Sample records for air mass arriving

  1. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  2. Photochemical aging of aerosol particles in different air masses arriving at Baengnyeong Island, Korea

    NASA Astrophysics Data System (ADS)

    Kang, Eunha; Lee, Meehye; Brune, William H.; Lee, Taehyoung; Park, Taehyun; Ahn, Joonyoung; Shang, Xiaona

    2018-05-01

    Atmospheric aerosol particles are a serious health risk, especially in regions like East Asia. We investigated the photochemical aging of ambient aerosols using a potential aerosol mass (PAM) reactor at Baengnyeong Island in the Yellow Sea during 4-12 August 2011. The size distributions and chemical compositions of aerosol particles were measured alternately every 6 min from the ambient air or through the highly oxidizing environment of a potential aerosol mass (PAM) reactor. Particle size and chemical composition were measured by using the combination of a scanning mobility particle sizer (SMPS) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Inside the PAM reactor, O3 and OH levels were equivalent to 4.6 days of integrated OH exposure at typical atmospheric conditions. Two types of air masses were distinguished on the basis of the chemical composition and the degree of aging: air transported from China, which was more aged with a higher sulfate concentration and O : C ratio, and the air transported across the Korean Peninsula, which was less aged with more organics than sulfate and a lower O : C ratio. For both episodes, the particulate sulfate mass concentration increased in the 200-400 nm size range when sampled through the PAM reactor. A decrease in organics was responsible for the loss of mass concentration in 100-200 nm particles when sampled through the PAM reactor for the organics-dominated episode. This loss was especially evident for the m/z 43 component, which represents less oxidized organics. The m/z 44 component, which represents further oxidized organics, increased with a shift toward larger sizes for both episodes. It is not possible to quantify the maximum possible organic mass concentration for either episode because only one OH exposure of 4.6 days was used, but it is clear that SO2 was a primary precursor of secondary aerosol in northeast Asia, especially during long-range transport from China. In addition

  3. Semiautomated Management Of Arriving Air Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1992-01-01

    System of computers, graphical workstations, and computer programs developed for semiautomated management of approach and arrival of numerous aircraft at airport. System comprises three subsystems: traffic-management advisor, used for controlling traffic into terminal area; descent advisor generates information integrated into plan-view display of traffic on monitor; and final-approach-spacing tool used to merge traffic converging on final approach path while making sure aircraft are properly spaced. Not intended to restrict decisions of air-traffic controllers.

  4. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  5. Air shower arrival directions measured at Buckland Park

    NASA Technical Reports Server (NTRS)

    Gerhardy, P. R.; Clay, R. W.; Patterson, J. R.; Prescott, J. R.; Gregory, A. G.; Protheroe, R. J.

    1985-01-01

    The Buckland Park air shower array was operated for 3 years from 1979 to 1981 particularly for the study of anisotropies in the region of the knee of the size spectrum. The array which has been described in detail elsewhere was situated at a latitude of 35 S and had an effective size threshold of approx 3 x 10 to the 5th power particles (approx 3 x 10 to the 15th power Ev for vertical showers). A number of results from this experiment have already been published including anisotropy analyses (Gerhardy and Clay, 1983) and searches for very high energy gamma ray sources. The final distribution of measured shower arrival directions are presented here. These 1.3 x 10 to the 5th power events were selected as indicated in detail in Gerhardy and Clay (1983) and were essentially those events with well measured arrival directions. They are the same data set used in the above reference but no complete sky map has previously been presented.

  6. Apollo 15 crew receive welcome on arrival at Ellington Air Force Base

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The three Apollo 15 crew receive a welcome on their arrival at Ellington Air Force Base, Houston, Texas, after en eight-hour flight aboard a U.S. Air Force C-141 jet aircraft from Hawaii. Left to right are Astronauts David R. Scott, Alfred M. Worden and James B. Irwin. Members of the astronaut's families identified in picture are left to right, Scott's daughter, Tracy; Worden's father, Merrill Worden; Worden's daughter, Merrill; and Irwin's two daughters, Joy and Jill.

  7. Design Principles and Algorithms for Air Traffic Arrival Scheduling

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Itoh, Eri

    2014-01-01

    This report presents design principles and algorithms for building a real-time scheduler of arrival aircraft based on a first-come-first-served (FCFS) scheduling protocol. The algorithms provide the conceptual and computational foundation for the Traffic Management Advisor (TMA) of the Center/terminal radar approach control facilities (TRACON) automation system, which comprises a set of decision support tools for managing arrival traffic at major airports in the United States. The primary objective of the scheduler is to assign arrival aircraft to a favorable landing runway and schedule them to land at times that minimize delays. A further objective of the scheduler is to allocate delays between high-altitude airspace far away from the airport and low-altitude airspace near the airport. A method of delay allocation is described that minimizes the average operating cost in the presence of errors in controlling aircraft to a specified landing time. This report is a revision of an earlier paper first presented as part of an Advisory Group for Aerospace Research and Development (AGARD) lecture series in September 1995. The authors, during vigorous discussions over the details of this paper, felt it was important to the air-trafficmanagement (ATM) community to revise and extend the original 1995 paper, providing more detail and clarity and thereby allowing future researchers to understand this foundational work as the basis for the TMA's scheduling algorithms.

  8. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  9. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  10. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  11. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  12. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  13. Collaborative Arrival Planning: Data Sharing and User Preference Tools

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra

  14. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  15. JPL-20180307-INSIGHf-0001-Mars InSight Arrives at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-07

    NASA's InSight spacecraft arrived at Vandenberg Air Force Base, California, to begin final preparations for launch. InSight will be the first mission to look deep beneath the Martian surface, studying the planet's interior by listening for marsquakes and measuring its heat output. It will be the first planetary spacecraft to launch from this west coast launch facility. The launch period for InSight opens May 5, 2018 and continues through June 8, 2018.

  16. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  17. An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Barmore, Bryan

    2009-01-01

    The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.

  18. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. 19 CFR 122.154 - Notice of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AIR COMMERCE REGULATIONS Flights to and From Cuba § 122.154 Notice of arrival. (a) Application. All aircraft entering the U.S. from Cuba must give advance notice of arrival, unless it is an Office of Foreign...

  20. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  1. TRACON Aircraft Arrival Planning and Optimization Through Spatial Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Bergh, Christopher P.; Krzeczowski, Kenneth J.; Davis, Thomas J.; Denery, Dallas G. (Technical Monitor)

    1995-01-01

    A new aircraft arrival planning and optimization algorithm has been incorporated into the Final Approach Spacing Tool (FAST) in the Center-TRACON Automation System (CTAS) developed at NASA-Ames Research Center. FAST simulations have been conducted over three years involving full-proficiency, level five air traffic controllers from around the United States. From these simulations an algorithm, called Spatial Constraint Satisfaction, has been designed, coded, undergone testing, and soon will begin field evaluation at the Dallas-Fort Worth and Denver International airport facilities. The purpose of this new design is an attempt to show that the generation of efficient and conflict free aircraft arrival plans at the runway does not guarantee an operationally acceptable arrival plan upstream from the runway -information encompassing the entire arrival airspace must be used in order to create an acceptable aircraft arrival plan. This new design includes functions available previously but additionally includes necessary representations of controller preferences and workload, operationally required amounts of extra separation, and integrates aircraft conflict resolution. As a result, the Spatial Constraint Satisfaction algorithm produces an optimized aircraft arrival plan that is more acceptable in terms of arrival procedures and air traffic controller workload. This paper discusses the current Air Traffic Control arrival planning procedures, previous work in this field, the design of the Spatial Constraint Satisfaction algorithm, and the results of recent evaluations of the algorithm.

  2. Concept of Operations for Interval Management Arrivals and Approach

    NASA Technical Reports Server (NTRS)

    Hicok, Daniel S.; Barmore, Bryan E.

    2016-01-01

    This paper presents the concept of operations for interval management operations to be deployed in the US National Airspace System (NAS) by the Federal Aviation Administration (FAA) Interval Management Program. The arrivals and approach operations are explored in detail including the primary operation and variations. The use of interval management operations is described that begin in en route airspace and continue to a termination point inside the arrival terminal area in the highly automated terminal environment that includes other arrival management tools such as arrival metering, Ground-based Interval Management - Spacing (GIM-S), and Terminal Sequencing and Spacing (TSAS). The roles of Air Traffic and Pilots and the ground automation tools that are used by Air Traffic Controllers to enable the operations are explored.

  3. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).

  4. Variation in airborne 134Cs, 137Cs, particulate 131I and 7Be maximum activities at high-altitude European locations after the arrival of Fukushima-labeled air masses.

    PubMed

    Masson, Olivier; Bieringer, Jacqueline; Brattich, Erika; Dalheimer, Axel; Estier, Sybille; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Steinmann, Philipp; Tositti, Laura; Van Beek, Pieter; Vismes-Ott, Anne de

    2016-10-01

    The Fukushima-labeled air mass arrival, and later the cesium-134 ( 134 Cs), cesium-137 ( 137 Cs) and particulate iodine-131 (hereafter noted 131 I p ) maximum levels were registered in Europe at different dates depending on the location. Most of those data were obtained at low-altitude sampling areas. Here, we compare the airborne levels registered at different high-altitude European locations (from 850 m to about 3500 m). The integrated 137 Cs activity concentration was not uniform with regard to the altitude even after a long travel time/distance from Japan. Moreover, the relation of integrated 137 Cs vs. altitude showed a linear decrease up to an altitude of about 3000 m. A similar trend was noticed for 131 I p (particulate fraction) while it increased above 3000 m. Comparison with 7 Be activity concentration showed that, as far as the high altitude location is concerned, the 137 Cs and 134 Cs maximum concentrations corresponded to the 7 Be maximum, suggesting downdraft movements from high tropospheric or stratospheric layers to be responsible for 137,134 Cs increase and peak values. This was also confirmed by high potential vorticity and low relative humidity registered during the peak values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Mobile Quarantine Facility (MQF) - Arrival - Ellington AFB (EAFB), TX

    NASA Image and Video Library

    1969-11-29

    S69-60644 (29 Nov. 1969) --- A Mobile Quarantine Facility (MQF), with the crew men of the Apollo 12 lunar landing mission aboard, arrived at the Manned Spacecraft Center (MSC) Saturday morning, Nov. 29, 1969. Astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean were on their way to the Lunar Receiving Laboratory (LRL) where they will remain in quarantines until Dec. 10, 1969. Minutes earlier the three astronauts had arrived at Ellington Air Force Base from Hawaii aboard a U.S. Air Force C-141 transport. The crewmen were confined to the MQF from splashdown until they arrived at the LRL.

  6. Concept of Operations for Interval Management Arrivals and Approach

    NASA Technical Reports Server (NTRS)

    Hicok, Daniel S.; Barmore, Bryan E.

    2016-01-01

    This paper presents the concept of operations for interval management operations to be deployed in the US National Airspace System (NAS) by the Federal Aviation Administration (FAA) after 2020. The use of interval management operations is described that begin in en route airspace and continue to a termination point inside the arrival terminal area, in a terminal environment that includes other arrival management tools such as arrival metering, Ground-based Interval Management - Spacing (GIM-S), and Terminal Sequencing and Spacing (TSAS). The roles of Air Traffic Controllers and Flight Crews and the ground automation tools that are used by Air Traffic Controllers to enable the primary operation and variations are described.

  7. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  8. A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, California, May 1, 2001. A large drag chute helped slow Endeavour on the runway. After mounting the shuttle on a converted 747 airliner at NASA's Dryden Flight Research Center, Endeavour will be carried back to the Kennedy Space Center for its next mission. Weather in Florida necessitated landing in California.

  9. A new model-independent approach for finding the arrival direction of an extensive air shower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedayati, H. Kh., E-mail: hedayati@kntu.ac.ir

    2016-11-01

    A new accurate method for reconstructing the arrival direction of an extensive air shower (EAS) is described. Compared to existing methods, it is not subject to minimization of a function and, therefore, is fast and stable. This method also does not need to know detailed curvature or thickness structure of an EAS. It can have angular resolution of about 1 degree for a typical surface array in central regions. Also, it has better angular resolution than other methods in the marginal area of arrays.

  10. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    After a U.S. Air Force C-17 aircraft arrived at Vandenberg Air Force Base in California, ground crews offload NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  11. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    A U.S. Air Force C-17 aircraft arrives at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  12. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  13. Cassini orbiter arrives at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers prepare to tow away the large container with the Cassini orbiter from KSC's Shuttle Landing Facility. The orbiter just arrived on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  14. Research Of Airborne Precision Spacing to Improve Airport Arrival Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.

    2011-01-01

    In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the

  15. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  16. Knowledge-based scheduling of arrival aircraft

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  17. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives at the Astrotech processing facility near the agency's Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  18. Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2017-11-01

    For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.

  19. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase

  20. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  1. Mass spectrometric measurements of driver gas arrival in the T4 free-piston shock-tunnel

    NASA Astrophysics Data System (ADS)

    Boyce, R. R.; Takahashi, M.; Stalker, R. J.

    2005-12-01

    Available test time is an important issue for ground-based flow research, particularly for impulse facilities such as shock tunnels, where test times of the order of several ms are typical. The early contamination of the test flow by the driver gas in such tunnels restricts the test time. This paper reports measurements of the driver gas arrival time in the test section of the T4 free-piston shock-tunnel over the total enthalpy range 3 17 MJ/kg, using a time-of-flight mass spectrometer. The results confirm measurements made by previous investigators using a choked duct driver gas detector at these conditions, and extend the range of previous mass spectrometer measurements to that of 3 20 MJ/kg. Comparisons of the contamination behaviour of various piston-driven reflected shock tunnels are also made.

  2. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all

  3. TDRS-M Spacecraft Arrival

    NASA Image and Video Library

    2017-06-23

    NASA's TDRS-M satellite arrives inside its shipping container at Space Coast Regional Airport in Titusville, Florida, aboard a U.S. Air Force transport aircraft. The spacecraft is transported to the nearby Astrotech facility, also in Titusville, for preflight processing. The TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 9:02 a.m. EDT Aug. 3, 2017.

  4. Profile negotiation: An air/ground automation integration concept for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Arbuckle, P. Douglas; Green, Steven M.; Denbraven, Wim

    1993-01-01

    NASA Ames Research Center and NASA Langley Research Center conducted a joint simulation study to evaluate a profile negotiation process (PNP) between a time-based air traffic control ATC system and an airplane equipped with a four dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution that satisfies the separation requirements of ATC while remaining as close as possible to the airplane's preferred trajectory. The Transport Systems Research Vehicle cockpit simulator was linked in real-time to the Center/TRACON Automation System (CTAS) for the experiment. Approximately 30 hours of simulation testing were conducted over a three week period. Active airline pilot crews and active Center controller teams participated as test subjects. Results from the experiment indicate the potential for successful incorporation of airplane preferred arrival trajectories in the CTAS automation environment. Controllers were able to consistently and effectively negotiate nominally conflict-free trajectories with pilots flying a 4D-FMS-equipped airplane. The negotiated trajectories were substantially closer to the airplane's preference than would have otherwise been possible without the PNP. Airplane fuel savings relative to baseline CTAS were achieved in the test scenarios. The datalink procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. Additional pilot control and understanding of the proposed airplane-preferred trajectory and a simplified clearance procedure were cited as necessary for operational implementation of the concept. From the controllers' perspective, the main concerns were the ability of the 4D airplane to accurately track the negotiated trajectory and the workload required to support the PNP as implemented in this study.

  5. DSCOVR Spacecraft Arrival, Offload, & Unpacking

    NASA Image and Video Library

    2014-11-20

    NOAA’s newly arrived Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, is delivered to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.

  6. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  7. SIRTF Arrival

    NASA Image and Video Library

    2003-03-06

    The Space Infrared Telescope Facility (SIRTF) arrives at Building AE from the Lockheed Martin plant in Sunnyvale, Calif., to begin final preparations for its launch aboard a Delta II rocket. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is scheduled for launch April 15 at 4:34:07 a.m. EDT from Launch Complex 17-B, Cape Canaveral Air Force Station.

  8. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft arrives at the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  9. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, arrives at Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  10. APOLLO XI - CREW ARRIVAL - ELLINGTON AFB (EAFB), TX

    NASA Image and Video Library

    1969-07-27

    S69-40217 (27 July 1969) --- Neil A. Armstrong, commander of the Apollo 11 flight, greets his son Mark, on telephone intercom system, while his wife Jan and another son Eric look on. Armstrong had just arrived in early morning with the Mobile Quarantine Facility (MQF) at Ellington Air Force Base. Armstrong and fellow astronauts will remain in the MQF until arrival and confinement in the Crew Reception Area (CRA) of the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). Quarantine period will end on Aug. 11, 1969.

  11. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  12. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  13. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    After arrival at Vandenberg Air Force Base in California, ground crews prepare NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for transportation to the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the deep interior of Mars. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  14. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in shipping containers and are stacked inside Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  15. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in a shipping container at Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  16. Pegasus XL CYGNSS Spacecraft Arrival

    NASA Image and Video Library

    2016-09-28

    Parts for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) arrive in shipping containers at Building 1555 at Vandenberg Air Force Base in California. CYGNSS is being prepared at Vandenberg, and then will be transported to NASA’s Kennedy Space Center in Florida in the Orbital ATK Pegasus XL rocket which will be attached to the Orbital ATK L-1011 carrier aircraft. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  17. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-19

    VANDENBERG AIR FORCE BASE, Calif. – The truck transporting the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives outside the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, California, on May 1, 2001

    NASA Image and Video Library

    2001-05-01

    A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, California, May 1, 2001. A large drag chute helped slow Endeavour on the runway. After mounting the shuttle on a converted 747 airliner at NASA's Dryden Flight Research Center, Endeavour will be carried back to the Kennedy Space Center for its next mission. Weather in Florida necessitated landing in California.

  20. Delta II JPSS-1 Spacecraft Arrival

    NASA Image and Video Library

    2017-09-01

    The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.

  1. Pegasus XL CYGNSS Arrival at CCAFS

    NASA Image and Video Library

    2016-12-02

    The Orbital ATK L-1011 Stargazer aircraft has arrived at the Skid Strip at Cape Canaveral Air Force Station in Florida. Attached beneath the Stargazer is the Orbital ATK Pegasus XL with NASA's Cyclone Global Navigation Satellite System (CYGNSS) on board. CYGNSS was processed and prepared for its mission at Vandenberg Air Force Base in California. CYGNSS is scheduled for its airborne launch aboard the Pegasus XL rocket from the Skid Strip on Dec. 12. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  2. 14 CFR 93.28 - One-for-one trade of Arrival Authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false One-for-one trade of Arrival Authorizations. 93.28 Section 93.28 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Congestion and Delay Reduction at Chicago O'Hare International...

  3. ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moestl, C.; Rollett, T.; Temmer, M.

    2011-11-01

    One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less

  4. Radio detection of extensive air showers

    NASA Astrophysics Data System (ADS)

    Huege, Tim

    2017-12-01

    Radio detection of extensive air showers initiated in the Earth's atmosphere has made tremendous progress in the last decade. Today, radio detection is routinely used in several cosmic-ray observatories. The physics of the radio emission in air showers is well-understood, and analysis techniques have been developed to determine the arrival direction, the energy and an estimate for the mass of the primary particle from the radio measurements. The achieved resolutions are competitive with those of more traditional techniques. In this article, I shortly review the most important achievements and discuss the potential for future applications.

  5. Pegasus ICON Wing Arrival

    NASA Image and Video Library

    2017-02-22

    The wing for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  6. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  7. Delta II JPSS-1 Spacecraft Arrival

    NASA Image and Video Library

    2017-09-01

    A technician at Vandenberg Air Force Base in California inspects the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.

  8. Delta II JPSS-1 Spacecraft Arrival

    NASA Image and Video Library

    2017-09-01

    Technicians at Vandenberg Air Force Base in California inspect the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.

  9. GOES-S Arrival and Transport

    NASA Image and Video Library

    2017-12-04

    NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) arrives onboard a U.S. Air Force C-5M Super Galaxy cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The satellite is offloaded and transported to the Astrotech Space Operations facility in Titusville, Florida to prepare it for launch. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  10. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  11. Subtropical air masses over eastern Canada: Their links to extreme precipitation

    NASA Astrophysics Data System (ADS)

    Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad

    2017-04-01

    We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this

  12. Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka

    2011-01-01

    The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.

  13. Separation of the electromagnetic and the muon component in EAS by their arrival times

    NASA Astrophysics Data System (ADS)

    Brüggemann, M.; Apel, W.D.; Arteaga, J.C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P.L.; Gils, H.J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J.R.; Huege, T.; Isar, P.G.; Kampert, K.-H.; Kickelbick, D.; Klages, H.O.; Kolotaev, Y.; Luczak, P.; Mathes, H.J.; Mayer, H.J.; Meurer, C.; Milke, J.; Mitrica, B.; Morales, A.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The KASCADE-Grande experiment at Forschungszentrum Karlsruhe, Germany, measures extensive air showers initiated by primary particles with energies between 100 TeV and 1 EeV. Detector pulses digitized by a Flash-ADC based data acquisition system were unfolded to study the arrival times of secondary particles separately for the electromagnetic and the muonic shower component. Muons arrive on average earlier at ground level than electrons. A cut on the particle arrival time has been determined as a function of the distance to the shower core for the separation of electrons and muons. This cut is intended to be used for the determination of the muon content of air showers in experiments without dedicated muon detectors but with time resolving detector electronics. The muon content is essential for the reconstruction of the cosmic ray energy spectrum separated into individual elemental groups.

  14. Columnar aerosol optical and radiative properties according to season and air mass transport pattern over East Asia.

    PubMed

    Noh, Young M; Müller, Detlef; Lee, Hanlim; Lee, Kwonho; Kim, Young Joon

    2012-08-01

    The column-integrated optical and radiative properties of aerosols in the downwind area of East Asia were investigated based on sun/sky radiometer measurements performed from February 2004 to June 2005 at Gwangju (35.23° N, 126.84° E) and Anmyeon (36.54° N, 126.33° E), Korea. The observed aerosol data were analyzed for differences among three seasons: spring (March-May), summer (June-August), and autumn/winter (September-February). The data were also categorized into five types depending on the air mass origin in arriving in the measurement sites: (a) from a northerly direction in spring (S(N)), (b) from a westerly direction in spring (S(W)), (c) cases with a low Ångström exponent (<0.8) in spring (dust), (d) from a northerly direction in autumn/winter (AW(N)), and (e) from a westerly direction during other seasons (AW(W)). The highest Ångström exponents (α) at Gwangju and Anmyeon were 1.43 ± 0.30 and 1.49 ± 0.20, respectively, observed in summer. The lowest column-mean single-scattering albedo (ω) at 440 nm observed at Gwangju and Anmyeon were 0.89 ± 0.02 and 0.88 ± 0.02, respectively, during a period marked by the advection of dust from the Asian continent. The highest ω values at Gwangju and Anmyeon were 0.95 ± 0.02 and 0.96 ± 0.02, respectively, observed in summer. Variations in the aerosol radiative-forcing efficiency (β) were related to the conditions of the air mass origin. The forcing efficiency in summer was -131.7 and -125.6 W m(-2) at the surface in Gwangju and Anmyeon, respectively. These values are lower than those under the atmospheric conditions of spring and autumn/winter. The highest forcing efficiencies in autumn/winter were -214.3 and -255.9 W m(-2) at the surface in Gwangju and Anmyeon, respectively, when the air mass was transported from westerly directions.

  15. Settlement with Amherst, Mass., Company Reduces Emissions to Air

    EPA Pesticide Factsheets

    Under the terms of a recent settlement with the U.S. Environmental Protection Agency (EPA), John S. Lane and Son, Inc. (JS Lane), a sand and gravel company in Amherst, Mass., has taken steps to reduce air pollution, as required by the Clean Air Act (CAA).

  16. Vice President Mike Pence Arrival at Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence greets NASA Kennedy Space Center Director Robert Cabana after arriving aboard Air Force Two at NASA's Kennedy Space Center in Florida. During his visit to Kennedy, Pence spoke inside the iconic Vehicle Assembly Building, where he thanked employees for advancing American leadership in space.

  17. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  18. Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Schwartz, R.; Mecke, M.

    1991-01-01

    The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.

  19. Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.

    1995-01-01

    A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.

  20. 19 CFR 122.133 - Stores list required on arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Stores list required on arrival. 122.133 Section 122.133 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.133 Stores list required on...

  1. 19 CFR 122.133 - Stores list required on arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Stores list required on arrival. 122.133 Section 122.133 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.133 Stores list required on...

  2. 19 CFR 122.133 - Stores list required on arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Stores list required on arrival. 122.133 Section 122.133 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.133 Stores list required on...

  3. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  4. Relationships between Atmospheric Transport Regimes and PCB Concentrations in the Air at Zeppelin, Spitsbergen.

    PubMed

    Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad

    2017-09-05

    Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.

  5. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  6. NOAA-L satellite arrives at Vandenberg AFB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A crated National Oceanic and Atmospheric Administration (NOAA-L) satellite arrives at Vandenberg Air Force Base, Calif. It is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. The launch of the NOAA-L satellite is scheduled no earlier than Sept. 12 aboard a Lockheed Martin Titan II rocket. A Method to Search for Correlations of Ultra-high Energy Cosmic-Ray Masses with the Large-scale Structures in the Local Galaxy Density Field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2013-02-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  7. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  8. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  9. Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture

    NASA Astrophysics Data System (ADS)

    Savani, N. P.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Richardson, I. G.; Thompson, B. J.; Pulkkinen, A.; Evans, R.; Nieves-Chinchilla, T.

    2015-06-01

    The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology, the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.

  10. Buoyancy contribution to uncertainty of mass, conventional mass and force

    NASA Astrophysics Data System (ADS)

    Malengo, Andrea; Bich, Walter

    2016-04-01

    The conventional mass is a useful concept introduced to reduce the impact of the buoyancy correction in everyday mass measurements, thus avoiding in most cases its accurate determination, necessary in measurements of ‘true’ mass. Although usage of conventional mass is universal and standardized, the concept is considered as a sort of second-choice tool, to be avoided in high-accuracy applications. In this paper we show that this is a false belief, by elucidating the role played by covariances between volume and mass and between volume and conventional mass at the various stages of the dissemination chain and in the relationship between the uncertainties of mass and conventional mass. We arrive at somewhat counter-intuitive results: the volume of the transfer standard plays a comparatively minor role in the uncertainty budget of the standard under calibration. In addition, conventional mass is preferable to mass in normal, in-air operation, as its uncertainty is smaller than that of mass, if covariance terms are properly taken into account, and the uncertainty over-stating (typically) resulting from neglecting them is less severe than that (always) occurring with mass. The same considerations hold for force. In this respect, we show that the associated uncertainty is the same using mass or conventional mass, and, again, that the latter is preferable if covariance terms are neglected.

  11. KAMAG Arrival for OA-7 CYGNUS

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a KAMAG transporter has arrived in the high bay. Technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  12. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  13. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  14. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  15. First Apollo 11 sample return containers arrive at Ellington AFB

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The first Apollo 11 sample return container, containing lunar surface material, arrives at Ellington Air Force Base by air from the Pacific recovery area. Happily posing for photographs with the rock box are (left to right) George M. Low, Manager, Apollo Spacecraft Program, Manned Spacecraft Center (MSC); U.S. Air Force Lt. Gen. Samuel C. Phillips, Apollo Program Director, Office of Manned Space Flight, NASA HQ.; George S. Trimble, MSC Deputy Director (almost obscured); Eugene G. Edmonds, MSC Photographic Technology Laboratory; RIchard S. Johnston (in back), Special Assistant to the MSC Director; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  16. Estimation of air-to-grass mass interception factors for iodine.

    PubMed

    Karunakara, N; Ujwal, P; Yashodhara, I; Sudeep Kumara, K; Mohan, M P; Bhaskar Shenoy, K; Geetha, P V; Dileep, B N; James, Joshi P; Ravi, P M

    2018-06-01

    Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m 2  kg -1 with mean value of 2.2 m 2  kg -1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m 2  kg -1 with mean value of 2.3 m 2  kg -1 . The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall. Copyright © 2017. Published by Elsevier Ltd.

  17. 19 CFR 122.155 - Document to be presented upon arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Document to be presented upon arrival. 122.155 Section 122.155 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Flights to and From Cuba § 122.155 Document to be...

  18. GOES-S Arrival to Astrotech

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  19. Pegasus ICON Fairing Arrival

    NASA Image and Video Library

    2017-08-04

    The payload fairing for Orbital ATK's Pegasus XL rocket arrives by flatbed truck Aug. 4, 2017, at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  1. Cassini orbiter arrives at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which just landed at KSC's Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  2. Airborne Management of Traffic Conflicts in Descent With Arrival Constraints

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.

  3. Cassini orbiter is moved to PHSF after arriving at SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The orbiter arrived at KSC's Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan. The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004.

  4. A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions

    NASA Technical Reports Server (NTRS)

    Heere, Karen R.; Zelenka, Richard E.

    2000-01-01

    Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.

  5. Analysis of sequencing and scheduling methods for arrival traffic

    NASA Technical Reports Server (NTRS)

    Neuman, Frank; Erzberger, Heinz

    1990-01-01

    The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.

  6. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  7. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results

  8. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  10. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and

  11. Winter air-mass-based synoptic climatological approach and hospital admissions for myocardial infarction in Florence, Italy.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero

    2006-09-01

    The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.

  12. Pegasus ICON Stage 1 Motor Arrival

    NASA Image and Video Library

    2017-02-16

    The first stage motor for the Orbital ATK Pegasus XL rocket arrives by truck at Building 1555 at Vandenberg Air Force Base in California. The Pegasus rocket is being prepared for NASA's Ionospheric Connection Explorer, or ICON, mission. ICON will launch from the Kwajalein Atoll aboard the Pegasus XL on Dec. 8, 2017. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  13. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  14. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  15. OA-7 Service Module Arrival

    NASA Image and Video Library

    2017-02-01

    The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The service module is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  16. OA-7 Cargo Module Arrival

    NASA Image and Video Library

    2017-01-09

    The Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) arrives at the Space Station Processing Facility of NASA's Kennedy Space Center in Florida. The PCM is sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. Scheduled to launch in March 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  17. Pegasus ICON Spacecraft Arrival Activites

    NASA Image and Video Library

    2018-05-01

    NASA's Ionospheric Connection Explorer (ICON) arrives by truck on May 1, 2018, at Vandenberg Air Force Base in California. ICON will be offloaded and transported to Building 1555. The explorer will launch on June 15, 2018, from Kwajalein Atoll in the Marshall Islands (June 14 in the continental United States) on Orbital ATK's Pegasus XL rocket, which is attached to the company's L-1011 Stargazer aircraft. ICON will study the frontier of space - the dynamic zone high in Earth's atmosphere where terrestrial weather from below meets space weather above. The explorer will help determine the physics of Earth's space environment and pave the way for mitigating its effects on our technology, communications systems and society.

  18. OA-7 Cargo Module Arrival

    NASA Image and Video Library

    2017-01-09

    Still sealed in its environmentally controlled shipping container, the Orbital ATK OA-7 Cygnus spacecraft's pressurized cargo module (PCM) has arrived inside the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Once the Cygnus spacecraft is removed from its shipping container, engineers and technicians will begin preparing for launch scheduled for March 2017. Orbital ATK CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  19. Trace gases and air mass origin at Kaashidhoo, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Lobert, Jürgen M.; Harris, Joyce M.

    2002-10-01

    Carbon monoxide (CO) was measured at the Kaashidhoo Climate Observatory (KCO, Republic of Maldives) between February 1998 and March 2000 to assess the regional pollution of the remote atmosphere in the northern Indian Ocean. CO showed a distinct annual cycle with maximum daily mixing ratios of around 240 parts per billion (ppb), a seasonal difference of about 200 ppb, and high variability during the dry seasons. Detailed air mass trajectory analysis for 1998, 1999, and 2000 was used to identify source regions and to associate them with various levels of pollution encountered at KCO. We conclude that most significant changes in local pollution throughout the year are caused by changes in air masses. Air at KCO generally originated from three main regions with decreasing pollution: India and southeast Asia, the Arabian Sea, and the Southern Hemisphere. We show that isentropic air mass trajectories can be used to predict CO pollution levels at KCO to a certain extent and vice versa. Nitrous oxide, CFC-11, CFC-12, CCI4, and SF6 were measured during the Indian Ocean Experiment (February to March 1999) to support pollution analysis and to confirm that India is the main source for heavy pollution measured at KCO. Correlations between CO and other gases and aerosol properties measured at the surface illustrate that CO may also be used as a proxy for aerosol loading and general pollution at the surface.

  20. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  1. Delta II JPSS-1 Spacecraft Arrival and Ofload

    NASA Image and Video Library

    2017-09-01

    The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians and engineers remove the the spacecraft from it shipping container. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff later this year atop a United Launch Alliance Delta II rocket.

  2. Relationship between air mass type and emergency department visits for migraine headache across the Triangle region of North Carolina

    NASA Astrophysics Data System (ADS)

    Elcik, Christopher; Fuhrmann, Christopher M.; Mercer, Andrew E.; Davis, Robert E.

    2017-12-01

    An estimated 240 million people worldwide suffer from migraines. Because migraines are often debilitating, understanding the mechanisms that trigger them is crucial for effective prevention and treatment. Synoptic air mass types and emergency department (ED) visits for migraine headaches were examined over a 7-year period within a major metropolitan area of North Carolina to identify potential relationships between large-scale meteorological conditions and the incidence of migraine headaches. Barometric pressure changes associated with transitional air masses, or changing weather patterns, were also analyzed for potential relationships. Bootstrapping analysis revealed that tropical air masses (moist and dry) resulted in the greatest number of migraine ED visits over the study period, whereas polar air masses led to fewer. Moist polar air masses in particular were found to correspond with the fewest number of migraine ED visits. On transitional air mass days, the number of migraine ED visits fell between those of tropical air mass days and polar air mass days. Transitional days characterized by pressure increases exhibited a greater number of migraine ED visits than days characterized by pressure decreases. However, no relationship was found between migraine ED visits and the magnitude of barometric pressure changes associated with transitional air masses.

  3. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  4. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  5. Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M

    2009-08-01

    Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.

  6. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses

    NASA Astrophysics Data System (ADS)

    Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.

    2018-04-01

    Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol

  7. InSight Atlas V Fairing Arrival, Offload, and Unbagging

    NASA Image and Video Library

    2018-01-31

    The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars arrives at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  8. An Initial Study of Airport Arrival Heinz Capacity Benefits Due to Improved Scheduling Accuracy

    NASA Technical Reports Server (NTRS)

    Meyn, Larry; Erzberger, Heinz

    2005-01-01

    The long-term growth rate in air-traffic demand leads to future air-traffic densities that are unmanageable by today's air-traffic control system. I n order to accommodate such growth, new technology and operational methods will be needed in the next generation air-traffic control system. One proposal for such a system is the Automated Airspace Concept (AAC). One of the precepts of AAC is to direct aircraft using trajectories that are sent via an air-ground data link. This greatly improves the accuracy in directing aircraft to specific waypoints at specific times. Studies of the Center-TRACON Automation System (CTAS) have shown that increased scheduling accuracy enables increased arrival capacity at CTAS equipped airports.

  9. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Stardust spacecraft arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  11. TESS Spacecraft Arrival

    NASA Image and Video Library

    2018-02-12

    NASA's Transiting Exoplanet Survey Satellite (TESS), inside its shipping container arrives at the Payload Hazardous Servicing Facility (PHSF) at the agency's Kennedy Space Center in Florida. Inside the PHSF, the satellite will be processed and prepared for its flight. TESS is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management.

  12. The ExoMars 2016 Mission arriving at Mars

    NASA Astrophysics Data System (ADS)

    Svedhem, H.; Vago, J. L.

    2016-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and is scheduled to arrive at Mars on 19 October 2016. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. This presentation will cover a description of the 2016 mission, including the spacecraft

  13. Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis

    NASA Astrophysics Data System (ADS)

    García-Yee, J. S.; Torres-Jardón, R.; Barrera-Huertas, H.; Castro, T.; Peralta, O.; García, M.; Gutiérrez, W.; Robles, M.; Torres-Jaramillo, J. A.; Ortínez-Álvarez, A.; Ruiz-Suárez, L. G.

    2018-03-01

    high-O3 (100-110 ppb) aged air masses until sunset. In addition, the midday and afternoon vertical profiles showed well-mixed high-O3 (100-110 ppb) mixing ratios. Analysis of Ox-NOx correlations was performed for these peri-urban and MCMA sites. A parallel analysis for the nearest urban air quality monitoring station in the MCMA was also done. A comparison allowed us to distinguish between photochemically active (VOC sensitive) or aged parcels (NOx sensitive) arriving at the TAP. Separating the correlations into time groups associated with wind direction changes allowed us to better distinguish between local, MCMA, or regional influence. The results are relevant to air quality management in the Mexico City megalopolis.

  14. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}(more » f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.« less

  15. InSight Atlas V Fairing Arrival, Offload, and Unbagging

    NASA Image and Video Library

    2018-01-31

    The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars has just arrived at the Astrotech facility at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  16. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  17. OCO-2-Delta II 2nd Stage Arrival

    NASA Image and Video Library

    2014-02-21

    VANDENBERG AIR FORCE BASE, Calif. – The second stage for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the Building 836 hangar on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  18. ExoMars 2016 arrives at Mars

    NASA Astrophysics Data System (ADS)

    Svedhem, Hakan; Vago, Jorge L.; ExoMars Team

    2016-10-01

    The Trace Gas Orbiter (TGO) and the Schiaparelli Entry, descent and landing Demonstrator Model (EDM) will arrive at Mars on 19 October 2016. The TGO and the EDM are part of the first step of the ExoMars Programme. They will be followed by a Rover and a long lived Surface Platform to be launched in 2020.The EDM is attached to the TGO for the full duration of the cruise to Mars and will be separated three days before arrival at Mars. After separation the TGO will perform a deflection manoeuvre and, on 19 October (during the EDM landing), enter into a highly elliptical near equatorial orbit. TGO will remain in this parking orbit until January 2017, when the orbital plane inclination will be changed to 74 degrees and aerobraking to the final 400 km near circular orbit will start. The final operational orbit is expected to be reached at the end of 2017.The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector for search of subsurface hydrogen. The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The main objective of the EDM is to demonstrate the capability of performing a safe entry, descent and landing on the surface, but it does carry a descent camera and a small battery powered meteorological package that may operate for a few days on the surface.The ExoMars programme is a joint activity by the European Space Agency(ESA) and ROSCOSMOS, Russia. ESA is providing the TGO spacecraft and Schiaparelli (EDM) and two of the TGO instruments and ROSCOSMOS is providing the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle the communication between the Earth and the Rover and

  19. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives inside Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  20. GOES-S Arrival at Astrotech Space Operations

    NASA Image and Video Library

    2017-12-05

    NOAA's Geostationary Operation Environmental Satellite-S (GOES-S) arrives at Astrotech Space Operations in Titusville, Florida, to prepare it for launch. The facility is located near NASA's Kennedy Space Center. GOES-S is the second in a series of four advanced geostationary weather satellites. The GOES-R series - consisting of the GOES-R, GOES-S, GOES-T and GOES-U spacecraft - will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida.

  1. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  2. Exposure chamber measurements of mass transfer and partitioning at the plant/air interface.

    PubMed

    Maddalena, Randy L; McKone, Thomas E; Kado, Norman Y

    2002-08-15

    Dynamic measures of air and vegetation concentrations in an exposure chamber and a two-box mass balance model are used to quantify factors that control the rate and extent of chemical partitioning between vegetation and the atmosphere. A continuous stirred flow-through exposure chamber was used to investigate the gas-phase transfer of pollutants between air and plants. A probabilistic two-compartment mass balance model of plant/air exchange within the exposure chamber was developed and used with measured concentrations from the chamber to simultaneously evaluate partitioning (Kpa), overall mass transfer across the plant/air interface (Upa), and loss rates in the atmosphere (Ra) and aboveground vegetation (Rp). The approach is demonstrated using mature Capsicum annuum (bell pepper) plants exposed to phenanthrene (PH), anthracene (AN), fluoranthene (FL) and pyrene (PY). Measured values of log Kpa (V[air]/V[fresh plant]) were 5.7, 5.7, 6.0, and 6.2 for PH, AN, FL, and PY, respectively. Values of Upa (m d(-1)) under the conditions of this study ranged from 42 for PH to 119 for FL. After correcting for wall effects, the estimated reaction half-lives in air were 3, 9, and 25 h for AN, FL and PY. Reaction half-lives in the plant compartment were 17, 6, 17, and 5 d for PH, AN, FL, and PY, respectively. The combined use of exposure chamber measurements and models provides a robust tool for simultaneously measuring several different transfer factors that are important for modeling the uptake of pollutants into vegetation.

  3. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-08-01

    Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter

  4. Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng

    2010-01-01

    The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.

  5. A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Harris, C. S.

    1990-01-01

    A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.

  6. 19 CFR 122.31 - Notice of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... advance notice of arrival in accordance with § 122.22 of this part. (ii) Aircraft arriving from Cuba. Aircraft arriving from Cuba must follow the advance notice of arrival procedures set forth in § 122.154 in... aircraft arriving from areas south of the United States (other than Cuba) must follow the advance notice of...

  7. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  8. Aircraft Recirculation Filter for Air-Quality and Incident Assessment.

    PubMed

    Eckels, Steven J; Jones, Byron; Mann, Garrett; Mohan, Krishnan R; Weisel, Clifford P

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters.

  9. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  10. Markers for Chinese and Korean Air Masses: Halocarbons and Other Trace Gases Measured During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.

    2017-12-01

    The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.

  11. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  12. InSight Atlas V Boattail Halves Arrival, Offload, Mate

    NASA Image and Video Library

    2018-02-19

    At Vandenberg Air Force Base in California, the boattail adaptor interface that will connect the Centaur upper stage to the payload fairing arrives for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight will liftoff atop a United Launch Alliance Atlas V rocket to send the spacecraft on the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.

  13. Determination of mixing state and sources of wintertime organic aerosol in Paris using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Wiedensohler, A.; Jeong, C.; McGuire, M.; Evans, G. J.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J.

    2012-12-01

    The size-resolved chemical composition of single particles at an urban background site in Paris, France, was determined using an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) as part of the MEGAPOLI winter campaign in January/February 2010. A variety of mixing states were identified for organic aerosol by mass spectral clustering and apportioned to both fossil fuel and biomass burning sources. The ATOFMS data were scaled in order to produce mass concentration estimates for each organic aerosol particle type identified. Potassium-containing organic aerosol internally mixed with nitrate, associated with local wood burning, was observed to dominate during periods characterised by marine air masses. Sulfate-rich potassium-containing organic aerosol, associated with transboundary transport of biomass burning emissions, dominated during periods influenced by continental air masses. The scaled total mass concentration for potassium-containing particles was well correlated (R2 = 0.79) with concurrent measurements of potassium mass concentration measured with a Particle-Into-Liquid-Sampler (PILS). Another organic particle type, also containing potassium but rich in trimethylamine and sulfate, was detected exclusively during continental air mass events. These particles are postulated to have accumulated gas phase trimethylamine through heterogeneous reaction before arriving at the sampling site. Potential source regions for transboundary organic aerosols have been investigated using the potential source contribution function (PSCF). Comparison with aerosol mass spectrometer (AMS) measurements will also be discussed.

  14. Has the Earth's sixth mass extinction already arrived?

    PubMed

    Barnosky, Anthony D; Matzke, Nicholas; Tomiya, Susumu; Wogan, Guinevere O U; Swartz, Brian; Quental, Tiago B; Marshall, Charles; McGuire, Jenny L; Lindsey, Emily L; Maguire, Kaitlin C; Mersey, Ben; Ferrer, Elizabeth A

    2011-03-03

    Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

  15. SMAP Spacecraft Arrives at Astrotech

    NASA Image and Video Library

    2014-10-14

    The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.

  16. Measurement of the oxygen mass transfer through the air-water interface.

    PubMed

    Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas

    2005-01-01

    Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple

  17. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  18. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  19. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  20. Search for tachyons associated with extensive air showers in the ground level cosmic radiation

    NASA Technical Reports Server (NTRS)

    Masjed, H. F.; Ashton, F.

    1985-01-01

    Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.

  1. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  2. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  3. Apollo 12 crewmembers greeted by family on arrival at Ellington

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Members of the Apollo 12 lunar landing mission's crew are greeted by their wives and children at the front of a large crowd on hand to welcome home the three. The Mobile Quarantine Facility (MQF), with the crew inside, arrived at Ellington Air Force Base aboard a U.S. Air Force C0141 transport jet on November 29, 1969. The crewmen, looking out the MQF window at the crowd, are (l-r) Astronauts Charles Conrad Jr., Richard F. Gordon Jr., and ALan L. Bean. Their wives are, from left to right, Mrs. Barbara Gordon, Mrs Jane Conrad and Mrs. Sue Bean. The women are wearing leis, an Hawaii tradition (60759); Conrad talks by phone to members of his family standing outside the MQF. Beside him are Gordon (center) and Bean (60760).

  4. Arrival metering fuel consumption analysis

    DOT National Transportation Integrated Search

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  5. Delta II ICESat-2 Booster Arrival

    NASA Image and Video Library

    2018-03-09

    A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  6. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  7. 14 CFR 93.25 - Initial assignment of Arrival Authorizations to U.S. and Canadian air carriers for domestic and U...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Chicago O'Hare International Airport § 93.25 Initial assignment of Arrival Authorizations to U.S. and... August 18, 2004, “Order Limiting Scheduled Operations at O'Hare International Airport.” A carrier's total assignment under this paragraph shall be reduced accordingly by (i) any international Arrival Authorizations...

  8. Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic

    NASA Technical Reports Server (NTRS)

    Neuman, Frank; Erzberger, Heinz

    1991-01-01

    The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.

  9. Current Practices in Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB)

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.

    2008-01-01

    Significant air traffic increases are anticipated for the future of the National Airspace System (NAS). To cope with future traffic increases, fundamental changes are required in many aspects of the air traffic management process including the planning and use of NAS resources. Two critical elements of this process are the selection of airport runway configurations, and the effective management of active runways. Two specific research areas in NASA's Airspace Systems Program (ASP) have been identified to address efficient runway management: Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB). This report documents efforts in assessing past as well as current work in these two areas.

  10. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  11. Mass spectrometer characterization of halogen gases in air at atmospheric pressure.

    PubMed

    Ivey, Michelle M; Foster, Krishna L

    2005-03-01

    We have developed a new interface for a commercial ion trap mass spectrometer equipped with APCI capable of real-time measurements of gaseous compounds with limits of detection on the order of pptv. The new interface has been tested using the detection of Br2 and Cl2 over synthetic seawater ice at atmospheric pressure as a model system. A mechanical pump is used to draw gaseous mixtures through a glass manifold into the corona discharge area, where the molecules are ionized. Analysis of bromine and chlorine in dry air show that ion intensity is affected by the pumping rate and the position of the glass manifold. The mass spectrometer signals for Br2 are linear in the 0.1-10.6 ppbv range, and the estimated 3sigma detection limit is 20 pptv. The MS signals for Cl2 are linear in the 0.2-25 ppbv range, and the estimated 3sigma detection limit is 1 ppbv. This new interface advances the field of analytical chemistry by introducing a practical modification to a commercially available ion trap mass spectrometer that expands the available methods for performing highly specific and sensitive measurements of gases in air at atmospheric pressure.

  12. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  13. TDRS-M Atlas V First and Second Stage Arrival

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  14. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  15. Investigating the Impact of Off-Nominal Events on High-Density "Green" Arrivals

    NASA Technical Reports Server (NTRS)

    Callatine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Martin, Lynne; Mercer, Joey; Palmer, Everett A.

    2012-01-01

    Trajectory-based controller tools developed to support a schedule-based terminal-area air traffic management (ATM) concept have been shown effective for enabling green arrivals along Area Navigation (RNAV) routes in moderately high-density traffic conditions. A recent human-in-the-loop simulation investigated the robustness of the concept and tools to off-nominal events events that lead to situations in which runway arrival schedules require adjustments and controllers can no longer use speed control alone to impose the necessary delays. Study participants included a terminal-area Traffic Management Supervisor responsible for adjusting the schedules. Sector-controller participants could issue alternate RNAV transition routes to absorb large delays. The study also included real-time winds/wind-forecast changes. The results indicate that arrival spacing accuracy, schedule conformance, and tool usage and usefulness are similar to that observed in simulations of nominal operations. However, the time and effort required to recover from an off-nominal event is highly context-sensitive, and impacted by the required schedule adjustments and control methods available for managing the evolving situation. The research suggests ways to bolster the off-nominal recovery process, and highlights challenges related to using human-in-the-loop simulation to investigate the safety and robustness of advanced ATM concepts.

  16. Human-in-the-Loop Assessment of Alternative Clearances in Interval Management Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Wilson, Sara R.; Swieringa, Kurt A.; Johnson, William C.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.

    2016-01-01

    Interval Management Alternative Clearances (IMAC) was a human-in-the-loop simulation experiment conducted to explore the Air Traffic Management (ATM) Technology Demonstration (ATD-1) Concept of Operations (ConOps), which combines advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted, efficient arrival streams into a high-density terminal airspace. Interval Management (IM) is designed to support the ATD-1 concept by having an "Ownship" (IM-capable) aircraft achieve or maintain a specific time or distance behind a "Target" (preceding) aircraft. The IM software uses IM clearance information and the Ownship data (route of flight, current location, and wind) entered by the flight crew, and the Target aircraft's Automatic Dependent Surveillance-Broadcast state data, to calculate the airspeed necessary for the IM-equipped aircraft to achieve or maintain the assigned spacing goal.

  17. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  18. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall

    PubMed Central

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-01-01

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400–5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world’s highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants. PMID:26856260

  19. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016

    NASA Astrophysics Data System (ADS)

    Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter

    2018-03-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  20. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  1. Apollo 12 Crewmembers - Greeting - Family - Arrival - Ellington AFB (EAFB), TX

    NASA Image and Video Library

    1969-11-29

    S69-60759 (29 Nov. 1969) --- Members of the Apollo 12 lunar landing mission's crew are greeted by their wives and children at the front of a large crowd on hand to welcome the three home. The Mobile Quarantine Facility (MQF), with the crew inside, arrived at Ellington Air Force Base aboard a United States Air Force C-141 transport jet in the early morning hours of Nov. 29, 1969. The crew men, looking out the MQF window at the crowd, are from left to right, astronauts Charles Conrad Jr., Richard F. Gordon Jr. and Alan L. Bean. Their wives are, from left to right, Mrs. Barbara Gordon, Mrs. Jane Conrad and Mrs. Sue Bean. The women are wearing lei's, an Hawaiian tradition. The crew members were taken to Hawaii from their Pacific Ocean recovery site aboard the USS Hornet, prime recovery vessel for the mission.

  2. OA-7 Atlas Booster and Centaur Stages Arrival

    NASA Image and Video Library

    2017-02-06

    The Mariner cargo ship arrives at the Army Outpost wharf at Port Canaveral, Florida, near the Kennedy Space Center. Aboard is the United Launch Alliance (ULA) Atlas V booster and centaur stages for the Orbital ATK CRS-7 commercial resupply mission to the International Space Station. After the rocket is offloaded, a transport truck takes the Atlas V vehicle hardware to the hangar at the Atlas Spaceflight Operations Center (ASOC), located south of Space Launch Complex 41 at Cape Canaveral Air Force Station. Scheduled to launch a Cygnus spacecraft on March 19, 2017, the Orbital ATK CRS-7 mission will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  3. The U.S. Laboratory module arrives at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.

  4. Evaluation of an Airborne Spacing Concept to Support Continuous Descent Arrival Operations

    NASA Technical Reports Server (NTRS)

    Murdoch, Jennifer L.; Barmore, Bryan E.; Baxley, Brian T.; Capron, William R.; Abbott, Terence S.

    2009-01-01

    This paper describes a human-in-the-loop experiment of an airborne spacing concept designed to support Continuous Descent Arrival (CDA) operations. The use of CDAs with traditional air traffic control (ATC) techniques may actually reduce an airport's arrival throughput since ATC must provide more airspace around aircraft on CDAs due to the variances in the aircraft trajectories. The intent of airborne self-spacing, where ATC delegates the speed control to the aircraft, is to maintain or even enhance an airport s landing rate during CDA operations by precisely achieving the desired time interval between aircraft at the runway threshold. This paper describes the operational concept along with the supporting airborne spacing tool and the results of a piloted evaluation of this concept, with the focus of the evaluation on pilot acceptability of the concept during off-nominal events. The results of this evaluation show a pilot acceptance of this airborne spacing concept with little negative performance impact over conventional CDAs.

  5. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  6. Orbital Sciences Pegasus XL AIM Arrival

    NASA Image and Video Library

    2007-03-10

    NASA's Aeronomy of Ice in the Mesosphere, or AIM, spacecraft arrives in a clean room at Vandenberg Air Force Base in California. AIM is the seventh Small Explorers mission under NASA's Explorer Program. The program provides frequent flight opportunities for world-class scientific investigations from space within heliophysics and astrophysics. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to the Pegasus XL during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  7. Angle of Arrival Detection Through Artificial Neural Network Analysis of Optical Fiber Intensity Patterns

    DTIC Science & Technology

    1990-12-01

    ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance

  8. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  9. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  10. Analysis of volatile compounds by open-air ionization mass spectrometry.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2017-05-08

    This study demonstrates a simple method for rapid and in situ identification of volatile and endogenous compounds in culinary spice samples through mass spectrometry (MS). This method only requires a holder for solid spice sample (2-3 mm) that is placed close to a mass spectrometer inlet, which is applied with a high voltage. Volatile species responsible for the aroma of the spice samples can be readily detected by the mass spectrometer. Sample pretreatment is not required prior to MS analysis, and no solvent was used during MS analysis. The high voltage applied to the inlet of the mass spectrometer induces the ionization of volatile compounds released from the solid spice samples. Furthermore, moisture in the air also contributes to the ionization of volatile compounds. Dried spices including cinnamon and cloves are used as the model sample to demonstrate this straightforward MS analysis, which can be completed within few seconds. Furthermore, we also demonstrate the suitability of the current method for rapid screening of cinnamon quality through detection of the presence of a hepatotoxic agent, i.e. coumarin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  12. 8 CFR 232.3 - Arriving aliens.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Arriving aliens. 232.3 Section 232.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND MENTAL EXAMINATION § 232.3 Arriving aliens. When a district director has reasonable grounds...

  13. 8 CFR 232.3 - Arriving aliens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Arriving aliens. 232.3 Section 232.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND MENTAL EXAMINATION § 232.3 Arriving aliens. When a district director has reasonable grounds...

  14. 8 CFR 232.3 - Arriving aliens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Arriving aliens. 232.3 Section 232.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND MENTAL EXAMINATION § 232.3 Arriving aliens. When a district director has reasonable grounds...

  15. 8 CFR 232.3 - Arriving aliens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Arriving aliens. 232.3 Section 232.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND MENTAL EXAMINATION § 232.3 Arriving aliens. When a district director has reasonable grounds...

  16. 8 CFR 232.3 - Arriving aliens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Arriving aliens. 232.3 Section 232.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS DETENTION OF ALIENS FOR PHYSICAL AND MENTAL EXAMINATION § 232.3 Arriving aliens. When a district director has reasonable grounds...

  17. Pilot Performance on New ATM Operations: Maintaining In-Trail Separation and Arrival Sequencing

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Yankosky, L. J.; Johnson, Walter (Technical Monitor)

    1999-01-01

    Cockpit Display of Traffic Information (CDTI) may enable new Air Traffic Management (ATM) operations. However, CDTI is not the only source of traffic information in the cockpit; ATM procedures may provide information, implicitly and explicitly, about other aircraft. An experiment investigated pilot ability to perform two new ATM operations - maintaining in-trail separation from another aircraft and sequencing into an arrival stream. In the experiment, pilots were provided different amounts of information from displays and procedures. The results are described.

  18. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  19. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  20. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  1. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  2. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  3. Air pollution from aircraft operations at San Jose Municipal Airport, California

    NASA Technical Reports Server (NTRS)

    Schairer, E. T.

    1978-01-01

    The amount of air pollution discharged by arriving and departing aircraft at the San Jose Municipal Airport was estimated. These estimates were made for each one hour interval of a summer weekday in 1977. The contributions of both general aviation (personal and business aircraft) and certified air carriers (scheduled airliners) were considered. The locations at which the pollutants were discharged were estimated by approximating the flight paths of arriving and departing aircraft. Three types of pollutants were considered: carbon monoxide, hydrocarbons, and oxides of nitrogen.

  4. Sierra Nevada Corporation (SNC) Dream Chaser arrival at Armstron

    NASA Image and Video Library

    2017-01-25

    Sierra Nevada Corporation’s Dream Chaser spacecraft arrives by truck at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. The spacecraft will undergo several months of testing in preparation for its approach and landing flight on the base’s 22L runway. The test series is part of a developmental space act agreement SNC has with NASA’s Commercial Crew Program and will help SNC validate aerodynamic properties, flight software and control system performance. The Dream Chaser is also being prepared to deliver cargo to the International Space Station under NASA’s Commercial Resupply Services 2 contract beginning in 2019. The cargo Dream Chaser will fly at least six delivery missions to and from the space station by 2024.

  5. Sierra Nevada Corporation (SNC) Dream Chaser arrival at Armstrong

    NASA Image and Video Library

    2017-01-25

    Sierra Nevada Corporation’s Dream Chaser spacecraft arrives by truck at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. The spacecraft will undergo several months of testing in preparation for its approach and landing flight on the base’s 22L runway. The test series is part of a developmental space act agreement SNC has with NASA’s Commercial Crew Program and will help SNC validate aerodynamic properties, flight software and control system performance. The Dream Chaser is also being prepared to deliver cargo to the International Space Station under NASA’s Commercial Resupply Services 2 contract beginning in 2019. The cargo Dream Chaser will fly at least six delivery missions to and from the space station by 2024.

  6. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  7. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  8. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  9. An Airbus arrives at KSC with third MPLM

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Airbus '''Beluga''' air cargo plane, The Super Transporter, arrives at KSC's Shuttle Landing Facility from the factory of Alenia Aerospazio in Turin, Italy. Its cargo is the Italian Space Agency's Multi-Purpose Logistics Module Donatello, the third of three for the International Space Station. The module will be transported to the Space Station Processing Facility for processing. Among the activities for the payload test team are integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle's payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo.

  10. Boeing Delta II rocket for FUSE launch arrives at CCAS

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After its arrival at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised to a vertical position. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.

  11. U.S. Commercial Cargo Ship Arrives at the Space Station

    NASA Image and Video Library

    2017-12-17

    Loaded with some three tons of experiments and supplies, the SpaceX Dragon cargo craft arrived at the International Space Station Dec. 17, where Expedition 53 crew members Mark Vande Hei and Joe Acaba of NASA captured it by using the Canadian-built robotic arm. Ground controllers at NASA’s Johnson Space Center in Houston took over after Dragon was grappled, sending commands to maneuver the ship to the Earth-facing side of the Harmony module where it was attached for a month-long stay. Dragon was launched Dec. 15 on the SpaceX Falcon 9 rocket from Complex 40 at the Cape Canaveral Air Force Station in Florida to begin its journey to the international outpost.

  12. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NASA Astrophysics Data System (ADS)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; de la Rosa, J.; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-02-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS), and hourly Streaker with Particle Induced X-ray Emission (PIXE) samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa") and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF) analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5-10), As-bearing sulphatic aerosol (PM0.1-2.5), metalliferous sodic particulate matter (PM) interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  13. A model of seismic coda arrivals to suppress spurious events.

    NASA Astrophysics Data System (ADS)

    Arora, N.; Russell, S.

    2012-04-01

    We describe a model of coda arrivals which has been added to NET-VISA (Network processing Vertically Integrated Seismic Analysis) our probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. The scattered energy that follows a seismic phase arrival tends to deceive typical STA/LTA based arrival picking software into believing that a real seismic phase has been detected. These coda arrivals which tend to follow all seismic phases cause most network processing software including NET-VISA to believe that multiple events have taken place. It is not a simple matter of ignoring closely spaced arrivals since arrivals from multiple events can indeed overlap. The current practice in NET-VISA of pruning events within a small space-time neighborhood of a larger event works reasonably well, but it may mask real events produced in an after-shock sequence. Our new model allows any seismic arrival, even coda arrivals, to trigger a subsequent coda arrival. The probability of such a triggered arrival depends on the amplitude of the triggering arrival. Although real seismic phases are more likely to generate such coda arrivals. Real seismic phases also tend to generate coda arrivals with more strongly correlated parameters, for example azimuth and slowness. However, the SNR (Signal to Noise Ratio) of a coda arrival immediately following a phase arrival tends to be lower because of the nature of the SNR calculation. We have calibrated our model on historical statistics of such triggered arrivals and our inference accounts for them while searching for the best explanation of seismic events their association to the arrivals and the coda arrivals. We have tested our new model on one week of global seismic data spanning March 22, 2009 to March 29, 2009. Our model was trained on two and half months of data from April 5, 2009 to June 20, 2009. We use the LEB bulletin produced by the IDC (International Data Center) as the ground truth

  14. Human Factors Considerations for Area Navigation Departure and Arrival Procedures

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.

  15. Piloted simulation of a ground-based time-control concept for air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Green, Steven M.

    1989-01-01

    A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.

  16. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. Copyright 1999 John Wiley & Sons, Ltd.

  17. Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi

    We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.

  18. ARRIVE has not ARRIVEd: Support for the ARRIVE (Animal Research: Reporting of in vivo Experiments) guidelines does not improve the reporting quality of papers in animal welfare, analgesia or anesthesia.

    PubMed

    Leung, Vivian; Rousseau-Blass, Frédérik; Beauchamp, Guy; Pang, Daniel S J

    2018-01-01

    Poor research reporting is a major contributing factor to low study reproducibility, financial and animal waste. The ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines were developed to improve reporting quality and many journals support these guidelines. The influence of this support is unknown. We hypothesized that papers published in journals supporting the ARRIVE guidelines would show improved reporting compared with those in non-supporting journals. In a retrospective, observational cohort study, papers from 5 ARRIVE supporting (SUPP) and 2 non-supporting (nonSUPP) journals, published before (2009) and 5 years after (2015) the ARRIVE guidelines, were selected. Adherence to the ARRIVE checklist of 20 items was independently evaluated by two reviewers and items assessed as fully, partially or not reported. Mean percentages of items reported were compared between journal types and years with an unequal variance t-test. Individual items and sub-items were compared with a chi-square test. From an initial cohort of 956, 236 papers were included: 120 from 2009 (SUPP; n = 52, nonSUPP; n = 68), 116 from 2015 (SUPP; n = 61, nonSUPP; n = 55). The percentage of fully reported items was similar between journal types in 2009 (SUPP: 55.3 ± 11.5% [SD]; nonSUPP: 51.8 ± 9.0%; p = 0.07, 95% CI of mean difference -0.3-7.3%) and 2015 (SUPP: 60.5 ± 11.2%; nonSUPP; 60.2 ± 10.0%; p = 0.89, 95%CI -3.6-4.2%). The small increase in fully reported items between years was similar for both journal types (p = 0.09, 95% CI -0.5-4.3%). No paper fully reported 100% of items on the ARRIVE checklist and measures associated with bias were poorly reported. These results suggest that journal support for the ARRIVE guidelines has not resulted in a meaningful improvement in reporting quality, contributing to ongoing waste in animal research.

  19. Sierra Nevada Corporation (SNC) Dream Chaser arrival at Armstron

    NASA Image and Video Library

    2017-01-25

    Sierra Nevada Corporation’s Dream Chaser spacecraft is removed from its delivery truck after arriving at NASA’s Armstrong Flight Research Center in California, located on Edwards Air Force Base. The spacecraft will undergo several months of testing in preparation for its approach and landing flight on the base’s 22L runway. The test series is part of a developmental space act agreement SNC has with NASA’s Commercial Crew Program and will help SNC validate aerodynamic properties, flight software and control system performance. The Dream Chaser is also being prepared to deliver cargo to the International Space Station under NASA’s Commercial Resupply Services 2 contract beginning in 2019. The cargo Dream Chaser will fly at least six delivery missions to and from the space station by 2024.

  20. An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels.

    PubMed

    Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán

    2006-07-01

    This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.

  1. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  2. Observations of Air Quality at the Edge of Kathmandu, Nepal, and the Diurnal Cycle of Air Pollution In and Around the Kathmandu Valley

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Prinn, R. G.; Regmi, R. P.

    2006-12-01

    The Kathmandu Valley is a bowl-shaped basin in the Nepal Himalaya, with a rapidly growing city surrounded by rice fields and steep terraced and forested mountain slopes. The valley's air quality is influenced by urban and rural emissions, nocturnal pooling of cold air, slope winds, and a daily exchange of air through mountain passes. To understand these processes and to inform air pollution policy in Nepal, we have carried out the most comprehensive study of air pollution in Nepal to date. During the 9-month dry season of 2004-2005, we carried out continuous measurements every minute of carbon monoxide, ozone, PM10, wind speed, wind direction, solar radiation, temperature, and humidity on the eastern edge of Kathmandu city, at a site that daily received air from both the city and rural areas. We recorded the diurnal cycle of the vertical temperature structure and stability with temperature loggers on towers and mountains. A sodar measured the mixed layer height and upper-level winds. 24-hour simultaneous bag sampling campaigns on mountain peaks, passes, the rural valley, and within the city provided glimpses of the spatial patterns of the diurnal cycle of CO -- a useful tracer of anthropogenic emissions. We measured winds on mountain passes and ozone on mountain peaks. At our main measurement site we found a daily-recurring pattern of CO and PM10, with an afternoon low showing rural background levels, even though the arriving air had traversed the city. This was followed by an evening peak starting at sunset, a second low late at night, and a morning peak enhanced by re-circulation. Pollutants emitted in the valley only traveled out of the valley between the late morning and sunset. During winter months, rush hour was outside of this period, enhancing the morning and evening peaks. Within the city, ozone dropped to zero at night. At mid-day we observed an ozone peak enhanced by photochemical production when the air mass that had been stagnant over the city swept

  3. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  4. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird

    PubMed Central

    Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut

    2008-01-01

    In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134

  5. 9 CFR 93.804 - Declaration upon arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.804 Declaration upon arrival. Upon arrival of an elephant, hippopotamus, rhinoceros, or tapir at a... importer; (f) The name and address of the broker; (g) The region from which the elephant, hippopotamus...

  6. 9 CFR 93.804 - Declaration upon arrival.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.804 Declaration upon arrival. Upon arrival of an elephant, hippopotamus, rhinoceros, or tapir at a... importer; (f) The name and address of the broker; (g) The region from which the elephant, hippopotamus...

  7. 9 CFR 93.804 - Declaration upon arrival.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.804 Declaration upon arrival. Upon arrival of an elephant, hippopotamus, rhinoceros, or tapir at a... importer; (f) The name and address of the broker; (g) The region from which the elephant, hippopotamus...

  8. 9 CFR 93.804 - Declaration upon arrival.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.804 Declaration upon arrival. Upon arrival of an elephant, hippopotamus, rhinoceros, or tapir at a... importer; (f) The name and address of the broker; (g) The region from which the elephant, hippopotamus...

  9. 9 CFR 93.804 - Declaration upon arrival.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.804 Declaration upon arrival. Upon arrival of an elephant, hippopotamus, rhinoceros, or tapir at a... importer; (f) The name and address of the broker; (g) The region from which the elephant, hippopotamus...

  10. 7 CFR 319.75-6 - Arrival notification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Arrival notification. 319.75-6 Section 319.75-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Khapra Beetle § 319.75-6 Arrival...

  11. 7 CFR 319.75-6 - Arrival notification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Arrival notification. 319.75-6 Section 319.75-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Khapra Beetle § 319.75-6 Arrival...

  12. 7 CFR 319.75-6 - Arrival notification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Arrival notification. 319.75-6 Section 319.75-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Khapra Beetle § 319.75-6 Arrival...

  13. 7 CFR 319.75-6 - Arrival notification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Arrival notification. 319.75-6 Section 319.75-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Khapra Beetle § 319.75-6 Arrival...

  14. 14 CFR 93.29 - International Arrival Authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false International Arrival Authorizations. 93.29... at Chicago O'Hare International Airport § 93.29 International Arrival Authorizations. (a) Except as... marketing arrangement unless the flight was predominately marketed, by contract, under the control of...

  15. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing

    2018-04-01

    Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.

  16. 7 CFR 322.7 - Notice of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.7 Notice of arrival. (a) At least 10 business days prior to the arrival in the United States of any shipment of bees...

  17. 7 CFR 322.7 - Notice of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.7 Notice of arrival. (a) At least 10 business days prior to the arrival in the United States of any shipment of bees...

  18. 7 CFR 322.7 - Notice of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.7 Notice of arrival. (a) At least 10 business days prior to the arrival in the United States of any shipment of bees...

  19. 7 CFR 322.7 - Notice of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.7 Notice of arrival. (a) At least 10 business days prior to the arrival in the United States of any shipment of bees...

  20. 7 CFR 322.7 - Notice of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation of Adult Honeybees, Honeybee Germ Plasm, and Bees Other Than Honeybees From Approved Regions § 322.7 Notice of arrival. (a) At least 10 business days prior to the arrival in the United States of any shipment of bees...

  1. Evaluation of Post-Arrival Programs and Services.

    ERIC Educational Resources Information Center

    Australian Inst. of Multicultural Affairs, Melbourne (Australia).

    This book assesses the effectiveness of recommendations implemented after the release of the Australian government's "Report of the Review of Post-Arrival Programs and Services for Migrants" in 1977. In general, the implementation of the Report's proposals has been of substantial benefit to migrants (both newly arrived and longer…

  2. 7 CFR 319.75-6 - Arrival notification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Plant Protection and Quarantine of the arrival by such means as a manifest, Customs entry document... 7 Agriculture 5 2010-01-01 2010-01-01 false Arrival notification. 319.75-6 Section 319.75-6 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION...

  3. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  4. The Mars Climate Orbiter arrives at KSC to begin final preparations for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket.

  5. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  6. Computing angle of arrival of radio signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borchardt, John J.; Steele, David K.

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon themore » measurements.« less

  7. 19 CFR 12.113 - Arrival of shipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to the director of the port of entry the Notice of Arrival completed by the Administrator and indicating the Customs action to be taken with respect to the shipment. The port director shall compare entry... risk and expense until the completed Notice of Arrival is presented or until other disposition is...

  8. 19 CFR 122.154 - Notice of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... notice of arrival shall state: (1) Type of aircraft and registration number; (2) Name of aircraft... aircraft entering the U.S. from Cuba must give advance notice of arrival, unless it is an Office of Foreign Assets Control (OFAC) approved scheduled commercial aircraft of a scheduled airline. (b) Procedure for...

  9. 19 CFR 122.154 - Notice of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... notice of arrival shall state: (1) Type of aircraft and registration number; (2) Name of aircraft... aircraft entering the U.S. from Cuba must give advance notice of arrival, unless it is an Office of Foreign Assets Control (OFAC) approved scheduled commercial aircraft of a scheduled airline. (b) Procedure for...

  10. 19 CFR 122.154 - Notice of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... notice of arrival shall state: (1) Type of aircraft and registration number; (2) Name of aircraft... aircraft entering the U.S. from Cuba must give advance notice of arrival, unless it is an Office of Foreign Assets Control (OFAC) approved scheduled commercial aircraft of a scheduled airline. (b) Procedure for...

  11. 19 CFR 122.154 - Notice of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... notice of arrival shall state: (1) Type of aircraft and registration number; (2) Name of aircraft... aircraft entering the U.S. from Cuba must give advance notice of arrival, unless it is an Office of Foreign Assets Control (OFAC) approved scheduled commercial aircraft of a scheduled airline. (b) Procedure for...

  12. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  13. Deep seafloor arrivals in long range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M

    2013-10-01

    Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.

  14. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 9 CFR 98.7 - Declaration upon arrival.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.7 Declaration upon arrival. Upon arrival of an embryo at a port of entry, the importer or the importer's agent shall notify APHIS of the...

  16. 9 CFR 98.7 - Declaration upon arrival.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.7 Declaration upon arrival. Upon arrival of an embryo at a port of entry, the importer or the importer's agent shall notify APHIS of the...

  17. 9 CFR 98.7 - Declaration upon arrival.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.7 Declaration upon arrival. Upon arrival of an embryo at a port of entry, the importer or the importer's agent shall notify APHIS of the...

  18. 9 CFR 98.7 - Declaration upon arrival.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.7 Declaration upon arrival. Upon arrival of an embryo at a port of entry, the importer or the importer's agent shall notify APHIS of the...

  19. 9 CFR 98.7 - Declaration upon arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CERTAIN ANIMAL EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos from Regions Free of Rinderpest and Foot-and-Mouth Disease; and Embryos of Horses and Asses § 98.7 Declaration upon arrival. Upon arrival of an embryo at a port of entry, the importer or the importer's agent shall notify APHIS of the...

  20. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  1. Rectal perforation by compressed air.

    PubMed

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  2. Terrorist Watchlist Checks and Air Passenger Prescreening

    DTIC Science & Technology

    2009-12-30

    U.S. port of entry or at airport security checkpoints prior U.S. air carrier flights. For these purposes, CBP administers the Automated Targeting...Passenger Screening at Airport Security Checkpoints ................................. 14 9/11 Commission Recommendations and CAPPS II...individuals at either international ports of entries upon arrival at a U.S. port of entry or at airport security checkpoints prior U.S. air carrier

  3. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses.

    PubMed

    Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R

    2017-10-01

    A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.

  4. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  5. Air Force loadmasters oversee unloading of the full-scale Orion abort test crew module mockup from a C-17 cargo aircraft at Edwards Air Force Base March 28.

    NASA Image and Video Library

    2008-03-28

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  6. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  7. Crew Procedures for Continuous Descent Arrivals Using Conventional Guidance

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.; Lewis, Elliot T,

    2007-01-01

    This paper presents results from a simulation study which investigated the use of Continuous Descent Arrival (CDA) procedures for conducting a descent through a busy terminal area, using conventional transport-category automation. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, that addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for low noise operations. The procedures and chart were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC. The test runs were intended to represent situations typical of what exists in many of today's terminal areas, including interruptions to the descent in the form of clearances issued by ATC.

  8. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  9. Direction of Arrival Estimation Using a Reconfigurable Array

    DTIC Science & Technology

    2005-05-06

    civilian world. Keywords: Direction-of-arrival Estimation MUSIC algorithm Reconfigurable Array Experimental Created by Neevia Personal...14. SUBJECT TERMS: Direction-of-arrival ; Estimation ; MUSIC algorithm ; Reconfigurable ; Array ; Experimental 16. PRICE CODE 17...9 1.5 MuSiC Algorithm

  10. Surface ozone and carbon monoxide levels observed at Oki, Japan: regional air pollution trends in East Asia.

    PubMed

    Sikder, Helena Akhter; Suthawaree, Jeeranut; Kato, Shungo; Kajii, Yoshizumi

    2011-03-01

    Simultaneous ground-based measurements of ozone and carbon monoxide were performed at Oki, Japan, from January 2001 to September 2002 in order to investigate the O(3) and CO characteristics and their distributions. The observations revealed that O(3) and CO concentrations were maximum in springtime and minimum in the summer. The monthly averaged concentrations of O(3) and CO were 60 and 234 ppb in spring and 23 and 106 ppb in summer, respectively. Based on direction, 5-day isentropic backward trajectory analysis was carried out to determine the transport path of air masses, preceding their arrival at Oki. Comparison between classified results from present work and results from the year 1994-1996 was carried out. The O(3) and CO concentration results of classified air masses in our analysis show similar concentration trends to previous findings; highest in the WNW/W, lowest in N/NE and medium levels in NW. Moreover, O(3) levels are higher and CO levels are lower in the present study in all categories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. 8 CFR 251.5 - Paper arrival and departure manifests for crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Paper arrival and departure manifests for... REGULATIONS ARRIVAL AND DEPARTURE MANIFESTS AND LISTS: SUPPORTING DOCUMENTS § 251.5 Paper arrival and... from the United States must submit arrival and departure manifests in a paper format in accordance with...

  12. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  13. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    DOE PAGES

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; ...

    2015-02-10

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere–Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ~60% of the study period, air was transported from sparsely populated regions to the northwest. Duringmore » these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm -3 and 1.91 μm 3 cm -3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (~29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean к = 0.24 at s = 0.3%). Furthermore, these trends are have the potential to influence forest–atmosphere interactions and should be targeted for future study.« less

  14. Condensation of atmospheric moisture from tropical maritime air masses as a freshwater resource.

    PubMed

    Gerard, R D; Worzel, J L

    1967-09-15

    A method is proposed whereby potable water may be obtained by condensing moisture from the atmosphere in suitable seashore or island areas. Deep, cold, offshore seawater is used as a source of cold and is pumped to condensers set up on shore to intercept the flow of highly humid, tropical, maritime air masses. This air, when cooled, condenses moisture, which is conducted away and stored for use as a water supply. Windmill-driven generators would supply low-cost power for the operation. Side benefits are derived by using the nutritious deep water to support aquiculture in nearby lagoons or to enhance the productivity of the outfall area. Additional benefits are derived from the condenser as an air-conditioning device for nearby residents. The islands of the Caribbean are used as an example of a location in the trade-winds belt where nearly optimum conditions for the operation of this system can be found.

  15. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  16. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  17. Queues with Dropping Functions and General Arrival Processes

    PubMed Central

    Chydzinski, Andrzej; Mrozowski, Pawel

    2016-01-01

    In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171

  18. Functional Analysis for an Integrated Capability of Arrival/Departure/Surface Management with Tactical Runway Management

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Okuniek, Nikolai; Lohr, Gary W.; Schaper, Meilin; Christoffels, Lothar; Latorella, Kara A.

    2014-01-01

    The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and airspace operations. It follows that investigation of the effective use of runways, both in terms of selection and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated arrival/departure/surface management operations and runway configuration management. In December 2012, NASA entered into a Collaborative Agreement with DLR. Four collaborative work areas were identified, one of which is called "Runway Management." As part of collaborative research in the "Runway Management" area, which is conducted with the DLR Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA's tactical runway configuration management (TRCM) tool. To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA runway management and DLR arrival, departure, and surface management tools will function together to the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are assessed through a functional analysis method described in this report. The report first provides the highlevel operational environments for air traffic management (ATM) in Germany and in the U.S., and the descriptions of the DLR's A/D/S-MAN and NASA's TRCM tools at the level of details necessary to compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis of an integrated system design are presented next in the report. Future efforts to fully

  19. Prediction of Shock Arrival Times from CME and Flare Data

    NASA Technical Reports Server (NTRS)

    Nunez, Marlon; Nieves-Chinchilla, Teresa; Pulkkinen, Antti

    2016-01-01

    This paper presents the Shock ARrival Model (SARM) for predicting shock arrival times for distances from 0.72 AU to 8.7 AU by using coronal mass ejections (CME) and flare data. SARM is an aerodynamic drag model described by a differential equation that has been calibrated with a dataset of 120 shocks observed from 1997 to 2010 by minimizing the mean absolute error (MAE), normalized to 1 AU. SARM should be used with CME data (radial, earthward or plane-of-sky speeds), and flare data (peak flux, duration, and location). In the case of 1 AU, the MAE and the median of absolute errors were 7.0 h and 5.0 h respectively, using the available CMEflare data. The best results for 1 AU (an MAE of 5.8 h) were obtained using both CME data, either radial or cone-model-estimated speeds, and flare data. For the prediction of shock arrivals at distances from 0.72 AU to 8.7 AU, the normalized MAE and the median were 7.1 h and 5.1 h respectively, using the available CMEflare data. SARM was also calibrated to be used with CME data alone or flare data alone, obtaining normalized MAE errors of 8.9 h and 8.6 h respectively for all shock events. The model verification was carried out with an additional dataset of 20 shocks observed from 2010 to 2012 with radial CME speeds to compare SARM with the empirical ESA model [Gopalswamy et al., 2005a] and the numerical MHD-based ENLIL model [Odstrcil et al., 2004]. The results show that the ENLIL's MAE was lower than the SARM's MAE, which was lower than the ESA's MAE. The SARM's best results were obtained when both flare and true CME speeds were used.

  20. Rectal perforation by compressed air

    PubMed Central

    2017-01-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed. PMID:28706893

  1. Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.

    2011-01-01

    Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.

  2. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  3. Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett

    2013-01-01

    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.

  4. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  5. Toward a better understanding of the impact of mass transit air pollutants on human health

    USDA-ARS?s Scientific Manuscript database

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  6. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  7. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  8. Cluster analysis of the organic peaks in bulk mass spectra obtained during the 2002 New England Air Quality Study with an Aerodyne aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M. L.; Bertman, S. B.; Middlebrook, A. M.

    2006-06-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel Ronald H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter most probably originating from both, anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent as much as 5 µg/m3 organic aerosol mass - 17% of the total organic mass - that can be attributed to biogenic sources. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  9. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  10. Spatial and Temporal Patterns in the Carbon Isotopic Signal of Leaf Wax Aerosols in Continental Air Masses: Linkages with Ecosystem Discrimination

    NASA Astrophysics Data System (ADS)

    Weber, J.; Conte, M. H.

    2006-12-01

    Temporal and spatial variations in the concentration and isotopic composition of atmospheric carbon dioxide can be used to estimate the relative magnitudes of the terrestrial and oceanic carbon sinks. An important model parameter is the terrestrial photosynthetic carbon isotopic fractionation of CO2 (Δ), yet estimating Δ over the large spatial scales required by models remains problematic. Epiculticular leaf waxes appear to closely reflect the plant's carbon isotopic discrimination; therefore, the ablated wax aerosols present in well-mixed continental air masses may be used as a proxy to estimate the magnitude of Δ integrated over large (subcontinental) spatial scales. Over the last several years, we have been conducting time-series studies of wax aerosol molecular and isotopic composition at strategically located sites (Maine, northern Alaska, Florida, Bermuda, Barbados) which receive continental air masses passing over major terrestrial biomes (northern temperate/ecotonal boreal forests, tundra, southern US pine/hardwood forests, North American and north African). In this presentation, we describe and contrast patterns of wax aerosol-derived estimates of Δ at these sites. In North American air masses, estimates of Δ range from 14.5-20.5 using the concentration-weighted average δ13C of wax n-acids and from 13.5-19.5 for the wax n-alcohols. Seasonal trends observed in the Florida (southern US) and Bermuda samples (mixed North American air masses) indicate maximum discrimination in early spring and minimum discrimination during the summer dry season. In northern US and high latitude air masses, seasonal trends are less pronounced but in general temporally offset with highest discrimination occurring during late summer. At Barbados, which is dominated by north African air masses passing over regions largely comprised of arid C4 grasslands, estimated Δ for the wax n-acids is significantly lower (14.0-15.5 per mil), consistent with a higher predominance of C4

  11. Age at Arrival and Life Chances Among Childhood Immigrants.

    PubMed

    Hermansen, Are Skeie

    2017-02-01

    This study examines the causal relationship between childhood immigrants' age at arrival and their life chances as adults. I analyze panel data on siblings from Norwegian administrative registries, which enables me to disentangle the effect of age at arrival on adult socioeconomic outcomes from all fixed family-level conditions and endowments shared by siblings. Results from sibling fixed-effects models reveal a progressively stronger adverse influence of immigration at later stages of childhood on completed education, employment, adult earnings, occupational attainment, and social welfare assistance. The persistence of these relationships within families indicates that experiences related to the timing of childhood immigration have causal effects on later-life outcomes. These age-at-arrival effects are considerably stronger among children who arrive from geographically distant and economically less-developed origin regions than among children originating from developed countries. The age-at-arrival effects vary less by parental education and child gender. On the whole, the findings indicate that childhood immigration after an early-life formative period tends to constrain later human capital formation and economic opportunities over the life course.

  12. 7 CFR 319.8-4 - Notice of arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for the Plant Protection and Quarantine Programs, a notice of such arrival, on a form provided for... 7 Agriculture 5 2010-01-01 2010-01-01 false Notice of arrival. 319.8-4 Section 319.8-4 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE...

  13. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Seasonal Fluctuations in Air Pollution in Dazaifu, Japan, and Effect of Long-Range Transport from Mainland East Asia.

    PubMed

    Coulibaly, Souleymane; Minami, Hiroki; Abe, Maho; Hasei, Tomohiro; Sera, Nobuyuki; Yamamoto, Shigekazu; Funasaka, Kunihiro; Asakawa, Daichi; Watanabe, Masanari; Honda, Naoko; Wakabayashi, Keiji; Watanabe, Tetsushi

    2015-01-01

    To clarify the seasonal fluctuations in air pollution and the effect of long-range transport, we collected airborne particles (n=118) at Dazaifu in Fukuoka, Japan, from June 2012 to May 2013 and measured Pb and SO4(2-), which are indicators of the long-range transport of anthropogenic air pollutants, as well as their mutagenicity, and other factors. The levels of airborne particles, Pb, and SO4(2-) were very high on March 4, 8, 9, and 19, and May 13, 21, and 22, 2013. The backward trajectories indicated that air masses had arrived from the Gobi Desert and northern China on those days. The mutagenicity of airborne particles was examined using the Ames test on Salmonella typhimurium YG1024. Highly mutagenic airborne particles were mostly collected in winter, and most of them showed high activity both with and without S9 mix. High levels of polycyclic aromatic hydrocarbons (PAHs) were found in many samples that showed high mutagenicity. For the samples collected on January 30, February 21, and March 4, the levels of Pb, SO4(2-), PAHs, and mutagenicity were high, and the backward trajectories indicated that air masses present on those days had passed through northern or central China. The Japan Meteorological Agency registered Asian dust events at Fukuoka on March 8, 9, and 19, 2013. The results of the present study suggest that high levels of anthropogenic air pollutants were transported with Asian dust. Similarly, long-range transport of air pollutants including mutagens occurred on days when Asian dust events were not registered.

  15. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.

  16. Estimating epidemic arrival times using linear spreading theory

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  17. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    PubMed

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  18. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  19. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking

  20. Order of arrival affects competition in two reef fishes.

    PubMed

    Geange, Shane W; Stier, Adrian C

    2009-10-01

    Many communities experience repeated periods of colonization due to seasonally regenerating habitats or pulsed arrival of young-of-year. When an individual's persistence in a community depends upon the strength of competitive interactions, changes in the timing of arrival relative to the arrival of a competitor can modify competitive strength and, ultimately, establishment in the community. We investigated whether the strength of intracohort competitive interactions between recent settlers of the reef fishes Thalassoma hardwicke and T. quinquevittatum are dependent on the sequence and temporal separation of their arrival into communities. To achieve this, we manipulated the sequence and timing of arrival of each species onto experimental patch reefs by simulating settlement pulses and monitoring survival and aggressive interactions. Both species survived best in the absence of competitors, but when competitors were present, they did best when they arrived at the same time. Survival declined as each species entered the community progressively later than its competitor and as aggression by its competitor increased. Intraspecific effects of resident T. hardwicke were similar to interspecific effects. This study shows that the strength of competition depends not only on the identity of competitors, but also on the sequence and timing of their interactions, suggesting that when examining interaction strengths, it is important to identify temporal variability in the direction and magnitude of their effects. Furthermore, our findings provide empirical evidence for the importance of competitive lotteries in the maintenance of species diversity in demographically open marine systems.

  1. Strengthening economy through tourism sector by tourist arrival prediction

    NASA Astrophysics Data System (ADS)

    Supriatna, A.; Subartini, B.; Hertini, E.; Sukono; Rumaisha; Istiqamah, N.

    2018-03-01

    Tourism sector has a tendency to be proposed as a support for national economy to many countries with various of natural resources, such as Indonesia. The number of tourist is very related with the success rate of a tourist attraction, since it is also related with planning and strategy. Hence, it is important to predict the climate of tourism in Indonesia, especially the number of domestic or international tourist in the future. This study uses Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method to predict the number of tourist arrival to tourism strategic areas in Nusa Tenggara Barat. The prediction was done using the international and domestic tourist arrival to Nusa Tenggara Barat data from January 2008 to June 2016. The established SARIMA method was (0,1,1)(0,0,2)12 with MAPE error of 15.76. The prediction for the next six time periods showed that the highest number of tourist arrival is during September 2016 with 330,516 tourist arrivals. Prediction of tourist arrival hopefully might be used as reference for local and national government to make policies to strengthen national economy for a long period of time

  2. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  3. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  4. Terminal area air traffic control simulation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    To study the impact of advanced aeronautical technologies on operations to and from terminal airports, a computer model of air traffic movements was developed. The advantages of fast-time simulation are discussed, and the arrival scheduling and flight simulation are described. A New York area study, user's guide, and programmer's guide are included.

  5. Airborne-Managed Spacing in Multiple Arrival Streams

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan; Abbott, Terence; Krishnamurthy, Karthik

    2004-01-01

    A significant bottleneck in the current air traffic system occurs at the runway. Expanding airports and adding new runways will help solve this problem; however, this comes at a significant cost, financially, politically and environmentally. A complementary solution is to safely increase the capacity of current runways. This can be achieved by precise spacing at the runway threshold with a resulting reduction in the spacing buffer required under today s operations. At the NASA Langley Research Center, the Advanced Air Transportation Technologies (AATT) Project is investigating airborne technologies and procedures that will assist the pilot in achieving precise spacing behind another aircraft. This new spacing clearance instructs the pilot to follow speed cues from a new on-board guidance system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). AMSTAR receives Automatic Dependent Surveillance-Broadcast (ADS-B) reports from the leading aircraft and calculates the appropriate speed for the ownership to fly in order to achieve the desired spacing interval, time or distance-based, at the runway threshold. Since the goal is overall system capacity, the speed guidance algorithm is designed to provide system benefit over individual efficiency. This paper discusses the concept of operations and design of AMSTAR to support airborne precision spacing. Results from the previous stage of development, focused only on in-trail spacing, are discussed along with the evolution of the concept to include merging of converging streams of traffic. This paper also examines how this operation might support future wake vortex-based separation and other advances in terminal area operations. Finally, the research plan for the merging capabilities, to be performed during the summer and fall of 2004 is presented.

  6. Delay time between onset of ischemic stroke and hospital arrival.

    PubMed

    Biller, J; Patrick, J T; Shepard, A; Adams, H P

    1993-01-01

    Some current experimental protocols for acute ischemic stroke require the initiation of treatment within hours of the onset of stroke symptoms. We prospectively evaluated 30 patients with acute ischemic stroke based on clinical and computed tomography findings. The time between the onset of stroke symptoms and arrival in the emergency room and subsequently on the stroke service was determined. Within 3, 6,12, and 24 h of the onset of stroke symptoms, 16 (53%), 19 (63%), 22 (73%), and 25 (83%) patients had arrived at the emergency room and 0 (0%), 4 (13%), 14 (47%), and 22 (73%) of them on the stroke service, respectively. From the onset of stroke symptoms, the mean arrival time to the emergency room was 24 h (range, 30 min to 144 h) and to the stroke service was 61 h (range, 4-150 h). The mean time between arrival in the emergency room and stroke service was 8.6 h (range, 0-47 h). Even though 53% and 63% of our patients arrived at the emergency room within 3 and 6 h of the onset of stroke symptoms, only 0% and 13% of them arrived on the stroke service within the same time period for the initiation of treatment, respectively. Thus, in order for more patients to qualify for current experimental protocols, they must arrive on the stroke service more quickly or treatment must be initiated in the emergency room. Copyright © 1993. Published by Elsevier Inc.

  7. Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    NASA Technical Reports Server (NTRS)

    Aponso, Bimal; Coppenbarger, Richard A.; Jung, Yoon; Quon, Leighton; Lohr, Gary; O’Connor, Neil; Engelland, Shawn

    2015-01-01

    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule

  8. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  9. Structure of air shower disc near the core

    NASA Technical Reports Server (NTRS)

    Inoue, N.; Kawamoto, M.; Misaki, Y.; Maeda, T.; Takeuchi, T.; Toyoda, Y.

    1985-01-01

    The longitudinal structure of the air shower disk is studied by measuring the arrival time distributions of air shower particles for showers with electron size in the range 3.2 x 10 to the 5.5. power to 3.2 x 10 to the 7.5 power in the Akeno air-shower array (930 gcm squared atmospheric depth). The average FWHM as a parameter of thickness of air shower disk increases with core distances at less than 50m. AT the present stage, dependence on electron size, zenith angle and air shower age is not apparent. The average thickness of the air shower disk within a core distance of 50m could be determined by an electromagnetic cascade starting from the lower altitude.

  10. Mass casualty tracking with air traffic control methodologies.

    PubMed

    Hoskins, Jason D; Graham, Ross F; Robinson, Duane R; Lutz, Clifford C; Folio, Les R

    2009-06-01

    An intrahospital casualty throughput system modeled after air traffic control (ATC) tracking procedures was tested in mass casualty exercises. ATC uses a simple tactile process involving informational progress strips representing each aircraft, which are held in bays representing each stage of flight to prioritize and manage aircraft. These strips can be reordered within the bays to indicate a change in priority of aircraft sequence. In this study, a similar system was designed for patient tracking. We compared the ATC model and traditional casualty tracking methods of paper and clipboard in 18 four-hour casualty scenarios, each with 5 to 30 mock casualties. The experimental and control groups were alternated to maximize exposure and minimize training effects. Results were analyzed with Mann-Whitney statistical analysis with p value < 0.05 (two-sided). The ATC method had significantly (p = 0.017) fewer errors in critical patient data (eg, name, social security number, diagnosis). Specifically, the ATC method better tracked the mechanism of injury, working diagnosis, and disposition of patients. The ATC method also performed considerably better with patient accountability during mass casualty scenarios. Data strips were comparable with the control method in terms of ease of use. In addition, participants preferred the ATC method to the control (p = 0.003) and preferred using the ATC method (p = 0.003) to traditional methods in the future. The ATC model more effectively tracked patient data with fewer errors when compared with the clipboard method. Application of these principles can enhance trauma management and can have application in civilian and military trauma centers and emergency rooms.

  11. Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations

    NASA Astrophysics Data System (ADS)

    Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel

    2017-10-01

    The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.

  12. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  13. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  14. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking

  15. Fast first arrival picking algorithm for noisy microseismic data

    NASA Astrophysics Data System (ADS)

    Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun

    2017-01-01

    Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.

  16. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  17. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  18. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  19. Space chimp Enos returns to Patrick Air Force Base

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Enos the chimpanzee that orbited the earth twice in a Mercury spacecraft arrives back at Patrick Air Force Base. Enos landed some 220 nautical miles south of Bermuda and was picked up up by the U.S.S. Stormes.

  20. An anthropometric model to estimate neonatal fat mass using air displacement plethysmography

    PubMed Central

    2012-01-01

    Background Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD® Infant Body Composition System) as the criterion. Methods A total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD® were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass. Results The statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)2 + 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R2 = 0.81, MSE = 0.08 kg. Conclusions Our anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance. PMID:22436534

  1. Diagnosis according to time of arrival at "The Great New York State Fair".

    PubMed

    Nacca, Katherine; Scott, Jay; Grant, William

    2014-02-01

    To study the diagnoses of patients presenting to a medical facility within a mass-gathering public event, "The Great New York State Fair" (NYSF) based on chief complaints, diagnoses, and time of arrival. The goal of the study was to assess the need for increased staffing, services, or supplies during certain times of day for an event that gathers approximately 1 million patrons over a 12-day span. Patrons occupy the grounds between the hours of 10 am and 11 pm, while workers and staff are on the grounds around the clock. Triage data gathered by trained medical students was collected from all of the patients seen during the 2009 NYSF from 12 am to 11:59 pm. Triage information was categorized based on the nature of complaint, physician impression, and time of arrival to assess for trends in the distribution of common chief complaints and diagnoses at a mass-gathering medical care facility. The early hours of the NYSF were occupied mostly with treatment of minor first aid complaints, while later hours were occupied more commonly by orthopedic complaints. Insect stings were the most frequent complaint throughout the day. Daytime and evening hours at the fair have a significant number of orthopedic diagnoses and may benefit from specific staff and equipment sufficient to handle these complaints. Stings and minor first aid injuries are also significant and may benefit from adequate stocking of the infirmary for such events. Major medical complaints, including cardiac and neurological complaints, did occur but were a minor part of the total patient population.

  2. Outer Radiation Belt Dropout Dynamics Following the Arrival of Two Interplanetary Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; hide

    2016-01-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.

  3. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  4. Anchorage Arrival Scheduling Under Off-Nominal Weather Conditions

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon; Chan, William N.; Mukherjee, Avijit

    2012-01-01

    Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times

  5. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  6. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  7. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  8. Social factors influencing hospital arrival time in acute ischemic stroke patients.

    PubMed

    Iosif, Christina; Papathanasiou, Mathilda; Staboulis, Eleftherios; Gouliamos, Athanasios

    2012-04-01

    This is a multi-center, hospital-based study aiming to estimate social factors influencing pre-hospital times of arrival in acute ischemic stroke, with a perspective of finding ways to reduce arrival time and to augment the number of patients eligible for intra-arterial thrombolysis. Acute ischemic stroke patients who presented at the emergency units of four major general public hospitals were registered. We assessed information concerning demographics, time of presentation, clinical situation, imaging, treatment, and socioeconomic factors. The sample was divided in two sub-samples, based on the time of arrival since onset of symptoms, and was statistically analyzed. During one calendar year (2005), 907 patients were registered. Among them 34.6% arrived in the first 6 h from symptom onset, 38.7% arrived between 6 and 24 h, 18.1% after 24 h and for 8.6% the time of onset was unknown. Younger age (P = 0.007), transfer with ambulatory service (Ρ = 0.002), living with a mate (Ρ = 0.004), and higher educational level (P < 0.005) were factors which correlated significantly with early arrival at the hospital. Instructing patients at high risk for stroke to live with a housemate appears beneficial for timely arrival at the hospital. The establishment of dedicated acute stroke call and transportation center should improve the percentage of early arrival. A national information campaign is needed to increase the level of awareness of the population concerning beneficial social behaviors and optimal reaction to symptoms of acute ischemic stroke.

  9. The covariance of air quality conditions in six cities in Southern Germany - The role of meteorology.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-01-01

    This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  11. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  12. Inferring the background traffic arrival process in the Internet.

    PubMed

    Hága, Péter; Csabai, István; Vattay, Gábor

    2009-12-01

    Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.

  13. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  14. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  15. Initial Investigations of Controller Tools and Procedures for Schedule-Based Arrival Operations with Mixed Flight-Deck Interval Management Equipage

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas

    2012-01-01

    NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.

  16. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  17. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  18. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  19. Uncertainty and operational considerations in mass prophylaxis workforce planning.

    PubMed

    Hupert, Nathaniel; Xiong, Wei; King, Kathleen; Castorena, Michelle; Hawkins, Caitlin; Wu, Cindie; Muckstadt, John A

    2009-12-01

    The public health response to an influenza pandemic or other large-scale health emergency may include mass prophylaxis using multiple points of dispensing (PODs) to deliver countermeasures rapidly to affected populations. Computer models created to date to determine "optimal" staffing levels at PODs typically assume stable patient demand for service. The authors investigated POD function under dynamic and uncertain operational environments. The authors constructed a Monte Carlo simulation model of mass prophylaxis (the Dynamic POD Simulator, or D-PODS) to assess the consequences of nonstationary patient arrival patterns on POD function under a variety of POD layouts and staffing plans. Compared are the performance of a standard POD layout under steady-state and variable patient arrival rates that may mimic real-life variation in patient demand. To achieve similar performance, PODs functioning under nonstationary patient arrival rates require higher staffing levels than would be predicted using the assumption of stationary arrival rates. Furthermore, PODs may develop severe bottlenecks unless staffing levels vary over time to meet changing patient arrival patterns. Efficient POD networks therefore require command and control systems capable of dynamically adjusting intra- and inter-POD staff levels to meet demand. In addition, under real-world operating conditions of heightened uncertainty, fewer large PODs will require a smaller total staff than many small PODs to achieve comparable performance. Modeling environments that capture the effects of fundamental uncertainties in public health disasters are essential for the realistic evaluation of response mechanisms and policies. D-PODS quantifies POD operational efficiency under more realistic conditions than have been modeled previously. The authors' experiments demonstrate that effective POD staffing plans must be responsive to variation and uncertainty in POD arrival patterns. These experiments highlight the need

  20. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  1. Relationship Between Chronic Obstructive Pulmonary Disease and Air Pollutants Depending on the Origin and Trajectory of Air Masses in the North of Spain.

    PubMed

    Santurtún, Ana; Rasilla, Domingo F; Riancho, Leyre; Zarrabeitia, María T

    2017-11-01

    Chronic obstructive pulmonary disease (COPD) is a common respiratory condition and one of the leading causes of death. Our aim was to analyze the association between emergency room visits due to this disease and meteorological variables and atmospheric contaminant levels in Santander, depending on the origin and trajectory of air masses. Data from emergency room visits at Hospital Marqués de Valdecilla were collected on a daily basis during an 8-year period. Data on concentrations of the main atmospheric pollutants and meteorological variables were also recorded.Retrotrajectories leading to Santander at a height of1,500 meters above sea level were then calculated. Finally, a correlation model was produced to evaluate the effect of the contaminants on emergency visitsdue to COPD. There is a direct association between PM 10 levels and the number of visits to the emergency room due to COPD. For every 10μg/m3 increase in pollutantlevels, emergency visitsincrease by3.34% (p=0.00005), and thiseffect is enhanced in individualsover 74 years of age. This effect is heightened when PM10 levels depend on air masses from the South and when air recirculation occurs. There is no association betweenother pollutants and the number of visits to the emergency room. Exposure to high levels of PM10 causes exacerbations in COPD patients. By studying the atmospheric circulation pattern, we can predict whether PM10 levels will be inappropriately high, and we can also obtain information about the particle components. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    NASA Astrophysics Data System (ADS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D. D.; Reeves, C. E.; Schlager, H.; Atlas, E.; Blake, D. R.; Coe, H.; Crosier, J.; Flocke, F. M.; Holloway, J. S.; Hopkins, J. R.; McQuaid, J.; Purvis, R.; Rappenglück, B.; Singh, H. B.; Watson, N. M.; Whalley, L. K.; Williams, P. I.

    2006-12-01

    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches" is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.

  3. Development of the Surface Management System Integrated with CTAS Arrival Tools

    NASA Technical Reports Server (NTRS)

    Jung, Yoon C.; Jara, Dave

    2005-01-01

    The Surface Management System (SMS) developed by NASA Ames Research Center in coordination with the Federal Aviation Administration (FAA) is a decision support tool to help tower traffic coordinators and Ground/Local controllers in managing and controlling airport surface traffic in order to increase capacity, efficiency, and flexibility. SMS provides common situation awareness to personnel at various air traffic control facilities such as airport traffic control towers (ATCT s), airline ramp towers, Terminal Radar Approach Control (TRACON), and Air Route Traffic Control Center (ARTCC). SMS also provides a traffic management tool to assist ATCT traffic management coordinators (TMCs) in making decisions such as airport configuration and runway load balancing. The Build 1 of the SMS tool was installed and successfully tested at Memphis International Airport (MEM) and received high acceptance scores from ATCT controllers and coordinators, as well as airline ramp controllers. NASA Ames Research Center continues to develop SMS under NASA s Strategic Airspace Usage (SAU) project in order to improve its prediction accuracy and robustness under various modeling uncertainties. This paper reports the recent development effort performed by the NASA Ames Research Center: 1) integration of Center TRACON Automation System (CTAS) capability with SMS and 2) an alternative approach to obtain airline gate information through a publicly available website. The preliminary analysis results performed on the air/surface traffic data at the DFW airport have shown significant improvement in predicting airport arrival demand and IN time at the gate. This paper concludes with recommendations for future research and development.

  4. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  5. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  6. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

  7. 19 CFR 123.61 - Baggage arriving in baggage car.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Baggage arriving in baggage car. 123.61 Section... OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Baggage § 123.61 Baggage arriving in baggage car... cars. [T.D. 70-121, 35 FR 8215, May 26, 1970, as amended by T.D. 82-145, 47 FR 35478, Aug. 16, 1982] ...

  8. 19 CFR 123.61 - Baggage arriving in baggage car.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Baggage arriving in baggage car. 123.61 Section... OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Baggage § 123.61 Baggage arriving in baggage car... cars. [T.D. 70-121, 35 FR 8215, May 26, 1970, as amended by T.D. 82-145, 47 FR 35478, Aug. 16, 1982] ...

  9. 19 CFR 123.61 - Baggage arriving in baggage car.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Baggage arriving in baggage car. 123.61 Section... car. An inward foreign manifest on Customs Form 7533 shall be used for all baggage arriving in baggage cars. [T.D. 70-121, 35 FR 8215, May 26, 1970, as amended by T.D. 82-145, 47 FR 35478, Aug. 16, 1982] ...

  10. 19 CFR 123.61 - Baggage arriving in baggage car.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Baggage arriving in baggage car. 123.61 Section... OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Baggage § 123.61 Baggage arriving in baggage car... cars. [T.D. 70-121, 35 FR 8215, May 26, 1970, as amended by T.D. 82-145, 47 FR 35478, Aug. 16, 1982] ...

  11. 19 CFR 123.61 - Baggage arriving in baggage car.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Baggage arriving in baggage car. 123.61 Section... OF THE TREASURY CBP RELATIONS WITH CANADA AND MEXICO Baggage § 123.61 Baggage arriving in baggage car... cars. [T.D. 70-121, 35 FR 8215, May 26, 1970, as amended by T.D. 82-145, 47 FR 35478, Aug. 16, 1982] ...

  12. Improved arrival-date estimates of Arctic-breeding Dunlin (Calidris alpina arcticola)

    USGS Publications Warehouse

    Doll, Andrew C.; Lanctot, Richard B.; Stricker, Craig A.; Yezerinac, Stephen M.; Wunder, Michael B.

    2015-01-01

    The use of stable isotopes in animal ecology depends on accurate descriptions of isotope dynamics within individuals. The prevailing assumption that laboratory-derived isotopic parameters apply to free-living animals is largely untested. We used stable carbon isotopes (δ13C) in whole blood from migratory Dunlin (Calidris alpina arcticola) to estimate an in situ turnover rate and individual diet-switch dates. Our in situ results indicated that turnover rates were higher in free-living birds, in comparison to the results of an experimental study on captive Dunlin and estimates derived from a theoretical allometric model. Diet-switch dates from all 3 methods were then used to estimate arrival dates to the Arctic; arrival dates calculated with the in situ turnover rate were later than those with the other turnover-rate estimates, substantially so in some cases. These later arrival dates matched dates when local snow conditions would have allowed Dunlin to settle, and agreed with anticipated arrival dates of Dunlin tracked with light-level geolocators. Our study presents a novel method for accurately estimating arrival dates for individuals of migratory species in which return dates are difficult to document. This may be particularly appropriate for species in which extrinsic tracking devices cannot easily be employed because of cost, body size, or behavioral constraints, and in habitats that do not allow individuals to be detected easily upon first arrival. Thus, this isotopic method offers an exciting alternative approach to better understand how species may be altering their arrival dates in response to changing climatic conditions.

  13. STS-76 crew after arrival at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Mission Commander Kevin P. Chilton (left); Mission Specialists Linda M. Godwin and Shannon W. Lucid; Pilot Richard A. Searfoss and Mission Specialist Michael 'Rich' Clifford chat shortly after their arrival at KSC's Shuttle Landing Facility. Not shown is Payload Commander Ronald M. Sega. The astronauts' late-night arrival allows them to maintain the shift in their waking and sleeping hours, altered in preparation for their upcoming spaceflight. The Space Shuttle Atlantis is scheduled to lift off on STS-76 around 3:35 a.m. EST, March 21, with one of the primary mission objectives being the third docking between the U.S. Shuttle and the Russian Space Station Mir.

  14. Continuous time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2004-10-19

    A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.

  15. An Elementary Algorithm for Autonomous Air Terminal Merging and Interval Management

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2017-01-01

    A central element of air traffic management is the safe merging and spacing of aircraft during the terminal area flight phase. This paper derives and examines an algorithm for the merging and interval managing problem for Standard Terminal Arrival Routes. It describes a factor analysis for performance based on the distribution of arrivals, the operating period of the terminal, and the topology of the arrival routes; then presents results from a performance analysis and from a safety analysis for a realistic topology based on typical routes for a runway at Phoenix International Airport. The heart of the safety analysis is a statistical derivation on how to conduct a safety analysis for a local simulation when the safety requirement is given for the entire airspace.

  16. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  17. PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association

    PubMed Central

    Ma, Jian; Casey, Cameron P.; Zheng, Xueyun; Ibrahim, Yehia M.; Wilkins, Christopher S.; Renslow, Ryan S.; Thomas, Dennis G.; Payne, Samuel H.; Monroe, Matthew E.; Smith, Richard D.; Teeguarden, Justin G.; Baker, Erin S.; Metz, Thomas O.

    2017-01-01

    Abstract Motivation: Drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS at multiple electric fields and compute their associated collisional cross sections (CCS), we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of data that can then be used to create a reference library of experimental CCS values for use in high throughput omics analyses. Results: We demonstrate the utility of this approach by automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were within error of those calculated using commercially available instrument vendor software. Availability and implementation: PIXiE is an open-source tool, freely available on Github. The documentation, source code of the software, and a GUI can be found at https://github.com/PNNL-Comp-Mass-Spec/PIXiE and the source code of the backend workflow library used by PIXiE can be found at https://github.com/PNNL-Comp-Mass-Spec/IMS-Informed-Library. Contact: erin.baker@pnnl.gov or thomas.metz@pnnl.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28505286

  18. PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association.

    PubMed

    Ma, Jian; Casey, Cameron P; Zheng, Xueyun; Ibrahim, Yehia M; Wilkins, Christopher S; Renslow, Ryan S; Thomas, Dennis G; Payne, Samuel H; Monroe, Matthew E; Smith, Richard D; Teeguarden, Justin G; Baker, Erin S; Metz, Thomas O

    2017-09-01

    Drift tube ion mobility spectrometry coupled with mass spectrometry (DTIMS-MS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS at multiple electric fields and compute their associated collisional cross sections (CCS), we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of data that can then be used to create a reference library of experimental CCS values for use in high throughput omics analyses. We demonstrate the utility of this approach by automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were within error of those calculated using commercially available instrument vendor software. PIXiE is an open-source tool, freely available on Github. The documentation, source code of the software, and a GUI can be found at https://github.com/PNNL-Comp-Mass-Spec/PIXiE and the source code of the backend workflow library used by PIXiE can be found at https://github.com/PNNL-Comp-Mass-Spec/IMS-Informed-Library . erin.baker@pnnl.gov or thomas.metz@pnnl.gov. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  19. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  20. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  1. Improvement to Airport Throughput Using Intelligent Arrival Scheduling and an Expanded Planning Horizon

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2012-01-01

    The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.

  2. 7 CFR 319.55-6 - Inspection and disinfection at port of arrival.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Inspection and disinfection at port of arrival. 319.55... Regulations § 319.55-6 Inspection and disinfection at port of arrival. (a) Paddy rice. All importations of... disinfection in accordance with part 305 of this chapter, or both, at the port of arrival, as shall be required...

  3. 7 CFR 319.55-6 - Inspection and disinfection at port of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Inspection and disinfection at port of arrival. 319.55... Regulations § 319.55-6 Inspection and disinfection at port of arrival. (a) Paddy rice. All importations of... disinfection in accordance with part 305 of this chapter, or both, at the port of arrival, as shall be required...

  4. 7 CFR 319.55-6 - Inspection and disinfection at port of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Inspection and disinfection at port of arrival. 319.55... Regulations § 319.55-6 Inspection and disinfection at port of arrival. (a) Paddy rice. All importations of... disinfection in accordance with part 305 of this chapter, or both, at the port of arrival, as shall be required...

  5. Emergency department arrival times after acute ischemic stroke during the 1990s.

    PubMed

    Kleindorfer, Dawn O; Broderick, Joseph P; Khoury, Jane; Flaherty, Matthew L; Woo, Daniel; Alwell, Kathleen; Moomaw, Charles J; Pancioli, Arthur; Jauch, Edward; Miller, Rosie; Kissela, Brett M

    2007-01-01

    Only 8% of ischemic stroke (IS) patients are eligible for rt-PA, and the largest exclusion criterion is delayed time of presentation to the ED. We sought to investigate whether patients are arriving to the ED more quickly in 1999 than in 1993/94 within our large biracial population of 1.3 million. Using ICD-9 codes 430-436, we ascertained all stroke events that presented to a local ED within our population in 7/93-6/94 and again in 1999. Times were recorded as documented in the medical record. There were 1,792 IS patients that presented to an ED in 1993/94 and 1,973 in 1999. The percentage of patients with documented times arriving in under 3 h improved slightly in 1999 (26% vs. 23% in 93/94, P = 0.03), however, the percentage arriving in under 2 h did not. Blacks significantly improved in arrivals under 3 h: 26% in 1999 compared to 17% in 1993/94 (P = 0.01), while whites did not (26% vs. 25%, P = 0.29). In 1999, only 9% of patients arrived from 3-8 h after symptom onset, the large majority of times were either estimated, unknown, or >8 h. We found only marginal improvement in arrival times during the 1990s. In our population, blacks improved in early arrival after symptom onset, while whites did not. Very few patients arrive 3-8 h after onset; therefore expansion of the acute treatment time window to 8 h is unlikely to dramatically affect acute treatment of ischemic stroke.

  6. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  7. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  8. Real-time forecasting of ICME shock arrivals at L1 during the "April Fool’s Day" epoch: 28 March  21 April 2001

    NASA Astrophysics Data System (ADS)

    Sun, W.; Dryer, M.; Fry, C. D.; Deehr, C. S.; Smith, Z.; Akasofu, S.-I.; Kartalev, M. D.; Grigorov, K. G.

    2002-07-01

    The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME) shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.

  9. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, astronaut Takao Doi (left) and Commander Dominic Gorie pose in front of the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module, or JEM, that recently arrived at Kennedy. Doi and Gorie are crew members for mission STS-123 that will deliver the logistics module to the International Space Station. Earlier, NASA and Japanese Aerospace and Exploration Agency (JAXA) officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  10. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  11. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  12. Influence of Asian dust storms on air quality in Taiwan.

    PubMed

    Liu, Chung-Ming; Young, Chea-Yuan; Lee, Yen-Chih

    2006-09-15

    In each year, dust storms triggered by cold air masses passing through northern China and Mongolia enhance the PM10 concentration over Taiwan region during winter and spring. On average, there are four to five dust events and 6.1 dust days in a year in Taiwan. Each event lasts for 1 day or even longer. A procedure to identify a dust event is rationalized and exercised on data collected during 1994-2005. Also, a ranking method named as the dust intensity rank (DIR) is developed to distinguish the intensity of each event affecting the local air quality. About 86% of dust days belong to ranks 1 and 2. In general, poorer air quality is associated with higher ranks. Ranks 4 and 5 correspond to a PSI (Pollution Standard Index) larger than 100. Linking DIR with the popular PSI is useful for both the public and the official forecasting system. It is also useful for inter-comparison between dust influences on air quality at different downstream regions in Taiwan. Composite analyses of the temporal and spatial variation of the hourly PM10 level indicate that dust particles usually arrive 12 h before the time of the peak PM10 concentration and last for 36 h at northern Taiwan, while the time of the peak concentration at eastern or western Taiwan, due to the evolution of the synoptic weather system, is about 3-12 h later. It is noted that the increase of PM10 level at the western side of Taiwan results from a mixture of upstream Asian dust inputs and local pollutants.

  13. Air Force Academy Aeronautics Digest.

    DTIC Science & Technology

    1984-03-01

    Farren, Glauert, R. H. Fowler , George Thomson, E . D. Adrian and Melvill Jones were certainly "Chudleighites." When I arrived at Farnborough I was put to... E . McCann, Lt. Colonel, USAF Director of Research, Studies, and Analysis UNCLASSIFIED SECURITY CLASSIFICATION OF TIlS PAGE REPORT DOCUMENTATION PAGE...NOS P ROGRAM PROJECT TASK WORK UNIT E LE MENT NO. NO. NO. NO * 11 TITLE fInclude Secuity Clawiaiciceton) Air Force Academy Aeronautics Digest

  14. Extinction and recolonization of coastal megafauna following human arrival in New Zealand

    PubMed Central

    Collins, Catherine J.; Rawlence, Nicolas J.; Prost, Stefan; Anderson, Christian N. K.; Knapp, Michael; Scofield, R. Paul; Robertson, Bruce C.; Smith, Ian; Matisoo-Smith, Elizabeth A.; Chilvers, B. Louise; Waters, Jonathan M.

    2014-01-01

    Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction–replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction. PMID:24827440

  15. Extinction and recolonization of coastal megafauna following human arrival in New Zealand.

    PubMed

    Collins, Catherine J; Rawlence, Nicolas J; Prost, Stefan; Anderson, Christian N K; Knapp, Michael; Scofield, R Paul; Robertson, Bruce C; Smith, Ian; Matisoo-Smith, Elizabeth A; Chilvers, B Louise; Waters, Jonathan M

    2014-07-07

    Extinctions can dramatically reshape biological communities. As a case in point, ancient mass extinction events apparently facilitated dramatic new evolutionary radiations of surviving lineages. However, scientists have yet to fully understand the consequences of more recent biological upheaval, such as the megafaunal extinctions that occurred globally over the past 50 kyr. New Zealand was the world's last large landmass to be colonized by humans, and its exceptional archaeological record documents a vast number of vertebrate extinctions in the immediate aftermath of Polynesian arrival approximately AD 1280. This recently colonized archipelago thus presents an outstanding opportunity to test for rapid biological responses to extinction. Here, we use ancient DNA (aDNA) analysis to show that extinction of an endemic sea lion lineage (Phocarctos spp.) apparently facilitated a subsequent northward range expansion of a previously subantarctic-limited lineage. This finding parallels a similar extinction-replacement event in penguins (Megadyptes spp.). In both cases, an endemic mainland clade was completely eliminated soon after human arrival, and then replaced by a genetically divergent clade from the remote subantarctic region, all within the space of a few centuries. These data suggest that ecological and demographic processes can play a role in constraining lineage distributions, even for highly dispersive species, and highlight the potential for dynamic biological responses to extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Particle detection and non-detection in a quantum time of arrival measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.

    2016-01-15

    The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less

  17. The third stage of Lunar Prospector's Athena arrives at LC 46 at CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The third stage of the Lockheed Martin Athena launch vehicle arrives at Launch Complex 46 at Cape Canaveral Air Station before it is mated to the second stage. The protective covering for safe transportation is removed before the third stage is lifted on the launch pad. Athena is scheduled to carry the Lunar Prospector spacecraft for an 18-month mission that will orbit the Earth's moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking. The launch is now scheduled for early-January 1998.

  18. OA-7 Service Module Arrival, Uncrating, Move from Airlock to Highbay inside SSPF

    NASA Image and Video Library

    2017-02-01

    The Orbital ATK OA-7 Cygnus spacecraft's service module arrives inside the Space Station Processing Facility of NASA's Kennedy Space Center in Florida, sealed in an environmentally controlled shipping container, pulled in by truck on a low-boy flatbed trailer. The service module is uncrate from the shipping container, lifted and positioned on a work stand, and moved from the airlock to the highbay for processing. Scheduled to launch on March 19, 2017, the Orbital ATK OA-7 mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  19. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  20. Time of arrival in quantum and Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Leavens, C. R.

    1998-08-01

    In a recent paper Grot, Rovelli, and Tate (GRT) [Phys. Rev. A 54, 4676 (1996)] derived an expression for the probability distribution π(TX) of intrinsic arrival times T(X) at position x=X for a quantum particle with initial wave function ψ(x,t=0) freely evolving in one dimension. This was done by quantizing the classical expression for the time of arrival of a free particle at X, assuming a particular choice of operator ordering, and then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product wave packet at t=0 with average wave number and variance Δk they showed that their analytical expression for π(TX) agreed with the probability current density J(x=X,t=T) only to terms of order Δk/. They dismissed the probability current density as a viable candidate for the exact arrival time distribution on the grounds that it can sometimes be negative. This fact is not a problem within Bohmian mechanics where the arrival time distribution for a particle, either free or in the presence of a potential, is rigorously given by \\|J(X,T)\\| (suitably normalized) [W. R. McKinnon and C. R. Leavens, Phys. Rev. A 51, 2748 (1995); C. R. Leavens, Phys. Lett. A 178, 27 (1993); M. Daumer et al., in On Three Levels: The Mathematical Physics of Micro-, Meso-, and Macro-Approaches to Physics, edited by M. Fannes et al. (Plenum, New York, 1994); M. Daumer, in Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J. T. Cushing et al. (Kluwer Academic, Dordrecht, 1996)]. The two theories are compared in this paper and a case presented for which the results could not differ more: According to GRT's theory, every particle in the ensemble reaches a point x=X, where ψ(x,t) and J(x,t) are both zero for all t, while no particle ever reaches X according to the theory based on Bohmian mechanics. Some possible implications are discussed.

  1. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  2. Perturbation analysis of queueing systems with a time-varying arrival rate

    NASA Technical Reports Server (NTRS)

    Cassandras, Christos G.; Pan, Jie

    1991-01-01

    The authors consider an M/G/1 queuing with a time-varying arrival rate. The objective is to obtain infinitesimal perturbation analysis (IPA) gradient estimates for various performance measures of interest with respect to certain system parameters. In particular, the authors consider the mean system time over n arrivals and an arrival rate alternating between two values. By choosing a convenient sample path representation of this system, they derive an unbiased IPA gradient estimator which, however, is not consistent, and investigate the nature of this problem.

  3. The mass spectral density in quantitative time-of-flight mass spectrometry of polymers

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.

    2001-03-01

    Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.

  4. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source.

    PubMed

    Usmanov, Dilshadbek T; Hiraoka, Kenzo; Wada, Hiroshi; Matsumura, Masaya; Sanada-Morimura, Sachiyo; Nonami, Hiroshi; Yamabe, Shinichi

    2017-06-22

    Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min -1 ). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Separation Assurance and Scheduling Coordination in the Arrival Environment

    NASA Technical Reports Server (NTRS)

    Aweiss, Arwa S.; Cone, Andrew C.; Holladay, Joshua J.; Munoz, Epifanio; Lewis, Timothy A.

    2016-01-01

    Separation assurance (SA) automation has been proposed as either a ground-based or airborne paradigm. The arrival environment is complex because aircraft are being sequenced and spaced to the arrival fix. This paper examines the effect of the allocation of the SA and scheduling functions on the performance of the system. Two coordination configurations between an SA and an arrival management system are tested using both ground and airborne implementations. All configurations have a conflict detection and resolution (CD&R) system and either an integrated or separated scheduler. Performance metrics are presented for the ground and airborne systems based on arrival traffic headed to Dallas/ Fort Worth International airport. The total delay, time-spacing conformance, and schedule conformance are used to measure efficiency. The goal of the analysis is to use the metrics to identify performance differences between the configurations that are based on different function allocations. A surveillance range limitation of 100 nmi and a time delay for sharing updated trajectory intent of 30 seconds were implemented for the airborne system. Overall, these results indicate that the surveillance range and the sharing of trajectories and aircraft schedules are important factors in determining the efficiency of an airborne arrival management system. These parameters are not relevant to the ground-based system as modeled for this study because it has instantaneous access to all aircraft trajectories and intent. Creating a schedule external to the CD&R and the scheduling conformance system was seen to reduce total delays for the airborne system, and had a minor effect on the ground-based system. The effect of an external scheduler on other metrics was mixed.

  6. Parker Solar Probe: Delta IV Heavy Second-stage and Port CBC Arrival, Offload, and Transport

    NASA Image and Video Library

    2017-08-26

    The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The flight hardware is offloaded and transported to the Horizontal Integration Facility (HIF) at Cape Canaveral Air Force Station for preflight processing. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  7. Carbon isotope turnover as a measure of arrival time in migratory birds

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Arrival time on breeding or non-breeding areas is of interest in many ecological studies exploring fitness consequences of migratory schedules. However, in most field studies, it is difficult to precisely assess arrival time of individuals. Here, we use carbon isotope turnover in avian blood as a technique to estimate arrival time for birds switching from one habitat or environment to another. Stable carbon isotope ratios (δ13C) in blood assimilate to a new equilibrium following a diet switch according to an exponential decay function. This relationship can be used to determine the time a diet switch occurred if δ13C of both the old and new diet are known. We used published data of captive birds to validate that this approach provides reliable estimates of the time since a diet switch within 1–3 weeks after the diet switch. We then explored the utility of this technique for King Eiders (Somateria spectabilis) arriving on terrestrial breeding grounds after wintering and migration at sea. We estimated arrival time on breeding grounds in northern Alaska (95% CI) from red blood cell δ13C turnover to be 4–9 June. This estimate overlapped with arrival time of birds from the same study site tracked with satellite transmitters (5–12 June). Therefore, we conclude that this method provides a simple yet reliable way to assess arrival time of birds moving between isotopically distinct environments.

  8. The interplanetary shock of September 24, 1998: Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.

    2000-11-01

    At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.

  9. Decision Modeling Framework to Minimize Arrival Delays from Ground Delay Programs

    NASA Astrophysics Data System (ADS)

    Mohleji, Nandita

    Convective weather and other constraints create uncertainty in air transportation, leading to costly delays. A Ground Delay Program (GDP) is a strategy to mitigate these effects. Systematic decision support can increase GDP efficacy, reduce delays, and minimize direct operating costs. In this study, a decision analysis (DA) model is constructed by combining a decision tree and Bayesian belief network. Through a study of three New York region airports, the DA model demonstrates that larger GDP scopes that include more flights in the program, along with longer lead times that provide stakeholders greater notice of a pending program, trigger the fewest average arrival delays. These findings are demonstrated to result in a savings of up to $1,850 per flight. Furthermore, when convective weather is predicted, forecast weather confidences remain the same level or greater at least 70% of the time, supporting more strategic decision making. The DA model thus enables quantification of uncertainties and insights on causal relationships, providing support for future GDP decisions.

  10. How do Air Traffic Controllers Use Automation and Tools Differently During High Demand Situations?

    NASA Technical Reports Server (NTRS)

    Kraut, Joshua M.; Mercer, Joey; Morey, Susan; Homola, Jeffrey; Gomez, Ashley; Prevot, Thomas

    2013-01-01

    In a human-in-the-loop simulation, two air traffic controllers managed identical airspace while burdened with higher than average workload, and while using advanced tools and automation designed to assist with scheduling aircraft on multiple arrival flows to a single meter fix. This paper compares the strategies employed by each controller, and investigates how the controllers' strategies change while managing their airspace under more normal workload conditions and a higher workload condition. Each controller engaged in different methods of maneuvering aircraft to arrive on schedule, and adapted their strategies to cope with the increased workload in different ways. Based on the conclusions three suggestions are made: that quickly providing air traffic controllers with recommendations and information to assist with maneuvering and scheduling aircraft when burdened with increased workload will improve the air traffic controller's effectiveness, that the tools should adapt to the strategy currently employed by a controller, and that training should emphasize which traffic management strategies are most effective given specific airspace demands.

  11. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  12. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  13. Boundary layers at a dynamic interface: air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew

    2017-11-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  14. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  15. Influence of Beijing outflow on Volatile Organic Compounds (VOC) observed at a mountain site in North China Plain

    NASA Astrophysics Data System (ADS)

    Suthawaree, Jeeranut; Kato, Shungo; Pochanart, Pakpong; Kanaya, Yugo; Akimoto, Hajime; Wang, Zifa; Kajii, Yoshizumi

    2012-07-01

    In order to elucidate an impact of Beijing outflow on air quality in the mountainous area, measurement campaign was carried out in Mt. Mang, located 40 km north of Beijing in September 2007. Volatile Organic Compounds (VOC) observed at the site were mainly influenced by air masses arriving from urban areas. No significant impact of local emission was found. Correlation plots between selected VOC suggests several major emission sources as internal combustion, industrial emission, and coal, oil and biofuel burning. Air masses were classified into “polluted” (influence of Beijing and its satellite cities) and “clean” air mass by using backward trajectory analysis. Two air mass categories revealed significant different characteristics and mixing ratios. Reaction with OH is a major factor controlling mixing ratio of “clean” air mass while impact of dilution is also play important role on “polluted” air mass. Estimation of photochemical age of “polluted” air mass by assuming “clean” air mass for background mixing ratios reveals an averaged of 1.5-1.8 days.

  16. Analysis of Deep Seafloor Arrivals Observed on NPAL04

    DTIC Science & Technology

    2012-12-03

    transmission station to the scattering point (black line) to compute the time spent on the PE-predicted path to the scattering point. This time would...arrives at the OBSs at times corresponding to caustics of the PE predicted time fronts, there are large amplitude, late arrivals that occur between... caustics and even after the PE predicted coda. Similar analysis was done for T500 to T2300 with similar results and is discussed in Section 4 of

  17. Arrival Time Tracking of Partially Resolved Acoustic Rays with Application to Ocean Acoustic Tomography

    DTIC Science & Technology

    1991-03-01

    ocean acoustic tomography. A straightforward method of arrival time estimation, based on locating the maximum value of an interpolated arrival, was...used with limited success for analysis of data from the December 1988 Monterey Bay Tomography Experiment. Close examination of the data revealed multiple...estimation of arrival times along an ocean acoustic ray path is an important component of ocean acoustic tomography. A straightforward method of arrival time

  18. Design Considerations for a New Terminal Area Arrival Scheduler

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Mulfinger, Daniel

    2010-01-01

    Design of a terminal area arrival scheduler depends on the interrelationship between throughput, delay and controller intervention. The main contribution of this paper is an analysis of the above interdependence for several stochastic behaviors of expected system performance distributions in the aircraft s time of arrival at the meter fix and runway. Results of this analysis serve to guide the scheduler design choices for key control variables. Two types of variables are analyzed, separation buffers and terminal delay margins. The choice for these decision variables was tested using sensitivity analysis. Analysis suggests that it is best to set the separation buffer at the meter fix to its minimum and adjust the runway buffer to attain the desired system performance. Delay margin was found to have the least effect. These results help characterize the variables most influential in the scheduling operations of terminal area arrivals.

  19. Interrelationships Between Walkability, Air Pollution, Greenness, and Body Mass Index.

    PubMed

    James, Peter; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Banay, Rachel F; Kloog, Itai; Laden, Francine

    2017-11-01

    Recent studies have linked urban environmental factors and body mass index (BMI); however, such factors are often examined in isolation, ignoring correlations across exposures. Using data on Nurses' Health Study participants living in the Northeastern United States in 2006, we estimated associations between neighborhood walkability (a composite of population density, street connectivity, and business access), greenness (from satellite imagery), and ambient air pollution (from satellite-based spatiotemporally resolved PM2.5 predictions and weighted monthly average concentrations of NO2 from up to five nearest monitors) and self-reported BMI using generalized additive models, allowing for deviations from linearity using penalized splines. Among 23,435 women aged 60-87 years, we observed nonlinear associations between walkability and BMI and between PM2.5 and BMI in single-exposure models adjusted for age, race, and individual- and area-level socioeconomic status. When modeling all exposures simultaneously, only the association between walkability and BMI remained nonlinear and nonmonotonic. Increasing walkability was associated with increasing BMI at lower levels of walkability (walkability index <1.8), while increasing walkability was linked to lower BMI in areas of higher walkability (walkability index >1.8). A 10 percentile increase in walkability, right above 1.8 was associated with a 0.84% decrease in log BMI. The relationship between walkability and BMI existed only among younger participants (<71 years old). Neighborhood walkability was nonlinearly linked to lower BMI independent of air pollution and greenness. Our findings highlight the importance of accounting for nonlinear confounding by interrelated urban environmental factors when investigating associations between the environment and BMI.

  20. A Study of the Interplanetary Signatures of Earth-Arriving CMEs

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Xie, H.; Makela, P. A.; Kay, C.

    2017-12-01

    We studied interplanetary (IP) signatures associated with coronal mass ejections (CMEs) that are likely to reach Earth. In order to find Earth- arriving CMEs, we started with disk-center CMEs originating within 30 degrees from the central meridian and the equator. Using the side-view images from the STEREO mission, we excluded CMEs that faded out before reaching the Earth orbit, or were captured by other CMEs, or erupted away from the ecliptic plane. We found 61 Earth- arriving CMEs during 2009/10/01 - 2012/07/31 (inclusive). Though all events were observed to reach Earth in the STEREO/HI2 field of view, only 34 out of 61 events (56%) were associated with magnetic cloud (MC) or ejecta (EJ) observed by ACE or Wind. We compared the CME characteristics associated with 9 MCs, 25 EJs, and 27 no- clear- signature (NCS) events to find out what might cause the difference in the IP signatures. To avoid projection effects, we used coronagraph images obtained by the STEREO mission. The average speed (width) of CMEs associated with MCs, EJs, and NCSs are 484 km/s (104°), 663 km/s (135°), and 595 km/s (144°), respectively. CMEs associated with MCs tend to be less energetic than other types in our dataset. We also checked the coronal holes (CHs) near the CME source to examine the effect of the CME deflection. In the case of MCs and EJs, only 22% (2/9) and 28% (7/25) events have CHs near the source, while 48% (13/27) NCS events have nearby CHs. We discuss what factors near the Sun cause the observed differences at Earth.

  1. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    PubMed

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. 75 FR 13293 - Agency Information Collection Activities: Arrival and Departure Record

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...), the Form I-94W (Nonimmigrant Visa Waiver Arrival/Departure), and the Electronic System for Travel... Act (Pub. L.104-13). Your comments should address one of the following four points: (1) Evaluate..., Nonimmigrant Visa Waiver Arrival/Departure, Electronic System for Travel Authorization (ESTA) OMB Number: 1651...

  4. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S. (Inventor); Sridhar, Banavar (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.

  5. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  6. ECOSTRESS Arrival and Processing

    NASA Image and Video Library

    2018-04-09

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) has arrived in its shipping container. The container is being inspected and thoroughly cleaned prior to opening. ECOSTRESS is designed to monitor one of the most basic processes in living plants: the loss of water through the tiny pores in leaves. ECOSTRESS will launch to the International Space Station aboard a Dragon spacecraft launched by a Falcon 9 rocket on the SpaceX CRS-15 mission in June 2018.

  7. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  8. 77 FR 49451 - Agency Information Collection Activities: Consideration of Deferred Action for Childhood Arrivals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-NEW] Agency Information Collection Activities: Consideration of Deferred Action for Childhood Arrivals... Deferred Action for Childhood Arrivals, 1615-NEW'' in the subject box. Regardless of the method used for... collection. (2) Title of the Form/Collection: Consideration of Deferred Action for Childhood Arrivals. (3...

  9. Climate and the complexity of migratory phenology: sexes, migratory distance, and arrival distributions

    NASA Astrophysics Data System (ADS)

    Macmynowski, Dena P.; Root, Terry L.

    2007-05-01

    The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979 2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.

  10. Design of a final approach spacing tool for TRACON air traffic control

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1989-01-01

    This paper describes an automation tool that assists air traffic controllers in the Terminal Radar Approach Control (TRACON) Facilities in providing safe and efficient sequencing and spacing of arrival traffic. The automation tool, referred to as the Final Approach Spacing Tool (FAST), allows the controller to interactively choose various levels of automation and advisory information ranging from predicted time errors to speed and heading advisories for controlling time error. FAST also uses a timeline to display current scheduling and sequencing information for all aircraft in the TRACON airspace. FAST combines accurate predictive algorithms and state-of-the-art mouse and graphical interface technology to present advisory information to the controller. Furthermore, FAST exchanges various types of traffic information and communicates with automation tools being developed for the Air Route Traffic Control Center. Thus it is part of an integrated traffic management system for arrival traffic at major terminal areas.

  11. The U.S. Women's World Cup Soccer Team arrives to view the STS-93 launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Members of the U.S. Women's World Cup Soccer Team are greeted by NASA Administrator Daniel S. Goldin as they disembark from a plane at the Skid Strip at Cape Canaveral Air Station. They arrived with First Lady Hillary Rodham Clinton to view the launch of Space Shuttle mission STS-93 scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe.

  12. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand.

    PubMed

    Phairuang, Worradorn; Hata, Mitsuhiko; Furuuchi, Masami

    2017-02-01

    Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive, were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter (PM), NOx and SO 2 , for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand (PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less. Copyright © 2016. Published by Elsevier B.V.

  13. 19 CFR 12.112 - Notice of arrival of pesticides and devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Notice of arrival of pesticides and devices. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Pesticides and Devices § 12.112 Notice of arrival of pesticides and devices. (a) General. An importer desiring to import pesticides or devices into the...

  14. 19 CFR 12.112 - Notice of arrival of pesticides and devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Notice of arrival of pesticides and devices. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Pesticides and Devices § 12.112 Notice of arrival of pesticides and devices. (a) General. An importer desiring to import pesticides or devices into the...

  15. 19 CFR 12.112 - Notice of arrival of pesticides and devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Notice of arrival of pesticides and devices. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Pesticides and Devices § 12.112 Notice of arrival of pesticides and devices. (a) General. An importer desiring to import pesticides or devices into the...

  16. 19 CFR 12.112 - Notice of arrival of pesticides and devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Notice of arrival of pesticides and devices. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Pesticides and Devices § 12.112 Notice of arrival of pesticides and devices. (a) General. An importer desiring to import pesticides or devices into the...

  17. 19 CFR 12.112 - Notice of arrival of pesticides and devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Notice of arrival of pesticides and devices. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Pesticides and Devices § 12.112 Notice of arrival of pesticides and devices. (a) General. An importer desiring to import pesticides or devices into the...

  18. Pediatric air gun shot injury.

    PubMed

    Khan, Ubaid U; Kamal, Naglaa M; Mirza, Shazia J; Sherief, Laila M

    2014-12-01

    Air guns (AGs) use air or another compressed gas to propel a projectile. Different injuries may occur in children due to their body structure, which is less-resistant with thin soft tissue coverage that can be easily penetrated by an AG shot. We present 3 cases of pediatric AG shot injury. The first-case had right lumber deep tissue penetration of AG pallet without internal damage, the second-case had a complex course of pellet into the perineum, and the third-case was shot in the left shoulder. All cases were accidentally shot. The shooters were all children, and relatives of the victims. All patients were generally stable on arrival. Two cases were operated, and one received conservative management. On follow up, no complications were noted.  At first sight, AGs and air rifles may appear relatively harmless, but they are potentially lethal and children should not be allowed to play with them. 

  19. Spatial distribution and occurrence probability of regional new particle formation events in eastern China

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojing; Sun, Junying; Kivekäs, Niku; Kristensson, Adam; Zhang, Xiaoye; Zhang, Yangmei; Zhang, Lu; Fan, Ruxia; Qi, Xuefei; Ma, Qianli; Zhou, Huaigang

    2018-01-01

    In this work, the spatial extent of new particle formation (NPF) events and the relative probability of observing particles originating from different spatial origins around three rural sites in eastern China were investigated using the NanoMap method, using particle number size distribution (PNSD) data and air mass back trajectories. The length of the datasets used were 7, 1.5, and 3 years at rural sites Shangdianzi (SDZ) in the North China Plain (NCP), Mt. Tai (TS) in central eastern China, and Lin'an (LAN) in the Yangtze River Delta region in eastern China, respectively. Regional NPF events were observed to occur with the horizontal extent larger than 500 km at SDZ and TS, favoured by the fast transport of northwesterly air masses. At LAN, however, the spatial footprint of NPF events was mostly observed around the site within 100-200 km. Difference in the horizontal spatial distribution of new particle source areas at different sites was connected to typical meteorological conditions at the sites. Consecutive large-scale regional NPF events were observed at SDZ and TS simultaneously and were associated with a high surface pressure system dominating over this area. Simultaneous NPF events at SDZ and LAN were seldom observed. At SDZ the polluted air masses arriving over the NCP were associated with higher particle growth rate (GR) and new particle formation rate (J) than air masses from Inner Mongolia (IM). At TS the same phenomenon was observed for J, but GR was somewhat lower in air masses arriving over the NCP compared to those arriving from IM. The capability of NanoMap to capture the NPF occurrence probability depends on the length of the dataset of PNSD measurement but also on topography around the measurement site and typical air mass advection speed during NPF events. Thus the long-term measurements of PNSD in the planetary boundary layer are necessary in the further study of spatial extent and the

  20. Heat and mass transfer analogy for condensation of humid air in a vertical channel

    NASA Astrophysics Data System (ADS)

    Desrayaud, G.; Lauriat, G.

    This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.

  1. 78 FR 76636 - Agency Information Collection Activities: Consideration of Deferred Action for Childhood Arrivals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...-0124] Agency Information Collection Activities: Consideration of Deferred Action for Childhood Arrivals... Deferred Action for Childhood Arrivals. (3) Agency form number, if any, and the applicable component of the... childhood arrivals: 1. Were under the age of 31 as of June 15, 2012; 2. Came to the United States before...

  2. Arrival and Departure Patterns of Public Sector Employees before and after Implementation of Flexitime.

    ERIC Educational Resources Information Center

    Ronen, Simcha

    1981-01-01

    Examined the effects of a flexible working hours schedule on the arrival and departure times of 162 public sector employees. Results indicated that workers, when scheduling their own workday, deviate only moderately from their preflexitime arrival/departure times; and they tend to develop relatively stable arrival/departure patterns. (Author/RC)

  3. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  4. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Lee, Chung-Te; Chou, Charles C.-K.; Lin, Neng-Huei; Sheu, Guey-Rong; Wang, Jia-Lin; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Chi, Kai Hsien; Young, Chea-Yuan; Huang, Hill; Chen, Horng-Wen; Weng, Guo-Hau; Lai, Sin-Yu; Hsu, Shao-Peng; Chang, Yu-Jia; Chang, Jia-Hon; Wu, Xyue-Chang

    2014-06-01

    Eight carbonaceous fractions from aerosols were resolved using the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol (Chow et al., 1993). The aerosols were collected at the Mountain Lulin Atmospheric Background Station (Mt. Lulin, 2862 m a.s.l.) in Central Taiwan from April 2003 to April 2012. The monthly and yearly levels of organic carbon (OC) and elemental carbon (EC) varied consistently with PM2.5 mass concentrations during biomass burning (BB) period. The highest monthly carbonaceous content was observed in March and the highest yearly carbonaceous concentration was observed in 2007. This finding is consistent with the BB activity in Indochina and indicates that carbonaceous content is a major component of BB aerosols. Lee et al. (2011) classified four trajectory groups from the air masses transported to Mt. Lulin during the aerosol collection period. For the air masses transported from the BB area (the BB group) in Indochina, the carbonaceous content was greater than the water-soluble ions in PM2.5, and the OC/EC ratio (4.8 ± 1.5) was high. With EC as the indicator of primary emission sources, the air masses of the BB group were found to contain more primary than secondary OC. The Anthropogenic group (from the local and free troposphere below the 700-hPa pressure level over the Asian continent) probably contained more secondary than primary OC or the sources of OC and EC could be quite diverse. The average char-EC/soot-EC (low-temperature EC/high-temperature EC) ratios were 3.9 ± 3.5, 0.4 ± 0.4, 0.9 ± 0.8, and 0.3 ± 0.4 for the trajectory groups BB, SNBB (from BB source areas during the non-BB period), Anthropogenic, and FT (from the oceanic area and the free troposphere above the 700-hPa pressure level over the Asian continent), respectively. The presence of a high char-EC/soot-EC ratio confirmed the correct classification of the BB group, whereas the low ratios from the other groups indicated the strong influence of vehicle

  5. Experiment Description and Results for Arrival Operations Using Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.

    2013-01-01

    The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.

  6. A B-52H, tail number 61-0025, arrives at NASA's Dryden Flight Research Center after landing July 30,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center, Edwards, California, received an 'H' model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B '008,' in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights.

  7. Orion Stage Adapter Arrival

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft touches down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.

  8. Extratropical Stratosphere-Troposphere Mass Exchange

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.

  9. 9 CFR 93.707 - Inspection at the port of first arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... port of first arrival. (a) A hedgehog or tenrec from any part of the world must be inspected by an APHIS inspector at the port of first arrival. Subject to the other provisions in this subpart, a... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspection at the port of first...

  10. Integration and Language Learning of Newly Arrived Migrants Using Mobile Technology

    ERIC Educational Resources Information Center

    Bradley, Linda; Lindström, Nataliya Berbyuk; Hashemi, Sylvana Sofkova

    2017-01-01

    The purpose of this study is to investigate the mobile activities newly arrived migrants are engaged in when learning the Swedish language and about Swedish culture and society. Further, the study also explores the use of a mobile application (app) provided to the newly arrived migrants to use for pronunciation practice. The study involved 38…

  11. Pulmonary embolism at autopsy in a normal population: implications for air travel fatalities.

    PubMed

    Pheby, D F H; Codling, B W

    2002-12-01

    Much attention has been focused on the apparent risk to long-haul air travelers of venous thromboembolism [deep vein thrombosis (DVT) and pulmonary embolism (PE)], following a number of well-publicized cases. However, there is little epidemiological data to elucidate the problem. PE tends to be under-diagnosed as a cause of death in the general population. This study sets out to establish the level of risk of fatal PE among long-haul passengers arriving in the UK, on the basis of a reappraisal of the role of PE in mortality in the general population. Autopsies carried out at Gloucester in 1996-2000 were reviewed to determine age-specific mortality rates for PE for West Gloucestershire. These rates were applied to long-haul air travelers arriving in the UK, for whom the number of passenger-years at risk were calculated, to estimate the expected numbers of deaths in this group. In 3764 autopsies, PE was the primary cause of death in 221 cases (5.9%), while in 304 (8.1%) it was present as an incidental finding. This suggests that PE was involved in approximately 13.9% of deaths, and is more common with age. Passenger years at risk per annum among long-haul passengers arriving in the UK were estimated (mid-range) at 21,830.482; it was anticipated that 6.55 deaths involving PEs, but not related to air travel, could be expected annually in this group. It appears that the risks of venous thromboembolism due to air travel are overstated. Some deaths are bound to occur inflight, but there is no evidence to suggest an increase, though clearly there are predisposing risk factors for DVT present on long journeys.

  12. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE PAGES

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  13. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  14. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  15. Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software

    NASA Technical Reports Server (NTRS)

    Hunter, George; Boisvert, Benjamin

    2013-01-01

    This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.

  16. Soyuz TMA-07M arrival

    NASA Image and Video Library

    2012-12-21

    ISS034-E-010181 (21 Dec. 2012) --- As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. The background is in northern Algeria, near the Atlas Mountains. Inside the arriving spacecraft were astronaut Chris Hadfield of the Canadian Space Agency, cosmonaut Roman Romanenko of Russia's Federal Space Agency and NASA astronaut Tom Marshburn.

  17. Soyuz TMA-07M arrival

    NASA Image and Video Library

    2012-12-21

    ISS034-E-010180 (21 Dec. 2012) --- As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. The background is in northern Algeria, near the Atlas Mountains. Inside the arriving spacecraft were astronaut Chris Hadfield of the Canadian Space Agency, cosmonaut Roman Romanenko of Russia's Federal Space Agency and NASA astronaut Tom Marshburn.

  18. Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Grabbe, Shon

    2013-01-01

    When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-intrail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011. Then, machine-learning methods for predicting (1) situations in which MIT restrictions for ATL arrivals are implemented under low demand scenarios, and (2) days in which a large number of MIT restrictions are required to properly manage and control ATL arrivals are presented. More specifically, these predictions were accomplished by using an ensemble of decision trees with Bootstrap aggregation (BDT) and supervised machine learning was used to train the BDT binary classification models. The models were subsequently validated using data cross validation methods. When predicting the occurrence of arrival MIT restrictions under low demand situations, the model was able to achieve over all accuracy rates ranging from 84% to 90%, with false alarm ratios ranging from 10% to 15%. In the second set of studies designed to predict days on which a high number of MIT restrictions were required, overall accuracy rates of 80% were achieved with false alarm ratios of 20%. Overall, the predictions proposed by the model give better MIT usage information than what has been

  19. Air pollution: a smoking gun for cancer.

    PubMed

    Zhang, Wei; Qian, Chao-Nan; Zeng, Yi-Xin

    2014-04-01

    Once considered a taboo topic or stigma, cancer is the number one public health enemy in the world. Once a product of an almost untouchable industry, tobacco is indisputably recognized as a major cause of cancer and a target for anticancer efforts. With the emergence of new economic powers in the world, especially in highly populated countries such as China, air pollution has rapidly emerged as a smoking gun for cancer and has become a hot topic for public health debate because of the complex political, economic, scientific, and technologic issues surrounding the air pollution problem. This editorial and the referred articles published in this special issue of the Chinese Journal of Cancer discuss these fundamental questions. Does air pollution cause a wide spectrum of cancers? Should air pollution be considered a necessary evil accompanying economic transformation in developing countries? Is an explosion of cancer incidence coming to China and how soon will it arrive? What must be done to prevent this possible human catastrophe? Finally, the approaches for air pollution control are also discussed.

  20. Air pollution: a smoking gun for cancer

    PubMed Central

    Zhang, Wei; Qian, Chao-Nan; Zeng, Yi-Xin

    2014-01-01

    Once considered a taboo topic or stigma, cancer is the number one public health enemy in the world. Once a product of an almost untouchable industry, tobacco is indisputably recognized as a major cause of cancer and a target for anticancer efforts. With the emergence of new economic powers in the world, especially in highly populated countries such as China, air pollution has rapidly emerged as a smoking gun for cancer and has become a hot topic for public health debate because of the complex political, economic, scientific, and technologic issues surrounding the air pollution problem. This editorial and the referred articles published in this special issue of the Chinese Journal of Cancer discuss these fundamental questions. Does air pollution cause a wide spectrum of cancers? Should air pollution be considered a necessary evil accompanying economic transformation in developing countries? Is an explosion of cancer incidence coming to China and how soon will it arrive? What must be done to prevent this possible human catastrophe? Finally, the approaches for air pollution control are also discussed. PMID:24636233

  1. Hemorrhaging Her...A Capability Gap Analysis on Why the Air Force Can’t Retain Female Operators

    DTIC Science & Technology

    2017-04-06

    Biography Lieutenant Colonel Anne-Marie Contreras is currently a student at Air War College, Air University, Maxwell AFB, AL. Before arriving at...retention of females in operations has focused on a multitude of survey analyses noting challenges in the difficulty of balancing a career and family...Even now, in 2017, of the 237 students at Air War College, there are 29 women, only two of whom are operators—one pilot (me) and one Combat Systems

  2. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  3. Does pet arrival trigger prosocial behaviors in individuals with autism?

    PubMed

    Grandgeorge, Marine; Tordjman, Sylvie; Lazartigues, Alain; Lemonnier, Eric; Deleau, Michel; Hausberger, Martine

    2012-01-01

    Alteration of social interactions especially prosocial behaviors--an important aspect of development--is one of the characteristics of autistic disorders. Numerous strategies or therapies are used to improve communication skills or at least to reduce social impairments. Animal-assisted therapies are used widely but their relevant benefits have never been scientifically evaluated. In the present study, we evaluated the association between the presence or the arrival of pets in families with an individual with autism and the changes in his or her prosocial behaviors. Of 260 individuals with autism--on the basis of presence or absence of pets--two groups of 12 individuals and two groups of 8 individuals were assigned to: study 1 (pet arrival after age of 5 versus no pet) and study 2 (pet versus no pet), respectively. Evaluation of social impairment was assessed at two time periods using the 36-items ADI-R algorithm and a parental questionnaire about their child-pet relationships. The results showed that 2 of the 36 items changed positively between the age of 4 to 5 (t(0)) and time of assessment (t(1)) in the pet arrival group (study 1): "offering to share" and "offering comfort". Interestingly, these two items reflect prosocial behaviors. There seemed to be no significant changes in any item for the three other groups. The interactions between individuals with autism and their pets were more--qualitatively and quantitatively--reported in the situation of pet arrival than pet presence since birth. These findings open further lines of research on the impact of pet's presence or arrival in families with an individual with autism. Given the potential ability of individuals with autism to develop prosocial behaviors, related studies are needed to better understand the mechanisms involved in the development of such child-pet relationship.

  4. Urban sprawl and delayed ambulance arrival in the U.S.

    PubMed

    Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E

    2009-11-01

    Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.

  5. Effective vortex mass from microscopic theory

    NASA Astrophysics Data System (ADS)

    Han, Jung Hoon; Kim, June Seo; Kim, Min Jae; Ao, Ping

    2005-03-01

    We calculate the effective mass of a single quantized vortex in the Bardeen-Cooper-Schrieffer superconductor at finite temperature. Based on effective action approach, we arrive at the effective mass of a vortex as integral of the spectral function J(ω) divided by ω3 over frequency. The spectral function is given in terms of the quantum-mechanical transition elements of the gradient of the Hamiltonian between two Bogoliubov-deGennes (BdG) eigenstates. Based on self-consistent numerical diagonalization of the BdG equation we find that the effective mass per unit length of vortex at zero temperature is of order m(kfξ0)2 ( kf=Fermi momentum, ξ0=coherence length), essentially equaling the electron mass displaced within the coherence length from the vortex core. Transitions between the core states are responsible for most of the mass. The mass reaches a maximum value at T≈0.5Tc and decreases continuously to zero at Tc .

  6. Accurate identification of microseismic P- and S-phase arrivals using the multi-step AIC algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Mengbo; Wang, Liguan; Liu, Xiaoming; Zhao, Jiaxuan; Peng, Ping'an

    2018-03-01

    Identification of P- and S-phase arrivals is the primary work in microseismic monitoring. In this study, a new multi-step AIC algorithm is proposed. This algorithm consists of P- and S-phase arrival pickers (P-picker and S-picker). The P-picker contains three steps: in step 1, a preliminary P-phase arrival window is determined by the waveform peak. Then a preliminary P-pick is identified using the AIC algorithm. Finally, the P-phase arrival window is narrowed based on the above P-pick. Thus the P-phase arrival can be identified accurately by using the AIC algorithm again. The S-picker contains five steps: in step 1, a narrow S-phase arrival window is determined based on the P-pick and the AIC curve of amplitude biquadratic time-series. In step 2, the S-picker automatically judges whether the S-phase arrival is clear to identify. In step 3 and 4, the AIC extreme points are extracted, and the relationship between the local minimum and the S-phase arrival is researched. In step 5, the S-phase arrival is picked based on the maximum probability criterion. To evaluate of the proposed algorithm, a P- and S-picks classification criterion is also established based on a source location numerical simulation. The field data tests show a considerable improvement of the multi-step AIC algorithm in comparison with the manual picks and the original AIC algorithm. Furthermore, the technique is independent of the kind of SNR. Even in the poor-quality signal group which the SNRs are below 5, the effective picking rates (the corresponding location error is <15 m) of P- and S-phase arrivals are still up to 80.9% and 76.4% respectively.

  7. NASA paint shop technicians prepare the Orion full-scale flight test crew module for painting in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  8. Air-Traffic Controllers Evaluate The Descent Advisor

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz

    1992-01-01

    Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.

  9. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  10. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE PAGES

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...

    2017-10-30

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  11. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  12. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  13. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  14. Latecomers: The Sources and Impacts of Late Arrival among Adolescent Immigrant Students

    ERIC Educational Resources Information Center

    Allard, Elaine C.

    2016-01-01

    In this ethnographic study, the author describes and analyzes the experiences of latecomers, adolescent immigrant students who arrive late in the school year. She shines a light on the multifaceted challenges posed by these students' transnationalism, undocumented status, and labor migration, which contribute to their late arrival and threaten…

  15. Platform C North Arrival

    NASA Image and Video Library

    2016-08-30

    A section of the second half of the C-level platforms, C North, for NASA’s Space Launch System (SLS) rocket, arrives at the agency’s Kennedy Space Center in Florida. The platform was offloaded from a heavy lift transport truck and secured in a staging area in the west parking lot of the Vehicle Assembly Building (VAB). The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  16. Orion Stage Adapter Arrival

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft taxies onto the tarmac after touching down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.

  17. Orion Stage Adapter Arrival

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft glides to a stop at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.

  18. Orion Stage Adapter Arrival

    NASA Image and Video Library

    2018-04-03

    NASA's Super Guppy aircraft prepares to touch down at the Shuttle Landing Facility at the agency's Kennedy Space Center in Florida. The Super Guppy is carrying the Orion Stage Adapter (OSA), the second flight-hardware section of NASA's Space Launch System (SLS) rocket that has arrived at Kennedy. The OSA will connect the Orion spacecraft to the upper part of the SLS rocket, the interim cryogenic propulsion stage (ICPS). Both the OSA and ICPS are being stored for processing in the center's Space Station Processing Facility in preparation for Exploration Mission-1, the first uncrewed, integrated launch of the SLS rocket and Orion spacecraft.

  19. The fruit and vegetable import pathway for potential invasive pest arrivals.

    PubMed

    Lichtenberg, Erik; Olson, Lars J

    2018-01-01

    The expansion of international trade in commodities increases the risk of alien species invasions. Invaders are difficult to detect on introduction, so prevention remains the preferred strategy for managing the threat of invasions. Propagule pressure has been shown to be a good predictor of invasion risk. Most studies to date, however, link potential invasive species arrivals with indirect measures of propagule pressure such as aggregate trade volumes. This paper estimates propagule pressure using data that measure actual arrivals. Specifically, it uses inspection data that covers almost all U.S. fruit and vegetable imports from 2005-2014 to estimate a logit model of the probability of potential invasive species arrival and expected propagule frequencies for 2,240 commodity/country of origin combinations. Clear patterns in the geographic origin and commodity pathways for potential pests are identified. The average probability of arrival is low, approximately 0.03, but is two to ten times higher for some commodities, most notably herbs. We identify commodities with a high number of expected arrivals due to either a large volume of trade, high interception rates, or a combination of both. Seven of the top ten countries of origin for propagule frequency are from the Western Hemisphere and further trade liberalization within the Western Hemisphere is likely to heighten challenges to enforcement of US phytosanitary standards. Patterns in the data can help identify the commodities and countries of origin in greatest need of technical assistance and guide targeting of surveillance for the pathways of greatest phytosanitary concern.

  20. The fruit and vegetable import pathway for potential invasive pest arrivals

    PubMed Central

    2018-01-01

    The expansion of international trade in commodities increases the risk of alien species invasions. Invaders are difficult to detect on introduction, so prevention remains the preferred strategy for managing the threat of invasions. Propagule pressure has been shown to be a good predictor of invasion risk. Most studies to date, however, link potential invasive species arrivals with indirect measures of propagule pressure such as aggregate trade volumes. This paper estimates propagule pressure using data that measure actual arrivals. Specifically, it uses inspection data that covers almost all U.S. fruit and vegetable imports from 2005–2014 to estimate a logit model of the probability of potential invasive species arrival and expected propagule frequencies for 2,240 commodity/country of origin combinations. Clear patterns in the geographic origin and commodity pathways for potential pests are identified. The average probability of arrival is low, approximately 0.03, but is two to ten times higher for some commodities, most notably herbs. We identify commodities with a high number of expected arrivals due to either a large volume of trade, high interception rates, or a combination of both. Seven of the top ten countries of origin for propagule frequency are from the Western Hemisphere and further trade liberalization within the Western Hemisphere is likely to heighten challenges to enforcement of US phytosanitary standards. Patterns in the data can help identify the commodities and countries of origin in greatest need of technical assistance and guide targeting of surveillance for the pathways of greatest phytosanitary concern. PMID:29451910

  1. Analysis of air-, moisture- and solvent-sensitive chemical compounds by mass spectrometry using an inert atmospheric pressure solids analysis probe.

    PubMed

    Mosely, Jackie A; Stokes, Peter; Parker, David; Dyer, Philip W; Messinis, Antonis M

    2018-02-01

    A novel method has been developed that enables chemical compounds to be transferred from an inert atmosphere glove box and into the atmospheric pressure ion source of a mass spectrometer whilst retaining a controlled chemical environment. This innovative method is simple and cheap to implement on some commercially available mass spectrometers. We have termed this approach inert atmospheric pressure solids analysis probe ( iASAP) and demonstrate the benefit of this methodology for two air-/moisture-sensitive chemical compounds whose characterisation by mass spectrometry is now possible and easily achieved. The simplicity of the design means that moving between iASAP and standard ASAP is straightforward and quick, providing a highly flexible platform with rapid sample turnaround.

  2. An Analysis of the Relationship Between the Heat Index and Arrivals in the Emergency Department

    PubMed Central

    Levy, Matthew; Broccoli, Morgan; Cole, Gai; Jenkins, J Lee; Klein, Eili Y.

    2015-01-01

    Background: Heatwaves are one of the most deadly weather-related events in the United States and account for more deaths annually than hurricanes, tornadoes, floods, and earthquakes combined. However, there are few statistically rigorous studies of the effect of heatwaves on emergency department (ED) arrivals. A better understanding of this relationship can help hospitals plan better and provide better care for patients during these types of events. Methods: A retrospective review of all ED patient arrivals that occurred from April 15 through August 15 for the years 2008 through 2013 was performed. Daily patient arrival data were combined with weather data (temperature and humidity) to examine the potential relationships between the heat index and ED arrivals as well as the length of time patients spend in the ED using generalized additive models. In particular the effect the 2012 heat wave that swept across the United States, and which was hypothesized to increase arrivals was examined. Results: While there was no relationship found between the heat index and arrivals on a single day, a non-linear relationship was found between the mean three-day heat index and the number of daily arrivals. As the mean three-day heat index initially increased, the number of arrivals significantly declined. However, as the heat index continued to increase, the number of arrivals increased. It was estimated that there was approximately a 2% increase in arrivals when the mean heat index for three days approached 100°F. This relationship was strongest for adults aged 18-64, as well as for patients arriving with lower acuity. Additionally, a positive relationship was noted between the mean three-day heat index and the length of stay (LOS) for patients in the ED, but no relationship was found for the time from which a patient was first seen to when a disposition decision was made. No significant relationship was found for the effect of the 2012 heat wave on ED arrivals, though it

  3. PREDICTING CME EJECTA AND SHEATH FRONT ARRIVAL AT L1 WITH A DATA-CONSTRAINED PHYSICAL MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Phillip; Zhang, Jie, E-mail: phess4@gmu.edu

    2015-10-20

    We present a method for predicting the arrival of a coronal mass ejection (CME) flux rope in situ, as well as the sheath of solar wind plasma accumulated ahead of the driver. For faster CMEs, the front of this sheath will be a shock. The method is based upon geometrical separate measurement of the CME ejecta and sheath. These measurements are used to constrain a drag-based model, improved by including both a height dependence and accurate de-projected velocities. We also constrain the geometry of the model to determine the error introduced as a function of the deviation of the CMEmore » nose from the Sun–Earth line. The CME standoff-distance in the heliosphere fit is also calculated, fit, and combined with the ejecta model to determine sheath arrival. Combining these factors allows us to create predictions for both fronts at the L1 point and compare them against observations. We demonstrate an ability to predict the sheath arrival with an average error of under 3.5 hr, with an rms error of about 1.58 hr. For the ejecta the error is less than 1.5 hr, with an rms error within 0.76 hr. We also discuss the physical implications of our model for CME expansion and density evolution. We show the power of our method with ideal data and demonstrate the practical implications of having a permanent L5 observer with space weather forecasting capabilities, while also discussing the limitations of the method that will have to be addressed in order to create a real-time forecasting tool.« less

  4. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  5. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air.

  6. First Apollo 11 Lunar Samples Arrive at the Manned Spacecraft Center (MSC)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission's first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  7. The second X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrives at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-01-31

    The second of three X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrived at NASA's Dryden Flight Research Center, Edwards, California, on January 31, 2001. The arrival of the second X-43A from its manufacturer, MicroCraft, Inc., of Tullahoma, Tenn., followed by only a few days the mating of the first X-43A and its specially-designed adapter to the first stage of a modified Pegasus® booster rocket. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the 12-foot-long, unpiloted research aircraft to a predetermined altitude and speed after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  8. 14 CFR 93.23 - Arrival Authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... International Airport § 93.23 Arrival Authorizations. (a) Except as otherwise established by the FAA under... limited to: (1) 88 per hour between the hours of 7 a.m. and 7:59 p.m. Monday through Friday and 12 p.m. and 7:59 p.m. Sunday, (i) Not to exceed 50 during each half-hour beginning at 7 a.m. and ending at 7...

  9. 14 CFR 93.23 - Arrival Authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... International Airport § 93.23 Arrival Authorizations. (a) Except as otherwise established by the FAA under... limited to: (1) 88 per hour between the hours of 7 a.m. and 7:59 p.m. Monday through Friday and 12 p.m. and 7:59 p.m. Sunday, (i) Not to exceed 50 during each half-hour beginning at 7 a.m. and ending at 7...

  10. 8 CFR 258.3 - Action upon arrival.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS LIMITATIONS ON PERFORMANCE OF LONGSHORE WORK BY ALIEN CREWMEN § 258.3 Action upon arrival. (a) The master or agent of the vessel... the vessel will perform longshore work at any port before departing the United States; and (2) If...

  11. 19 CFR 122.31 - Notice of arrival.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... following information: (1) Type of aircraft and registration number; (2) Name (last, first, middle, if... provided in paragraph (b) of this section, all aircraft entering the United States from a foreign area must give advance notice of arrival. (b) Exceptions for scheduled aircraft of a scheduled airline. Advance...

  12. 19 CFR 122.31 - Notice of arrival.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... following information: (1) Type of aircraft and registration number; (2) Name (last, first, middle, if... provided in paragraph (b) of this section, all aircraft entering the United States from a foreign area must give advance notice of arrival. (b) Exceptions for scheduled aircraft of a scheduled airline. Advance...

  13. 19 CFR 122.31 - Notice of arrival.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following information: (1) Type of aircraft and registration number; (2) Name (last, first, middle, if... provided in paragraph (b) of this section, all aircraft entering the United States from a foreign area must give advance notice of arrival. (b) Exceptions for scheduled aircraft of a scheduled airline. Advance...

  14. First impression at stroke onset plays an important role in early hospital arrival.

    PubMed

    Iguchi, Yasuyuki; Wada, Kuniyasu; Shibazaki, Kensaku; Inoue, Takeshi; Ueno, Yuji; Yamashita, Shinji; Kimura, Kazumi

    2006-01-01

    Treatment for acute ischemic stroke should be administered as soon as possible after symptom onset. The aim of this study was to investigate whether or not the patient's and bystander's first impression at stroke onset was associated with hospital arrival time. To investigate the factors influencing the prehospital delay, we prospectively interviewed consecutive stroke patients and bystanders about their first impression at the stroke onset and assessed the methods of transportation, and clinical characteristics. Early arrival was defined as a hospital arrival of within 2 h from stroke onset. One hundred thirty patients were enrolled: 82% were ischemic stroke and 18% were cerebral hemorrhage. The median interval between symptom onset and the hospital arrival was 7.5 h and 30% of patients presented within 2 h of stroke onset. First impression of stroke (odds ratios [OR] 4.56, 95% confidence interval [CI] 1.54-13.5, p=0.006), presence of consciousness disturbance (OR 4.29, CI 1.39-13.3, p=0.011), arrival through other facilities (OR 0.25, CI 0.08-0.76, p=0.015), a history of diabetes (OR 0.23, CI 0.06-0.80, p=0.028) and nocturnal onset (OR 0.19, CI 0.04-0.88, p=0.042) independently contributed to the early arrival. The first impression of patients and bystanders at stroke onset is important in order to reach hospital earlier in Japan. Public educational systems such as those, which advertise stroke warning signs, are necessary.

  15. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    USGS Publications Warehouse

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  16. 7 CFR 319.24-4 - Notice of arrival of corn by permittee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Notice of arrival of corn by permittee. 319.24-4... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-4 Notice of arrival of corn by permittee. Immediately upon...

  17. 7 CFR 319.24-4 - Notice of arrival of corn by permittee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Notice of arrival of corn by permittee. 319.24-4... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-4 Notice of arrival of corn by permittee. Immediately upon...

  18. Measurement of spatial and temporal variation in volatile hazardous air pollutants in Tacoma, Washington, using a mobile membrane introduction mass spectrometry (MIMS) system.

    PubMed

    Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G

    2014-09-19

    The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.

  19. Hardware-software complex of informing passengers of forecasted route transport arrival at stop

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, V. Yu; Pushkarev, M. I.; Fadeev, A. S.

    2017-02-01

    The paper presents the hardware-software complex of informing the passengers of the forecasted route transport arrival. A client-server architecture of the forecasting information system is represented and an electronic information board prototype is described. The scheme of information transfer and processing, starting with receiving navigating telemetric data from a transport vehicle and up to the time of passenger public transport arrival at the stop, as well as representation of the information on the electronic board is illustrated and described. Methods and algorithms of determination of the transport vehicle current location in the city route network are considered in detail. The description of the proposed forecasting model of transport vehicle arrival time at the stop is given. The obtained result is applied in Tomsk for forecasting and displaying the arrival time information at the stops.

  20. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  1. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    EPA Science Inventory

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  2. Ion mobility mass spectrometry of proteins in a modified commercial mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T.

    2004-08-01

    Ion mobility has emerged as an important technique for determining biopolymer conformations in solvent free environments. These experiments have been nearly exclusively performed on home built systems. In this paper we describe modifications to a commercial high performance mass spectrometer, the Waters UK "Ultima" Q-Tof, that allows high sensitivity measurement of peptide and protein cross sections. Arrival time distributions are obtained for a series of peptides (bradykinin, LHRH, substance P, bombesin) and proteins (bovine and equine cytochrome c, myoglobin, [alpha]-lactalbumin) with good agreement found with literature cross sections where available. In complex ATD's, mass spectra can be obtained for each feature confirming assignments. The increased sensitivity of the commercial instrument is retained along with the convenience of the data system, crucial features for analysis of protein misfolding systems.

  3. Air Medical Evacuations From the German North Sea Wind Farm Bard Offshore 1: Traumatic Injuries, Acute Diseases, and Rescue Process Times (2011-2013).

    PubMed

    Dethleff, Dirk; Weinrich, Nils; Kowald, Birgitt; Hory, Dorothea; Franz, Rüdiger; Nielsen, Maja Verena; Seide, Klaus; Jürgens, Christian; Stuhr, Markus

    2016-01-01

    Our purpose was 2-fold: 1) to show emergency-related traumatic injury and acute disease patterns and 2) to evaluate air rescue process times in a remotely located German offshore wind farm. Optimally, this will support methodologies to reduce offshore help time (time from the incoming emergency call until offshore arrival of the helicopter). The type and severity of traumatic injuries and acute diseases were retrospectively analyzed for 39 air medevacs from August 2011 to December 2013, and the process times of air rescue missions were evaluated in detail. Forty-nine percent of the medevacs were related to traumatic injuries, whereas 41% were associated with acute diseases and 10% remained unclear. Cardiovascular and gastrointestinal disorders accounted for 90% of internal medical cases. About 69% of the trauma was related to contusions, lacerations, and cuts. The main body regions injured were limbs (∼59%) and head (∼32%). The total rescue time until arrival at the destination facility averaged 175.3 minutes (standard deviation = 54.4 minutes). The mean helicopter offshore arrival time was 106.9 minutes (standard deviation = 57.4 minutes) after the incoming emergency call. In 64% of the medevacs, the helicopter arrived on scene within a help time of 90 minutes. A reduction of help time (≤ 60 minutes) for time-critical severe trauma and acute diseases may be anticipated through rapid and focused medical and logistic decision-making processes by the onshore dispatch center combined with professional, qualified, and well-trained flight and rescue personnel. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  4. Self-Regulation in Newly Arrived International Adoptees

    ERIC Educational Resources Information Center

    Tirella, Linda Grey; Miller, Laurie C.

    2011-01-01

    Many newly arrived international adoptees (IA) have difficulties with eating, sleeping, and self-soothing/self-stimulating (SS) behaviors. However, to date the prevalence of these problems and associated risk factors have not been clearly identified. Therefore, we proposed to evaluate 387 IA for the presence of these self-regulation and behavioral…

  5. Accurate seismic phase identification and arrival time picking of glacial icequakes

    NASA Astrophysics Data System (ADS)

    Jones, G. A.; Doyle, S. H.; Dow, C.; Kulessa, B.; Hubbard, A.

    2010-12-01

    A catastrophic lake drainage event was monitored continuously using an array of 6, 4.5 Hz 3 component geophones in the Russell Glacier catchment, Western Greenland. Many thousands of events and arrival time phases (e.g., P- or S-wave) were recorded, often with events occurring simultaneously but at different locations. In addition, different styles of seismic events were identified from 'classical' tectonic earthquakes to tremors usually observed in volcanic regions. The presence of such a diverse and large dataset provides insight into the complex system of lake drainage. One of the most fundamental steps in seismology is the accurate identification of a seismic event and its associated arrival times. However, the collection of such a large and complex dataset makes the manual identification of a seismic event and picking of the arrival time phases time consuming with variable results. To overcome the issues of consistency and manpower, a number of different methods have been developed including short-term and long-term averages, spectrograms, wavelets, polarisation analyses, higher order statistics and auto-regressive techniques. Here we propose an automated procedure which establishes the phase type and accurately determines the arrival times. The procedure combines a number of different automated methods to achieve this, and is applied to the recently acquired lake drainage data. Accurate identification of events and their arrival time phases are the first steps in gaining a greater understanding of the extent of the deformation and the mechanism of such drainage events. A good knowledge of the propagation pathway of lake drainage meltwater through a glacier will have significant consequences for interpretation of glacial and ice sheet dynamics.

  6. First arrival time picking for microseismic data based on DWSW algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Yue; Lin, Hongbo; Zhong, Tie

    2018-03-01

    The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as - 10 dB.

  7. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  8. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  9. Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data

    DTIC Science & Technology

    2017-01-01

    elevation at the time of vessel movement and calculating the tidal dependence (TD) parameter to 23 U.S. port areas for the years 2012– 2014. Tidal prediction...predictions, obtained from the National Oceanographic and Atmospheric Administration, are used to rank relative tidal dependence for arriving cargo and...sector traffic percentages and tidal dependence metric ............................. 11 Arrival process mining

  10. Platform C South Arrival

    NASA Image and Video Library

    2016-08-04

    A heavy load transport truck from Tillett Heavy Hauling in Titusville, Florida, arrives at the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, carrying a section of the first half of the C-level work platforms, C south, for the agency’s Space Launch System (SLS) rocket. The platform will be delivered to the VAB staging area in the west parking lot. The Ground Systems Development and Operations Program is overseeing upgrades and modifications to VAB High Bay 3 to support processing of the SLS and Orion spacecraft. A total of 10 levels of new platforms, 20 platform halves altogether, will surround the SLS rocket and Orion spacecraft and provide access for testing and processing.

  11. STS-85 Crew Arrival for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle Mission STS-85 crew arrives at the Shuttle Landing Facility for their mission's Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. They are (from left): Mission Specialist Stephen K. Robinson; Payload Commander N. Jan Davis; Mission Specialist Robert L. Curbeam; Commander Curtis L. Brown, Jr.; Pilot Kent V. Rominger; and Payload Specialist Bjarni V. Tryggvason. The liftoff for STS-85 is targeted for August 7, 1997.

  12. Markovian Queues with Arrival Dependence

    DTIC Science & Technology

    1976-03-01

    adding together the three balance equations for P 2o’ ^21’ "^22 as ^°ll°ws ’ 1 20 2 21 <W P21= XP10 + *2P22 H- ( ^ l^ 2 )p22 = Xp11 "lP20 +UlP21 +V22...REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM 1 REPORT NUMBER 2 . GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and...ADDITIONAL FACTS CONCERNING THE TRANSIENT DISTRIBUTION OF WAITING TIMES FOR ARRIVING CUSTOMERS 2 ? IV. THE TWO CHANNEL SERVER QUEUE WITH SINGLE

  13. They Might be Giants: Small-Scale RPAs as a Threat to Air Base Defense and Air Power Projection

    DTIC Science & Technology

    2014-06-01

    experience on C-5, KC-10, and C-17 aircraft as well as multiple General Electric jet and turbofan engines. He takes command of the 730th Air Mobility...pneumatic and electric controls for stabilization and launched from a portable track. Once it arrived near the target, it would kill its engine, shed...airfield lie beyond or under the path of any interceptor’s bullets. To pose a metaphor, it is akin to using a sports car to chase a honeybee, but

  14. Robotic Refueling Mission-3 Arrival and Processing

    NASA Image and Video Library

    2018-05-08

    NASA’s Robotic Refueling Mission 3 (RRM3) arrived at Kennedy Space Center’s Space Station Processing Facility on May 8. The fluid transfer module will demonstrate innovative methods to store, transfer and freeze standard cryogenic fluid in space. RRM3 is scheduled to launch to the International Space Station later this year.

  15. Occurrence of Fumigants and Hazardous Off-gassing Chemicals in Shipping Containers Arriving in Sweden.

    PubMed

    Svedberg, Urban; Johanson, Gunnar

    2017-03-01

    Containerized cargo shipment makes up the backbone of international trade. The principal aim of this cross-sectional study was to establish a qualitative and quantitative description of gaseous fumigants and volatile off-gassing substances facing workers tasked with entering shipping containers. A total of 372 packed and 119 empty shipping containers were sampled in six ports and two distribution centers in Sweden. Fourier-transform infrared spectrometry (FTIR) and photoionization detection (PID) were the analytical methods applied to the bulk of samples. A small number of adsorbent samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The results were compared to Swedish occupational exposure limits (OELs), the closest parallel to relevant work situations. Based on the FTIR analyses, 30 of 249 (12%) containers arrived with concentrations of fumigants and off-gassing substances above the 8-h OELs and close to 7% were above the short-term exposure limits. Eight detected chemicals were classified as carcinogens and 4% of the containers arrived with levels of carcinogens above the OELs, at a maximum 30 times the 8-h OEL. Considerable differences were observed between ports, ranging from 0 to 33% of containers arriving with concentrations above the OELs. It is believed that all observation results, apart from a single instance of a confirmed fumigant, phosphine, at 3 p.p.m., and possibly three instances of carbon dioxide, can be attributed to off-gassing substances. The FTIR methodology proved useful for quick preliminary checks and in-depth screening and identification. The PID method produced both false-negative and false-positive results where only 48% matched the FTIR observations. Adsorbent sampling with GC-MS analysis was useful for confirming volatile organic compounds but was deemed too slow for day-to-day screening. The high frequency of contaminated containers, the detection of several carcinogens, and the sporadic occurrences of high

  16. Occurrence of Fumigants and Hazardous Off-gassing Chemicals in Shipping Containers Arriving in Sweden

    PubMed Central

    Johanson, Gunnar

    2017-01-01

    Abstract Containerized cargo shipment makes up the backbone of international trade. The principal aim of this cross-sectional study was to establish a qualitative and quantitative description of gaseous fumigants and volatile off-gassing substances facing workers tasked with entering shipping containers. A total of 372 packed and 119 empty shipping containers were sampled in six ports and two distribution centers in Sweden. Fourier-transform infrared spectrometry (FTIR) and photoionization detection (PID) were the analytical methods applied to the bulk of samples. A small number of adsorbent samples were analyzed using gas chromatography–mass spectrometry (GC–MS). The results were compared to Swedish occupational exposure limits (OELs), the closest parallel to relevant work situations. Based on the FTIR analyses, 30 of 249 (12%) containers arrived with concentrations of fumigants and off-gassing substances above the 8-h OELs and close to 7% were above the short-term exposure limits. Eight detected chemicals were classified as carcinogens and 4% of the containers arrived with levels of carcinogens above the OELs, at a maximum 30 times the 8-h OEL. Considerable differences were observed between ports, ranging from 0 to 33% of containers arriving with concentrations above the OELs. It is believed that all observation results, apart from a single instance of a confirmed fumigant, phosphine, at 3 p.p.m., and possibly three instances of carbon dioxide, can be attributed to off-gassing substances. The FTIR methodology proved useful for quick preliminary checks and in-depth screening and identification. The PID method produced both false-negative and false-positive results where only 48% matched the FTIR observations. Adsorbent sampling with GC–MS analysis was useful for confirming volatile organic compounds but was deemed too slow for day-to-day screening. The high frequency of contaminated containers, the detection of several carcinogens, and the sporadic

  17. Feasibility Criteria for Interval Management Operations as Part of Arrival Management Operations

    NASA Technical Reports Server (NTRS)

    Levitt, Ian M.; Weitz, Lesley A.; Barmore, Bryan E.; Castle, Michael W.

    2014-01-01

    Interval Management (IM) is a future airborne spacing concept that aims to provide more precise inter-aircraft spacing to yield throughput improvements and greater use of fuel efficient trajectories for arrival and approach operations. To participate in an IM operation, an aircraft must be equipped with avionics that provide speeds to achieve and maintain an assigned spacing interval relative to another aircraft. It is not expected that all aircraft will be equipped with the necessary avionics, but rather that IM fits into a larger arrival management concept developed to support the broader mixed-equipage environment. Arrival management concepts are comprised of three parts: a ground-based sequencing and scheduling function to develop an overall arrival strategy, ground-based tools to support the management of aircraft to that schedule, and the IM tools necessary for the IM operation (i.e., ground-based set-up, initiation, and monitoring, and the flight-deck tools to conduct the IM operation). The Federal Aviation Administration is deploying a near-term ground-automation system to support metering operations in the National Airspace System, which falls within the first two components of the arrival management concept. This paper develops a methodology for determining the required delivery precision at controlled meter points for aircraft that are being managed to a schedule and aircraft being managed to a relative spacing interval in order to achieve desired flow rates and adequate separation at the meter points.

  18. TDRS-M Atlas V Booster and Centaur Stages Arrival, Offload, and Transport (Booster) to ASOC

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster and centaur upper stage bounded for Cape Canaveral Air Force Station. The centaur upper stage is transported from the company's Mariner ship to the Delta Operations Center. The booster stage is transported to the Atlas Spaceflight Operations Center. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  19. Officials welcome the arrival of the Japanese Experiment Module

    NASA Image and Video Library

    2007-04-17

    In the Space Station Processing Facility, Scott Higginbotham, payload manager for the International Space Station, discusses the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module (JEM), with Dr. Hidetaka Tanaka, the JEM Project Team resident manager at KSC for the Japanese Aerospace and Exploration Agency (JAXA). Earlier, NASA and JAXA officials welcomed the arrival of the module. The new International Space Station component arrived at Kennedy March 12 to begin preparations for its future launch on mission STS-123. It will serve as an on-orbit storage area for materials, tools and supplies. It can hold up to eight experiment racks and will attach to the top of another larger pressurized module.

  20. A NASA painter applies the first primer coat to NASA's Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.