experiment (February to March 1999) to support pollution analysis and to confirm that India is the main source for heavy pollution measured at KCO. Correlations between CO and other gases and aerosol properties measured at the surface illustrate that CO may also be used as a proxy for aerosol loading and general pollution at the surface.

  13. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  14. Relationship between air mass type and emergency department visits for migraine headache across the Triangle region of North Carolina

    NASA Astrophysics Data System (ADS)

    Elcik, Christopher; Fuhrmann, Christopher M.; Mercer, Andrew E.; Davis, Robert E.

    2017-12-01

    An estimated 240 million people worldwide suffer from migraines. Because migraines are often debilitating, understanding the mechanisms that trigger them is crucial for effective prevention and treatment. Synoptic air mass types and emergency department (ED) visits for migraine headaches were examined over a 7-year period within a major metropolitan area of North Carolina to identify potential relationships between large-scale meteorological conditions and the incidence of migraine headaches. Barometric pressure changes associated with transitional air masses, or changing weather patterns, were also analyzed for potential relationships. Bootstrapping analysis revealed that tropical air masses (moist and dry) resulted in the greatest number of migraine ED visits over the study period, whereas polar air masses led to fewer. Moist polar air masses in particular were found to correspond with the fewest number of migraine ED visits. On transitional air mass days, the number of migraine ED visits fell between those of tropical air mass days and polar air mass days. Transitional days characterized by pressure increases exhibited a greater number of migraine ED visits than days characterized by pressure decreases. However, no relationship was found between migraine ED visits and the magnitude of barometric pressure changes associated with transitional air masses.

  15. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses.

    PubMed

    Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R

    2017-10-01

    A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.

  16. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  17. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  18. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  19. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  20. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses

    NASA Astrophysics Data System (ADS)

    Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.

    2018-04-01

    Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol

  1. Boundary layers at a dynamic interface: Air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.

    2017-04-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.

  2. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  4. Economic Incentive Approaches to Air Pollution Control (1981)

    EPA Pesticide Factsheets

    This draft report was prepared to respond to the requirements of Section 405(g) of the Clean Air Act for a general report on economic incentive approaches to air pollution control, but was never issued.

  5. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  6. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  7. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  8. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    PubMed

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  9. Markers for Chinese and Korean Air Masses: Halocarbons and Other Trace Gases Measured During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.

    2017-12-01

    The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.

  10. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  11. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  12. Air pollution exposure prediction approaches used in air pollution epidemiology studies

    EPA Science Inventory

    Epidemiological studies of the health effects of air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and miscla...

  13. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  14. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  15. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  16. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  17. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  18. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  19. Developing a Clinical Approach to Air Pollution and Cardiovascular Health.

    PubMed

    Hadley, Michael B; Baumgartner, Jill; Vedanthan, Rajesh

    2018-02-13

    Nearly 3 billion people are exposed to household air pollution emitted from inefficient cooking and heating stoves, and almost the entire global population is exposed to detectable levels of outdoor air pollution from traffic, industry, and other sources. Over 3 million people die annually of ischemic heart disease or stroke attributed to air pollution, more than from traditional cardiac risk factors such as obesity, diabetes mellitus, or smoking. Clinicians have a role to play in reducing the burden of pollution-attributable cardiovascular disease. However, there currently exists no clear clinical approach to this problem. Here, we provide a blueprint for an evidence-based clinical approach to assessing and mitigating cardiovascular risk from exposure to air pollution. We begin with a discussion of the global burden of pollution-attributable cardiovascular disease, including a review of the mechanisms by which particulate matter air pollution leads to cardiovascular outcomes. Next, we offer a simple patient-screening tool using known risk factors for pollution exposure. We then discuss approaches to quantifying air pollution exposures and cardiovascular risk, including the development of risk maps for clinical catchment areas. We review a collection of interventions for household and outdoor air pollution, which clinicians can tailor to patients and populations at risk. Finally, we identify future research needed to quantify pollution exposures and validate clinical interventions. Overall, we demonstrate that clinicians can be empowered to mitigate the global burden of cardiovascular disease attributable to air pollution. © 2018 American Heart Association, Inc.

  20. Ultrasonography of ovarian masses using a pattern recognition approach

    PubMed Central

    Jung, Sung Il

    2015-01-01

    As a primary imaging modality, ultrasonography (US) can provide diagnostic information for evaluating ovarian masses. Using a pattern recognition approach through gray-scale transvaginal US, ovarian masses can be diagnosed with high specificity and sensitivity. Doppler US may allow ovarian masses to be diagnosed as benign or malignant with even greater confidence. In order to differentiate benign and malignant ovarian masses, it is necessary to categorize ovarian masses into unilocular cyst, unilocular solid cyst, multilocular cyst, multilocular solid cyst, and solid tumor, and then to detect typical US features that demonstrate malignancy based on pattern recognition approach. PMID:25797108

  1. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    NASA Astrophysics Data System (ADS)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  2. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  3. Air pollution exposure prediction approaches used in air pollution epidemiology studies.

    PubMed

    Özkaynak, Halûk; Baxter, Lisa K; Dionisio, Kathie L; Burke, Janet

    2013-01-01

    Epidemiological studies of the health effects of outdoor air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and misclassification of exposures for pollutants that are spatially heterogeneous, such as those associated with traffic emissions (e.g., carbon monoxide, elemental carbon, nitrogen oxides, and particulate matter). We review alternative air quality and human exposure metrics applied in recent air pollution health effect studies discussed during the International Society of Exposure Science 2011 conference in Baltimore, MD. Symposium presenters considered various alternative exposure metrics, including: central site or interpolated monitoring data, regional pollution levels predicted using the national scale Community Multiscale Air Quality model or from measurements combined with local-scale (AERMOD) air quality models, hybrid models that include satellite data, statistically blended modeling and measurement data, concentrations adjusted by home infiltration rates, and population-based human exposure model (Stochastic Human Exposure and Dose Simulation, and Air Pollutants Exposure models) predictions. These alternative exposure metrics were applied in epidemiological applications to health outcomes, including daily mortality and respiratory hospital admissions, daily hospital emergency department visits, daily myocardial infarctions, and daily adverse birth outcomes. This paper summarizes the research projects presented during the symposium, with full details of the work presented in individual papers in this journal issue.

  4. Mass spectrometer characterization of halogen gases in air at atmospheric pressure.

    PubMed

    Ivey, Michelle M; Foster, Krishna L

    2005-03-01

    We have developed a new interface for a commercial ion trap mass spectrometer equipped with APCI capable of real-time measurements of gaseous compounds with limits of detection on the order of pptv. The new interface has been tested using the detection of Br2 and Cl2 over synthetic seawater ice at atmospheric pressure as a model system. A mechanical pump is used to draw gaseous mixtures through a glass manifold into the corona discharge area, where the molecules are ionized. Analysis of bromine and chlorine in dry air show that ion intensity is affected by the pumping rate and the position of the glass manifold. The mass spectrometer signals for Br2 are linear in the 0.1-10.6 ppbv range, and the estimated 3sigma detection limit is 20 pptv. The MS signals for Cl2 are linear in the 0.2-25 ppbv range, and the estimated 3sigma detection limit is 1 ppbv. This new interface advances the field of analytical chemistry by introducing a practical modification to a commercially available ion trap mass spectrometer that expands the available methods for performing highly specific and sensitive measurements of gases in air at atmospheric pressure.

  5. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  6. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  7. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  8. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  9. CHEMICAL MASS BALANCE MODEL: EPA-CMB8.2

    EPA Science Inventory

    The Chemical Mass Balance (CMB) method has been a popular approach for receptor modeling of ambient air pollutants for over two decades. For the past few years the U.S. Environmental Protection Agency's Office of Research and Development (ORD) and Office of Air Quality Plannin...

  10. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  11. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  12. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  13. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  14. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE PAGES

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...

    2017-10-30

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  15. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase

  16. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  17. Multiple curved descending approaches and the air traffic control problem

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Mcpherson, D.; Kreifeldt, J.; Wemple, T. E.

    1977-01-01

    A terminal area air traffic control simulation was designed to study ways of accommodating increased air traffic density. The concepts that were investigated assumed the availability of the microwave landing system and data link and included: (1) multiple curved descending final approaches; (2) parallel runways certified for independent and simultaneous operation under IFR conditions; (3) closer spacing between successive aircraft; and (4) a distributed management system between the air and ground. Three groups each consisting of three pilots and two air traffic controllers flew a combined total of 350 approaches. Piloted simulators were supplied with computer generated traffic situation displays and flight instruments. The controllers were supplied with a terminal area map and digital status information. Pilots and controllers also reported that the distributed management procedure was somewhat more safe and orderly than the centralized management procedure. Flying precision increased as the amount of turn required to intersect the outer mark decreased. Pilots reported that they preferred the alternative of multiple curved descending approaches with wider spacing between aircraft to closer spacing on single, straight in finals while controllers preferred the latter option. Both pilots and controllers felt that parallel runways are an acceptable way to accommodate increased traffic density safely and expeditiously.

  18. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  19. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  20. Analysis of volatile compounds by open-air ionization mass spectrometry.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-05-08

    This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all

  2. Extreme close approaches in hierarchical triple systems with comparable masses

    NASA Astrophysics Data System (ADS)

    Haim, Niv; Katz, Boaz

    2018-06-01

    We study close approaches in hierarchical triple systems with comparable masses using full N-body simulations, motivated by a recent model for type Ia supernovae involving direct collisions of white dwarfs (WDs). For stable hierarchical systems where the inner binary components have equal masses, we show that the ability of the inner binary to achieve very close approaches, where the separation between the components of the inner binary reaches values which are orders of magnitude smaller than the semi-major axis, can be analytically predicted from initial conditions. The rate of close approaches is found to be roughly linear with the mass of the tertiary. The rate increases in systems with unequal inner binaries by a marginal factor of ≲ 2 for mass ratios 0.5 ≤ m1/m2 ≤ 1 relevant for the inner white-dwarf binaries. For an average tertiary mass of ˜0.3M⊙ which is representative of typical M-dwarfs, the chance for clean collisions is ˜1% setting challenging constraints on the collisional model for type Ia's.

  3. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  4. A new multiple air beam approach for in-process form error optical measurement

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Li, R.

    2018-07-01

    In-process measurement can provide feedback for the control of workpiece precision in terms of size, roughness and, in particular, mid-spatial frequency form error. Optical measurement methods are of the non-contact type and possess high precision, as required for in-process form error measurement. In precision machining, coolant is commonly used to reduce heat generation and thermal deformation on the workpiece surface. However, the use of coolant will induce an opaque coolant barrier if optical measurement methods are used. In this paper, a new multiple air beam approach is proposed. The new approach permits the displacement of coolant from any direction and with a large thickness, i.e. with a large amount of coolant. The model, the working principle, and the key features of the new approach are presented. Based on the proposed new approach, a new in-process form error optical measurement system is developed. The coolant removal capability and the performance of this new multiple air beam approach are assessed. The experimental results show that the workpiece surface y(x, z) can be measured successfully with standard deviation up to 0.3011 µm even under a large amount of coolant, such that the coolant thickness is 15 mm. This means a relative uncertainty of 2σ up to 4.35% and the workpiece surface is deeply immersed in the opaque coolant. The results also show that, in terms of coolant removal capability, air supply and air velocity, the proposed new approach improves by, respectively, 3.3, 1.3 and 5.3 times on the previous single air beam approach. The results demonstrate the significant improvements brought by the new multiple air beam method together with the developed measurement system.

  5. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  6. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  8. Amputations in natural disasters and mass casualties: staged approach.

    PubMed

    Wolfson, Nikolaj

    2012-10-01

    Amputation is a commonly performed procedure during natural disasters and mass casualties related to industrial accidents and military conflicts where large civilian populations are subjected to severe musculoskeletal trauma. Crush injuries and crush syndrome, an often-overwhelming number of casualties, delayed presentations, regional cultural and other factors, all can mandate a surgical approach to amputation that is different than that typically used under non-disaster conditions. The following article will review the subject of amputation during natural disasters and mass casualties with emphasis on a staged approach to minimise post-surgical complications, especially infection.

  9. New screening approach for risk assessment of pesticides in ambient air

    NASA Astrophysics Data System (ADS)

    Yusà, Vicent; Coscollà, Clara; Millet, Maurice

    2014-10-01

    We present a novel screening approach for inhalation risk assessment of currently used pesticides (CUPs) in ambient air, based on the measurements of pesticide levels in the inhalable fraction of the particulate matter (PM10). Total concentrations in ambient air (gas + particle phases) were estimated using a theoretical model of distribution of semi-volatile organic compounds between the gas and the particulate phase based on the octanol-air partition (Koa) of each pesticide. The proposed approach was used in a pilot study conducted in a rural station in Valencia (Spain) from April through to October 2010. Twenty out of 82 analysed pesticides were detected in average concentrations ranging from 1.63 to 117.01 pg m-3. For adults, children and infants the estimated chronic inhalation risk, expressed as Hazard Quotient (HQ) was <1 for all pesticides. Likewise, the cumulative exposure for detected organophosphorus, pyrethroids and carbamates pesticides, was estimated using as metrics the Hazard Index (HI), which was less than 1 for the three families of pesticides assessed. The cancer risk estimated for the detected pesticides classified as Likely or Possible carcinogens was less than 1.15E-7 for infants. In our opinion, the screening approach proposed could be used in the monitoring and risk assessment of pesticides in ambient air.

  10. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  11. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  12. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. Copyright 1999 John Wiley & Sons, Ltd.

  13. A comparison of approaches for estimating bottom-sediment mass in large reservoirs

    USGS Publications Warehouse

    Juracek, Kyle E.

    2006-01-01

    Estimates of sediment and sediment-associated constituent loads and yields from drainage basins are necessary for the management of reservoir-basin systems to address important issues such as reservoir sedimentation and eutrophication. One method for the estimation of loads and yields requires a determination of the total mass of sediment deposited in a reservoir. This method involves a sediment volume-to-mass conversion using bulk-density information. A comparison of four computational approaches (partition, mean, midpoint, strategic) for using bulk-density information to estimate total bottom-sediment mass in four large reservoirs indicated that the differences among the approaches were not statistically significant. However, the lack of statistical significance may be a result of the small sample size. Compared to the partition approach, which was presumed to provide the most accurate estimates of bottom-sediment mass, the results achieved using the strategic, mean, and midpoint approaches differed by as much as ?4, ?20, and ?44 percent, respectively. It was concluded that the strategic approach may merit further investigation as a less time consuming and less costly alternative to the partition approach.

  14. An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels.

    PubMed

    Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán

    2006-07-01

    This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.

  15. An Evaluation of Unit and ½ Mass Correction Approaches as a ...

    EPA Pesticide Factsheets

    Rare earth elements (REE) and certain alkaline earths can produce M+2 interferences in ICP-MS because they have sufficiently low second ionization energies. Four REEs (150Sm, 150Nd, 156Gd and 156Dy) produce false positives on 75As and 78Se and 132Ba can produce a false positive on 66Zn. Currently, US EPA Method 200.8 does not address these as sources of false positives. Additionally, these M+2 false positives are typically enhanced if collision cell technology is utilized to reduce polyatomic interferences associated with ICP-MS detection. Correction equations can be formulated using either a unit or ½ mass approach. The ½ mass correction approach does not suffer from the bias generated from polyatomic or end user based contamination at the unit mass but is limited by the abundance sensitivity of the adjacent mass. For instance, the use of m/z 78 in a unit mass correction of 156Gd on m/z 78 can be biased by residual 40Ar38Ar and 78Se while the ½ mass approach can use 77.5 or 78.5 and is limited by the abundance sensitivity issues from mass 77 and 78 or 78 and 79, respectively. This presentation will evaluate the use of both unit and ½ mass correction approaches as a means of addressing M+2 false positives within the context of updating US EPA Method 200.8. This evaluation will include the analysis of As and Se standards near the detection limit in the presence of low (2ppb) and high (50ppb) levels of REE with benchmark concentrations estimated using

  16. Evaluation of prototype air carrier instrument approach procedure charts.

    DOT National Transportation Integrated Search

    1995-07-31

    The objective of this study was to evaluate the design features of two prototype Instrument Approach Procedure (IAP) charts. The John A. Volpe National Transportation System's Center in cooperation with the Air Transport Association's Chart and Data ...

  17. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  18. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  19. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  20. Evaluation of prototype air carrier instrument approach procedure charts

    DOT National Transportation Integrated Search

    1995-07-01

    The objective of this study was to evaluate the design features of two prototype Instrument Approach Procedure (IAP) charts. The John A. Volpe National Transportation Systems Center in cooperation with the Air Transport Association's Chart and Data D...

  1. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  3. Design and evaluation of an air traffic control Final Approach Spacing Tool

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Green, Steven M.; Nedell, William

    1991-01-01

    This paper describes the design and simulator evaluation of an automation tool for assisting terminal radar approach controllers in sequencing and spacing traffic onto the final approach course. The automation tool, referred to as the Final Approach Spacing Tool (FAST), displays speed and heading advisories for arriving aircraft as well as sequencing information on the controller's radar display. The main functional elements of FAST are a scheduler that schedules and sequences the traffic, a four-dimensional trajectory synthesizer that generates the advisories, and a graphical interface that displays the information to the controller. FAST has been implemented on a high-performance workstation. It can be operated as a stand-alone in the terminal radar approach control facility or as an element of a system integrated with automation tools in the air route traffic control center. FAST was evaluated by experienced air traffic controllers in a real-time air traffic control simulation. simulation results summarized in the paper show that the automation tools significantly reduced controller work load and demonstrated a potential for an increase in landing rate.

  4. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  5. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  6. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  7. Air to air view of Endeavour, OV-105, atop SCA approaches Ellington runway

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Air to air view of Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, approaches touchdown for a brief stopover at Ellington Field, near JSC. Visible below the spacecraft/aircraft combination are the NASA T-38 flight line, NASA aircraft hangars and facilities, and a runway. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. The spacecraft and aircraft-tandem left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Science Division (ISD).

  8. A proactive approach for managing indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, R.E.; Casey, J.M.; Williams, P.L.

    1997-11-01

    Ventilation and maintenance, followed by psychosocial issues, are the factors most often implicated in indoor air quality (IAQ) investigations. The absence of accepted exposure standards and the presence of a wide variety of building designs, ages, ventilation systems, and usages often make IAQ complaint investigations ineffective. Thus, the best approach to achieving IAQ is to prevent problems from occurring. This paper presents the framework for a proactive approach to managing the causes most often implicated in IAQ investigations. It is the aim of this proactive protocol to provide a cost-effective guide for preventing IAQ problems in nonindustrial settings and inmore » buildings for which there are no current IAQ complaints. The proposed protocol focuses on heating, ventilation, and air-conditioning (HVAC) system maintenance and operation; psychosocial factors; and the handling and investigation of complaints. An IAQ manager is designated to implement and manage the protocol. The HVAC system portion of the protocol focuses on proper maintenance of the components often identified as sources of problems in IAQ studies, documentation of the maintenance procedures, and training of individuals responsible for building maintenance. The protocol addresses the psychosocial factors with an environmental survey that rates the occupants` perceptions of the indoor air to identify potential IAQ problems. The psychosocial portion of the protocol also incorporates occupant education and awareness. Finally, a three-step initial investigation procedure for addressing IAQ problems is presented.« less

  9. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguishmore » between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.« less

  10. High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    DOE PAGES

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; ...

    2015-07-09

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. Moreover, a range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. In this paper, we illustrate how the method can be used to: (1) distinguishmore » between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.« less

  11. Live-cell mass profiling: an emerging approach in quantitative biophysics.

    PubMed

    Zangle, Thomas A; Teitell, Michael A

    2014-12-01

    Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.

  12. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  13. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  14. A Novel Triggerless Approach for Modeling Mass Wasting Susceptibility

    NASA Astrophysics Data System (ADS)

    Aly, M. H.; Rowden, K. W.

    2017-12-01

    Common approaches for modeling mass wasting susceptibility rely on using triggers, which are catalysts for failure, as critical inputs. Frequently used triggers include removal of the toe of a slope or vegetation and time correlated events such as seismicity or heavy precipitation. When temporal data are unavailable, correlating triggers with a particular mass wasting event (MWE) is futile. Meanwhile, geologic structures directly influence slope stability and are typically avoided in alternative modeling approaches. Depending on strata's dip direction, underlying geology can make a slope either stronger or weaker. To heuristically understand susceptibility and reliably infer risk, without being constrained by the previously mentioned limitations, a novel triggerless approach is conceived in this study. Core requisites include a digital elevation model and digitized geologic maps containing geologic formations delineated as polygons encompassing adequate distribution of structural attitudes. Tolerably simple geology composed of gently deformed, relatively flat-lying Carboniferous strata with minimal faulting or monoclines, ideal for applying this new triggerless approach, is found in the Boston Mountains, NW Arkansas, where 47 MWEs are documented. Two models are then created; one model has integrated Empirical Bayesian Kriging (EBK) and fuzzy logic, while the second model has employed a standard implementation of a weighted overlay. Statistical comparisons show that the first model has identified 83%, compared to only 28% for the latter model, of the failure events in categories ranging from moderate to very high susceptibility. These results demonstrate that the introduced triggerless approach is efficiently capable of modeling mass wasting susceptibility, by incorporating EBK and fuzzy logic, in areas lacking temporal datasets.

  15. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  16. Smooth information flow in temperature climate network reflects mass transport

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan

    2017-03-01

    A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.

  17. Air to air view of Endeavour, OV-105, atop SCA approaches Ellington runway

    NASA Image and Video Library

    1991-05-06

    S91-36097 (6 May 1991) --- Air to air view of Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, approaches touchdown for a brief stopover at Ellington Field, near JSC. Visible below the spacecraft/aircraft combination are the NASA T-38 flight line, NASA aircraft hangars and facilities, and a runway. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. The spacecraft and aircraft-tandem left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Science Division (ISD).

  18. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  19. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    DOE PAGES

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; ...

    2015-02-10

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere–Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ~60% of the study period, air was transported from sparsely populated regions to the northwest. Duringmore » these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm -3 and 1.91 μm 3 cm -3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (~29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). Furthermore, these trends are have the potential to influence forest–atmosphere interactions and should be targeted for future study.« less

  20. Condensation of atmospheric moisture from tropical maritime air masses as a freshwater resource.

    PubMed

    Gerard, R D; Worzel, J L

    1967-09-15

    A method is proposed whereby potable water may be obtained by condensing moisture from the atmosphere in suitable seashore or island areas. Deep, cold, offshore seawater is used as a source of cold and is pumped to condensers set up on shore to intercept the flow of highly humid, tropical, maritime air masses. This air, when cooled, condenses moisture, which is conducted away and stored for use as a water supply. Windmill-driven generators would supply low-cost power for the operation. Side benefits are derived by using the nutritious deep water to support aquiculture in nearby lagoons or to enhance the productivity of the outfall area. Additional benefits are derived from the condenser as an air-conditioning device for nearby residents. The islands of the Caribbean are used as an example of a location in the trade-winds belt where nearly optimum conditions for the operation of this system can be found.

  1. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  2. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  3. SIMULATION OF AEROSOL DYNAMICS: A COMPARATIVE REVIEW OF ALGORITHMS USED IN AIR QUALITY MODELS

    EPA Science Inventory

    A comparative review of algorithms currently used in air quality models to simulate aerosol dynamics is presented. This review addresses coagulation, condensational growth, nucleation, and gas/particle mass transfer. Two major approaches are used in air quality models to repres...

  4. A PARTICIPANT-BASED APPROACH TO INDOOR/OUTDOOR AIR MONITORING IN COMMUNITY HEALTH STUDIES

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a novel participant-based approach to collect indoor and outdoor air monitoring da...

  5. *A participant-based approach to indoor/outdoor air monitoring in Community Health Studies

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a participant-based approach to collect indoor and outdoor air monitoring data from...

  6. A systematic indoor air quality audit approach for public buildings.

    PubMed

    Asadi, Ehsan; da Silva, Manuel C Gameiro; Costa, J J

    2013-01-01

    Good indoor air quality (IAQ) in buildings provides a comfortable and healthy environment for the occupants to work, learn, study, etc. Therefore, it is important to ascertain the IAQ status in the buildings. This study is aimed to establish and demonstrate the comprehensive IAQ audit approach for public buildings, based on Portugal national laws. Four public buildings in Portugal are used to demonstrate the IAQ audit application. The systematic approach involves the measurement of physical parameters (temperature, relative humidity, and concentration of the suspended particulate matter), monitoring of the concentrations of selected chemical indicators [carbon dioxide (CO(2)), carbon monoxide, formaldehyde, ozone, and total volatile organic compounds], and the measurements of biological indicators (bacteria and fungi). In addition, air exchange rates are measured by the concentration decay method using metabolic CO(2) as the tracer gas. The comprehensive audits indicated some situations of common IAQ problems in buildings, namely: (1) insufficient ventilation rate, (2) too high particle concentration; and (3) poor filtration effectiveness and hygienic conditions in most of the air handling units. Accordingly, a set of recommendations for the improvement of IAQ conditions were advised to the building owner/managers.

  7. Toward a better understanding of the impact of mass transit air pollutants on human health

    USDA-ARS?s Scientific Manuscript database

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  8. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  9. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  10. Cluster analysis of the organic peaks in bulk mass spectra obtained during the 2002 New England Air Quality Study with an Aerodyne aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.; Middlebrook, A. M.

    2006-06-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter most probably originating from both, anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent as much as 5 µg/m3 organic aerosol mass - 17% of the total organic mass - that can be attributed to biogenic sources. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  11. RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems

    PubMed Central

    Yu, Ruiyun; Yang, Yu; Yang, Leyou; Han, Guangjie; Move, Oguti Ann

    2016-01-01

    Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing. PMID:26761008

  12. A rights-based approach to indoor air pollution.

    PubMed

    Lim, Jamie; Petersen, Stephen; Schwarz, Dan; Schwarz, Ryan; Maru, Duncan

    2013-12-12

    Household indoor air pollution from open-fire cookstoves remains a public health and environmental hazard which impacts negatively on people's right to health. Technologically improved cookstoves designed to reduce air pollution have demonstrated their efficacy in laboratory studies. Despite the tremendous need for such stoves, in the field they have often failed to be effective, with low rates of long-term adoption by users, mainly due to poor maintenance of the stoves. In poor, rural, isolated communities, there is unlikely to be a single behavioral or technological "fix" to this problem. In this paper, we suggest that improved cookstoves are an important health intervention to which people have a right, as they do to family planning, vaccination, and essential primary care medicines. Like these other necessary elements in the fulfillment of the right to health, access to clean indoor air should be incorporated into state health strategies, policies, and plans. State infrastructure and health systems should support public and private sector delivery of improved cookstove services, and ensure that such services reach all communities, even those that are poor, located remotely, and likely not to be served by the market. We suggest that community health workers could play a critical role in creating demand for, implementing facilitation and delivery of, and monitoring these cookstoves and related services. Through this approach, improved cookstoves could become an appealing, available, and sustainable option for the rural poor. In this paper, we adopt a human rights-based approach to overcome the problem of indoor air pollution, and we use Nepal as an example. Copyright © 2013 Lim, Petersen, Schwarz, Schwarz, Maru. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any

  13. Spatial and Temporal Patterns in the Carbon Isotopic Signal of Leaf Wax Aerosols in Continental Air Masses: Linkages with Ecosystem Discrimination

    NASA Astrophysics Data System (ADS)

    Weber, J.; Conte, M. H.

    2006-12-01

    Temporal and spatial variations in the concentration and isotopic composition of atmospheric carbon dioxide can be used to estimate the relative magnitudes of the terrestrial and oceanic carbon sinks. An important model parameter is the terrestrial photosynthetic carbon isotopic fractionation of CO2 (Δ), yet estimating Δ over the large spatial scales required by models remains problematic. Epiculticular leaf waxes appear to closely reflect the plant's carbon isotopic discrimination; therefore, the ablated wax aerosols present in well-mixed continental air masses may be used as a proxy to estimate the magnitude of Δ integrated over large (subcontinental) spatial scales. Over the last several years, we have been conducting time-series studies of wax aerosol molecular and isotopic composition at strategically located sites (Maine, northern Alaska, Florida, Bermuda, Barbados) which receive continental air masses passing over major terrestrial biomes (northern temperate/ecotonal boreal forests, tundra, southern US pine/hardwood forests, North American and north African). In this presentation, we describe and contrast patterns of wax aerosol-derived estimates of Δ at these sites. In North American air masses, estimates of Δ range from 14.5-20.5 using the concentration-weighted average δ13C of wax n-acids and from 13.5-19.5 for the wax n-alcohols. Seasonal trends observed in the Florida (southern US) and Bermuda samples (mixed North American air masses) indicate maximum discrimination in early spring and minimum discrimination during the summer dry season. In northern US and high latitude air masses, seasonal trends are less pronounced but in general temporally offset with highest discrimination occurring during late summer. At Barbados, which is dominated by north African air masses passing over regions largely comprised of arid C4 grasslands, estimated Δ for the wax n-acids is significantly lower (14.0-15.5 per mil), consistent with a higher predominance of C4

  14. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    PubMed Central

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-01-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required. PMID:26156000

  15. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    NASA Astrophysics Data System (ADS)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-07-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required.

  16. Mass study for modular approaches to a solar electric propulsion module

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Cake, J. E.; Oglebay, J. C.; Shaker, F. J.

    1977-01-01

    The propulsion module comprises six to eight 30-cm thruster and power processing units, a mercury propellant storage and distribution system, a solar array ranging in power from 18 to 25 kW, and the thermal and structure systems required to support the thrust and power subsystems. Launch and on-orbit configurations are presented for both modular approaches. The propulsion module satisfies the thermal design requirements of a multimission set including: Mercury, Saturn, and Jupiter orbiters, a 1-AU solar observatory, and comet and asteroid rendezvous. A detailed mass breakdown and a mass equation relating the total mass to the number of thrusters and solar array power requirement is given for both approaches.

  17. Evaluation of the Mg doping approach for Si mass fractionation correction on Nu Instruments MC-ICP Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Hsieh, Yu-Te; Belshaw, Nick

    2015-04-01

    Silicon (Si) stable isotopes have been used in a broad range of geochemical and cosmochemical applications. A precise and accurate determination of Si isotopes is desirable to distinguish their small natural variations (< 0.2‰) in many of these studies. In the past decade, the advent of the MC-ICP-MS has spurred a remarkable improvement in the precision and accuracy of Si isotopic analysis. The instrumental mass fractionation correction is one crucial aspect of the analysis of Si isotopes. Two options are currently available: the sample-standard bracketing approach and the Mg doping approach. However, there has been a debate over the validity of the Mg doping approach. Some studies (Cardinal et al., 2003; Engström et al., 2006) favoured it compared to the sample-standard bracketing approach, whereas some other studies (e.g. De La Rocha, 2002) considered it unsuitable. This study investigates the Mg doping approach on both the Nu Plasma II and the Nu Plasma 1700. Experiments were performed in both the wet plasma and the dry plasma modes, using a number of different combinations of cones. A range of different Mg to Si ratios as well as different matrices have been used in the experiments. A sample-standard bracketing approach has also been adopted for the Si mass fractionation correction to compare with the Mg doping approach. Through assessing the mass fractionation behaviours of both Si and Mg under different instrument settings, this study aims to identity the factors which may affect the Mg doping approach and answer some key questions to the debate.

  18. Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabra, Vishal; Yadav, Avadhesh

    2017-12-01

    Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.

  19. Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabra, Vishal; Yadav, Avadhesh

    2018-06-01

    Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.

  20. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  1. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sound reduction of air compressors using a systematic approach

    NASA Astrophysics Data System (ADS)

    Moylan, Justin Tharp

    The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.

  3. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.

  4. Conceptual model for assessing criteria air pollutants in a multipollutant context: A modified adverse outcome pathway approach.

    PubMed

    Buckley, Barbara; Farraj, Aimen

    2015-09-01

    Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is difficult since components are present in different combinations and concentrations in ambient air. Recent mechanistic studies have limited utility because of the inability to link measured changes to adverse outcomes that are relevant to risk assessment. New approaches are needed to address this challenge. The purpose of this manuscript is to describe a conceptual model, based on the adverse outcome pathway approach, which connects initiating events at the cellular and molecular level to population-wide impacts. This may facilitate hazard assessment of air pollution mixtures. In the case reports presented here, airway hyperresponsiveness and endothelial dysfunction are measurable endpoints that serve to integrate the effects of individual criteria air pollutants found in inhaled mixtures. This approach incorporates information from experimental and observational studies into a sequential series of higher order effects. The proposed model has the potential to facilitate multipollutant risk assessment by providing a framework that can be used to converge the effects of air pollutants in light of common underlying mechanisms. This approach may provide a ready-to-use tool to facilitate evaluation of health effects resulting from exposure to air pollution mixtures. Published by Elsevier Ireland Ltd.

  5. An approach to market analysis for lighter than air transportation of freight

    NASA Technical Reports Server (NTRS)

    Roberts, P. O.; Marcus, H. S.; Pollock, J. H.

    1975-01-01

    An approach is presented to marketing analysis for lighter than air vehicles in a commercial freight market. After a discussion of key characteristics of supply and demand factors, a three-phase approach to marketing analysis is described. The existing transportation systems are quantitatively defined and possible roles for lighter than air vehicles within this framework are postulated. The marketing analysis views the situation from the perspective of both the shipper and the carrier. A demand for freight service is assumed and the resulting supply characteristics are determined. Then, these supply characteristics are used to establish the demand for competing modes. The process is then iterated to arrive at the market solution.

  6. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    PubMed

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  7. AN APPROACH FOR EVALUATING THE EFFECTIVENESS OF VARIOUS OZONE AIR QUALITY STANDARDS FOR PROTECTING TREES

    EPA Science Inventory

    We demonstrate an approach for evaluating the level of protection attained using a variety of forms and levels of past, current, and proposed Air Quality Standards (AQSs). The U.S. Clean Air Act requires the establishment of ambient air quality standards to protect health and pub...

  8. Refining mass formulas for astrophysical applications: A Bayesian neural network approach

    NASA Astrophysics Data System (ADS)

    Utama, R.; Piekarewicz, J.

    2017-10-01

    Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.

  9. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  10. Identification of PM10 air pollution origins at a rural background site

    NASA Astrophysics Data System (ADS)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  11. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  12. National mass care strategy: a national integrated approach.

    PubMed

    Mintz, Amy; Gonzalez, Waddy

    2013-01-01

    Mass care refers to a wide range of humanitarian activities that collectively provide life- sustaining services, such as emergency sheltering, feeding, reunification, distribution of emergency supplies and recovery information, before or in the aftermath of an emergency or disaster. Most services are coordinated and provided by non-governmental organisations and/or local government. Based on the lessons learned in the aftermath of Hurricanes Katrina and Rita in 2005, the American Red Cross, the Federal Emergency Management Agency and the National Voluntary Organizations Active in Disasters joined efforts to expand national mass care capabilities in order to support survivors in the wake of catastrophic events, as well as to enhance the integration of volunteers and non-governmental organisations into the broader national effort. These efforts resulted in the creation of the National Mass Care Council in 2010, with representatives of Federal and State agencies, voluntary organisations and the private sector working together to develop a unified approach to mass care and to ensure the provision of consistent and uniform services across the USA, regardless of the magnitude of the event.

  13. Model-Based Systems Engineering Approach to Managing Mass Margin

    NASA Technical Reports Server (NTRS)

    Chung, Seung H.; Bayer, Todd J.; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Christopher; Lam, Doris

    2012-01-01

    When designing a flight system from concept through implementation, one of the fundamental systems engineering tasks ismanaging the mass margin and a mass equipment list (MEL) of the flight system. While generating a MEL and computing a mass margin is conceptually a trivial task, maintaining consistent and correct MELs and mass margins can be challenging due to the current practices of maintaining duplicate information in various forms, such as diagrams and tables, and in various media, such as files and emails. We have overcome this challenge through a model-based systems engineering (MBSE) approach within which we allow only a single-source-of-truth. In this paper we describe the modeling patternsused to capture the single-source-of-truth and the views that have been developed for the Europa Habitability Mission (EHM) project, a mission concept study, at the Jet Propulsion Laboratory (JPL).

  14. Endoscopic endonasal approach for mass resection of the pterygopalatine fossa

    PubMed Central

    Plzák, Jan; Kratochvil, Vít; Kešner, Adam; Šurda, Pavol; Vlasák, Aleš; Zvěřina, Eduard

    2017-01-01

    OBJECTIVES: Access to the pterygopalatine fossa is very difficult due to its complex anatomy. Therefore, an open approach is traditionally used, but morbidity is unavoidable. To overcome this problem, an endoscopic endonasal approach was developed as a minimally invasive procedure. The surgical aim of the present study was to evaluate the utility of the endoscopic endonasal approach for the management of both benign and malignant tumors of the pterygopalatine fossa. METHOD: We report our experience with the endoscopic endonasal approach for the management of both benign and malignant tumors and summarize recent recommendations. A total of 13 patients underwent surgery via the endoscopic endonasal approach for pterygopalatine fossa masses from 2014 to 2016. This case group consisted of 12 benign tumors (10 juvenile nasopharyngeal angiofibromas and two schwannomas) and one malignant tumor. RESULTS: No recurrent tumor developed during the follow-up period. One residual tumor (juvenile nasopharyngeal angiofibroma) that remained in the cavernous sinus was stable. There were no significant complications. Typical sequelae included hypesthesia of the maxillary nerve, trismus, and dry eye syndrome. CONCLUSION: The low frequency of complications together with the high efficacy of resection support the use of the endoscopic endonasal approach as a feasible, safe, and beneficial technique for the management of masses in the pterygopalatine fossa. PMID:29069259

  15. Limitations of Mass Spectrometry-Based Peptidomic Approaches

    NASA Astrophysics Data System (ADS)

    Fricker, Lloyd D.

    2015-12-01

    Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results.

  16. A Visual Analytics Approach for Station-Based Air Quality Data

    PubMed Central

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-01-01

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support. PMID:28029117

  17. A Visual Analytics Approach for Station-Based Air Quality Data.

    PubMed

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-12-24

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support.

  18. Mass casualty tracking with air traffic control methodologies.

    PubMed

    Hoskins, Jason D; Graham, Ross F; Robinson, Duane R; Lutz, Clifford C; Folio, Les R

    2009-06-01

    An intrahospital casualty throughput system modeled after air traffic control (ATC) tracking procedures was tested in mass casualty exercises. ATC uses a simple tactile process involving informational progress strips representing each aircraft, which are held in bays representing each stage of flight to prioritize and manage aircraft. These strips can be reordered within the bays to indicate a change in priority of aircraft sequence. In this study, a similar system was designed for patient tracking. We compared the ATC model and traditional casualty tracking methods of paper and clipboard in 18 four-hour casualty scenarios, each with 5 to 30 mock casualties. The experimental and control groups were alternated to maximize exposure and minimize training effects. Results were analyzed with Mann-Whitney statistical analysis with p value < 0.05 (two-sided). The ATC method had significantly (p = 0.017) fewer errors in critical patient data (eg, name, social security number, diagnosis). Specifically, the ATC method better tracked the mechanism of injury, working diagnosis, and disposition of patients. The ATC method also performed considerably better with patient accountability during mass casualty scenarios. Data strips were comparable with the control method in terms of ease of use. In addition, participants preferred the ATC method to the control (p = 0.003) and preferred using the ATC method (p = 0.003) to traditional methods in the future. The ATC model more effectively tracked patient data with fewer errors when compared with the clipboard method. Application of these principles can enhance trauma management and can have application in civilian and military trauma centers and emergency rooms.

  19. Fermion Cooper pairing with unequal masses: Standard field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Lianyi; Jin Meng; Zhuang Pengfei

    Fermion Cooper pairing with unequal masses is investigated in a standard field theory approach. We derived the superfluid density and Meissner mass squared of the U(1) gauge field in a general two-species model and found that the often used proportional relation between the two quantities is broken when the fermion masses are unequal. In the weak-coupling region, the superfluid density is always negative but the Meissner mass squared becomes mostly positive when the mass ratio between the pairing fermions is large enough. We established a proper momentum configuration of the LOFF pairing with unequal masses and showed that the LOFFmore » state is energetically favored due to the negative superfluid density. The single-plane-wave LOFF state is physically equivalent to an anisotropic state with a spontaneously generated superflow. The extension to a finite-range interaction is briefly discussed.« less

  20. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    PubMed Central

    Olives, Casey; Kim, Sun-Young; Sheppard, Lianne; Sampson, Paul D.; Szpiro, Adam A.; Oron, Assaf P.; Lindström, Johan; Vedal, Sverre; Kaufman, Joel D.

    2014-01-01

    Background: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time. Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Methods: We obtained monitoring data from regulatory networks and supplemented those data with study-specific measurements collected from MESA Air community locations and participants’ homes. In each region, we applied a spatiotemporal model that included a long-term spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The mean structure was derived from a large set of geographic covariates that was reduced using partial least-squares regression. We estimated time trends from observed time series and used spatial smoothing methods to borrow strength between observations. Results: Prediction accuracy was high for most models, with cross-validation R2 (R2CV) > 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall R2CV ranged from 0.45 to 0.92, and temporally adjusted R2CV ranged from 0.23 to 0.92. Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale predictions in multiple regions for four pollutants. We have generated participant-specific predictions for MESA Air to investigate health effects of long-term air pollution exposures. These successes highlight modeling advances that can be adopted more widely in modern cohort studies. Citation: Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindström J, Vedal S, Kaufman JD. 2015. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the Multi

  1. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  2. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  3. An anthropometric model to estimate neonatal fat mass using air displacement plethysmography

    PubMed Central

    2012-01-01

    Background Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD® Infant Body Composition System) as the criterion. Methods A total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD® were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass. Results The statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)2 + 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R2 = 0.81, MSE = 0.08 kg. Conclusions Our anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance. PMID:22436534

  4. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Mass balance approaches to understanding evolution of dripwater chemistry

    NASA Astrophysics Data System (ADS)

    Fairchild, I. J.; Baker, A.; Andersen, M. S.; Treble, P. C.

    2015-12-01

    Forward and inverse modelling of dripwater chemistry is a fast-developing area in speleothem science. Such approaches can incorporate theoretical, parameterized or observed relationships between forcing factors and water composition, but at the heart is mass balance: a fundamental principle that provides important constraints. Mass balance has been used in speleothem studies to trace the evolution of dissolved inorganic carbon and carbon isotopes from soil to cave, and to characterize the existence and quantification of prior calcite precipitation (PCP) based on ratios of Mg and Sr to Ca. PCP effects can dominate slow drips, whereas fast drips are more likely to show a residual variability linked to soil-biomass processes. A possible configuration of a more complete mass balance model is illustrated in the figure. Even in humid temperate climates, evapotranspiration can be 50% of total atmospheric precipitation leading to substantially raised salt contents and there can be significant exchange with biomass. In more arid settings, at least seasonal soil storage of salts is likely. Golgotha Cave in SW Australia is in a Mediterranean climate with a strong summer soil moisture deficit. The land surface is forested leading to large ion fluxes related to vegetation. There are also periodic disturbances related to fire. Mass balance approaches have been applied to an 8-year monitoring record. Inter-annual trends of elements coprecipitated in speleothems from fast drips are predicted to be dominated by biomass effects.

  6. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  7. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  8. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.

    2001-06-01

    Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.

  9. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  10. TESTING INDOOR AIR PRODUCTS: ONE APPROACH TO DEVELOPING WIDELY ACCEPTED PROTOCOLS

    EPA Science Inventory

    The paper describes an approach to developing widely acce ted products for testing indoor air products. [NOTE: Research Triangle Institute (RTI) is a partner in the U.S. Environmental Protection Agency's (EPA's) Environmental Technology Verification (ETV) Program with responsibil...

  11. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  12. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  13. An Innovative Approach To Teaching High School Students about Indoor Air Quality.

    ERIC Educational Resources Information Center

    Neumann, Catherine M.; Bloomfield, Molly M.; Harding, Anna K.; Sherburne, Holly

    1999-01-01

    Describes an innovative approach used to help high school students develop critical thinking and real-world problem-solving skills while learning about indoor air quality. (Contains 13 references.) (Author/WRM)

  14. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how

  15. The Air Blast Wave from a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  16. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  17. Current approaches used in epidemiologic studies to examine short-term multipollutant air pollution exposures.

    PubMed

    Davalos, Angel D; Luben, Thomas J; Herring, Amy H; Sacks, Jason D

    2017-02-01

    Air pollution epidemiology traditionally focuses on the relationship between individual air pollutants and health outcomes (e.g., mortality). To account for potential copollutant confounding, individual pollutant associations are often estimated by adjusting or controlling for other pollutants in the mixture. Recently, the need to characterize the relationship between health outcomes and the larger multipollutant mixture has been emphasized in an attempt to better protect public health and inform more sustainable air quality management decisions. New and innovative statistical methods to examine multipollutant exposures were identified through a broad literature search, with a specific focus on those statistical approaches currently used in epidemiologic studies of short-term exposures to criteria air pollutants (i.e., particulate matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and ozone). Five broad classes of statistical approaches were identified for examining associations between short-term multipollutant exposures and health outcomes, specifically additive main effects, effect measure modification, unsupervised dimension reduction, supervised dimension reduction, and nonparametric methods. These approaches are characterized including advantages and limitations in different epidemiologic scenarios. By highlighting the characteristics of various studies in which multipollutant statistical methods have been used, this review provides epidemiologists and biostatisticians with a resource to aid in the selection of the most optimal statistical method to use when examining multipollutant exposures. Published by Elsevier Inc.

  18. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  19. MICA-AIR: A PARTICIPANT-BASED APPROACH TO EXPOSURE ASSESSMENT IN EPIDEMIOLOGIC AND COMMUNITY HEALTH STUDIES

    EPA Science Inventory

    Objective. Epidemiologic and community health studies of traffic-related air pollution and childhood asthma have been limited by resource intensive exposure assessment techniques. The current study utilized a novel participant-based approach to collect air monitoring data f...

  20. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  1. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.

    2014-12-01

    Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.

  2. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  3. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  4. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  5. Hybrid Modeling Approach to Estimate Exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA).

    PubMed

    Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard

    2016-11-15

    A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.

  6. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  7. Relationship Between Chronic Obstructive Pulmonary Disease and Air Pollutants Depending on the Origin and Trajectory of Air Masses in the North of Spain.

    PubMed

    Santurtún, Ana; Rasilla, Domingo F; Riancho, Leyre; Zarrabeitia, María T

    2017-11-01

    Chronic obstructive pulmonary disease (COPD) is a common respiratory condition and one of the leading causes of death. Our aim was to analyze the association between emergency room visits due to this disease and meteorological variables and atmospheric contaminant levels in Santander, depending on the origin and trajectory of air masses. Data from emergency room visits at Hospital Marqués de Valdecilla were collected on a daily basis during an 8-year period. Data on concentrations of the main atmospheric pollutants and meteorological variables were also recorded.Retrotrajectories leading to Santander at a height of1,500 meters above sea level were then calculated. Finally, a correlation model was produced to evaluate the effect of the contaminants on emergency visitsdue to COPD. There is a direct association between PM 10 levels and the number of visits to the emergency room due to COPD. For every 10μg/m3 increase in pollutantlevels, emergency visitsincrease by3.34% (p=0.00005), and thiseffect is enhanced in individualsover 74 years of age. This effect is heightened when PM10 levels depend on air masses from the South and when air recirculation occurs. There is no association betweenother pollutants and the number of visits to the emergency room. Exposure to high levels of PM10 causes exacerbations in COPD patients. By studying the atmospheric circulation pattern, we can predict whether PM10 levels will be inappropriately high, and we can also obtain information about the particle components. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    NASA Astrophysics Data System (ADS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D. D.; Reeves, C. E.; Schlager, H.; Atlas, E.; Blake, D. R.; Coe, H.; Crosier, J.; Flocke, F. M.; Holloway, J. S.; Hopkins, J. R.; McQuaid, J.; Purvis, R.; Rappenglück, B.; Singh, H. B.; Watson, N. M.; Whalley, L. K.; Williams, P. I.

    2006-12-01

    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches" is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.

  9. Comparison of ocean mass content change from direct and inversion based approaches

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Kusche, Jürgen; Rietbroek, Roelof

    2017-04-01

    The GRACE satellite mission provides an indispensable tool for measuring oceanic mass variations. Such time series are essential to separate global mean sea level rise in thermosteric and mass driven contributions, and thus to constrain ocean heat content and (deep) ocean warming when viewed together with altimetry and Argo data. However, published estimates over the GRACE era differ, not only depending on the time window considered. Here, we will look into sources of such differences with direct and inverse approaches. Deriving ocean mass time series requires several processing steps; choosing a GRACE (and altimetry and Argo) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion need to be accounted for. In this study, we quantify the effects of individual processing choices and assumptions of the direct and inversion based approaches to derive ocean mass content change. Furthermore, we compile the different estimates from existing literature and sources, to highlight the differences.

  10. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  11. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  12. Defining an Approach for Future Close Air Support Capability

    DTIC Science & Technology

    2017-01-01

    may take on the form of a force-mix study that considers multiple joint scenarios and missions. viii Acknowledgments The authors would like to thank...the Army and other services on an approach for defining future CAS capability. 9 Colin Clark, “Air...unit; one British soldier was killed, and five others were wounded.15 Only one A-10 was shot down during all of OIF and OEF. However, it should be

  13. Deference, Denial, and Beyond: A Repertoire Approach to Mass Media and Schooling

    ERIC Educational Resources Information Center

    Rymes, Betsy

    2011-01-01

    In this article, the author outlines two general research approaches, within the education world, to these mass-mediated formations: "Deference" and "Denial." Researchers who recognize the social practices that give local meaning to mass media formations and ways of speaking do not attempt to recontextualize youth media in their own social…

  14. Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2017-11-01

    For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.

  15. Practical Advancement of Multipollutant Scientific and Risk Assessment Approaches for Ambient Air Pollution

    PubMed Central

    Johns, Douglas O.; Walker, Katherine; Benromdhane, Souad; Hubbell, Bryan; Ross, Mary; Devlin, Robert B.; Costa, Daniel L.; Greenbaum, Daniel S.

    2012-01-01

    Objectives: The U.S. Environmental Protection Agency is working toward gaining a better understanding of the human health impacts of exposure to complex air pollutant mixtures and the key features that drive the toxicity of these mixtures, which can then be used for future scientific and risk assessments. Data sources: A public workshop was held in Chapel Hill, North Carolina, 22–24 February 2011, to discuss scientific issues and data gaps related to adopting multipollutant science and risk assessment approaches, with a particular focus on the criteria air pollutants. Expert panelists in the fields of epidemiology, toxicology, and atmospheric and exposure sciences led open discussions to encourage workshop participants to think broadly about available and emerging scientific evidence related to multipollutant approaches to evaluating the health effects of air pollution. Synthesis: Although there is clearly a need for novel research and analytical approaches to better characterize the health effects of multipollutant exposures, much progress can be made by using existing scientific information and statistical methods to evaluate the effects of single pollutants in a multipollutant context. This work will have a direct impact on the development of a multipollutant science assessment and a conceptual framework for conducting multipollutant risk assessments. Conclusions: Transitioning to a multipollutant paradigm can be aided through the adoption of a framework for multipollutant science and risk assessment that encompasses well-studied and ubiquitous air pollutants. Successfully advancing methods for conducting these assessments will require collaborative and parallel efforts between the scientific and environmental regulatory and policy communities. PMID:22645280

  16. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  17. Structure and Composition of Air-Plane Soots and Surrogates Analyzed by Raman Spectroscopy and Laser/Ions Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ortega, Ismael; Chazallon, Bertrand; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier; Salm, François; Delhaye, David; Gaffié, Daniel; Yon, Jérôme

    2015-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. An aircraft exhaust plume contains species emitted by the engines, species formed in the plume from the emitted species and atmospheric species that become entrained into the plume. The majority of emitted species (gases and soot particles) are produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Emissions of soot particles by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied since many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. Most likely one of the reasons behind these discrepancies resides in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g. with respect to fuel or combustion techniques. In this work, we use Raman microscopy (266, 514 and 785 nm excitation) and ablation techniques (SIMS, Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particles produced from air-plane at different engine regimes simulating a landing and taking-off (LTO) cycle. First, the spectral parameters of the first-order Raman band of various soot samples, collected from three different sources in the frame of the MERMOSE project (http://mermose.onera.fr/): PowerJet SaM-146 turbofan (four engine regimes), CAST generator (propane fuel, four different global equivalence ratios), and Kerosene laboratory flame

  18. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  19. A Fuzzy Approach of the Competition on the Air Transport Market

    NASA Technical Reports Server (NTRS)

    Charfeddine, Souhir; DeColigny, Marc; Camino, Felix Mora; Cosenza, Carlos Alberto Nunes

    2003-01-01

    The aim of this communication is to study with a new scope the conditions of the equilibrium in an air transport market where two competitive airlines are operating. Each airline is supposed to adopt a strategy maximizing its profit while its estimation of the demand has a fuzzy nature. This leads each company to optimize a program of its proposed services (frequency of the flights and ticket prices) characterized by some fuzzy parameters. The case of monopoly is being taken as a benchmark. Classical convex optimization can be used to solve this decision problem. This approach provides the airline with a new decision tool where uncertainty can be taken into account explicitly. The confrontation of the strategies of the companies, in the ease of duopoly, leads to the definition of a fuzzy equilibrium. This concept of fuzzy equilibrium is more general and can be applied to several other domains. The formulation of the optimization problem and the methodological consideration adopted for its resolution are presented in their general theoretical aspect. In the case of air transportation, where the conditions of management of operations are critical, this approach should offer to the manager elements needed to the consolidation of its decisions depending on the circumstances (ordinary, exceptional events,..) and to be prepared to face all possibilities. Keywords: air transportation, competition equilibrium, convex optimization , fuzzy modeling,

  20. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  1. Annular Air Leaks in a liquid hydrogen storage tank

    NASA Astrophysics Data System (ADS)

    Krenn, AG; Youngquist, RC; Starr, SO

    2017-12-01

    Large liquid hydrogen (LH2) storage tanks are vital infrastructure for NASA, the DOD, and industrial users. Over time, air may leak into the evacuated, perlite filled annular region of these tanks. Once inside, the extremely low temperatures will cause most of the air to freeze. If a significant mass of air is allowed to accumulate, severe damage can result from nominal draining operations. Collection of liquid air on the outer shell may chill it below its ductility range, resulting in fracture. Testing and analysis to quantify the thermal conductivity of perlite that has nitrogen frozen into its interstitial spaces and to determine the void fraction of frozen nitrogen within a perlite/frozen nitrogen mixture is presented. General equations to evaluate methods for removing frozen air, while avoiding fracture, are developed. A hypothetical leak is imposed on an existing tank geometry and a full analysis of that leak is detailed. This analysis includes a thermal model of the tank and a time-to-failure calculation. Approaches to safely remove the frozen air are analyzed, leading to the conclusion that the most feasible approach is to allow the frozen air to melt and to use a water stream to prevent the outer shell from chilling.

  2. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  3. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  4. Headspace screening of fluid obtained from the gut during colonoscopy and breath analysis by proton transfer reaction-mass spectrometry: A novel approach in the diagnosis of gastro-intestinal diseases

    NASA Astrophysics Data System (ADS)

    Lechner, M.; Colvin, H. P.; Ginzel, C.; Lirk, P.; Rieder, J.; Tilg, H.

    2005-05-01

    Background: The diagnosis of many gastro-intestinal diseases is difficult and can often be confirmed only by using invasive diagnostic means. In contrast, the headspace screening of fluid obtained from the gut during colonoscopy and the analysis of exhaled air may be a novel approach for the diagnosis of these diseases.Materials and methods: The screening was performed by using proton transfer reaction-mass spectrometry (PTR-MS) which allows rapid and sensitive measurement. Fluid samples obtained from the gut during colonoscopy were collected from 76 and breath samples from 70 subjects. Mass spectra of healthy controls were created. Afterwards these spectra were compared with those of patients suffering from inflammatory bowel diseases (IBD; Crohn's disease and ulcerative colitis; n = 10) and irritable bowel syndrome (IBS; n = 7).Results: Significant differences in the mass spectra could be observed both in the headspace of the fluid and in the exhaled air comparing patients with healthy controls.Conclusions: This study is the first describing headspace screening of fluid obtained from the gut during colonoscopy, possibly presenting a novel diagnostic tool in the differential diagnosis of gastro-intestinal diseases.

  5. On the validity of the incremental approach to estimate the impact of cities on air quality

    NASA Astrophysics Data System (ADS)

    Thunis, Philippe

    2018-01-01

    The question of how much cities are the sources of their own air pollution is not only theoretical as it is critical to the design of effective strategies for urban air quality planning. In this work, we assess the validity of the commonly used incremental approach to estimate the likely impact of cities on their air pollution. With the incremental approach, the city impact (i.e. the concentration change generated by the city emissions) is estimated as the concentration difference between a rural background and an urban background location, also known as the urban increment. We show that the city impact is in reality made up of the urban increment and two additional components and consequently two assumptions need to be fulfilled for the urban increment to be representative of the urban impact. The first assumption is that the rural background location is not influenced by emissions from within the city whereas the second requires that background concentration levels, obtained with zero city emissions, are equal at both locations. Because the urban impact is not measurable, the SHERPA modelling approach, based on a full air quality modelling system, is used in this work to assess the validity of these assumptions for some European cities. Results indicate that for PM2.5, these two assumptions are far from being fulfilled for many large or medium city sizes. For this type of cities, urban increments are largely underestimating city impacts. Although results are in better agreement for NO2, similar issues are met. In many situations the incremental approach is therefore not an adequate estimate of the urban impact on air pollution. This poses issues in terms of interpretation when these increments are used to define strategic options in terms of air quality planning. We finally illustrate the interest of comparing modelled and measured increments to improve our confidence in the model results.

  6. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  7. A cost-efficiency and health benefit approach to improve urban air quality.

    PubMed

    Miranda, A I; Ferreira, J; Silveira, C; Relvas, H; Duque, L; Roebeling, P; Lopes, M; Costa, S; Monteiro, A; Gama, C; Sá, E; Borrego, C; Teixeira, J P

    2016-11-01

    When ambient air quality standards established in the EU Directive 2008/50/EC are exceeded, Member States are obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken to improve air quality in a sustainable way - i.e. through a cost-efficiency approach. This work was developed in the scope of the recently concluded MAPLIA project "Moving from Air Pollution to Local Integrated Assessment", and focuses on the definition and assessment of emission abatement measures and their associated costs, air quality and health impacts and benefits by means of air quality modelling tools, health impact functions and cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures lead to a total net benefit of 0.3M€·y(-1). The largest net benefit is obtained for the scenario considering the conversion of 50% of open fire places into heat recovery wood stoves. Although the implementation costs of this measure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for policy decision support on air quality improvement strategies, and could be applied to other urban areas where AQP need to be implemented and monitored. Copyright © 2016. Published by Elsevier B.V.

  8. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  9. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source.

    PubMed

    Usmanov, Dilshadbek T; Hiraoka, Kenzo; Wada, Hiroshi; Matsumura, Masaya; Sanada-Morimura, Sachiyo; Nonami, Hiroshi; Yamabe, Shinichi

    2017-06-22

    Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min -1 ). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A preference-ordered discrete-gaming approach to air-combat analysis

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1978-01-01

    An approach to one-on-one air-combat analysis is described which employs discrete gaming of a parameterized model featuring choice between several closed-loop control policies. A preference-ordering formulation due to Falco is applied to rational choice between outcomes: win, loss, mutual capture, purposeful disengagement, draw. Approximate optimization is provided by an active-cell scheme similar to Falco's obtained by a 'backing up' process similar to that of Kopp. The approach is designed primarily for short-duration duels between craft with large-envelope weaponry. Some illustrative computations are presented for an example modeled using constant-speed vehicles and very rough estimation of energy shifts.

  11. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  12. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2007-01-01

    The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.

  13. Life support approaches for Mars missions

    NASA Astrophysics Data System (ADS)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  14. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  15. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  16. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  17. Stochastic Convection Parameterizations: The Eddy-Diffusivity/Mass-Flux (EDMF) Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2013-12-01

    In this presentation it is argued that moist convection parameterizations need to be stochastic in order to be realistic - even in deterministic atmospheric prediction systems. A new unified convection and boundary layer parameterization (EDMF) that optimally combines the Eddy-Diffusivity (ED) approach for smaller-scale boundary layer mixing with the Mass-Flux (MF) approach for larger-scale plumes is discussed. It is argued that for realistic simulations stochastic methods have to be employed in this new unified EDMF. Positive results from the implementation of the EDMF approach in atmospheric models are presented.

  18. Interrelationships Between Walkability, Air Pollution, Greenness, and Body Mass Index.

    PubMed

    James, Peter; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Banay, Rachel F; Kloog, Itai; Laden, Francine

    2017-11-01

    Recent studies have linked urban environmental factors and body mass index (BMI); however, such factors are often examined in isolation, ignoring correlations across exposures. Using data on Nurses' Health Study participants living in the Northeastern United States in 2006, we estimated associations between neighborhood walkability (a composite of population density, street connectivity, and business access), greenness (from satellite imagery), and ambient air pollution (from satellite-based spatiotemporally resolved PM2.5 predictions and weighted monthly average concentrations of NO2 from up to five nearest monitors) and self-reported BMI using generalized additive models, allowing for deviations from linearity using penalized splines. Among 23,435 women aged 60-87 years, we observed nonlinear associations between walkability and BMI and between PM2.5 and BMI in single-exposure models adjusted for age, race, and individual- and area-level socioeconomic status. When modeling all exposures simultaneously, only the association between walkability and BMI remained nonlinear and nonmonotonic. Increasing walkability was associated with increasing BMI at lower levels of walkability (walkability index <1.8), while increasing walkability was linked to lower BMI in areas of higher walkability (walkability index >1.8). A 10 percentile increase in walkability, right above 1.8 was associated with a 0.84% decrease in log BMI. The relationship between walkability and BMI existed only among younger participants (<71 years old). Neighborhood walkability was nonlinearly linked to lower BMI independent of air pollution and greenness. Our findings highlight the importance of accounting for nonlinear confounding by interrelated urban environmental factors when investigating associations between the environment and BMI.

  19. Approaches to lunar base life support

    NASA Technical Reports Server (NTRS)

    Brown, M. F.; Edeen, M. A.

    1990-01-01

    Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.

  20. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory


    STRUCTURE-ACTIVITY APPROACHES AND DATA EXPLORATION TOOLS FOR PRIORITIZING AND ASSESSING THE TOXICITY OF HAZARDOUS AIR POLLUTANTS

    Hazardous Air Pollutants (HAPs) refers to a set of structurally diverse environmental chemicals, many with limited toxicity data, that have...

  2. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  3. Rubbertown Next Generation Emission Measurement Demonstration Project Provides Innovative Approaches to Protecting Air Quality

    EPA Pesticide Factsheets

    EPA and the Louisville Metro Air Pollution Control District (LMAPCD) are working together on a research project to demonstrate NGEM approaches near facilities in the Rubbertown industrial area of Louisville, KY.

  4. Life support approaches for Mars missions

    NASA Technical Reports Server (NTRS)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    2003-01-01

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Life support approaches for Mars missions.

    PubMed

    Drysdale, A E; Ewert, M K; Hanford, A J

    2003-01-01

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  6. Multicriteria methodological approach to manage urban air pollution

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Achillas, Ch.; Moussiopoulos, N.; Banias, G.

    2011-08-01

    Managing urban air pollution necessitates a feasible and efficient abatement strategy which is characterised as a defined set of specific control measures. In practice, hard budget constraints are present in any decision-making process and therefore available alternatives need to be hierarchised in a fast but still reliable manner. Moreover, realistic strategies require adequate information on the available control measures, taking also into account the area's special characteristics. The selection of the most applicable bundle of measures rests in achieving stakeholders' consensus, while taking into consideration mutually conflicting views and criteria. A preliminary qualitative comparison of alternative control measures would be most handy for decision-makers, forming the grounds for an in-depth analysis of the most promising ones. This paper presents an easy-to-follow multicriteria methodological approach in order to include and synthesise multi-disciplinary knowledge from various stakeholders so as to result into a priority list of abatement options, achieve consensus and secure the adoption of the resulting optimal solution. The approach relies on the active involvement of public authorities and local stakeholders in order to incorporate their environmental, economic and social preferences. The methodological scheme is implemented for the case of Thessaloniki, Greece, an area considered among the most polluted cities within Europe, especially with respect to airborne particles. Intense police control, natural gas penetration in buildings and metro construction equally result into the most "promising" alternatives in order to control air pollution in the GTA. The three optimal alternatives belong to different thematic areas, namely road transport, thermal heating and infrastructure. Thus, it is obvious that efforts should spread throughout all thematic areas. Natural gas penetration in industrial units, intense monitoring of environmental standards and regular

  7. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    NASA Astrophysics Data System (ADS)

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  8. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  9. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia.

    PubMed

    Noh, Young M; Müller, Detlef; Lee, Hanlim; Lee, Kwonho; Kim, Young Joon

    2012-08-01

    The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low Ångström exponent (<0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest Ångström exponents (α) at Gwangju and Anmyeon were 1.43 ± 0.30 and 1.49 ± 0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (ω) at 440 nm observed at Gwangju and Anmyeon were 0.89 ± 0.02 and 0.88 ± 0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest ω values at Gwangju and Anmyeon were 0.95 ± 0.02 and 0.96 ± 0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (β) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

  10. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  11. Heat and mass transfer analogy for condensation of humid air in a vertical channel

    NASA Astrophysics Data System (ADS)

    Desrayaud, G.; Lauriat, G.

    This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.

  12. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  13. The Crossbow Air Launch Trade Space

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.; Sorensen, Kirk F.

    2006-01-01

    Effective air launching of a rocket is approached from a broad systems engineering viewpoint. The elementary reasons for why and how a rocket might be launched from a carrier aircraft are examined. From this, a carefully crafted set of guiding principles is presented. Rules are generated from a fundamental foundation, derived from NASA systems study analyses and from an academic vantage point. The Appendix includes the derivation of a revised Mass Multiplier Equation, useful in understanding the rocket equation as it applies to real vehicles, without the need of complicated weight and sizing programs. The rationale for air launching, being an enormously advantageous Earth-To-Orbit (ETO) methodology, is presented along with the realization that the appropriate air launch solution may lie in a very large class of carrier aircraft; the pod-hauler. Finally, a unique area of the system trade space is defined and branded Crossbow. Crossbow is not a specific hardware design for air launch, but represents a comprehensive vision for commercial, military and space transportation. This document serves as a starting point for future technical papers that evaluate the air launch hypotheses and assertions produced during the past several years of study on the subject.

  14. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Lin, Neng-Huei; Sheu, Guey-Rong; Wang, Jia-Lin; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Chi, Kai Hsien; Young, Chea-Yuan; Huang, Hill; Chen, Horng-Wen; Weng, Guo-Hau; Lai, Sin-Yu; Hsu, Shao-Peng; Chang, Yu-Jia; Chang, Jia-Hon; Wu, Xyue-Chang

    2014-06-01

    Eight carbonaceous fractions from aerosols were resolved using the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Chow et al., 1993). The aerosols were collected at the Mountain Lulin Atmospheric Background Station (Mt. Lulin, 2862 m a.s.l.) in Central Taiwan from April 2003 to April 2012. The monthly and yearly levels of organic carbon (OC) and elemental carbon (EC) varied consistently with PM2.5 mass concentrations during biomass burning (BB) period. The highest monthly carbonaceous content was observed in March and the highest yearly carbonaceous concentration was observed in 2007. This finding is consistent with the BB activity in Indochina and indicates that carbonaceous content is a major component of BB aerosols. Lee et al. (2011) classified four trajectory groups from the air masses transported to Mt. Lulin during the aerosol collection period. For the air masses transported from the BB area (the BB group) in Indochina, the carbonaceous content was greater than the water-soluble ions in PM2.5, and the OC/EC ratio (4.8 ± 1.5) was high. With EC as the indicator of primary emission sources, the air masses of the BB group were found to contain more primary than secondary OC. The Anthropogenic group (from the local and free troposphere below the 700-hPa pressure level over the Asian continent) probably contained more secondary than primary OC or the sources of OC and EC could be quite diverse. The average char-EC/soot-EC (low-temperature EC/high-temperature EC) ratios were 3.9 ± 3.5, 0.4 ± 0.4, 0.9 ± 0.8, and 0.3 ± 0.4 for the trajectory groups BB, SNBB (from BB source areas during the non-BB period), Anthropogenic, and FT (from the oceanic area and the free troposphere above the 700-hPa pressure level over the Asian continent), respectively. The presence of a high char-EC/soot-EC ratio confirmed the correct classification of the BB group, whereas the low ratios from the other groups indicated the strong influence of vehicle

  15. Extratropical Stratosphere-Troposphere Mass Exchange

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.

  16. Research approaches to mass casualty incidents response: development from routine perspectives to complexity science.

    PubMed

    Shen, Weifeng; Jiang, Libing; Zhang, Mao; Ma, Yuefeng; Jiang, Guanyu; He, Xiaojun

    2014-01-01

    To review the research methods of mass casualty incident (MCI) systematically and introduce the concept and characteristics of complexity science and artificial system, computational experiments and parallel execution (ACP) method. We searched PubMed, Web of Knowledge, China Wanfang and China Biology Medicine (CBM) databases for relevant studies. Searches were performed without year or language restrictions and used the combinations of the following key words: "mass casualty incident", "MCI", "research method", "complexity science", "ACP", "approach", "science", "model", "system" and "response". Articles were searched using the above keywords and only those involving the research methods of mass casualty incident (MCI) were enrolled. Research methods of MCI have increased markedly over the past few decades. For now, dominating research methods of MCI are theory-based approach, empirical approach, evidence-based science, mathematical modeling and computer simulation, simulation experiment, experimental methods, scenario approach and complexity science. This article provides an overview of the development of research methodology for MCI. The progresses of routine research approaches and complexity science are briefly presented in this paper. Furthermore, the authors conclude that the reductionism underlying the exact science is not suitable for MCI complex systems. And the only feasible alternative is complexity science. Finally, this summary is followed by a review that ACP method combining artificial systems, computational experiments and parallel execution provides a new idea to address researches for complex MCI.

  17. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    NASA Astrophysics Data System (ADS)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (<30 min) in an urban community. Based on traffic and particulate matter (PM) source information, we selected 4 neighborhoods to study. The sampling activities utilized real-time monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5]

  18. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  19. A Systems Engineering Approach in Providing Air Defense Support to Ground Combat Vehicle Maneuver Forces

    DTIC Science & Technology

    2015-03-01

    Defense DODAF Department of Defense Architecture Framework DOE design of experiment EMMI energy , mass, material wealth, information FNF fire and... energy or blast power (depending on the type of projectile). Tank munitions have significant penetrative ability and can cause serious damage to...survivability of ground combat vehicles during ground force maneuver operations. The simulation results indicated that the presence of air defense

  20. Functional phosphoproteomic mass spectrometry-based approaches

    PubMed Central

    2012-01-01

    Mass Spectrometry (MS)-based phosphoproteomics tools are crucial for understanding the structure and dynamics of signaling networks. Approaches such as affinity purification followed by MS have also been used to elucidate relevant biological questions in health and disease. The study of proteomes and phosphoproteomes as linked systems, rather than research studies of individual proteins, are necessary to understand the functions of phosphorylated and un-phosphorylated proteins under spatial and temporal conditions. Phosphoproteome studies also facilitate drug target protein identification which may be clinically useful in the near future. Here, we provide an overview of general principles of signaling pathways versus phosphorylation. Likewise, we detail chemical phosphoproteomic tools, including pros and cons with examples where these methods have been applied. In addition, basic clues of electrospray ionization and collision induced dissociation fragmentation are detailed in a simple manner for successful phosphoproteomic clinical studies. PMID:23369623

  1. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  2. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  3. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  4. Mass-balance approach for assessing nitrate flux intidal wetlands -- lessons learned

    EPA Science Inventory

    Field experiments were carried out in 2010 and 2011 to assess the nitrate balance in a small tidal slough located in the Yaquina Estuary, Oregon. In 2010 we used a whole-slough, mass-balance approach, while a smaller scale, flume-like experiment in a tidal channel with a dense ...

  5. Sensing the flux of volatile chemicals through the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackay, D.; Schroeder, W.H.; Ooijen, H. von

    1997-12-31

    There are several situations in which there is a need to assess the direction and magnitude of the flux across the air-water interface. Contaminants may be evaporating or absorbing in wastewater treatment systems in natural lake, river, estuarine and marine systems, and any attempt to compile a mass balance must include this process. In this study the authors review the theory underlying air-water exchange, then describe and discuss a sparging approach by which the direction and magnitude of the flux can be ascertained. The principle of the method is that a known flow rate of air is bubbled through themore » sparger and allowed to equilibrate with the water. The gas exiting the water surface is passed through a sorbent trap and later analyzed. The concentration, and hence the fugacity, of the contaminant in the sparged air can be deduced. In parallel, a similar flow of air from the atmosphere above the water is drawn through another sparger at a similar flow rate for a similar time and the trapped chemical analyzed giving the concentration and fugacity in the air. These data show the direction of air-water exchange (i.e. from high to low fugacity) and with information on the mass transfer coefficients and area, the flux. Successful tests were conducted of the system in a laboratory tank, in Lake Ontario and in Hamilton Harbour. Analyses of the traps showed a large number of peaks on the chromatogram many of which are believed to be of petroleum origin from fuels and vessel exhaust. The system will perform best under conditions where concentrations of specific contaminants are large, as occurs in waste water treatment systems. The approach has the potential to contribute to more accurate assessment of air-water fluxes. It avoids the problems of different analytical methodologies and the effect of sorption in the water column.« less

  6. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  7. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  8. A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements

    NASA Astrophysics Data System (ADS)

    Li, K. Betty; Goovaerts, Pierre; Abriola, Linda M.

    2007-06-01

    Contaminant mass discharge across a control plane downstream of a dense nonaqueous phase liquid (DNAPL) source zone has great potential to serve as a metric for the assessment of the effectiveness of source zone treatment technologies and for the development of risk-based source-plume remediation strategies. However, too often the uncertainty of mass discharge estimated in the field is not accounted for in the analysis. In this paper, a geostatistical approach is proposed to estimate mass discharge and to quantify its associated uncertainty using multilevel transect measurements of contaminant concentration (C) and hydraulic conductivity (K). The approach adapts the p-field simulation algorithm to propagate and upscale the uncertainty of mass discharge from the local uncertainty models of C and K. Application of this methodology to numerically simulated transects shows that, with a regular sampling pattern, geostatistics can provide an accurate model of uncertainty for the transects that are associated with low levels of source mass removal (i.e., transects that have a large percentage of contaminated area). For high levels of mass removal (i.e., transects with a few hot spots and large areas of near-zero concentration), a total sampling area equivalent to 6˜7% of the transect is required to achieve accurate uncertainty modeling. A comparison of the results for different measurement supports indicates that samples taken with longer screen lengths may lead to less accurate models of mass discharge uncertainty. The quantification of mass discharge uncertainty, in the form of a probability distribution, will facilitate risk assessment associated with various remediation strategies.

  9. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  10. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column

  11. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  12. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air.

  13. A new approach in the derivation of relativistic variation of mass with speed

    NASA Astrophysics Data System (ADS)

    Dikshit, Biswaranjan

    2015-05-01

    The expression for relativistic variation of mass with speed has been derived in the literature in the following ways: by considering the principles of electrodynamics; by considering elastic collision between two identical particles in which momentum and energy are conserved; or by more advanced methods such as the Lagrangian approach. However, in this paper, the same expression is derived simply by applying the law of conservation of momentum to the motion of a single particle that is subjected to a force (which may be non-electromagnetic) at some point in its trajectory. The advantage of this method is that, in addition to being simple, we can observe how the mass is increased from rest mass to relativistic mass when the speed is changed from 0 to a value of v, as only a single particle is involved in the analysis. This is in contrast to the two particles considered in most text books, in which one represents rest mass and the other represents relativistic mass.

  14. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  15. Measurement of spatial and temporal variation in volatile hazardous air pollutants in Tacoma, Washington, using a mobile membrane introduction mass spectrometry (MIMS) system.

    PubMed

    Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G

    2014-09-19

    The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.

  16. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  17. A GIS-based multi-source and multi-box modeling approach (GMSMB) for air pollution assessment--a North American case study.

    PubMed

    Wang, Bao-Zhen; Chen, Zhi

    2013-01-01

    This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.

  18. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    PubMed

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  19. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  1. Different top-down approaches to estimate measurement uncertainty of whole blood tacrolimus mass concentration values.

    PubMed

    Rigo-Bonnin, Raül; Blanco-Font, Aurora; Canalias, Francesca

    2018-05-08

    Values of mass concentration of tacrolimus in whole blood are commonly used by the clinicians for monitoring the status of a transplant patient and for checking whether the administered dose of tacrolimus is effective. So, clinical laboratories must provide results as accurately as possible. Measurement uncertainty can allow ensuring reliability of these results. The aim of this study was to estimate measurement uncertainty of whole blood mass concentration tacrolimus values obtained by UHPLC-MS/MS using two top-down approaches: the single laboratory validation approach and the proficiency testing approach. For the single laboratory validation approach, we estimated the uncertainties associated to the intermediate imprecision (using long-term internal quality control data) and the bias (utilizing a certified reference material). Next, we combined them together with the uncertainties related to the calibrators-assigned values to obtain a combined uncertainty for, finally, to calculate the expanded uncertainty. For the proficiency testing approach, the uncertainty was estimated in a similar way that the single laboratory validation approach but considering data from internal and external quality control schemes to estimate the uncertainty related to the bias. The estimated expanded uncertainty for single laboratory validation, proficiency testing using internal and external quality control schemes were 11.8%, 13.2%, and 13.0%, respectively. After performing the two top-down approaches, we observed that their uncertainty results were quite similar. This fact would confirm that either two approaches could be used to estimate the measurement uncertainty of whole blood mass concentration tacrolimus values in clinical laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  3. Whole air canister sampling coupled with preconcentration GC/MS analysis of part-per-trillion levels of trimethylsilanol in semiconductor cleanroom air.

    PubMed

    Herrington, Jason S

    2013-08-20

    The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.

  4. A Novel Approach to Model the Air-Side Heat Transfer in Microchannel Condensers

    NASA Astrophysics Data System (ADS)

    Martínez-Ballester, S.; Corberán, José-M.; Gonzálvez-Maciá, J.

    2012-11-01

    The work presents a model (Fin1D×3) for microchannel condensers and gas coolers. The paper focusses on the description of the novel approach employed to model the air-side heat transfer. The model applies a segment-by-segment discretization to the heat exchanger adding, in each segment, a specific bi-dimensional grid to the air flow and fin wall. Given this discretization, the fin theory is applied by using a continuous piecewise function for the fin wall temperature. It allows taking into account implicitly the heat conduction between tubes along the fin, and the unmixed air influence on the heat capacity. The model has been validated against experimental data resulting in predicted capacity errors within ± 5%. Differences on prediction results and computational cost were studied and compared with the previous authors' model (Fin2D) and with other simplified model. Simulation time of the proposed model was reduced one order of magnitude respect the Fin2D's time retaining its same accuracy.

  5. Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.

    2018-02-01

    Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.

  6. Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter.

    PubMed

    Kunenkov, Erast V; Kononikhin, Alexey S; Perminova, Irina V; Hertkorn, Norbert; Gaspar, Andras; Schmitt-Kopplin, Philippe; Popov, Igor A; Garmash, Andrew V; Nikolaev, Evgeniy N

    2009-12-15

    The ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrum of natural organic matter (NOM) contains several thousand peaks with dozens of molecules matching the same nominal mass. Such a complexity poses a significant challenge for automatic data interpretation, in which the most difficult task is molecular formula assignment, especially in the case of heavy and/or multielement ions. In this study, a new universal algorithm for automatic treatment of FTICR mass spectra of NOM and humic substances based on total mass difference statistics (TMDS) has been developed and implemented. The algorithm enables a blind search for unknown building blocks (instead of a priori known ones) by revealing repetitive patterns present in spectra. In this respect, it differs from all previously developed approaches. This algorithm was implemented in designing FIRAN-software for fully automated analysis of mass data with high peak density. The specific feature of FIRAN is its ability to assign formulas to heavy and/or multielement molecules using "virtual elements" approach. To verify the approach, it was used for processing mass spectra of sodium polystyrene sulfonate (PSS, M(w) = 2200 Da) and polymethacrylate (PMA, M(w) = 3290 Da) which produce heavy multielement and multiply-charged ions. Application of TMDS identified unambiguously monomers present in the polymers consistent with their structure: C(8)H(7)SO(3)Na for PSS and C(4)H(6)O(2) for PMA. It also allowed unambiguous formula assignment to all multiply-charged peaks including the heaviest peak in PMA spectrum at mass 4025.6625 with charge state 6- (mass bias -0.33 ppm). Application of the TMDS-algorithm to processing data on the Suwannee River FA has proven its unique capacities in analysis of spectra with high peak density: it has not only identified the known small building blocks in the structure of FA such as CH(2), H(2), C(2)H(2)O, O but the heavier unit at 154.027 amu. The latter was

  7. Time series behaviour of the number of Air Asia passengers: A distributional approach

    NASA Astrophysics Data System (ADS)

    Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman

    2013-09-01

    The common practice to time series analysis is by fitting a model and then further analysis is conducted on the residuals. However, if we know the distributional behavior of time series, the analyses in model identification, parameter estimation, and model checking are more straightforward. In this paper, we show that the number of Air Asia passengers can be represented as a geometric Brownian motion process. Therefore, instead of using the standard approach in model fitting, we use an appropriate transformation to come up with a stationary, normally distributed and even independent time series. An example in forecasting the number of Air Asia passengers will be given to illustrate the advantages of the method.

  8. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; >Tahira Yasmin,

    2013-06-01

    The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.

  9. A hybrid approach to urine drug testing using high-resolution mass spectrometry and select immunoassays.

    PubMed

    McMillin, Gwendolyn A; Marin, Stephanie J; Johnson-Davis, Kamisha L; Lawlor, Bryan G; Strathmann, Frederick G

    2015-02-01

    The major objective of this research was to propose a simplified approach for the evaluation of medication adherence in chronic pain management patients, using liquid chromatography time-of-flight (TOF) mass spectrometry, performed in parallel with select homogeneous enzyme immunoassays (HEIAs). We called it a "hybrid" approach to urine drug testing. The hybrid approach was defined based on anticipated positivity rates, availability of commercial reagents for HEIAs, and assay performance, particularly analytical sensitivity and specificity for drug(s) of interest. Subsequent to implementation of the hybrid approach, time to result was compared with that observed with other urine drug testing approaches. Opioids, benzodiazepines, zolpidem, amphetamine-like stimulants, and methylphenidate metabolite were detected by TOF mass spectrometry to maximize specificity and sensitivity of these 37 drug analytes. Barbiturates, cannabinoid metabolite, carisoprodol, cocaine metabolite, ethyl glucuronide, methadone, phencyclidine, propoxyphene, and tramadol were detected by HEIAs that performed adequately and/or for which positivity rates were very low. Time to result was significantly reduced compared with the traditional approach. The hybrid approach to urine drug testing provides a simplified and analytically specific testing process that minimizes the need for secondary confirmation. Copyright© by the American Society for Clinical Pathology.

  10. Combining Community Engagement and Scientific Approaches in Next-Generation Monitor Siting: The Case of the Imperial County Community Air Network.

    PubMed

    Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul

    2018-03-15

    Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.

  11. Combining Community Engagement and Scientific Approaches in Next-Generation Monitor Siting: The Case of the Imperial County Community Air Network

    PubMed Central

    Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul

    2018-01-01

    Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726

  12. Direct mass spectrometry approaches to characterize polyphenol composition of complex samples.

    PubMed

    Fulcrand, Hélène; Mané, Carine; Preys, Sébastien; Mazerolles, Gérard; Bouchut, Claire; Mazauric, Jean-Paul; Souquet, Jean-Marc; Meudec, Emmanuelle; Li, Yan; Cole, Richard B; Cheynier, Véronique

    2008-12-01

    Lower molecular weight polyphenols including proanthocyanidin oligomers can be analyzed after HPLC separation on either reversed-phase or normal phase columns. However, these techniques are time consuming and can have poor resolution as polymer chain length and structural diversity increase. The detection of higher molecular weight compounds, as well as the determination of molecular weight distributions, remain major challenges in polyphenol analysis. Approaches based on direct mass spectrometry (MS) analysis that are proposed to help overcome these problems are reviewed. Thus, direct flow injection electrospray ionization mass spectrometry analysis can be used to establish polyphenol fingerprints of complex extracts such as in wine. This technique enabled discrimination of samples on the basis of their phenolic (i.e. anthocyanin, phenolic acid and flavan-3-ol) compositions, but larger oligomers and polymers were poorly detectable. Detection of higher molecular weight proanthocyanidins was also restricted with matrix-assisted laser desorption ionization (MALDI) MS, suggesting that they are difficult to desorb as gas-phase ions. The mass distribution of polymeric fractions could, however, be determined by analyzing the mass distributions of bovine serum albumin/proanthocyanidin complexes using MALDI-TOF-MS.

  13. A genetic algorithm approach to estimate glacier mass variations from GRACE data

    NASA Astrophysics Data System (ADS)

    Reimond, Stefan; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten

    2017-04-01

    The application of a genetic algorithm (GA) to the inference of glacier mass variations with a point-mass modeling method is described. GRACE K-band ranging data (available since April 2002) processed at the Graz University of Technology serve as input for this study. The reformulation of the point-mass inversion method in terms of an optimization problem is motivated by two reasons: first, an improved choice of the positions of the modeled point-masses (with a particular focus on the depth parameter) is expected to increase the signal-to-noise ratio. Considering these coordinates as additional unknown parameters (besides from the mass change magnitudes) results in a highly non-linear optimization problem. The second reason is that the mass inversion from satellite tracking data is an ill-posed problem, and hence regularization becomes necessary. The main task in this context is the determination of the regularization parameter, which is typically done by means of heuristic selection rules like, e.g., the L-curve criterion. In this study, however, the challenge of selecting a suitable balancing parameter (or even a matrix) is tackled by introducing regularization to the overall optimization problem. Based on this novel approach, estimations of ice-mass changes in various alpine glacier systems (e.g. Svalbard) are presented and compared to existing results and alternative inversion methods.

  14. An anthropometric approach to characterising neonatal morbidity and body composition, using air displacement plethysmography as a criterion method

    PubMed Central

    Carberry, Angela E.; Turner, Robin M.; Bek, Emily J.; Raynes-Greenow, Camille H.; McEwan, Alistair L.; Jeffery, Heather E.

    2018-01-01

    Background With the greatest burden of infant undernutrition and morbidity in low and middle income countries (LMICs), there is a need for suitable approaches to monitor infants in a simple, low-cost and effective manner. Anthropometry continues to play a major role in characterising growth and nutritional status. Methods We developed a range of models to aid in identifying neonates at risk of malnutrition. We first adopted a logistic regression approach to screen for a composite neonatal morbidity, low and high body fat (BF%) infants. We then developed linear regression models for the estimation of neonatal fat mass as an assessment of body composition and nutritional status. Results We fitted logistic regression models combining up to four anthropometric variables to predict composite morbidity and low and high BF% neonates. The greatest area under receiver-operator characteristic curves (AUC with 95% confidence intervals (CI)) for identifying composite morbidity was 0.740 (0.63, 0.85), resulting from the combination of birthweight, length, chest and mid-thigh circumferences. The AUCs (95% CI) for identifying low and high BF% were 0.827 (0.78, 0.88) and 0.834 (0.79, 0.88), respectively. For identifying composite morbidity, BF% as measured via air displacement plethysmography showed strong predictive ability (AUC 0.786 (0.70, 0.88)), while birthweight percentiles had a lower AUC (0.695 (0.57, 0.82)). Birthweight percentiles could also identify low and high BF% neonates with AUCs of 0.792 (0.74, 0.85) and 0.834 (0.79, 0.88). We applied a sex-specific approach to anthropometric estimation of neonatal fat mass, demonstrating the influence of the testing sample size on the final model performance. Conclusions These models display potential for further development and evaluation in LMICs to detect infants in need of further nutritional management, especially where traditional methods of risk management such as birthweight for gestational age percentiles may be variable

  15. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  16. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  17. The development of an efficient mass balance approach for the purity assignment of organic calibration standards.

    PubMed

    Davies, Stephen R; Alamgir, Mahiuddin; Chan, Benjamin K H; Dang, Thao; Jones, Kai; Krishnaswami, Maya; Luo, Yawen; Mitchell, Peter S R; Moawad, Michael; Swan, Hilton; Tarrant, Greg J

    2015-10-01

    The purity determination of organic calibration standards using the traditional mass balance approach is described. Demonstrated examples highlight the potential for bias in each measurement and the need to implement an approach that provides a cross-check for each result, affording fit for purpose purity values in a timely and cost-effective manner. Chromatographic techniques such as gas chromatography with flame ionisation detection (GC-FID) and high-performance liquid chromatography with UV detection (HPLC-UV), combined with mass and NMR spectroscopy, provide a detailed impurity profile allowing an efficient conversion of chromatographic peak areas into relative mass fractions, generally avoiding the need to calibrate each impurity present. For samples analysed by GC-FID, a conservative measurement uncertainty budget is described, including a component to cover potential variations in the response of each unidentified impurity. An alternative approach is also detailed in which extensive purification eliminates the detector response factor issue, facilitating the certification of a super-pure calibration standard which can be used to quantify the main component in less-pure candidate materials. This latter approach is particularly useful when applying HPLC analysis with UV detection. Key to the success of this approach is the application of both qualitative and quantitative (1)H NMR spectroscopy.

  18. Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis

    NASA Astrophysics Data System (ADS)

    García-Yee, J. S.; Torres-Jardón, R.; Barrera-Huertas, H.; Castro, T.; Peralta, O.; García, M.; Gutiérrez, W.; Robles, M.; Torres-Jaramillo, J. A.; Ortínez-Álvarez, A.; Ruiz-Suárez, L. G.

    2018-03-01

    The role of the Tenango del Aire mountain pass, located southeast of the Mexico City Metropolitan Area (MCMA), in venting the city's air pollution has already been studied from a meteorological standpoint. To better understand the transport of gaseous air pollutants through the Tenango del Aire Pass (TAP), and its influence on the air quality of the MCMA, three mobile air quality monitoring units were deployed during a 31-day field campaign between February and March of 2011. Surface O3, NOx, and meteorological variables were continuously measured at the three sites. Vertical profiles of O3 and meteorological variables were also obtained at one of the sites using a tethered balloon. Days were classified as being under low pressure synoptic systems (LPS, 13 days), high pressure synoptic systems (HPS, 13 days), or as transition days (TR). The Mexican ozone standards at the Pass were not exceeded during LPS days, but were exceeded on almost all HPS days. A detailed analysis was performed using data from two typical days, one representative of LPS and the other of HPS. In both cases, morning vertical profiles of O3 showed a strong thermal inversion layer and near-surface O3 titration due to fresh NOx. In the LPS early morning, a single O3 layer of close to 45 ppb was observed from 150 to 700 magl. In the HPS early morning, 50 ppb was observed from 150 to 400 magl followed by a 400-m-thick layer with up to 80 ppb. These layers were the source of the morning increase of O3, with a simultaneous sharp decrease of NOx and CO as the mixing layer started to rise. During the LPS day, a southerly wind dominated throughout most of the daytime, with surface O3 lower than 60 ppb. The same was observed for the well-mixed midday and afternoon vertical profiles. Under HPS, northerly winds transported photochemically active air masses from the MCMA all morning, as observed by a smoother increase of Ox and O3, reaching 110 ppb of O3. Just after midday, the wind shifted back, carrying

  19. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    PubMed

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter < or = 2.5 microm) have been performed at a mountaintop location adjacent to the White Mountain National Forest in northern NH, USA. A 1-month long sampling campaign was conducted at Cranmore Mountain during spring 2000. We report on the apportionment of light extinction by fine aerosols into its major chemical components, and relationships between variations in aerosol parameters and changes in air mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0

  20. A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy

    NASA Astrophysics Data System (ADS)

    Shertzer, Richard H.; Adams, Edward E.

    2018-03-01

    A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.

  1. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers

    NASA Astrophysics Data System (ADS)

    Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo

    2015-11-01

    Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.

  2. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components. Copyright © 2011 John Wiley & Sons, Ltd.

  4. X{sub max}{sup μ} vs. N{sup μ} from extensive air showers as estimator for the mass of primary UHECR's. Application for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsene, Nicusor; Sima, Octavian

    2015-02-24

    We study the possibility of primary mass estimation for Ultra High Energy Cosmic Rays (UHECR's) using the X{sub max}{sup μ} (the height where the number of muons produced on the core of Extensive Air Showers (EAS) is maximum) and the number N{sup μ} of muons detected on ground. We use the 2D distribution - X{sub max}{sup μ} against N{sup μ} in order to find its sensitivity to the mass of the primary particle. For that, we construct a 2D Probability Function Prob(p,Fe | X{sub max}{sup μ}, N{sup μ}) which estimates the probability that a certain point from the plane (X{submore » max}{sup μ}, N{sup μ}) corresponds to a shower induced by a proton, respectively an iron nucleus. To test the procedure, we analyze a set of simulated EAS induced by protons and iron nuclei at energies of 10{sup 19}eV and 20° zenith angle with CORSIKA. Using the Bayesian approach and taking into account the geometry of the infill detectors from the Pierre Auger Observatory, we observe an improvement in the accuracy of the primary mass reconstruction in comparison with the results obtained using only the X{sub max}{sup μ} distributions.« less

  5. Use of a numerical simulation approach to improve the estimation of air-water exchange fluxes of polycyclic aromatic hydrocarbons in a coastal zone.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Ko, Fung-Chi; Lin, Ju-Chieh; Huang, Hu-Ching; Shiu, Ruei-Feng

    2017-07-15

    The air-water exchange is important for determining the transport, fate, and chemical loading of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in aquatic systems. Investigations of PAH air-water exchange are mostly based on observational data obtained using complicated field sampling processes. This study proposes a new approach to improve the estimation of long-term PAH air-water exchange fluxes by using a multivariate regression model to simulate hourly gaseous PAH concentrations. Model performance analysis and the benefits from this approach indicate its effectiveness at improving the flux estimations and at decreasing the field sampling difficulty. The proposed GIS mapping approach is useful for box model establishment and is tested for visualization of the spatiotemporal variations of air-water exchange fluxes in a coastal zone. The air-water exchange fluxes illustrated by contour maps suggest that the atmospheric PAHs might have greater impacts on offshore sites than on the coastal area in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air

    DTIC Science & Technology

    2004-10-15

    called spillage occurs, and the air mass capture decreases (Fig. 3). To avoid performance penalties at off-design Mach numbers, a variable geometry inlet...AND SUBTITLE 5. FUNDING NUMBERS Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air 6. AUTHOR(S) Richard B...MONITORING AGENCY REPORT NUMBER Air Force Office of Scientific Research/NA (John Schmisseur, Program Manager) 801 N. Randolph St., Room 732 Arlington

  7. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure somemore » atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.« less

  8. A direct sensitivity approach to predict hourly ozone resulting from compliance with the National Ambient Air Quality Standard.

    PubMed

    Simon, Heather; Baker, Kirk R; Akhtar, Farhan; Napelenok, Sergey L; Possiel, Norm; Wells, Benjamin; Timin, Brian

    2013-03-05

    In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this

  9. Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources

    NASA Astrophysics Data System (ADS)

    Miola, Apollonia; Ciuffo, Biagio

    2011-04-01

    Maritime transport plays a central role in the transport sector's sustainability debate. Its contribution to air pollution and greenhouse gases is significant. An effective policy strategy to regulate air emissions requires their robust estimation in terms of quantification and location. This paper provides a critical analysis of the ship emission modelling approaches and data sources available, identifying their limits and constraints. It classifies the main methodologies on the basis of the approach followed (bottom-up or top-down) for the evaluation and geographic characterisation of emissions. The analysis highlights the uncertainty of results from the different methods. This is mainly due to the level of uncertainty connected with the sources of information that are used as inputs to the different studies. This paper describes the sources of the information required for these analyses, paying particular attention to AIS data and to the possible problems associated with their use. One way of reducing the overall uncertainty in the results could be the simultaneous use of different sources of information. This paper presents an alternative methodology based on this approach. As a final remark, it can be expected that new approaches to the problem together with more reliable data sources over the coming years could give more impetus to the debate on the global impact of maritime traffic on the environment that, currently, has only reached agreement via the "consensus" estimates provided by IMO (2009).

  10. Position dependent mass Schroedinger equation and isospectral potentials: Intertwining operator approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Midya, Bikashkali; Roy, B.; Roychoudhury, R.

    2010-02-15

    Here, we have studied first- and second-order intertwining approaches to generate isospectral partner potentials of position dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second-order linear differential operator with position dependent coefficients, and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained, which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to removemore » bound state(s), and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is shown that our results are consistent with the formulation of type A N-fold supersymmetry [T. Tanaka, J. Phys. A 39, 219 (2006); A. Gonzalez-Lopez and T. Tanaka, J. Phys. A 39, 3715 (2006)] for the particular cases N=1 and N=2, respectively.« less

  11. An assessment of hopanes in settled dust and air as indicators of exposure to traffic-related air pollution in Windsor, Ontario

    NASA Astrophysics Data System (ADS)

    Curran, Jason

    Traffic-related air pollution (TRAP) has been linked with several adverse health effects. We investigated hopanes, markers of primary particle emissions from gasoline and diesel engines, in house dust as an alternative approach for assessing exposure to TRAP in Windsor, Ontario. Settled house dust was collected from the homes of 28 study participants (10 -- 13 yrs). The dust was then analyzed for a suite of hopanes by gas chromatography-mass spectrometry. We calculated correlations between dust hopane concentrations and estimates of annual average NO2 concentrations derived from an existing LUR model. Hopanes were consistently present in detectable quantities in house dust. Annual average outdoor NO2 estimated was moderately correlated with hopanes in house dust (r = 0.46; p<0.05). The correlations did not vary by infiltration efficiency or the presence of an attached garage. Hopanes measured in settled house dust show promise as an indicator of long-term exposure to traffic-related air pollution. Keywords: hopane; air pollution; traffic; dust; exposure; TRAP.

  12. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  13. Benchmarking Customer Service Practices of Air Cargo Carriers: A Case Study Approach

    DTIC Science & Technology

    1994-09-01

    customer toll free hotlines, comment and complaint analysis, and consumer advisory panels (Zemke and Schaaf, 1989:31-34). The correct use of any or all of... customer service criteria. The research also provides a host of customer service criteria that the researchers find important to most consumers . Bhote...AD-A285 014 DTIC ELECI’E SEP 2 9 1994 kOF4 * BENCHMARKING CUSTOMER SERVICE -, PRACTICES OF AIR CARGO CARRIERS: A CASE STUDY APPROACH THESIS Patrick D

  14. Community-based participatory research for the study of air pollution: a review of motivations, approaches, and outcomes.

    PubMed

    Commodore, Adwoa; Wilson, Sacoby; Muhammad, Omar; Svendsen, Erik; Pearce, John

    2017-08-01

    Neighborhood level air pollution represents a long-standing issue for many communities that, until recently, has been difficult to address due to the cost of equipment and lack of related expertise. Changes in available technology and subsequent increases in community-based participatory research (CBPR) have drastically improved the ability to address this issue. However, much still needs to be learned as these types of studies are expected to increase in the future. To assist, we review the literature in an effort to improve understanding of the motivations, approaches, and outcomes of air monitoring studies that incorporate CBPR and citizen science (CS) principles. We found that the primary motivations for conducting community-based air monitoring were concerns for air pollution health risks, residing near potential pollution sources, urban sprawl, living in "unmonitored" areas, and a general quest for improved air quality knowledge. Studies were mainly conducted using community led partnerships. Fixed site monitoring was primarily used, while mobile, personal, school-based, and occupational sampling approaches were less frequent. Low-cost sensors can enable thorough neighborhood level characterization; however, keeping the community involved at every step, understanding the limitations and benefits of this type of monitoring, recognizing potential areas of debate, and addressing study challenges are vital for achieving harmony between expected and observed study outcomes. Future directions include assessing currently unregulated pollutants, establishing long-term neighborhood monitoring sites, performing saturation studies, evaluating interventions, and creating CS databases.

  15. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  16. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    NASA Astrophysics Data System (ADS)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  17. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  18. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; hide

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  19. Seasonal origins of air masses transported to Mount Wrangell, Alaska, and comparison with the past atmospheric dust and tritium variations in its ice core

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2006-12-01

    The North Pacific region is subject to various climatic phenomena such as the Pacific Decadal Oscillation (PDO), the El Niño-Southern Oscillation (ENSO), and the Arctic Oscillation (AO), significantly affecting the ocean and the atmosphere. Additionally, material circulation is also very active in this region such as spring dust storms in the desert and arid regions of East Asia and forest fires in Siberia and Alaska. Understanding the complex connections among the climatic phenomena and the material circulation would help in attempts to predict future climate changes. For this subject, we drilled a 50-m ice core at the summit of Mount Wrangell, which is located near the coast of Alaska (62°162'170"162°171'N, 144°162'170"162;°171'W, and 4100-m). We analyzed dust particle number density, tritium concentration, and 171 171 171 171 170 162 171 D in the core. The ice core spanned the years from 1992 to 2002 and we finally divided the years into five parts (early-spring; late-spring; summer; fall; winter). Dust and tritium amounts varied annually and intra-annually. For further understanding of the factors on those variations, we should know the origins of the seasonal dust and tritium. Hence, we examined their origins by the calculation of everyday 10-days backward trajectory analysis from January 1992 to August 2002 with 3-D wind data of the European Center for Medium-Range Weather Forecast (ECMWF). In early spring, the air mass from East Asia increased and it also explained dust increases in springtime, although the air contribution in winter increased too. In late spring, the air mass from the stratosphere increased, and it also corresponded to the stratospheric tritium increase in the ice core. The air masses from Siberia and the North Pacific in the mid-latitude always significantly contributed to Mount Wrangell, although those maximum contributions were fall and summer, respectively. The air mass originating in the interior of Alaska and North America did

  20. Modelling dynamics of atmosphere ventilation and industrial city’s air pollution analysis: New approach

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Khetselius, O. Yu; Agayar, E. V.; Buyadzhi, V. V.; Romanova, A. V.; Mansarliysky, V. F.

    2017-10-01

    We present a new effective approach to analysis and modelling the natural air ventilation in an atmosphere of the industrial city, which is based on the Arakawa-Schubert and Glushkov models, modified to calculate the current involvement of the ensemble of clouds, and advanced mathematical methods of modelling an unsteady turbulence in the urban area. For the first time the methods of a plane complex field and spectral expansion algorithms are applied to calculate the air circulation for the cloud layer arrays, penetrating into the territory of the industrial city. We have also taken into account for the mechanisms of transformation of the cloud system advection over the territory of the urban area. The results of test computing the air ventilation characteristics are presented for the Odessa city. All above cited methods and models together with the standard monitoring and management systems can be considered as a basis for comprehensive “Green City” construction technology.

  1. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  2. Air Intake Performance of Air Breathing Ion Engines

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa

    The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.

  3. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.

    2013-11-05

    -mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.« less

  4. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  6. Quantifying the health impacts of air pollution under a changing climate-a review of approaches and methodology.

    PubMed

    Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord

    2014-03-01

    Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.

  7. A sequential factorial analysis approach to characterize the effects of uncertainties for supporting air quality management

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Veawab, A.

    2013-03-01

    This study proposes a sequential factorial analysis (SFA) approach for supporting regional air quality management under uncertainty. SFA is capable not only of examining the interactive effects of input parameters, but also of analyzing the effects of constraints. When there are too many factors involved in practical applications, SFA has the advantage of conducting a sequence of factorial analyses for characterizing the effects of factors in a systematic manner. The factor-screening strategy employed in SFA is effective in greatly reducing the computational effort. The proposed SFA approach is applied to a regional air quality management problem for demonstrating its applicability. The results indicate that the effects of factors are evaluated quantitatively, which can help decision makers identify the key factors that have significant influence on system performance and explore the valuable information that may be veiled beneath their interrelationships.

  8. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  9. Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines

    NASA Astrophysics Data System (ADS)

    MacLeod, C.

    This paper describes some innovative methods for achieving enhanced fuel-air mixing and combustion in Scramjet-like spaceplane engines. A multimodal approach to the problem is discussed; this involves using several concurrent methods of forced mixing. The paper concentrates on Electromagnetic Activation (EMA) and Electrostatic Attraction as suitable techniques for this purpose - although several other potential methods are also discussed. Previously published empirical data is used to draw conclusions about the likely effectiveness of the system and possible engine topologies are outlined.

  10. Smart climate ensemble exploring approaches: the example of climate impacts on air pollution in Europe.

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Colette, Augustin; Menut, Laurent

    2016-04-01

    Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.

  11. A data base approach for prediction of deforestation-induced mass wasting events

    NASA Technical Reports Server (NTRS)

    Logan, T. L.

    1981-01-01

    A major topic of concern in timber management is determining the impact of clear-cutting on slope stability. Deforestation treatments on steep mountain slopes have often resulted in a high frequency of major mass wasting events. The Geographic Information System (GIS) is a potentially useful tool for predicting the location of mass wasting sites. With a raster-based GIS, digitally encoded maps of slide hazard parameters can be overlayed and modeled to produce new maps depicting high probability slide areas. The present investigation has the objective to examine the raster-based information system as a tool for predicting the location of the clear-cut mountain slopes which are most likely to experience shallow soil debris avalanches. A literature overview is conducted, taking into account vegetation, roads, precipitation, soil type, slope-angle and aspect, and models predicting mass soil movements. Attention is given to a data base approach and aspects of slide prediction.

  12. Mass measurement of 1 kg silicon spheres to establish a density standard

    NASA Astrophysics Data System (ADS)

    Mizushima, S.; Ueki, M.; Fujii, K.

    2004-04-01

    Air buoyancy causes a significant systematic effect in precision mass determination of 1 kg silicon spheres. In order to correct this effect accurately, mass measurement of the silicon sphere was conducted using buoyancy artefacts; additionally, in order to stabilize atmospheric conditions, we used a vacuum chamber in which a mass comparator had been installed. The silicon sphere was also weighed in vacuum to verify the air buoyancy correction. Mass differences measured in air and in vacuum showed good agreement with each other in spite of the desorption effect from weight surfaces. Furthermore, the result of weighing under vacuum conditions demonstrated better repeatability than that obtained in air.

  13. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  14. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  15. A survey of existing and proposed classical and quantum approaches to the photon mass

    NASA Astrophysics Data System (ADS)

    Spavieri, G.; Quintero, J.; Gillies, G. T.; Rodríguez, M.

    2011-02-01

    Over the past twenty years, there have been several careful experimental, observational and phenomenological investigations aimed at searching for and establishing ever tighter bounds on the possible mass of the photon. There are many fascinating and paradoxical physical implications that would arise from the presence of even a very small value for it, and thus such searches have always been well motivated in terms of the new physics that would result. We provide a brief overview of the theoretical background and classical motivations for this work and the early tests of the exactness of Coulomb's law that underlie it. We then go on to address the modern situation, in which quantum physics approaches come to attention. Among them we focus especially on the implications that the Aharonov-Bohm and Aharonov-Casher class of effects have on searches for a photon mass. These arise in several different ways and can lead to experiments that might involve the interaction of magnetic dipoles, electric dipoles, or charged particles with suitable potentials. Still other quantum-based approaches employ measurements of the g-factor of the electron. Plausible target sensitivities for limits on the photon mass as sought by the various quantum approaches are in the range of 10-53 to 10-54 g. Possible experimental arrangements for the associated experiments are discussed. We close with an assessment of the state of the art and a prognosis for future work.

  16. Mass Spectrometry Imaging of Biological Tissue: An Approach for Multicenter Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rompp, Andreas; Both, Jean-Pierre; Brunelle, Alain

    2015-03-01

    Mass spectrometry imaging has become a popular tool for probing the chemical complexity of biological surfaces. This led to the development of a wide range of instrumentation and preparation protocols. It is thus desirable to evaluate and compare the data output from different methodologies and mass spectrometers. Here, we present an approach for the comparison of mass spectrometry imaging data from different laboratories (often referred to as multicenter studies). This is exemplified by the analysis of mouse brain sections in five laboratories in Europe and the USA. The instrumentation includes matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF), MALDI-QTOF, MALDIFourier transform ion cyclotronmore » resonance (FTICR), atmospheric-pressure (AP)-MALDI-Orbitrap, and cluster TOF-secondary ion mass spectrometry (SIMS). Experimental parameters such as measurement speed, imaging bin width, and mass spectrometric parameters are discussed. All datasets were converted to the standard data format imzML and displayed in a common open-source software with identical parameters for visualization, which facilitates direct comparison of MS images. The imzML conversion also allowed exchange of fully functional MS imaging datasets between the different laboratories. The experiments ranged from overview measurements of the full mouse brain to detailed analysis of smaller features (depending on spatial resolution settings), but common histological features such as the corpus callosum were visible in all measurements. High spatial resolution measurements of AP-MALDI-Orbitrap and TOF-SIMS showed comparable structures in the low-micrometer range. We discuss general considerations for planning and performing multicenter studies in mass spectrometry imaging. This includes details on the selection, distribution, and preparation of tissue samples as well as on data handling. Such multicenter studies in combination with ongoing activities for reporting guidelines, a

  17. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  18. Exploring the Relationship between University Students' Conceptions of and Approaches to Learning Mass Communication in Taiwan

    ERIC Educational Resources Information Center

    Huang, Wen-Lung; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-01-01

    Previous studies have revealed the close relationship between students' conceptions of and approaches to learning. However, few studies have explored this relationship in the field of learning mass communication. Therefore, this study aims to explore the relationships between students' conceptions of learning mass communication (COLMC) and…

  19. The influence of continental air masses on the aerosols and nutrients deposition over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Fu, Jiangping; Wang, Bo; Chen, Ying; Ma, Qingwei

    2018-01-01

    The air masses transported from East Asia have a strong impact on the aerosol properties and deposition in the marine boundary layer of the western North Pacific (WNP) during winter and spring. We joined a cruise between 17 Mar. and 22 Apr. 2014 and investigated the changes of aerosol composition and size distribution over the remote WNP and marginal seas. Although the secondary aerosol species (SO42-, NO3- and NH4+) in remote WNP were influenced significantly by the continental transport, NH4+ concentrations were lower than 2.7 μg m-3 in most sampling days and not correlated with non-sea-salt (nss)-SO42- suggesting that the ocean could be a primary source of NH4+. Moderate Cl- depletion (23%) was observed in remote WNP, and the inverse relationship between Cl- depletion percentages and nss-K+ in aerosols suggested that the transport of biomass burning smoke from East Asia might be a vital extra source of Cl-. Both Asian dust and haze events were encountered during the cruise. Asian dust carried large amounts of crustal elements such as Al and Ti to the WNP, and the dusty Fe deposition may double its background concentration in seawater. Differently, a dramatic increase of dry deposition flux of dissolved particulate inorganic nitrogen was observed during the haze event. Our study reveals that the transport of different continental air masses may have distinct biogeochemical impacts on the WNP by increasing the fluxes of different nutrient elements and potentially changing the nutrient stoichiometry.

  20. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  1. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Thaw, Melissa; Esser, Brad

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  2. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE PAGES

    Visser, Ate; Thaw, Melissa; Esser, Brad

    2017-11-20

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  3. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Axelman, J.; Bandh, C.

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over watermore » and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.« less

  4. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  5. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  6. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  7. Air Support Control Officer Individual Position Training Simulation

    DTIC Science & Technology

    2017-06-01

    Analysis design development implementation evaluation ASCO Air support control officer ASLT Air support liaison team ASNO Air support net operator...Instructional system design LSTM Long-short term memory MACCS Marine Air Command and Control System MAGTF Marine Air Ground Task Force MASS Marine Air...information to designated MACCS agencies. ASCOs play an important part in facilitating the safe and successful conduct of air operations in DASC- controlled

  8. A study of photochemical againg of ambient air using Potential Aerosol Mass (PAM) chamber under the different sources and types of emissions

    NASA Astrophysics Data System (ADS)

    Lee, T.; Son, J.; Kim, J.; Kim, S.; Sung, K.; Park, G.; Link, M.; Park, T.; Kim, K.; Kang, S.; Ban, J.; Kim, D. S.

    2016-12-01

    Recent research proposed that Secondary Aerosol (SA) is important class of predicting future climate change scenarios, health effect, and a general air quality. However, there has been lack of studies to investigate SA formation all over the world. This study tried to focus on understanding potential secondary aerosol formation and its local impact by the photochemical aging of inorganic and organic aerosols in the ambient air using the Potential Aerosol Mass (PAM) chamber under the different sources and types of emissions. PAM chamber manufactured by Aerodyne make an oxidizing environment that simulates oxidation processes on timescales of 12-15 hrs in the atmosphere. Chemical compositions of ambient aerosol and aerosol that was aged in the PAM chamber were alternately measured every 2-minutes using the High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS). HR-ToF-AMS provides non-refractory aerosol mass concentrations including nitrate, sulfate, hydrocarbon-like and oxygenated organic aerosol in real time. This study includes a residence area of mixture of sources, a forest site of dominant source of biogenic VOCs, an underground parking lot of dominant vehicle emission, and laboratory experiment of vehicle emissions under different fuels and speeds using the chassis dynamometer. As a result, it was revealed that gasoline and LPG vehicle relatively made more potential SA than diesel vehicle.

  9. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways.

    PubMed

    Boreddy, S K R; Kawamura, Kimitaka; Bikkina, Srinivas; Sarin, M M

    2016-02-15

    Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach.

    PubMed

    Aggarwal, Preeti; Jain, Suresh

    2015-10-01

    This study adopted an integrated 'source-to-receptor' assessment paradigm in order to determine the effects of emissions from passenger transport on urban air quality and human health in the megacity, Delhi. The emission modeling was carried out for the base year 2007 and three alternate (ALT) policy scenarios along with a business as usual (BAU) scenario for the year 2021. An Activity-Structure-Emission Factor (ASF) framework was adapted for emission modeling, followed by a grid-wise air quality assessment using AERMOD and a health impact assessment using an epidemiological approach. It was observed that a 2021-ALT-III scenario resulted in a maximum concentration reduction of ~24%, ~42% and ~58% for carbon monoxide (CO), nitrogen dioxide (NO2) and particulate matter (PM), respectively, compared to a 2021-BAU scenario. Further, it results in significant reductions in respiratory and cardiovascular mortality, morbidity and Disability Adjusted Life Years (DALY) by 41% and 58% on exposure to PM2.5 and NO2 concentrations when compared to the 2021-BAU scenario, respectively. In other words, a mix of proposed policy interventions namely the full-phased introduction of the Integrated Mass Transit System, fixed bus speed, stringent vehicle emission norms and a hike in parking fees for private vehicles would help in strengthening the capability of passenger transport to cater to a growing transport demand with a minimum health burden in the Delhi region. Further, the study estimated that the transport of goods would be responsible for ~5.5% additional VKT in the 2021-BAU scenario; however, it will contribute ~49% and ~55% additional NO2 and PM2.5 concentrations, respectively, in the Delhi region. Implementation of diesel particulate filters for goods vehicles in the 2021-ALT-IV-O scenario would help in the reduction of ~87% of PM2.5 concentration, compared to the 2021-BAU scenario; translating into a gain of 1267 and 505 DALY per million people from exposure to PM2.5 and NO

  11. Promoting Students' Learning of Air Pressure Concepts: The Interrelationship of Teaching Approaches and Student Learning Characteristics

    ERIC Educational Resources Information Center

    She, Hsiao-Ching

    2005-01-01

    The author explored the potential to promote students' understanding of difficult science concepts through an examination of the inter-relationships among the teachers' instructional approach, students' learning preference styles, and their levels of learning process. The concept "air pressure," which requires an understanding of…

  12. A Mass Balance-Based Semiparametric Approach to Evaluate Neonatal Erythropoiesis.

    PubMed

    Kuruvilla, Denison J; Widness, John A; Nalbant, Demet; Schmidt, Robert L; Mock, Donald M; Veng-Pedersen, Peter

    2016-01-01

    Postnatal hemoglobin (Hb) production in anemic preterm infants is determined by several factors including the endogenous erythropoietin levels, allogeneic RBC transfusions administered to treat anemia, and developmental age. As a result, their postnatal Hb production rate can vary considerably. This work introduces a novel Hb mass balance-based semiparametric approach that utilizes infant blood concentrations of Hb from the first 30 postnatal days to estimate the amount of Hb produced and the erythropoiesis rate in newborn infants. The proposed method has the advantage of not relying on specific structural pharmacodynamic model assumptions to describe the Hb production, but instead utilizes simple mass balance principles and nonparametric regression analysis. The developed method was applied to the Hb data from 79 critically ill anemic very low birth weight preterm infants to evaluate the dynamic changes in erythropoiesis during the first month of life and to determine the inter-subject variability in Hb production. The estimated mean (±SD) cumulative amount of Hb produced by the infants over the first month of life was 6.6 ± 3.4 g (mean body weight, 0.768 kg), and the mean estimated body weight-scaled Hb production rate over the same period was 0.23 ± 0.12 g/day/kg. A significant positive correlation was observed between infant gestational age and the mean body weight-scaled Hb production rate over the first month of life (P < 0.05). We conclude that the proposed mathematical approach and its implementation provide a flexible framework to evaluate postnatal erythropoiesis in newborn infants.

  13. Combinatorial Approach for Large-scale Identification of Linked Peptides from Tandem Mass Spectrometry Spectra*

    PubMed Central

    Wang, Jian; Anania, Veronica G.; Knott, Jeff; Rush, John; Lill, Jennie R.; Bourne, Philip E.; Bandeira, Nuno

    2014-01-01

    The combination of chemical cross-linking and mass spectrometry has recently been shown to constitute a powerful tool for studying protein–protein interactions and elucidating the structure of large protein complexes. However, computational methods for interpreting the complex MS/MS spectra from linked peptides are still in their infancy, making the high-throughput application of this approach largely impractical. Because of the lack of large annotated datasets, most current approaches do not capture the specific fragmentation patterns of linked peptides and therefore are not optimal for the identification of cross-linked peptides. Here we propose a generic approach to address this problem and demonstrate it using disulfide-bridged peptide libraries to (i) efficiently generate large mass spectral reference data for linked peptides at a low cost and (ii) automatically train an algorithm that can efficiently and accurately identify linked peptides from MS/MS spectra. We show that using this approach we were able to identify thousands of MS/MS spectra from disulfide-bridged peptides through comparison with proteome-scale sequence databases and significantly improve the sensitivity of cross-linked peptide identification. This allowed us to identify 60% more direct pairwise interactions between the protein subunits in the 20S proteasome complex than existing tools on cross-linking studies of the proteasome complexes. The basic framework of this approach and the MS/MS reference dataset generated should be valuable resources for the future development of new tools for the identification of linked peptides. PMID:24493012

  14. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  15. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  16. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An ensemble-based approach for breast mass classification in mammography images

    NASA Astrophysics Data System (ADS)

    Ribeiro, Patricia B.; Papa, João. P.; Romero, Roseli A. F.

    2017-03-01

    Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naïve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.

  18. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  19. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  20. Assessment by bioimpedance of forearm cell mass: a new approach to calibration.

    PubMed

    Pietrobelli, A; Nuñez, C; Zingaretti, G; Battistini, N; Morini, P; Wang, Z M; Yasumura, S; Heymsfield, S B

    2002-08-01

    Changes in skeletal muscle mass are involved in several important clinical disorders including sarcopenia and obesity. Unlike body fat, skeletal muscle is difficult to quantify in vivo, particularly without highly specialized equipment. The present study had a two-fold aim: to develop a regional (40)K counter for non-invasively estimating cell mass in the arm, mainly skeletal muscle cell mass, without radiation exposure; and to test the hypothesis that cell mass in the arm is highly correlated with electrical impedance after adjusting for the arm's length. Forearm cell mass was estimated using a rectangular lead-shielded (40)K counter with 4-NaI crystals; impedance of the arm was measured at multiple frequencies using a segmental bioimpedance analysis (BIA) system. The system's within- and between-day coefficient of variation (CV) for (40)K-derived elemental potassium averaged 1.8+/-1.3 and 5.8+/-1.2%, respectively. The corresponding BIA system's CVs were 1.0+/-0.4 and 2.1+/-1.0%, respectively. Participants in the study were 15 healthy adults (eight females, seven males; age 39+/-2.8 y, BMI 22.9+/-4.5 kg/m(2)). The right arm's K (5.2+/-1.7 g) was highly correlated with length-adjusted impedance (r(2)=0.81, 0.82, and 0.83 for 5, 50 and 300 kHz, respectively; all P<0.001); multiple regression analysis showed no additional improvement by adding age or sex to the prediction models. These results demonstrate the feasibility of calibrating BIA-measured electrical properties of the arm against estimates of arm cell mass, mainly of skeletal muscle, obtained by regional (40)K counting. This simple and practical approach should facilitate the development of BIA-based regional cell mass prediction formulas

  1. A PERFECT MATCH CONDITION FOR POINT-SET MATCHING PROBLEMS USING THE OPTIMAL MASS TRANSPORT APPROACH

    PubMed Central

    CHEN, PENGWEN; LIN, CHING-LONG; CHERN, I-LIANG

    2013-01-01

    We study the performance of optimal mass transport-based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the non-rigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport-based approach. PMID:23687536

  2. Effect of air turbulence on gas transport in soil; comparison of approaches

    NASA Astrophysics Data System (ADS)

    Pourbakhtiar, Alireza; Papadikis, Konstantinos; Poulsen, Tjalfe; Bridge, Jonathan; Wilkinson, Stephen

    2017-04-01

    Greenhouse gases are playing the key role in global warming. Soil is a source of greenhouse gases such as methane (CH4). Radon (Rn) which is a radioactive gas can emit form subsurface into the atmosphere and leads to health concerns in urban areas. Temperature, humidity, air pressure and vegetation of soil can affect gas emissions inside soil (Oertel et al., 2016). It's shown in many cases that wind induced fluctuations is an important factor in transport of gas through soil and other porous media. An example is: landfill gas emissions (Poulsen et al., 2001). We applied an experimental equipment for measuring controlled air turbulence on gas transport in soil in relation to the depth of sample. Two approaches for measurement of effect of wind turbulence on gas transport were applied and compared. Experiments were carried out with diffusion of CO2 and air as tracer gases with average vertical wind speeds of 0 to 0.83 m s-1. In approach A, Six different sample thicknesses from 5 to 30 cm were selected and total of 4 different wind conditions with different speed and fluctuations were applied. In approach B, a sample with constant depth was used. Five oxygen sensors were places inside sample at different depths. Total of 111 experiments were carried out. Gas transport is described by advection-dispersion equation. Gas transport is quantified as a dispersion coefficient. Oxygen breakthrough curves as a function of distance to the surface of the sample exposed to wind were derived numerically with an explicit forward time, central space finite-difference based model to evaluate gas transport. We showed that wind turbulence-induced fluctuations is an important factor in gas transport that can increase gas transport with average of 45 times more than molecular diffusion under zero wind condition. Comparison of two strategies for experiments, indicated that, constant deep samples (Approach B) are more reliable for measurement of gas transport under influence of wind

  3. PROJECTING FUTURE-YEAR POLLUTANT EMISSIONS: EMERGING APPROACHES FROM THE EPA ORD GLOBAL CHANGE AIR QUALITY ASSESSMENT

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development is exploring approaches for assessing the relative impacts of climate and emissions changes on future-year air quality. A challenge related to this effort is the development of emissions inventories out to the year 2050. This pap...

  4. An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran B.; Nizkorodov, Sergey; Laskin, Alexander

    2013-01-07

    Quantitative analysis of individual compounds in complex mixtures using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) is complicated by differences in the ionization efficiencies of analyte molecules in the mixture, resulting in signal suppression during ionization. However, the ability to obtain concentration estimates of compounds in an environmental sample is important for data interpretation and comparison. We introduce an approach for estimating mass concentrations of analytes observed in a multicomponent mixture by HR-ESI-MS, without prior separation. The approach relies on a calibration of the instrument using appropriate standards added to the mixture of studied analytes. An illustration of how the proposedmore » calibration can be applied in practice is provided for aqueous extracts of isoprene photooxidation organic aerosol, with multifunctional organic acids standards. We show that the observed ion sensitivities in ESI-MS are positively correlated with the “adjusted mass,” defined as a product of the molecular mass and the H/C ratio in the molecule (adjusted mass = H/C x molecular mass). The correlation of the observed ESI sensitivity with adjusted mass is justified by considering trends of the physical and chemical properties of organic compounds that affect ionization in the positive ion mode, i.e., gas-phase basicity, polarizability, and molecular size.« less

  5. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    PubMed

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  6. Investigations of the Controlling Factors for Air Emissions Associated With the Dredging of Indiana Harbor and Canal (IHC) and CDF Operations

    DTIC Science & Technology

    2008-04-01

    concepts of a transient toxic constituent loss and transport model for both solids and chemical incorporating a kinetic approach rather than equilibrium...to air. A transient kinetic mass-transfer model was applied to the data and it was found that the TSS level was the most critical parameter for...measured (Thibodeaux et al. 2004). The transient behavior followed the expected theory of the mass-transfer kinetic, but the conventional LEA model

  7. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  8. Medical and psychological aspects of mass air transportation.

    DOT National Transportation Integrated Search

    1971-03-01

    The increase in air transportation depends not only on the technological progress and the availability of more and larger aircraft, but also on the corresponding increase in flight safety. Since, in most of the aircraft accidents, pilot error is a co...

  9. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches.

    PubMed

    Lujanienė, G; Byčenkienė, S; Povinec, P P; Gera, M

    2012-12-01

    Analyses of (131)I, (137)Cs and (134)Cs in airborne aerosols were carried out in daily samples in Vilnius, Lithuania after the Fukushima accident during the period of March-April, 2011. The activity concentrations of (131)I and (137)Cs ranged from 12 μBq/m(3) and 1.4 μBq/m(3) to 3700 μBq/m(3) and 1040 μBq/m(3), respectively. The activity concentration of (239,240)Pu in one aerosol sample collected from 23 March to 15 April, 2011 was found to be 44.5 nBq/m(3). The two maxima found in radionuclide concentrations were related to complicated long-range air mass transport from Japan across the Pacific, the North America and the Atlantic Ocean to Central Europe as indicated by modelling. HYSPLIT backward trajectories and meteorological data were applied for interpretation of activity variations of measured radionuclides observed at the site of investigation. (7)Be and (212)Pb activity concentrations and their ratios were used as tracers of vertical transport of air masses. Fukushima data were compared with the data obtained during the Chernobyl accident and in the post Chernobyl period. The activity concentrations of (131)I and (137)Cs were found to be by 4 orders of magnitude lower as compared to the Chernobyl accident. The activity ratio of (134)Cs/(137)Cs was around 1 with small variations only. The activity ratio of (238)Pu/(239,240)Pu in the aerosol sample was 1.2, indicating a presence of the spent fuel of different origin than that of the Chernobyl accident. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Molecular composition of boreal forest aerosol from Hyytiälä, Finland, using ultrahigh resolution mass spectrometry.

    PubMed

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Ruuskanen, Taina M; McLeod, Matthew W; Maenhaut, Willy; Jones, Rod; Kulmala, Markku; Kalberer, Markus

    2013-05-07

    Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.

  11. Towards a cosmic-ray mass-composition study at Tunka Radio Extension

    NASA Astrophysics Data System (ADS)

    Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.

    2017-03-01

    The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.

  12. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  13. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations.

    PubMed

    Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M

    2015-09-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.

  14. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations

    PubMed Central

    Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.

    2015-01-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358

  15. Mitigation of severe urban haze pollution by a precision air pollution control approach.

    PubMed

    Yu, Shaocai; Li, Pengfei; Wang, Liqiang; Wu, Yujie; Wang, Si; Liu, Kai; Zhu, Tong; Zhang, Yuanhang; Hu, Min; Zeng, Liming; Zhang, Xiaoye; Cao, Junji; Alapaty, Kiran; Wong, David C; Pleim, Jon; Mathur, Rohit; Rosenfeld, Daniel; Seinfeld, John H

    2018-05-25

    Severe and persistent haze pollution involving fine particulate matter (PM 2.5 ) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM 2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM 2.5 peak concentrations by more than 60% from above 300 μg m -3 to below 100 μg m -3 , while requiring ~30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.

  16. Centrifugal study of zone of influence during air-sparging.

    PubMed

    Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng

    2011-09-01

    Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.

  17. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  18. A Mobile Acoustic Subsurface Sensing (MASS) System for Rapid Roadway Assessment

    PubMed Central

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J. Gregory; Wang, Ming L.

    2013-01-01

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test. PMID:23698266

  19. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  20. Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.

    PubMed

    Michels, Nathalie; Huybrechts, Inge; Bammann, Karin; Lissner, Lauren; Moreno, Luis; Peeters, Maarten; Sioen, Isabelle; Vanaelst, Barbara; Vyncke, Krishna; De Henauw, Stefaan

    2013-04-28

    The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5-11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  1. Nitrogen isotope and mass balance approach in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sanders, Tina; Wankel, Scott D.; Dähnke, Kirstin

    2017-04-01

    The supply of bioavailable nitrogen is crucial to primary production in the world's oceans. Especially in estuaries, which act as a nutrient filter for coastal waters, microbial nitrogen turnover and removal has a particular significance. Nitrification as well as other nitrogen-based processes changes the natural abundance of the stable isotope, which can be used as proxies for sources and sinks as well as for process identification. The eutrophic Elbe estuary in northern Germany is loaded with fertilizer-derived nitrogen, but management efforts have started to reduce this load effectively. However, an internal nitrate source in turn gained in importance and the estuary changed from a sink to a source of dissolved inorganic nitrogen: Nitrification is responsible for significant estuarine nutrient regeneration, especially in the Hamburg Port. In our study, we aimed to quantify sources and sinks of nitrogen based on a mass and stable isotope budget in the Elbe estuary. A model was developed reproduce internal N-cycling and associated isotope changes. For that approach we measured dissolved inorganic nitrogen (DIN), particulate nitrogen and their stable isotopes in a case study in July 2013. We found an almost closed mass balance of nitrogen, with only low lost or gains which we attribute to sediment resuspension. The isotope values of different DIN components and the model approach both support a high fractionation of up to -25‰ during nitrification. However, the nitrogen balance and nitrogen stable isotopes suggest that most important processes are remineralization of organic matter to ammonium and further on the oxidation to nitrate. Denitrification and nitrate assimilation play a subordinate role in the Elbe Estuary.

  2. Practical approaches for health care: Indoor air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turk, A.R.; Poulakos, E.M.

    1996-05-01

    The management of indoor air quality (IAQ) is of interest to building occupants, managers, owners, and regulators alike. Whether by poor design, improper attention, inadequate maintenance or the intent to save energy, many buildings today have significantly degraded IAQ levels. Acceptable IAQ is defined by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) in Standard 62-1989 {open_quotes}Ventilation for Acceptable Indoor Air Quality{close_quotes} as {open_quotes}air in which there are no known contaminants at harmful concentrations as determined by cognizant authorities and with which a substantial majority (80 percent or more) of the people exposed do not express dissatisfaction.{close_quotes}more » ASHRAE`s definition not only addresses the chemical compounds that may be present in the air, but it also recognizes a need to address both physiological and psychosocial comfort. The second step is to conduct a performance review of the HVAC systems based on equipment design specifications and guidelines for acceptable IAQ. And the third step is to identify potential chemical, physical and biological sources that are known to contribute to adverse air quality. Upon completion of these three steps, you will able to identify the more significant contributors to IAQ problems and establish applications for prevention and mitigation.« less

  3. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    EPA Science Inventory

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  4. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  5. AIRS Storm Front Approaching California (animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation

    NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models.

    In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images.

    As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in

  6. Broken flavor 2↔3 symmetry and phenomenological approach for universal quark and lepton mass matrices

    NASA Astrophysics Data System (ADS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2006-01-01

    A phenomenological approach for the universal mass matrix model with a broken flavor 2↔3 symmetry is explored by introducing the 2↔3 antisymmetric parts of mass matrices for quarks and charged leptons. We present explicit texture components of the mass matrices, which are consistent with all the neutrino oscillation experiments and quark mixing data. The mass matrices have a common structure for quarks and leptons, while the large lepton mixings and the small quark mixings are derived with no fine-tuning due to the difference of the phase factors. The model predicts a value 2.4×10-3 for the lepton mixing matrix element square |U13|2, and also ⟨mν⟩=(0.89-1.4)×10-4eV for the averaged neutrino mass which appears in the neutrinoless double beta decay.

  7. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  8. Characterization of VOC Sources during the Texas Air Quality Study 2000 Using Proton-Transfer-Reaction Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.

    2002-12-01

    We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.

  9. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  10. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  11. Development of fuzzy air quality index using soft computing approach.

    PubMed

    Mandal, T; Gorai, A K; Pathak, G

    2012-10-01

    Proper assessment of air quality status in an atmosphere based on limited observations is an essential task for meeting the goals of environmental management. A number of classification methods are available for estimating the changing status of air quality. However, a discrepancy frequently arises from the quality criteria of air employed and vagueness or fuzziness embedded in the decision making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies like air quality index when describing integrated air quality conditions with respect to various pollutants parameters and time of exposure. In recent years, the fuzzy logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental issues. In the present study, a methodology based on fuzzy inference systems (FIS) to assess air quality is proposed. This paper presents a comparative study to assess status of air quality using fuzzy logic technique and that of conventional technique. The findings clearly indicate that the FIS may successfully harmonize inherent discrepancies and interpret complex conditions.

  12. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  13. A Ligand-observed Mass Spectrometry Approach Integrated into the Fragment Based Lead Discovery Pipeline

    PubMed Central

    Chen, Xin; Qin, Shanshan; Chen, Shuai; Li, Jinlong; Li, Lixin; Wang, Zhongling; Wang, Quan; Lin, Jianping; Yang, Cheng; Shui, Wenqing

    2015-01-01

    In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques. PMID:25666181

  14. Mineralogical, chemical and toxicological characterization of urban air particles.

    PubMed

    Čupr, Pavel; Flegrová, Zuzana; Franců, Juraj; Landlová, Linda; Klánová, Jana

    2013-04-01

    Systematic characterization of morphological, mineralogical, chemical and toxicological properties of various size fractions of the atmospheric particulate matter was a main focus of this study together with an assessment of the human health risks they pose. Even though near-ground atmospheric aerosols have been a subject of intensive research in recent years, data integrating chemical composition of particles and health risks are still scarce and the particle size aspect has not been properly addressed yet. Filling this gap, however, is necessary for reliable risk assessment. A high volume ambient air sampler equipped with a multi-stage cascade impactor was used for size specific particle collection, and all 6 fractions were a subject of detailed characterization of chemical (PAHs) and mineralogical composition of the particles, their mass size distribution and genotoxic potential of organic extracts. Finally, the risk level for inhalation exposure associated to the carcinogenic character of the studied PAHs has been assessed. The finest fraction (<0.45 μm) exhibited the highest mass, highest active surface, highest amount of associated PAHs and also highest direct and indirect genotoxic potentials in our model air sample. Risk assessment of inhalation scenario indicates the significant cancer risk values in PM 1.5 size fraction. This presented new approach proved to be a useful tool for human health risk assessment in the areas with significant levels of air dust concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Assessment of health benefits related to air quality improvement strategies in urban areas: An Impact Pathway Approach.

    PubMed

    Silveira, Carlos; Roebeling, Peter; Lopes, Myriam; Ferreira, Joana; Costa, Solange; Teixeira, João P; Borrego, Carlos; Miranda, Ana I

    2016-12-01

    Air pollution is, increasingly, a concern to our society given the threats to human health and the environment. Concerted actions to improve air quality have been taken at different levels, such as through the development of Air Quality Plans (AQPs). However, air quality impacts associated with the implementation of abatement measures included in AQPs are often neglected. In order to identify the major gaps and strengths in current knowledge, a literature review has been performed on existing methodologies to estimate air pollution-related health impacts and subsequent external costs. Based on this review, the Impact Pathway Approach was adopted and applied within the context of the MAPLIA research project to assess the health impacts and benefits (or avoided external costs) derived from improvements in air quality. Seven emission abatement scenarios, based on individual and combined abatement measures, were tested for the major activity sectors (traffic, residential and industrial combustion and production processes) of a Portuguese urban area (Grande Porto) with severe particular matter (PM10) air pollution problems. Results revealed a strong positive correlation between population density and health benefits obtained from the assessed reduction scenarios. As a consequence, potential health benefits from reduction scenarios are largest in densely populated areas with high anthropic activity and, thus, where air pollution problems are most alarming. Implementation of all measures resulted in a reduction in PM10 emissions by almost 8%, improving air quality by about 1% and contributing to a benefit of 8.8 million €/year for the entire study domain. The introduction of PM10 reduction technologies in industrial units was the most beneficial abatement measure. This study intends to contribute to policy support for decision-making on air quality management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An eleven-year record of mass balance of Brewster Glacier, New Zealand, determined using a geostatistical approach

    NASA Astrophysics Data System (ADS)

    Cullen, N. J.; Anderson, B.; Sirguey, P. J.; Stumm, D.; Mackintosh, A.; Conway, J. P.; Horgan, H. J.; Dadic, R.; Fitzsimons, S.; Lorrey, A.

    2016-12-01

    Recognizing the scarcity of glacier mass balance data in the Southern Hemisphere, a mass balance measurement program was started at Brewster Glacier in 2004. Evolution of the measurement regime over the 11 years of data recorded means there are differences in the spatial density of data obtained. To ensure the temporal integrity of the dataset a new, geostatistical approach has been developed to calculate mass balance. Spatial co-variance between elevation and snow depth has enabled a digital elevation model to be used in a co-kriging approach to develop a snow depth index (SDI). By capturing the observed spatial variability in snow depth, the SDI is a more reliable predictor than elevation and is used to adjust each year of measurements consistently despite variability in sampling spatial density. The SDI also resolves the spatial structure of summer balance better than elevation. Co-kriging is used again to spatially interpolate a derived mean summer balance index using SDI as a co-variate, which yields a spatial predictor for summer balance. A similar approach is also used to create a predictor for annual balance, which allows us to revisit years where summer balance was not obtained. The average glacier-wide surface winter, summer and annual mass balances over the period 2005-2015 are 2484, -2586, and -102 mm w.e., respectively, with changes in summer balance explaining most of the variability in annual balance. On the whole, there is good agreement between our ELA and AAR values and those derived from the end-of-summer snowline (EOSS) program, though discrepancies in some years cannot be fully accounted for. A mass balance map of Brewster Glacier in an equilibrium state, which by definition has a glacier-wide mass balance equal to zero (a balanced-budget), is used to calculate values of ELA (1923 ±25 m) and AAR (0.40) representative of the observational period. The relationships between mass balance and ELA/AAR are explored, demonstrating they are mostly

  17. An inclusive SUSY approach to position dependent mass systems

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.

    2018-06-01

    The supersymmetry (SUSY) formalism for a position dependent mass problem with a more general ordering is yet to be formulated. In this paper, we present an unified SUSY approach for PDM problems of any ordering. Highlighting all non-Hermitian Hamiltonians of PDM problems are of quasi-Hermitian nature, the SUSY operators of these problems are constructed using similarity transformation. The methodology that we propose here is applicable for even more general cases where the kinetic energy term is represented by linear combination of infinite number of possible orderings. We illustrate the method with an example, namely Mathews-Lakshmanan (ML) oscillator. Our results show that the latter system is shape invariant for all possible orderings. We derive eigenvalues and eigenvectors of this nonlinear oscillator for all possible orderings including Hermitian and non-Hermitian ones.

  18. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  19. Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

    DTIC Science & Technology

    2009-10-01

    NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air University,Air Force Research Institute,Maxwell AFB,AL,36112 8 . PERFORMING...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Air University...27 8 Attrition variation versus threat aircraft . . . . . . . 30 vi Figure Page 9 Threat weapon and

  20. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    PubMed

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  1. Quantifying black carbon light absorption enhancement with a novel statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Cheng; Wu, Dui; Zhen Yu, Jian

    2018-01-01

    Black carbon (BC) particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE) in the Pearl River Delta region (PRD). A new approach for calculating primary MAE (MAEp), the key for Eabs estimation, is demonstrated using the minimum R squared (MRS) method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC) and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD) in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core-shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE) constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.

  2. Balloon-borne photoionization mass spectrometer for measurement of stratospheric gases

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Maier, E. J. R.

    1978-01-01

    A balloon-borne photoionization mass spectrometer used to measure stratospheric trace gases is described. Ions are created with photons from high-intensity krypton discharge lamps and a quadrupole mass analyzer is employed for ion identification. Differential pumping is achieved with liquid helium cryopumping. To insure measurement of unperturbed stratospheric air, the entire system is contained in a sealed gondola and the atmospheric sample is taken some distance away during descent. The photoionization technique allows the detection of a low ionization potential constituent, such as nitric oxide, at less than a part in one billion in the presence of the major atmospheric gases and their isotopes. Operation of the mass spectrometer system was demonstrated during a daytime flight from Palestine, Texas on 26 April 1977. The sensitivity achieved and the unique selectivity afforded by this technique offer a capability for trace constituent measurement not possible with the more conventional electron impact ionization approach.

  3. Mass and heat transfer model of Tubular Solar Still

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Amimul; Fukuhara, Teruyuki

    2010-07-15

    In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover andmore » trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)« less

  4. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    PubMed

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Bayesian geostatistical approach for evaluating the uncertainty of contaminant mass discharges from point sources

    NASA Astrophysics Data System (ADS)

    Troldborg, M.; Nowak, W.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Estimates of mass discharge (mass/time) are increasingly being used when assessing risks of groundwater contamination and designing remedial systems at contaminated sites. Mass discharge estimates are, however, prone to rather large uncertainties as they integrate uncertain spatial distributions of both concentration and groundwater flow velocities. For risk assessments or any other decisions that are being based on mass discharge estimates, it is essential to address these uncertainties. We present a novel Bayesian geostatistical approach for quantifying the uncertainty of the mass discharge across a multilevel control plane. The method decouples the flow and transport simulation and has the advantage of avoiding the heavy computational burden of three-dimensional numerical flow and transport simulation coupled with geostatistical inversion. It may therefore be of practical relevance to practitioners compared to existing methods that are either too simple or computationally demanding. The method is based on conditional geostatistical simulation and accounts for i) heterogeneity of both the flow field and the concentration distribution through Bayesian geostatistics (including the uncertainty in covariance functions), ii) measurement uncertainty, and iii) uncertain source zone geometry and transport parameters. The method generates multiple equally likely realizations of the spatial flow and concentration distribution, which all honour the measured data at the control plane. The flow realizations are generated by analytical co-simulation of the hydraulic conductivity and the hydraulic gradient across the control plane. These realizations are made consistent with measurements of both hydraulic conductivity and head at the site. An analytical macro-dispersive transport solution is employed to simulate the mean concentration distribution across the control plane, and a geostatistical model of the Box-Cox transformed concentration data is used to simulate observed

  6. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  7. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  8. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    PubMed

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO 2 and 8-hr O 3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity

  9. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  10. Next generation offline approaches to trace organic compound speciation: Approaching comprehensive speciation with soft ionization and very high resolution tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Khare, P.; Marcotte, A.; Sheu, R.; Ditto, J.; Gentner, D. R.

    2017-12-01

    Intermediate- and semi-volatile organic compounds (IVOCs and SVOCs) have high secondary organic aerosol (SOA) yields, as well as significant ozone formation potentials. Yet, their emission sources and oxidation pathways remain largely understudied due to limitations in current analytical capabilities. Online mass spectrometers are able to collect real time data but their limited mass resolving power renders molecular level characterization of IVOCs and SVOCs from the unresolved complex mixture unfeasible. With proper sampling techniques and powerful analytical instrumentation, our offline tandem mass spectrometry (i.e. MS×MS) techniques provide molecular-level and structural identification over wide polarity and volatility ranges. We have designed a novel analytical system for offline analysis of gas-phase SOA precursors collected on custom-made multi-bed adsorbent tubes. Samples are desorbed into helium via a gradual temperature ramp and sample flow is split equally for direct-MS×MS analysis and separation via gas chromatography (GC). The effluent from GC separation is split again for analysis via atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-Q×TOF) and traditional electron ionization mass spectrometry (EI-MS). The compounds for direct-MS×MS analysis are delivered via a transfer line maintained at 70ºC directly to APCI-Q×TOF, thus preserving the molecular integrity of thermally-labile, or other highly-reactive, organic compounds. Both our GC-MS×MS and direct-MS×MS analyses report high accuracy parent ion masses as well as information on molecular structure via MS×MS, which together increase the resolution of unidentified complex mixtures. We demonstrate instrument performance and present preliminary results from urban atmospheric samples collected from New York City with a wide range of compounds including highly-functionalized organic compounds previously understudied in outdoor air. Our work offers new

  11. Application of the accurate mass and time tag approach in studies of the human blood lipidome

    PubMed Central

    Ding, Jie; Sorensen, Christina M.; Jaitly, Navdeep; Jiang, Hongliang; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Metz, Thomas O.

    2008-01-01

    We report a preliminary demonstration of the accurate mass and time (AMT) tag approach for lipidomics. Initial data-dependent LC-MS/MS analyses of human plasma, erythrocyte, and lymphocyte lipids were performed in order to identify lipid molecular species in conjunction with complementary accurate mass and isotopic distribution information. Identified lipids were used to populate initial lipid AMT tag databases containing 250 and 45 entries for those species detected in positive and negative electrospray ionization (ESI) modes, respectively. The positive ESI database was then utilized to identify human plasma, erythrocyte, and lymphocyte lipids in high-throughput LC-MS analyses based on the AMT tag approach. We were able to define the lipid profiles of human plasma, erythrocytes, and lymphocytes based on qualitative and quantitative differences in lipid abundance. PMID:18502191

  12. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  13. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  14. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    PubMed

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  15. Mass Society/Culture/Media: An Eclectic Approach.

    ERIC Educational Resources Information Center

    Clavner, Jerry B.

    Instructors of courses in mass society, culture, and communication start out facing three types of difficulties: the historical orientation of learning, the parochialism of various disciplines, and negative intellectually elitist attitudes toward mass culture/media. Added to these problems is the fact that many instructors have little or no…

  16. A Quantitative Mass Spectrometry-based Approach for Identifying Protein Kinase-Clients and Quantifying Kinase Activity

    USDA-ARS?s Scientific Manuscript database

    The Homo sapiens and Arabidopsis thaliana genomes are believed to encode >500 and >1,000 protein kinases, respectively. Despite this abundance, few bona fide kinase-client relationships have been described in detail. Mass spectrometry (MS)-based approaches have been integral to the large-scale mapp...

  17. Model unification and scale-adaptivity in the Eddy-Diffusivity Mass-Flux (EDMF) approach

    NASA Astrophysics Data System (ADS)

    Neggers, R.; Siebesma, P.

    2011-12-01

    It has long been understood that the turbulent-convective transport of heat, moisture and momentum plays an important role in the dynamics and climate of the earth's atmosphere. Accordingly, the representation of these processes in General Circulation Models (GCMs) has always been an active research field. Turbulence and convection act on temporal and spatial scales that are unresolved by most present-day GCMs, and have to be represented through parametric relations. Over the years a variety of schemes has been successfully developed. Although differing widely in their details, only two basic transport models stand at the basis of most of these schemes. The first is the diffusive transport model, which can only act down-gradient. An example is the turbulent mixing at small scales. The second is the advective transport model, which can act both down-gradient and counter-gradient. A good example is the transport of heat and moisture by convective updrafts that overshoot into stable layers of air. In practice, diffusive models often make use of a K-profile method or a prognostic TKE budget, while advective models make use of a rising (and entraining) plume budget. While most transport schemes classicaly apply either the diffusive model or advective model, the relatively recently introduced Eddy-Diffusivity Mass-Flux (EDMF) approach aims to combine both techniques. By applying advection and diffusion simultaneously, one can make use of the benefits of both approaches. Since its emergence about a decade ago, the EDMF approach has been successfully applied in both research and operational circulation models. This presentation is dedicated to the EDMF framework. Apart from a short introduction to the EDMF concept and a short overview of its current implementations, our main goal is to elaborate on the opportunities EDMF brings in addressing some long-standing problems in the parameterization of turbulent-convective transport. The first problem is the need for a unified

  18. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE PAGES

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...

    2015-03-26

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  19. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  20. Lidar derived properties of air-masses advected from Ukraine, Sahara and Carpathian mountains to Warsaw, Poland on 9 - 11 August 2015

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Szczepanik, Dominika; Borek, Karolina; Heese, Birgit; Stachlewska, Iwona S.

    2018-04-01

    The aerosol layers of different origin, suspended in the atmosphere on 9-11 August 2015 were observed with the PollyXT-UW lidar in Warsaw, Poland. The HYSPLIT ensemble backward trajectories indicate that the observed air-masses attribute to a few different sources, among others, possible transport paths from Ukraine, Slovakia, and Africa. In this paper, we attempt to analyse and discuss the properties of aerosol particles of different origin that were suspended over Warsaw during this event.

  1. A Cloud Mask for AIRS

    NASA Technical Reports Server (NTRS)

    Brubaker, N.; Jedlovec, G. J.

    2004-01-01

    With the preliminary release of AIRS Level 1 and 2 data to the scientific community, there is a growing need for an accurate AIRS cloud mask for data assimilation studies and in producing products derived from cloud free radiances. Current cloud information provided with the AIRS data are limited or based on simplified threshold tests. A multispectral cloud detection approach has been developed for AIRS that utilizes the hyper-spectral capabilities to detect clouds based on specific cloud signatures across the short wave and long wave infrared window regions. This new AIRS cloud mask has been validated against the existing AIRS Level 2 cloud product and cloud information derived from MODIS. Preliminary results for both day and night applications over the continental U.S. are encouraging. Details of the cloud detection approach and validation results will be presented at the conference.

  2. Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Cambaliza, M. O. L.; Shepson, P. B.; Caulton, D. R.; Stirm, B.; Samarov, D.; Gurney, K. R.; Turnbull, J.; Davis, K. J.; Possolo, A.; Karion, A.; Sweeney, C.; Moser, B.; Hendricks, A.; Lauvaux, T.; Mays, K.; Whetstone, J.; Huang, J.; Razlivanov, I.; Miles, N. L.; Richardson, S. J.

    2014-09-01

    Urban environments are the primary contributors to global anthropogenic carbon emissions. Because much of the growth in CO2 emissions will originate from cities, there is a need to develop, assess, and improve measurement and modeling strategies for quantifying and monitoring greenhouse gas emissions from large urban centers. In this study the uncertainties in an aircraft-based mass balance approach for quantifying carbon dioxide and methane emissions from an urban environment, focusing on Indianapolis, IN, USA, are described. The relatively level terrain of Indianapolis facilitated the application of mean wind fields in the mass balance approach. We investigate the uncertainties in our aircraft-based mass balance approach by (1) assessing the sensitivity of the measured flux to important measurement and analysis parameters including wind speed, background CO2 and CH4, boundary layer depth, and interpolation technique, and (2) determining the flux at two or more downwind distances from a point or area source (with relatively large source strengths such as solid waste facilities and a power generating station) in rapid succession, assuming that the emission flux is constant. When we quantify the precision in the approach by comparing the estimated emissions derived from measurements at two or more downwind distances from an area or point source, we find that the minimum and maximum repeatability were 12 and 52%, with an average of 31%. We suggest that improvements in the experimental design can be achieved by careful determination of the background concentration, monitoring the evolution of the boundary layer through the measurement period, and increasing the number of downwind horizontal transect measurements at multiple altitudes within the boundary layer.

  3. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  4. A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun

    2017-01-01

    Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.

  5. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less

  6. Buoyancy contribution to uncertainty of mass, conventional mass and force

    NASA Astrophysics Data System (ADS)

    Malengo, Andrea; Bich, Walter

    2016-04-01

    The conventional mass is a useful concept introduced to reduce the impact of the buoyancy correction in everyday mass measurements, thus avoiding in most cases its accurate determination, necessary in measurements of ‘true’ mass. Although usage of conventional mass is universal and standardized, the concept is considered as a sort of second-choice tool, to be avoided in high-accuracy applications. In this paper we show that this is a false belief, by elucidating the role played by covariances between volume and mass and between volume and conventional mass at the various stages of the dissemination chain and in the relationship between the uncertainties of mass and conventional mass. We arrive at somewhat counter-intuitive results: the volume of the transfer standard plays a comparatively minor role in the uncertainty budget of the standard under calibration. In addition, conventional mass is preferable to mass in normal, in-air operation, as its uncertainty is smaller than that of mass, if covariance terms are properly taken into account, and the uncertainty over-stating (typically) resulting from neglecting them is less severe than that (always) occurring with mass. The same considerations hold for force. In this respect, we show that the associated uncertainty is the same using mass or conventional mass, and, again, that the latter is preferable if covariance terms are neglected.

  7. Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: a multiple-method approach

    NASA Astrophysics Data System (ADS)

    Koliopanos, F.; Ciambur, B.; Graham, A.; Webb, N.; Coriat, M.; Mutlu-Pakdil, B.; Davis, B.; Godet, O.; Barret, D.; Seigar, M.

    2017-10-01

    Intermediate Mass Black Holes (IMBHs) are predicted by a variety of models and are the likely seeds for super massive BHs (SMBHs). However, we have yet to establish their existence. One method, by which we can discover IMBHs, is by measuring the mass of an accreting BH, using X-ray and radio observations and drawing on the correlation between radio luminosity, X-ray luminosity and the BH mass, known as the fundamental plane of BH activity (FP-BH). Furthermore, the mass of BHs in the centers of galaxies, can be estimated using scaling relations between BH mass and galactic properties. We are initiating a campaign to search for IMBH candidates in dwarf galaxies with low-luminosity AGN, using - for the first time - three different scaling relations and the FP-BH, simultaneously. In this first stage of our campaign, we measure the mass of seven LLAGN, that have been previously suggested to host central IMBHs, investigate the consistency between the predictions of the BH scaling relations and the FP-BH, in the low mass regime and demonstrate that this multiple method approach provides a robust average mass prediction. In my talk, I will discuss our methodology, results and next steps of this campaign.

  8. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Re-assessing Present Day Global Mass Transport and Glacial Isostatic Adjustment From a Data Driven Approach

    NASA Astrophysics Data System (ADS)

    Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.

    2017-12-01

    Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.

  10. The expectation of applying IR guidance in medium range air-to-air missiles

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; Liu, Ke

    2016-10-01

    IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.

  11. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background emission...

  12. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background emission...

  13. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission...

  14. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background emission...

  15. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background emission...

  16. Heavy metals found in the breathing zone, toenails and lung function of welders working in an air-conditioned welding workplace.

    PubMed

    Hariri, Azian; Mohamad Noor, Noraishah; Paiman, Nuur Azreen; Ahmad Zaidi, Ahmad Mujahid; Zainal Bakri, Siti Farhana

    2017-09-22

    Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.

  17. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O 2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO 2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas

  18. Mass balance approaches for estimating the intestinal absorption and metabolism of peptides and analogues: theoretical development and applications

    NASA Technical Reports Server (NTRS)

    Sinko, P. J.; Leesman, G. D.; Amidon, G. L.

    1993-01-01

    A theoretical analysis for estimating the extent of intestinal peptide and peptide analogue absorption was developed on the basis of a mass balance approach that incorporates convection, permeability, and reaction. The macroscopic mass balance analysis (MMBA) was extended to include chemical and enzymatic degradation. A microscopic mass balance analysis, a numerical approach, was also developed and the results compared to the MMBA. The mass balance equations for the fraction of a drug absorbed and reacted in the tube were derived from the general steady state mass balance in a tube: [formula: see text] where M is mass, z is the length of the tube, R is the tube radius, Pw is the intestinal wall permeability, kr is the reaction rate constant, C is the concentration of drug in the volume element over which the mass balance is taken, VL is the volume of the tube, and vz is the axial velocity of drug. The theory was first applied to the oral absorption of two tripeptide analogues, cefaclor (CCL) and cefatrizine (CZN), which degrade and dimerize in the intestine. Simulations using the mass balance equations, the experimental absorption parameters, and the literature stability rate constants yielded a mean estimated extent of CCL (250-mg dose) and CZN (1000-mg dose) absorption of 89 and 51%, respectively, which was similar to the mean extent of absorption reported in humans (90 and 50%). It was proposed previously that 15% of the CCL dose spontaneously degraded systematically; however, our simulations suggest that significant CCL degradation occurs (8 to 17%) presystemically in the intestinal lumen.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Heterogeneous Air Defense Battery Location: A Game Theoretic Approach

    DTIC Science & Technology

    In the air defense context of a missile-and-interceptor engagement, a challenge for the defender is that surface to air interceptor missile batteries ...often must be located to protect high-value targets dispersed over a vast area, subject to an attacker observing the disposition of batteries prior

  20. Multi-step approach for comparing the local air pollution contributions of conventional and innovative MSW thermo-chemical treatments.

    PubMed

    Ragazzi, M; Rada, E C

    2012-10-01

    In the sector of municipal solid waste management the debate on the performances of conventional and novel thermo-chemical technologies is still relevant. When a plant must be constructed, decision makers often select a technology prior to analyzing the local environmental impact of the available options, as this type of study is generally developed when the design of the plant has been carried out. Additionally, in the literature there is a lack of comparative analyses of the contributions to local air pollution from different technologies. The present study offers a multi-step approach, based on pollutant emission factors and atmospheric dilution coefficients, for a local comparative analysis. With this approach it is possible to check if some assumptions related to the advantages of the novel thermochemical technologies, in terms of local direct impact on air quality, can be applied to municipal solid waste treatment. The selected processes concern combustion, gasification and pyrolysis, alone or in combination. The pollutants considered are both carcinogenic and non-carcinogenic. A case study is presented concerning the location of a plant in an alpine region and its contribution to the local air pollution. Results show that differences among technologies are less than expected. Performances of each technology are discussed in details. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Lock-on range estimation in an air-to-air engagement situation

    NASA Astrophysics Data System (ADS)

    Cetin, Birkan; Kandemir, Kutlu D.

    2017-05-01

    In air-to-air missile applications, it is important to estimate the lock-on distance between the missile and the target by the help of correct radiometric approaches. However, in an air-to-air engagement, due to the dome heating after launch, signal to noise ratio (SNR) decreases and possibility of losing target becomes as a significant issue. Simulations showed that the selection of cut-on and cut-off wavelengths of midwave band pass filters which can be implemented in the optical path of the seeker is very important in order to maintain lock-on during the mission. In this aspect, the critical electro-optical parameters of an air-to-air seeker are investigated before and after the launch.

  2. A rapid, automated approach to optimisation of multiple reaction monitoring conditions for quantitative bioanalytical mass spectrometry.

    PubMed

    Higton, D M

    2001-01-01

    An improvement to the procedure for the rapid optimisation of mass spectrometry (PROMS), for the development of multiple reaction methods (MRM) for quantitative bioanalytical liquid chromatography/tandem mass spectrometry (LC/MS/MS), is presented. PROMS is an automated protocol that uses flow-injection analysis (FIA) and AppleScripts to create methods and acquire the data for optimisation. The protocol determines the optimum orifice potential, the MRM conditions for each compound, and finally creates the MRM methods needed for sample analysis. The sensitivities of the MRM methods created by PROMS approach those created manually. MRM method development using PROMS currently takes less than three minutes per compound compared to at least fifteen minutes manually. To further enhance throughput, approaches to MRM optimisation using one injection per compound, two injections per pool of five compounds and one injection per pool of five compounds have been investigated. No significant difference in the optimised instrumental parameters for MRM methods were found between the original PROMS approach and these new methods, which are up to ten times faster. The time taken for an AppleScript to determine the optimum conditions and build the MRM methods is the same with all approaches. Copyright 2001 John Wiley & Sons, Ltd.

  3. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  4. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    NASA Technical Reports Server (NTRS)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  5. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE PAGES

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim; ...

    2017-07-20

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  6. Localization of phonons in mass-disordered alloys: A typical medium dynamical cluster approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark; Moreno, Juana; Raja Mondal, Wasim

    The effect of disorder on lattice vibrational modes has been a topic of interest for several decades. In this article, we employ a Green's function based approach, namely, the dynamical cluster approximation (DCA), to investigate phonons in mass-disordered systems. Detailed benchmarks with previous exact calculations are used to validate the method in a wide parameter space. An extension of the method, namely, the typical medium DCA (TMDCA), is used to study Anderson localization of phonons in three dimensions. We show that, for binary isotopic disorder, lighter impurities induce localized modes beyond the bandwidth of the host system, while heavier impuritiesmore » lead to a partial localization of the low-frequency acoustic modes. For a uniform (box) distribution of masses, the physical spectrum is shown to develop long tails comprising mostly localized modes. The mobility edge separating extended and localized modes, obtained through the TMDCA, agrees well with results from the transfer matrix method. A reentrance behavior of the mobility edge with increasing disorder is found that is similar to, but somewhat more pronounced than, the behavior in disordered electronic systems. Our work establishes a computational approach, which recovers the thermodynamic limit, is versatile and computationally inexpensive, to investigate lattice vibrations in disordered lattice systems.« less

  7. Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Bilimoria, Karl D.

    2016-01-01

    This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.

  8. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  9. Is PM(10) mass measurement a reliable index for air quality assessment? An environmental study in a geographical area of north-eastern Italy.

    PubMed

    Cozzi, F; Adami, G; Barbieri, P; Reisenhofer, E; Bovenzi, M

    2008-09-01

    The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.

  10. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  11. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  12. Evaluation of automotive mass airflow sensors for animal environment research and control

    USDA-ARS?s Scientific Manuscript database

    Mass air flow is an important parameter to consider in animal research applications, especially for the generation of heat and moisture production data. The high flow rates and low operating pressures in animal research facilities present a unique and costly challenge for measurement of mass air fl...

  13. Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal

    2018-06-01

    Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.

  14. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Glenn Charles

    1999-12-01

    were 10 -7, 10 -5, and 10 -5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10 -5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.« less

  15. Mass and Ozone Fluxes from the Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Olsen, Mark A.

    2004-01-01

    Net mass flux from the stratosphere to the troposphere can be computed from the heating rate along the 380K isentropic surface and the time rate of change of the mass of the lowermost stratosphere (the region between the tropopause and the 380K isentrope). Given this net mass flux and the cross tropopause diabatic mass flux, the residual adiabatic mass flux across the tropopause can also be estimated. These fluxes have been computed using meteorological fields from a free-running general circulation model (FVGCM) and two assimilation data sets, FVDAS, and UKMO. The data sets tend to agree that the annual average net mass flux for the Northern Hemisphere is about 1P10 kg/s. There is less agreement on the southern Hemisphere flux that might be half as large. For all three data sets, the adiabatic mass flux is computed to be from the upper troposphere into the lowermost stratosphere. This flux will dilute air entering from higher stratospheric altitudes. The mass fluxes are convolved with ozone mixing ratios from the Goddard 3D CTM (which uses the FVGCM) to estimate the cross-tropopause transport of ozone. A relatively large adiabatic flux of tropospheric ozone from the tropical upper troposphere into the extratropical lowermost stratosphere dilutes the stratospheric air in the lowermost stratosphere. Thus, a significant fraction of any measured ozone STE may not be ozone produced in the higher Stratosphere. The results also illustrate that the annual cycle of ozone concentration in the lowermost stratosphere has as much of a role as the transport in the seasonal ozone flux cycle. This implies that a simplified calculation of ozone STE mass from air mass and a mean ozone mixing ratio may have a large uncertainty.

  16. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  17. Advances in Understanding Air Pollution and Cardiovascular Diseases: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    PubMed Central

    Kaufman, Joel D.; Spalt, Elizabeth W.; Curl, Cynthia L.; Hajat, Anjum; Jones, Miranda R.; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A.; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L.; Adar, Sara D.

    2016-01-01

    The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA—and adding participants and health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology. PMID:27741981

  18. Development and evaluation of an early detection intervention for mouth cancer using a mass media approach

    PubMed Central

    Eadie, D; MacKintosh, A M; MacAskill, S; Brown, A

    2009-01-01

    Background: Scotland has a high incidence of mouth cancer, but public awareness and knowledge are low compared with other cancers. The West of Scotland Cancer Awareness Project sought to increase public awareness and knowledge of mouth cancer and to encourage early detection of symptoms among an at-risk population of people aged over 40 years from lower socio-economic groups using a mass media approach. The media campaign aimed to increase people's feelings of personal risk, while also enhancing feelings of efficacy and control. To achieve this, a testimonial approach (using real people to tell their own stories) was adopted. Methods: Campaign impact and reach was assessed using in-home interviews with a representative sample of the target population in both the campaign area and controls outside of the target area. Surveys were conducted at three stages: at baseline before the campaign was launched, and at 7 and 12 months thereafter. Results: Awareness of media coverage was higher at both follow-up points in the intervention area than in the control area, the differences largely being accounted for by television advertising. The campaign had a short-term, but not a long-term impact on awareness of the disease and intention to respond to the symptoms targeted by the campaign. Awareness of two of the symptoms featured in the campaign (ulcers and lumps) increased, post-campaign, among the intervention group. Conclusions: While the study provides evidence for the effectiveness of the self-referral model, further work is needed to assess its ability to build public capacity to respond appropriately to symptoms and to compare the cost-effectiveness of a mass media approach against alternative communication approaches and more conventional mass screening. PMID:19956168

  19. Assessing the short term impact of air pollution on mortality: a matching approach.

    PubMed

    Baccini, Michela; Mattei, Alessandra; Mealli, Fabrizia; Bertazzi, Pier Alberto; Carugno, Michele

    2017-02-10

    The opportunity to assess short term impact of air pollution relies on the causal interpretation of the exposure-response association. However, up to now few studies explicitly faced this issue within a causal inference framework. In this paper, we reformulated the problem of assessing the short term impact of air pollution on health using the potential outcome approach to causal inference. We considered the impact of high daily levels of particulate matter ≤10 μm in diameter (PM 10 ) on mortality within two days from the exposure in the metropolitan area of Milan (Italy), during the period 2003-2006. Our research focus was the causal impact of a hypothetical intervention setting daily air pollution levels under a pre-fixed threshold. We applied a matching procedure based on propensity score to estimate the total number of attributable deaths (AD) during the study period. After defining the number of attributable deaths in terms of difference between potential outcomes, we used the estimated propensity score to match each high exposure day, namely each day with a level of exposure higher than 40 μg/m 3 , with a day with similar background characteristics but a level of exposure lower than 40 μg/m 3 . Then, we estimated the impact by comparing mortality between matched days. During the study period daily exposures larger than 40 μg/m 3 were responsible for 1079 deaths (90% CI: 116; 2042). The impact was more evident among the elderly than in the younger age classes. Exposures ≥ 40 μg/m 3 were responsible, among the elderly, for 1102 deaths (90% CI: 388, 1816), of which 797 from cardiovascular causes and 243 from respiratory causes. Clear evidence of an impact on respiratory mortality was found also in the age class 65-74, with 87 AD (90% CI: 11, 163). The propensity score matching turned out to be an appealing method to assess historical impacts in this field, which guarantees that the estimated total number of AD can be derived directly as sum

  20. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices.

    PubMed

    Hu, Jianlin; Ying, Qi; Wang, Yungang; Zhang, Hongliang

    2015-11-01

    Multi-pollutant air pollution (i.e., several pollutants reaching very high concentrations simultaneously) frequently occurs in many regions across China. Air quality index (AQI) is used worldwide to inform the public about levels of air pollution and associated health risks. The current AQI approach used in China is based on the maximum value of individual pollutants, and does not consider the combined health effects of exposure to multiple pollutants. In this study, two novel alternative indices--aggregate air quality index (AAQI) and health-risk based air quality index (HAQI)--were calculated based on data collected in six megacities of China (Beijing, Shanghai, Guangzhou, Shjiazhuang, Xi'an, and Wuhan) during 2013 to 2014. Both AAQI and HAQI take into account the combined health effects of various pollutants, and the HAQI considers the exposure (or concentration)-response relationships of pollutants. AAQI and HAQI were compared to AQI to examine the effectiveness of the current AQI in characterizing multi-pollutant air pollution in China. The AAQI and HAQI values are higher than the AQI on days when two or more pollutants simultaneously exceed the Chinese Ambient Air Quality Standards (CAAQS) 24-hour Grade II standards. The results of the comparison of the classification of risk categories based on the three indices indicate that the current AQI approach underestimates the severity of health risk associated with exposure to multi-pollutant air pollution. For the AQI-based risk category of 'unhealthy', 96% and 80% of the days would be 'very unhealthy' or 'hazardous' if based on AAQI and HAQI, respectively; and for the AQI-based risk category of 'very unhealthy', 67% and 75% of the days would be 'hazardous' if based on AAQI and HAQI, respectively. The results suggest that the general public, especially sensitive population groups such as children and the elderly, should take more stringent actions than those currently suggested based on the AQI approach during

  1. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  2. POLLUTION PREVENTION FOR CLEANER AIR: EPA'S AIR AND ENERGY ENGINEERING RESEARCH LABORATORY

    EPA Science Inventory

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribu...

  3. Cyber-Threat Assessment for the Air Traffic Management System: A Network Controls Approach

    NASA Technical Reports Server (NTRS)

    Roy, Sandip; Sridhar, Banavar

    2016-01-01

    , and indeed security solutions are being implemented in the current system. While these security solutions are important, they only provide a piecemeal solution. Particular computers or communication channels are protected from particular attacks, without a holistic view of the air transportation infrastructure. On the other hand, the above-listed incidents highlight that a holistic approach is needed, for several reasons. First, the air transportation infrastructure is a large scale cyber-physical system with multiple stakeholders and diverse legacy assets. It is impractical to protect every cyber- asset from known and unknown disruptions, and instead a strategic view of security is needed. Second, disruptions to the cyber- system can incur complex propagative impacts across the air transportation network, including its physical and human assets. Also, these implications of cyber- events are exacerbated or modulated by other disruptions and operational specifics, e.g. severe weather, operator fatigue or error, etc. These characteristics motivate a holistic and strategic perspective on protecting the air transportation infrastructure from cyber- events. The analysis of cyber- threats to the air traffic system is also inextricably tied to the integration of new autonomy into the airspace. The replacement of human operators with cyber functions leaves the network open to new cyber threats, which must be modeled and managed. Paradoxically, the mitigation of cyber events in the airspace will also likely require additional autonomy, given the fast time scale and myriad pathways of cyber-attacks which must be managed. The assessment of new vulnerabilities upon integration of new autonomy is also a key motivation for a holistic perspective on cyber threats.

  4. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  5. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Mulder, Marie D.; Shahpoury, Pourya; Kukučka, Petr; Lišková, Hana; Přibylová, Petra; Prokeš, Roman; Wotawa, Gerhard

    2017-05-01

    Nitro-polycyclic aromatic hydrocarbons (NPAH) are ubiquitous in polluted air but little is known about their abundance in background air. NPAHs were studied at one marine and one continental background site, i.e. a coastal site in the southern Aegean Sea (summer 2012) and a site in the central Great Hungarian Plain (summer 2013), together with the parent compounds, PAHs. A Lagrangian particle dispersion model was used to track air mass history. Based on Lagrangian particle statistics, the urban influence on samples was quantified for the first time as a fractional dose to which the collected volume of air had been exposed. At the remote marine site, the 3-4-ring NPAH (sum of 11 targeted species) concentration was 23.7 pg m-3 while the concentration of 4-ring PAHs (6 species) was 426 pg m-3. The most abundant NPAHs were 2-nitrofluoranthene (2NFLT) and 3-nitrophenanthrene. Urban fractional doses in the range of < 0.002-5.4 % were calculated. At the continental site, the Σ11 3-4-ring NPAH and Σ6 4-ring PAH were 58 and 663 pg m-3, respectively, with 9-nitroanthracene and 2NFLT being the most concentrated amongst the targeted NPAHs. The NPAH levels observed in the marine background air are the lowest ever reported and remarkably lower, by more than 1 order of magnitude, than 1 decade before. Day-night variation of NPAHs at the continental site reflected shorter lifetime during the day, possibly because of photolysis of some NPAHs. The yields of formation of 2NFLT and 2-nitropyrene (2NPYR) in marine air seem to be close to the yields for OH-initiated photochemistry observed in laboratory experiments under high NOx conditions. Good agreement is found for the prediction of NPAH gas-particle partitioning using a multi-phase poly-parameter linear free-energy relationship. Sorption to soot is found to be less significant for gas-particle partitioning of NPAHs than for PAHs. The NPAH levels determined in the south-eastern outflow of Europe confirm intercontinental transport

  6. A closed-loop air revitalization process technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark

    Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.

  7. A new approach to enforce element-wise mass/species balance using the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Chang, J.; Nakshatrala, K.

    2015-12-01

    The least-squares finite element method (LSFEM) is one of many ways in which one can discretize and express a set of first ordered partial differential equations as a mixed formulation. However, the standard LSFEM is not locally conservative by design. The absence of this physical property can have serious implications in the numerical simulation of subsurface flow and transport. Two commonly employed ways to circumvent this issue is through the Lagrange multiplier method, which explicitly satisfies the element-wise divergence by introducing new unknowns, or through appending a penalty factor to the continuity constraint, which reduces the violation in the mass balance. However, these methodologies have some well-known drawbacks. Herein, we propose a new approach to improve the local balance of species/mass balance. The approach augments constraints to a least-square function by a novel mathematical construction of the local species/mass balance, which is different from the conventional ways. The resulting constrained optimization problem is solved using the augmented Lagrangian, which corrects the balance errors in an iterative fashion. The advantages of this methodology are that the problem size is not increased (thus preserving the symmetry and positive definite-ness) and that one need not provide an accurate guess for the initial penalty to reach a prescribed mass balance tolerance. We derive the least-squares weighting needed to ensure accurate solutions. We also demonstrate the robustness of the weighted LSFEM coupled with the augmented Lagrangian by solving large-scale heterogenous and variably saturated flow through porous media problems. The performance of the iterative solvers with respect to various user-defined augmented Lagrangian parameters will be documented.

  8. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  9. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    PubMed

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  10. Analysis of various tracts of mastoid air cells related to CSF leak after the anterior transpetrosal approach.

    PubMed

    Tamura, Ryota; Tomio, Ryosuke; Mohammad, Farrag; Toda, Masahiro; Yoshida, Kazunari

    2018-03-16

    OBJECTIVE The anterior transpetrosal approach (ATPA) was established in 1984 and has been particularly effective for petroclival tumors. Although some complications associated with this approach, such as venous hemorrhage in the temporal lobe and nervous disturbances, have been resolved over the years, the incidence rate of CSF leaks has not greatly improved. In this study, some varieties of air cell tracts that are strongly related to CSF leaks are demonstrated. In addition, other pre- and postoperative risk factors for CSF leakage after ATPA are discussed. METHODS Preoperative and postoperative target imaging of the temporal bone was performed in a total of 117 patients who underwent ATPA, and various surgery-related parameters were analyzed. RESULTS The existence of air cells at the petrous apex, as well as fluid collection in the mastoid antrum detected by a postoperative CT scan, were possible risk factors for CSF leakage. Tracts that directly connected to the antrum from the squamous part of the temporal bone and petrous apex, rather than through numerous air cells, were significantly related to CSF leak and were defined as "direct tract." All patients with a refractory CSF leak possessed "unusual tracts" that connected to the attic, tympanic cavity, or eustachian tube, rather than through the mastoid antrum. CONCLUSIONS Preoperative assessment of petrous pneumatization types is necessary to prevent CSF leaks. Direct and unusual tracts are particularly strong risk factors for CSF leaks.

  11. A mass spectrometry primer for mass spectrometry imaging

    PubMed Central

    Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-01-01

    Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging, employs mass spectrometry (MS) technologies to create single- and multi-dimensional localization maps for a variety of atoms and molecules. Complimentary to other imaging approaches, MSI provides high chemical specificity and broad analyte coverage. This powerful analytical toolset is capable of measuring the distribution of many classes of inorganics, metabolites, proteins and pharmaceuticals in chemically and structurally complex biological specimens in vivo, in vitro, and in situ. The MSI approaches highlighted in this Methods in Molecular Biology volume provide flexibility of detection, characterization, and identification of multiple known and unknown analytes. The goal of this chapter is to introduce investigators who may be unfamiliar with MS to the basic principles of the mass spectrometric approaches as used in MSI. In addition to guidelines for choosing the most suitable MSI method for specific investigations, cross-references are provided to the chapters in this volume that describe the appropriate experimental protocols. PMID:20680583

  12. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  13. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    NASA Astrophysics Data System (ADS)

    Pontes, Arthur; de Sousa, Marcelo

    2016-10-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  14. An engineering approach to controlling indoor air quality.

    PubMed

    Woods, J E

    1991-11-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. An engineering approach to controlling indoor air quality.

    PubMed Central

    Woods, J E

    1991-01-01

    Evidence is accumulating that indicates air quality problems in residential and commercial buildings are nearly always associated with inadequacies in building design and methods of operation. Thus, the very systems depended on to control the indoor environment can become indirect sources of contamination if diligence is not exercised at each stage of a building's life: a) planning and design, b) construction and commissioning, c) operation, and d) demolition or renovation. In this paper, an engineering perspective is presented in which the existing building stock is characterized in terms of its environmental performance. Preliminary data indicate that 20 to 30% of the existing buildings have sufficient problems to manifest as sick-building syndrome or building-related illness, while another 10 to 20% may have undetected problems. Thus, only about 50 to 70% of the existing buildings qualify as healthy buildings. Two methods and three mechanisms of control are described to achieve "acceptable" indoor air quality: source control and exposure control. If sources cannot be removed, some level of occupant exposure will result. To control exposures with acceptable values, the primary sensory receptors of the occupants (i.e., thermal, ocular, auditory, and olfactory) cannot be excessively stimulated. The three exposure control mechanisms are conduction, radiation, and convection. To achieve acceptable occupant responses, it is often practical to integrate the mechanisms of radiation and convection in heating, ventilating, and air conditioning systems that are designed to provide acceptable thermal, acoustic, and air quality conditions within occupied spaces.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821369

  16. Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon-222 and Back Trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Choi, T.; Park, S.-J.; Williams, A. G.; Hong, S.-B.; Tositti, L.; Griffiths, A. D.; Crawford, J.; Pereira, E.

    2017-12-01

    We report on the first summer of high-sensitivity radon measurements from a two-filter detector at Jang Bogo Station (Terra Nova Bay) and contrast them with simultaneous observations at King Sejong Station (King George Island). King Sejong radon concentrations were characteristic of a marine baseline station (0.02-0.3 Bq m-3), whereas Jang Bogo values were highly variable (0.06-5.2 Bq m-3), mainly due to emissions from exposed coastal ground (estimated mean flux 0.09-0.11 atoms cm-2 s-1) and shallow atmospheric mixing depths. For wind speeds of ≤3.5 m s-1 the influence of local radon emissions became increasingly more prominent at both sites. A cluster analysis of back trajectories from King Sejong (62°S) revealed a fairly even distribution between air masses that had passed recently over South America, the Southern Ocean, and Antarctica, whereas at Jang Bogo (75°S) 80% of events had recently passed over the Ross Ice Shelf and West Antarctica, 12% were synoptically forced over Cape Adare, and 8% were associated with subsidence over the Antarctic interior and katabatic flow to the station. When cross-checked against radon concentrations, only half of the back trajectories ending at Jang Bogo that had indicated distant contact with nonpolar southern hemisphere continents within the past 10 days showed actual signs of terrestrial influence. A simple-to-implement technique based on high-pass filtered absolute humidity is developed to distinguish between predominantly katabatic, oceanic, and near-coastal air masses for characterization of trace gas and aerosol measurements at coastal East Antarctic sites.

  17. A new approach to untargeted integration of high resolution liquid chromatography-mass spectrometry data.

    PubMed

    van der Kloet, Frans M; Hendriks, Margriet; Hankemeier, Thomas; Reijmers, Theo

    2013-11-01

    Because of its high sensitivity and specificity, hyphenated mass spectrometry has become the predominant method to detect and quantify metabolites present in bio-samples relevant for all sorts of life science studies being executed. In contrast to targeted methods that are dedicated to specific features, global profiling acquisition methods allow new unspecific metabolites to be analyzed. The challenge with these so-called untargeted methods is the proper and automated extraction and integration of features that could be of relevance. We propose a new algorithm that enables untargeted integration of samples that are measured with high resolution liquid chromatography-mass spectrometry (LC-MS). In contrast to other approaches limited user interaction is needed allowing also less experienced users to integrate their data. The large amount of single features that are found within a sample is combined to a smaller list of, compound-related, grouped feature-sets representative for that sample. These feature-sets allow for easier interpretation and identification and as important, easier matching over samples. We show that the automatic obtained integration results for a set of known target metabolites match those generated with vendor software but that at least 10 times more feature-sets are extracted as well. We demonstrate our approach using high resolution LC-MS data acquired for 128 samples on a lipidomics platform. The data was also processed in a targeted manner (with a combination of automatic and manual integration) using vendor software for a set of 174 targets. As our untargeted extraction procedure is run per sample and per mass trace the implementation of it is scalable. Because of the generic approach, we envision that this data extraction lipids method will be used in a targeted as well as untargeted analysis of many different kinds of TOF-MS data, even CE- and GC-MS data or MRM. The Matlab package is available for download on request and efforts are

  18. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  19. Development of a combined isotopic and mass-balance approach to determine dissolved organic carbon sources in eutrophic reservoirs.

    PubMed

    Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jardé, Emilie; Gaury, Nicolas; Brient, Luc; Lengronne, Marion; Crocq, André; Helle, Daniel; Lambert, Thibault

    2011-04-01

    A combined mass-balance and stable isotope approach was set up to identify and quantify dissolved organic carbon (DOC) sources in a DOC-rich (9mgL(-1)) eutrophic reservoir located in Western France and used for drinking water supply (so-called Rophemel reservoir). The mass-balance approach consisted in measuring the flux of allochthonous DOC on a daily basis, and in comparing it with the effective (measured) DOC concentration of the reservoir. The isotopic approach consisted, for its part, in measuring the carbon isotope ratios (δ(13)C values) of both allochthonous and autochthonous DOC sources, and comparing these values with the δ(13)C values of the reservoir DOC. Results from both approaches were consistent pointing out for a DOC of 100% allochthonous origin. In particular, the δ(13)C values of the DOC recovered in the reservoir (-28.5±0.2‰; n=22) during the algal bloom season (May-September) showed no trace of an autochthonous contribution (δ(13)C in algae=-30.1±0.3‰; n=2) being indistinguishable from the δ(13)C values of allochthonous DOC from inflowing rivers (-28.6±0.1‰; n=8). These results demonstrate that eutrophication is not responsible for the high DOC concentrations observed in the Rophemel reservoir and that limiting eutrophication of this reservoir will not reduce the potential formation of disinfection by-products during water treatment. The methodology developed in this study based on a complementary isotopic and mass-balance approach provides a powerful tool, suitable to identify and quantify DOC sources in eutrophic, DOC-contaminated reservoirs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Associations between Prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index

    PubMed Central

    Coull, Brent A.; Just, Allan C.; Maxwell, Sarah L.; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Wright, Rosalind J.; Wright, Robert O.

    2015-01-01

    Background Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. Objectives We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Methods Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Results Median birth weight was 3.3±0.6 kg; 33% of mothers were obese (BMI ≥30 kg/m3). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (−0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: −0.79 to −0.06) ( PM2.5 × sex × obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Conclusions Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. PMID:25601728

  1. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Air and Surface Sampling Method for Assessing Exposures to Quaternary Ammonium Compounds Using Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    LeBouf, Ryan F; Virji, Mohammed Abbas; Ranpara, Anand; Stefaniak, Aleksandr B

    2017-07-01

    This method was designed for sampling select quaternary ammonium (quat) compounds in air or on surfaces followed by analysis using ultraperformance liquid chromatography tandem mass spectrometry. Target quats were benzethonium chloride, didecyldimethylammonium bromide, benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. For air sampling, polytetrafluoroethylene (PTFE) filters are recommended for 15-min to 24-hour sampling. For surface sampling, Pro-wipe® 880 (PW) media was chosen. Samples were extracted in 60:40 acetonitrile:0.1% formic acid for 1 hour on an orbital shaker. Method detection limits range from 0.3 to 2 ng/ml depending on media and analyte. Matrix effects of media are minimized through the use of multiple reaction monitoring versus selected ion recording. Upper confidence limits on accuracy meet the National Institute for Occupational Safety and Health 25% criterion for PTFE and PW media for all analytes. Using PTFE and PW analyzed with multiple reaction monitoring, the method quantifies levels among the different quats compounds with high precision (<10% relative standard deviation) and low bias (<11%). The method is sensitive enough with very low method detection limits to capture quats on air sampling filters with only a 15-min sample duration with a maximum assessed storage time of 103 days before sample extraction. This method will support future exposure assessment and quantitative epidemiologic studies to explore exposure-response relationships and establish levels of quats exposures associated with adverse health effects. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. Assessment of air pollution of settlement areas in Ulaanbaatar city, Mongolia

    NASA Astrophysics Data System (ADS)

    Ch, Sonomdagva; Ch, Byambatseren; Batdelger, B.

    2017-05-01

    The purpose of this study is to analyses mass concentration varied by its measurement of air pollution in Ulaanbaatar city, Mongolia. Ulaanbaatar city will have been increasing air pollution due to rapidly expanding vehicular population, growing industrial sector in last 10 years ago. In addition, people use to heat the carbon from 10 month in every year. This becomes a base cause of air pollution in Ulaanbaatar. We studied a change of mass concentration an air pollution elements in Ulaanbaatar, Mongolia. To research work, we used information that based on data of my measurements of air pollution and Metropolitan air quality agency until 2006 to 2016. This research important result is air pollution levels are limited to the areas around Ulaanbaatar areas are the most polluted in the center of city are the least polluted areas whereas Tolgoit, Sapporo, 1st Khoroolol, Amgalan, Shar Khad are moderately polluted and the areas around Baruun 4 zam, Factory, Zaisan, Nisekh are normally polluted. The results of pollution are illustrated four zones. By dividing the polluted areas into such zones, we are trying to make it easier to take preventive measures against the pollution itself and protective measures for safeguarding the health of mass population.

  4. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    NASA Technical Reports Server (NTRS)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  5. A precise mass function in the excursion set approach

    NASA Astrophysics Data System (ADS)

    Del Popolo, Antonino

    2017-04-01

    In the present paper, using previous results from Del Popolo papers, we show how the mass function evolution can be obtained in the framework of a spherical collapse model, which has been modified to take account of dynamical friction, the cosmological constant, and angular momentum which proto-structures acquire through tidal interaction with neighbouring ones. We found an improved barrier which is in excellent agreement with simulations. The quoted barrier is used to calculated the mass function. In the case of the ΛCDM paradigm, our mass function is in good agreement (within some %) with the mass function of Klypin's Bolshoi simulation for the virial mass range 5 × 109 - 5 × 1014h-1M⊙, and 0 ≾ z ≿ 10. Similar agreement is obtained with Tinker's mass function, and Castorina's simulations.

  6. An Integrated Approach to Economic and Environmental Aspects of Air Pollution and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.

    2007-12-01

    Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have

  7. Evaluation of indoor air composition time variation in air-tight occupied spaces during night periods

    NASA Astrophysics Data System (ADS)

    Markov, Detelin

    2012-11-01

    This paper presents an easy-to-understand procedure for prediction of indoor air composition time variation in air-tight occupied spaces during the night periods. The mathematical model is based on the assumptions for homogeneity and perfect mixing of the indoor air, the ideal gas model for non-reacting gas mixtures, mass conservation equations for the entire system and for each species, a model for prediction of basal metabolic rate of humans as well as a model for prediction of O2 consumption rate and both CO2 and H2O generation rates by breathing. Time variation of indoor air composition is predicted at constant indoor air temperature for three scenarios based on the analytical solution of the mathematical model. The results achieved reveal both the most probable scenario for indoor air time variation in air-tight occupied spaces as well as the cause for morning tiredness after having a sleep in a modern energy efficient space.

  8. Impact of wildfires on regional air pollution | Science Inventory ...

    EPA Pesticide Factsheets

    We examine the impact of wildfires and agricultural/prescribed burning on regional air pollution and Air Quality Index (AQI) between 2006 and 2013. We define daily regional air pollution using monitoring sites for ozone (n=1595), PM2.5 collected by Federal Reference Method (n=1058), and constituents of PM2.5 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network (n=264) and use satellite image analysis from the NOAA Hazard Mapping System (HMS) to determine days on which visible smoke plumes are detected in the vertical column of the monitoring site. To examine the impact of smoke from these fires on regional air pollution we use a two stage approach, accounting for within site (1st stage) and between site (2nd stage) variations. At the first stage we estimate a monitor-specific plume day effect describing the relative change in pollutant concentrations on the days impacted by smoke plume while accounting for confounding effects of season and temperature_. At the second stage we combine monitor-specific plume day effects with a Bayesian hierarchical model and estimate a pooled nationally-averaged effect. HMS visible smoke plumes were detected on 6% of ozone, 8% of PM2.5 and 6% of IMPROVE network monitoring days. Our preliminary results indicate that the long range transport of air pollutants from wildfires and prescribed burns increase ozone concentration by 11% and PM2.5 mass by 34%. On all of the days where monitoring sites were AQI

  9. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  10. New approaches for metabolomics by mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos

    Small molecules constitute a large part of the world around us, including fossil and some renewable energy sources. Solar energy harvested by plants and bacteria is converted into energy rich small molecules on a massive scale. Some of the worst contaminants of the environment and compounds of interest for national security also fall in the category of small molecules. The development of large scale metabolomic analysis methods lags behind the state of the art established for genomics and proteomics. This is commonly attributed to the diversity of molecular classes included in a metabolome. Unlike nucleic acids and proteins, metabolites domore » not have standard building blocks, and, as a result, their molecular properties exhibit a wide spectrum. This impedes the development of dedicated separation and spectroscopic methods. Mass spectrometry (MS) is a strong contender in the quest for a quantitative analytical tool with extensive metabolite coverage. Although various MS-based techniques are emerging for metabolomics, many of these approaches include extensive sample preparation that make large scale studies resource intensive and slow. New ionization methods are redefining the range of analytical problems that can be solved using MS. This project developed new approaches for the direct analysis of small molecules in unprocessed samples, as well as pushed the limits of ultratrace analysis in volume limited complex samples. The projects resulted in techniques that enabled metabolomics investigations with enhanced molecular coverage, as well as the study of cellular response to stimuli on a single cell level. Effectively individual cells became reaction vessels, where we followed the response of a complex biological system to external perturbation. We established two new analytical platforms for the direct study of metabolic changes in cells and tissues following external perturbation. For this purpose we developed a novel technique, laser ablation electrospray

  11. Development of a short path thermal desorption-gas chromatography/mass spectrometry method for the determination of polycyclic aromatic hydrocarbons in indoor air.

    PubMed

    Li, Yingjie; Xian, Qiming; Li, Li

    2017-05-12

    Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m 3 except for naphthalene (0.61μg/m 3 ), fluorene (0.28μg/m 3 ) and phenanthrene (0.35μg/m 3 ). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Linking environmental effects to health impacts: a computer modelling approach for air pollution

    PubMed Central

    Mindell, J.; Barrowcliffe, R.

    2005-01-01

    Study objective and Setting: To develop a computer model, using a geographical information system (GIS), to quantify potential health effects of air pollution from a new energy from waste facility on the surrounding urban population. Design: Health impacts were included where evidence of causality is sufficiently convincing. The evidence for no threshold means that annual average increases in concentration can be used to model changes in outcome. The study combined the "contours" of additional pollutant concentrations for the new source generated by a dispersion model with a population database within a GIS, which is set up to calculate the product of the concentration increase with numbers of people exposed within each enumeration district exposure response coefficients, and the background rates of mortality and hospital admissions for several causes. Main results: The magnitude of health effects might result from the increased PM10 exposure is small—about 0.03 deaths each year in a population of 3 500 000, with 0.04 extra hospital admissions for respiratory disease. Long term exposure might bring forward 1.8–7.8 deaths in 30 years. Conclusions: This computer model is a feasible approach to estimating impacts on human health from environmental effects but sensitivity analyses are recommended. Relevance to clinical or professional practice: The availability of GIS and dispersion models on personal computers enables quantification of health effects resulting from the additional air pollution new industrial development might cause. This approach could also be used in environmental impact assessment. Care must be taken in presenting results to emphasise methodological limitations and uncertainties in the numbers. PMID:16286501

  13. Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches

    PubMed Central

    Gehring, Ulrike; Hoek, Gerard; Keuken, Menno; Jonkers, Sander; Beelen, Rob; Eeftens, Marloes; Postma, Dirkje S.; Brunekreef, Bert

    2015-01-01

    Background There is limited knowledge about the extent to which estimates of air pollution effects on health are affected by the choice for a specific exposure model. Objectives We aimed to evaluate the correlation between long-term air pollution exposure estimates using two commonly used exposure modeling techniques [dispersion and land use regression (LUR) models] and, in addition, to compare the estimates of the association between long-term exposure to air pollution and lung function in children using these exposure modeling techniques. Methods We used data of 1,058 participants of a Dutch birth cohort study with measured forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and peak expiratory flow (PEF) measurements at 8 years of age. For each child, annual average outdoor air pollution exposure [nitrogen dioxide (NO2), mass concentration of particulate matter with diameters ≤ 2.5 and ≤ 10 μm (PM2.5, PM10), and PM2.5 soot] was estimated for the current addresses of the participants by a dispersion and a LUR model. Associations between exposures to air pollution and lung function parameters were estimated using linear regression analysis with confounder adjustment. Results Correlations between LUR- and dispersion-modeled pollution concentrations were high for NO2, PM2.5, and PM2.5 soot (R = 0.86–0.90) but low for PM10 (R = 0.57). Associations with lung function were similar for air pollutant exposures estimated using LUR and dispersion modeling, except for associations of PM2.5 with FEV1 and FVC, which were stronger but less precise for exposures based on LUR compared with dispersion model. Conclusions Predictions from LUR and dispersion models correlated very well for PM2.5, NO2, and PM2.5 soot but not for PM10. Health effect estimates did not depend on the type of model used to estimate exposure in a population of Dutch children. Citation Wang M, Gehring U, Hoek G, Keuken M, Jonkers S, Beelen R, Eeftens M, Postma DS, Brunekreef B

  14. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  15. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.

    PubMed

    Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas

    2014-08-30

    An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS

  16. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  17. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  18. Superconductivity. Quasiparticle mass enhancement approaching optimal doping in a high-T(c) superconductor.

    PubMed

    Ramshaw, B J; Sebastian, S E; McDonald, R D; Day, James; Tan, B S; Zhu, Z; Betts, J B; Liang, Ruixing; Bonn, D A; Hardy, W N; Harrison, N

    2015-04-17

    In the quest for superconductors with higher transition temperatures (T(c)), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. Recent experiments have suggested the existence of the requisite broken-symmetry phase in the high-T(c) cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. We used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa2Cu3O(6+δ) over a wide range of doping, and observed magnetic quantum oscillations that reveal a strong enhancement of the quasiparticle effective mass toward optimal doping. This mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p(crit) ≈ 0.18. Copyright © 2015, American Association for the Advancement of Science.

  19. Indoor air quality in university classrooms and relative environment in terms of mass concentrations of particulate matter.

    PubMed

    Gaidajis, George; Angelakoglou, Komninos

    2009-10-01

    The mass concentrations of coarse (PM10) and fine (PM2.5) particulate matter were measured in different classrooms and relevant indoors areas of Democritus University, School of Engineering, Xanthi, with portable aerosol monitoring equipment. Two sampling campaigns were conducted in different seasons. The results indicated that the average concentrations in classrooms ranged from 32-188 microg/m3 and 25-151 microg/m3 for PM10 and PM2.5, respectively. Concentration levels above 300 microg/m3 were usually recorded, while the PM2.5/PM10 ratio was about 0.8. As expected, PM10 and PM2.5 average concentrations were significantly higher in the open-access meeting place of common use, indicating the significance of student trespassing and occasional smoking in the deterioration of indoors air quality.

  20. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  1. Mass Spectrometer Containing Multiple Fixed Collectors

    NASA Technical Reports Server (NTRS)

    Moskala, Robert; Celo, Alan; Voss, Guenter; Shaffer, Tom

    2008-01-01

    A miniature mass spectrometer that incorporates features not typically found in prior mass spectrometers is undergoing development. This mass spectrometer is designed to simultaneously measure the relative concentrations of five gases (H2, He, N2, O2, and Ar) in air, over the relative-concentration range from 10(exp -6) to 1, during a sampling time as short as 1 second. It is intended to serve as a prototype of a product line of easy-to-use, portable, lightweight, highspeed, relatively inexpensive instruments for measuring concentrations of multiple chemical species in such diverse applications as detecting explosive or toxic chemicals in air, monitoring and controlling industrial processes, measuring concentrations of deliberately introduced isotopes in medical and biological investigations, and general environmental monitoring. The heart of this mass spectrometer is an integral combination of a circular cycloidal mass analyzer, multiple fixed ion collectors, and two mass-selective ion sources. By circular cycloidal mass analyzer is meant an analyzer that includes (1) two concentric circular cylindrical electrodes for applying a radial electric field and (2) a magnet arranged to impose a magnetic flux aligned predominantly along the cylindrical axis, so that ions, once accelerated into the annulus between the electrodes, move along circular cycloidal trajectories. As in other mass analyzers, trajectory of each ion is determined by its mass-to-charge ratio, and so ions of different species can be collected simultaneously by collectors (Faraday cups) at different locations intersected by the corresponding trajectories (see figure). Unlike in other mass analyzers, the installation of additional collectors to detect additional species does not necessitate increasing the overall size of the analyzer assembly.

  2. Multiplatform Mass Spectrometry-Based Approach Identifies Extracellular Glycolipids of the Yeast Rhodotorula babjevae UCDFST 04-877.

    PubMed

    Cajka, Tomas; Garay, Luis A; Sitepu, Irnayuli R; Boundy-Mills, Kyria L; Fiehn, Oliver

    2016-10-28

    A multiplatform mass spectrometry-based approach was used for elucidating extracellular lipids with biosurfactant properties produced by the oleaginous yeast Rhodotorula babjevae UCDFST 04-877. This strain secreted 8.6 ± 0.1 g/L extracellular lipids when grown in a benchtop bioreactor fed with 100 g/L glucose in medium without addition of hydrophobic substrate, such as oleic acid. Untargeted reversed-phase liquid chromatography-quadrupole/time-of-flight mass spectrometry (QTOFMS) detected native glycolipid molecules with masses of 574-716 Da. After hydrolysis into the fatty acid and sugar components and hydrophilic interaction chromatography-QTOFMS analysis, the extracellular lipids were found to consist of hydroxy fatty acids and sugar alcohols. Derivatization and chiral separation gas chromatography-mass spectrometry (GC-MS) identified these components as d-arabitol, d-mannitol, (R)-3-hydroxymyristate, (R)-3-hydroxypalmitate, and (R)-3-hydroxystearate. In order to assemble these substructures back into intact glycolipids that were detected in the initial screen, potential structures were in-silico acetylated to match the observed molar masses and subsequently characterized by matching predicted and observed MS/MS fragmentation using the Mass Frontier software program. Eleven species of acetylated sugar alcohol esters of hydroxy fatty acids were characterized for this yeast strain.

  3. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  4. Clean Air Markets - Part 75 Emissions Monitoring Policy Manual

    EPA Pesticide Factsheets

    Learn about monitoring mass sulfur dioxide and mass carbon dioxide emissions, nitrogen oxide emission rate, and heat input by units affected by the Acid Rain Program and the Clean Air Interstate Rule.

  5. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  6. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  7. Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  8. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  9. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  10. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  11. A 100g Mass Comparator with an Improved Readability and Measuring Environment

    NASA Astrophysics Data System (ADS)

    Ueki, Masaaki; Sun, Jian-Xin; Ueda, Kazunaga

    In order to achieve higher accuracy of the mass standard in the mass range equal to or less than 100g, it is necessary for a mass comparator in the range to have a relative sensitivity of the order of 1×10-9. For this purpose, a 111g capacity fully-automatic mass comparator has been renovated so that its readability is improved from 1 to 0.1µg. The mass comparator is also installed in an air-tight chamber originally developed by the NMIJ, so that it can be kept in stable environment, especially in the air of constant density. With these renovations, standard deviation of the mass comparisons is reduced and uncertainty of the air buoyancy corrections is lessened. This paper reports the features of the improved 100g mass comparator, the empirical method to evaluate its performance and the obtained results. As a result, the standard deviations of the mass difference measurements have been greatly improved to 0.22µg in the average with the chamber closed, compared with 0.97µg with the one open. The linearity of the comparator has been also verified by the mass difference measurements of weights at the six masses of 10, 20, 30, 50, 70 and 100g, and it confirms that the non-linearity errors of the comparator are within 0.28µg, showing good measuring performance.

  12. Evaluation of bromide mass discharge in a sandy aquifer at Vandenberg AFB, CA

    NASA Astrophysics Data System (ADS)

    Mackay, D. M.; Rasa, E.; Einarson, M.; Kaiser, P.; Chakraborty, I.; Scow, K. M.

    2009-12-01

    Side-by-side experiments were conducted by UC Davis research team at a former fuel station at Vandenberg Air Force Base (AFB) to evaluate the rate of transformation of methyl tert-butyl ether (MTBE) to tert-butyl alcohol (TBA) impacted by ethanol and to investigate evidence of TBA degradation under sulfate reducing conditions. On one side we injected groundwater amended with ethanol and MTBE. In the other lane we injected groundwater amended with TBA. On both sides, injected ground water was spiked with bromide tracer to provide estimates of groundwater flow direction variations, flow velocity, dispersion, and mobile mass loss resulting from diffusive sequestration into aquitards. 162 monitoring wells were aligned into seven transects located downgradient of the injection wells. The mass discharge approach was used to evaluate the natural attenuation of the injected constituents. In this talk we will focus on calculations of mass discharge of the bromide tracer at each of the seven monitoring well transects. The amount of bromide mass discharged through each transect was calculated for any sampling time using field measurements of break through curves. Cumulative mass discharges were estimated and, by iteration based on mass balance, the flow properties of the aquifer were estimated. The calibration process resulted in subtle but quantitatively important changes in our assumptions regarding key physical properties of the aquifer (thickness, porosity) which could be only approximately estimated by standard methods (coring, CPT, etc.). On the basis of this calibration, a more robust approach was devised for evaluating the source and fate of TBA in the aquifer.

  13. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  14. Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry.

    PubMed

    Moschet, Christoph; Piazzoli, Alessandro; Singer, Heinz; Hollender, Juliane

    2013-11-05

    In this study, the efficiency of a suspect screening strategy using liquid chromatography-high resolution mass spectrometry (LC-HRMS) without the prior purchase of reference standards was systematically optimized and evaluated for assessing the exposure of rarely investigated pesticides and their transformation products (TPs) in 76 surface water samples. Water-soluble and readily ionizable (electrospray ionization) substances, 185 in total, were selected from a list of all insecticides and fungicides registered in Switzerland and their major TPs. Initially, a solid phase extraction-LC-HRMS method was established using 45 known, persistent, and high sales volume pesticides. Seventy percent of these target substances had limit of quantitation (LOQ) < 5 ng L(-1). This compound set was then used to develop and optimize a HRMS suspect screening method using only the exact mass as a priori information. Thresholds for blank subtraction, peak area, peak shape, signal-to-noise, and isotopic pattern were applied to automatically filter the initially picked peaks. The success rate was 70%; false negatives mainly resulted from low intense peaks. The optimized approach was applied to the remaining 140 substances. Nineteen additional substances were detected in environmental samples, two TPs for the first time in the environment. Sixteen substances were confirmed with reference standards purchased subsequently, while three TP standards could be obtained from industry or other laboratories. Overall, this screening approach was fast and very successful and can easily be expanded to other micropollutant classes for which reference standards are not readily accessible such as TPs of household chemicals.

  15. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction

    NASA Astrophysics Data System (ADS)

    Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong

    2018-01-01

    The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the

  17. Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R; Koffel, William K

    1952-01-01

    The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.

  18. Physico-chemical characterization of grain dust in storage air of Bangalore.

    PubMed

    Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R

    1998-06-01

    An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.

  19. Updated polychlorinated biphenyl mass budget for Lake Michigan

    EPA Science Inventory

    This study revisits and updates the Lake Michigan Mass Balance Project (LMMBP) for polychlorinated biphenyls (PCBs) that was conducted in 1994-1995. This work uses recent concentrations of PCBs in tributary and open lake water, air, and sediment to calculate an updated mass budg...

  20. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise